551
|
Pajic M, Blatter S, Guyader C, Gonggrijp M, Kersbergen A, Küçükosmanoğlu A, Sol W, Drost R, Jonkers J, Borst P, Rottenberg S. Selected Alkylating Agents Can Overcome Drug Tolerance of G 0-like Tumor Cells and Eradicate BRCA1-Deficient Mammary Tumors in Mice. Clin Cancer Res 2017; 23:7020-7033. [PMID: 28821557 DOI: 10.1158/1078-0432.ccr-17-1279] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/08/2017] [Accepted: 08/14/2017] [Indexed: 11/16/2022]
Abstract
Purpose: We aimed to characterize and target drug-tolerant BRCA1-deficient tumor cells that cause residual disease and subsequent tumor relapse.Experimental Design: We studied responses to various mono- and bifunctional alkylating agents in a genetically engineered mouse model for BRCA1/p53-mutant breast cancer. Because of the large intragenic deletion of the Brca1 gene, no restoration of BRCA1 function is possible, and therefore, no BRCA1-dependent acquired resistance occurs. To characterize the cell-cycle stage from which Brca1-/-;p53-/- mammary tumors arise after cisplatin treatment, we introduced the fluorescent ubiquitination-based cell-cycle indicator (FUCCI) construct into the tumor cells.Results: Despite repeated sensitivity to the MTD of platinum drugs, the Brca1-mutated mammary tumors are not eradicated, not even by a frequent dosing schedule. We show that relapse comes from single-nucleated cells delaying entry into the S-phase. Such slowly cycling cells, which are present within the drug-naïve tumors, are enriched in tumor remnants. Using the FUCCI construct, we identified nonfluorescent G0-like cells as the population most tolerant to platinum drugs. Intriguingly, these cells are more sensitive to the DNA-crosslinking agent nimustine, resulting in an increased number of multinucleated cells that lack clonogenicity. This is consistent with our in vivo finding that the nimustine MTD, among several alkylating agents, is the most effective in eradicating Brca1-mutated mouse mammary tumors.Conclusions: Our data show that targeting G0-like cells is crucial for the eradication of BRCA1/p53-deficient tumor cells. This can be achieved with selected alkylating agents such as nimustine. Clin Cancer Res; 23(22); 7020-33. ©2017 AACR.
Collapse
Affiliation(s)
- Marina Pajic
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, Sydney, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales, Australia
| | - Sohvi Blatter
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Charlotte Guyader
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maaike Gonggrijp
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ariena Kersbergen
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Aslι Küçükosmanoğlu
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wendy Sol
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rinske Drost
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Piet Borst
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland. .,Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
552
|
Kubistova L, Dvoracek L, Tkadlec J, Melter O, Licha I. Environmental Stress Affects the Formation of Staphylococcus aureus Persisters Tolerant to Antibiotics. Microb Drug Resist 2017; 24:547-555. [PMID: 28813617 DOI: 10.1089/mdr.2017.0064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The ability to form persisters has been observed in many microorganisms, including Staphylococcus aureus, mainly in the context of chronic infections and the pathogenicity of these microbes. In our research, we have demonstrated that salt or oxidative stress could play a role in the formation of S. aureus persisters outside the host's intracellular interface. We pre-exposed planktonic growing bacterial culture to an oxidative or salt stress and monitored the dynamics of persister formation after ciprofloxacin and gentamicin treatment. In parallel, using the quantitative PCR (qPCR) approach, we determined the expression level of the stress sigma factor SigB. The pre-exposure of bacteria to salt stress caused a 1-2.5 order of magnitude increase in persister formation in the bacterial population after antibiotic exposure, depending on the type and concentration of the antibiotic used. In contrast, oxidative stress only minimally influenced the formation of persisters, without correlation to the antibiotic type and concentration. We have demonstrated that both stress and antibiotic exposure increase the expression of sigB in bacterial populations from very early on. And that the expression level of sigB differs with the type of antibiotic and stress, but no correlation was observed between persister formation and sigB expression. The method used could be helpful in testing the ability that strains can have, to form persisters.
Collapse
Affiliation(s)
- Lucie Kubistova
- 1 Department of Genetics and Microbiology, Faculty of Science, Charles University , Prague, Czech Republic
| | - Lukas Dvoracek
- 1 Department of Genetics and Microbiology, Faculty of Science, Charles University , Prague, Czech Republic
| | - Jan Tkadlec
- 2 Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University , Prague, Czech Republic .,3 Department of Medical Microbiology, Motol University Hospital , Prague, Czech Republic
| | - Oto Melter
- 2 Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University , Prague, Czech Republic .,3 Department of Medical Microbiology, Motol University Hospital , Prague, Czech Republic
| | - Irena Licha
- 1 Department of Genetics and Microbiology, Faculty of Science, Charles University , Prague, Czech Republic
| |
Collapse
|
553
|
Nathan C. Kunkel Lecture: Fundamental immunodeficiency and its correction. J Exp Med 2017; 214:2175-2191. [PMID: 28701368 PMCID: PMC5551579 DOI: 10.1084/jem.20170637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 02/05/2023] Open
Abstract
"Fundamental immunodeficiency" is the inability of the encoded immune system to protect an otherwise healthy host from every infection that could threaten its life. In contrast to primary immunodeficiencies, fundamental immunodeficiency is not rare but nearly universal. It results not from variation in a given host gene but from the rate and extent of variation in the genes of other organisms. The remedy for fundamental immunodeficiency is "adopted immunity," not to be confused with adaptive or adoptive immunity. Adopted immunity arises from four critical societal contributions to the survival of the human species: sanitation, nutrition, vaccines, and antimicrobial agents. Immunologists have a great deal to contribute to the development of vaccines and antimicrobial agents, but they have focused chiefly on vaccines, and vaccinology is thriving. In contrast, the effect of antimicrobial agents in adopted immunity, although fundamental, is fragile and failing. Immunologists can aid the development of sorely needed antimicrobial agents, and the study of antimicrobial agents can help immunologists discover targets and mechanisms of host immunity.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| |
Collapse
|
554
|
Bumann D, Schothorst J. Intracellular Salmonella metabolism. Cell Microbiol 2017; 19. [PMID: 28672057 DOI: 10.1111/cmi.12766] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 12/28/2022]
Abstract
Growth of Salmonella inside infected host cells is a key aspect of their ability to cause local enteritis or systemic disease. This growth depends on exploitation of host nutrients through a large Salmonella metabolism network with hundreds of metabolites and enzymes. Studies in cell culture infection models are unravelling more and more of the underlying molecular and cellular mechanisms but also show striking Salmonella metabolic plasticity depending on host cell line and experimental conditions. In vivo studies have revealed a qualitatively diverse, but quantitatively poor, host-Salmonella nutritional interface, which on one side makes Salmonella fitness largely resilient against metabolic perturbations, but on the other side severely limits Salmonella biomass generation and growth rates. This review discusses goals and techniques for studying Salmonella intracellular metabolism, summarises main results and implications, and proposes key issues that could be addressed in future studies.
Collapse
Affiliation(s)
- Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Joep Schothorst
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
555
|
Abstract
Many bacteria can infect and persist inside their hosts for long periods of time. This can be due to immunosuppression of the host, immune evasion by the pathogen and/or ineffective killing by antibiotics. Bacteria can survive antibiotic treatment if they are resistant or tolerant to a drug. Persisters are a subpopulation of transiently antibiotic-tolerant bacterial cells that are often slow-growing or growth-arrested, and are able to resume growth after a lethal stress. The formation of persister cells establishes phenotypic heterogeneity within a bacterial population and has been hypothesized to be important for increasing the chances of successfully adapting to environmental change. The presence of persister cells can result in the recalcitrance and relapse of persistent bacterial infections, and it has been linked to an increase in the risk of the emergence of antibiotic resistance during treatment. If the mechanisms of the formation and regrowth of these antibiotic-tolerant cells were better understood, it could lead to the development of new approaches for the eradication of persistent bacterial infections. In this Review, we discuss recent developments in our understanding of bacterial persisters and their potential implications for the treatment of persistent infections.
Collapse
Affiliation(s)
- Robert A Fisher
- MRC Centre for Molecular Bacteriology and Infection, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, UK
| | - Bridget Gollan
- MRC Centre for Molecular Bacteriology and Infection, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, UK
| | - Sophie Helaine
- MRC Centre for Molecular Bacteriology and Infection, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
556
|
Carvalho G, Guilhen C, Balestrino D, Forestier C, Mathias JD. Relating switching rates between normal and persister cells to substrate and antibiotic concentrations: a mathematical modelling approach supported by experiments. Microb Biotechnol 2017; 10:1616-1627. [PMID: 28730700 PMCID: PMC5658594 DOI: 10.1111/1751-7915.12739] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 11/29/2022] Open
Abstract
We developed and compared two mathematical models of variable phenotypic switching rates between normal and persister cells that depend on substrate concentration and antibiotic presence. They could be used to simulate the formation of persisters in environments with concentration gradients such as biofilms. Our models are extensions of a previous model of the dynamics of normal and persistent cell populations developed by Balaban et al. (2004, Science 305: 1622). We calibrated the models’ parameters with experimental killing curves obtained after ciprofloxacin treatment of samples regularly harvested from planktonic batch cultures of Klebsiella pneumoniae. Our switching models accurately reproduced the dynamics of normal and persistent populations in planktonic batch cultures and under antibiotic treatment. Results showed that the models are valid for a large range of substrate concentrations and for zero or high doses of antibiotics.
Collapse
Affiliation(s)
- Gabriel Carvalho
- UR LISC Laboratoire d'ingénierie pour les systèmes complexes, Irstea, Aubière, France
| | - Cyril Guilhen
- LMGE, UMR6023 CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Damien Balestrino
- LMGE, UMR6023 CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | | | - Jean-Denis Mathias
- UR LISC Laboratoire d'ingénierie pour les systèmes complexes, Irstea, Aubière, France
| |
Collapse
|
557
|
Ramisetty BCM, Santhosh RS. Endoribonuclease type II toxin-antitoxin systems: functional or selfish? MICROBIOLOGY-SGM 2017; 163:931-939. [PMID: 28691660 DOI: 10.1099/mic.0.000487] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Most bacterial genomes have multiple type II toxin-antitoxin systems (TAs) that encode two proteins which are referred to as a toxin and an antitoxin. Toxins inhibit a cellular process, while the interaction of the antitoxin with the toxin attenuates the toxin's activity. Endoribonuclease-encoding TAs cleave RNA in a sequence-dependent fashion, resulting in translational inhibition. To account for their prevalence and retention by bacterial genomes, TAs are credited with clinically significant phenomena, such as bacterial programmed cell death, persistence, biofilms and anti-addiction to plasmids. However, the programmed cell death and persistence hypotheses have been challenged because of conceptual, methodological and/or strain issues. In an alternative view, chromosomal TAs seem to be retained by virtue of addiction at two levels: via a poison-antidote combination (TA proteins) and via transcriptional reprogramming of the downstream core gene (due to integration). Any perturbation in the chromosomal TA operons could cause fitness loss due to polar effects on the downstream genes and hence be detrimental under natural conditions. The endoribonucleases encoding chromosomal TAs are most likely selfish DNA as they are retained by bacterial genomes, even though TAs do not confer a direct advantage via the TA proteins. TAs are likely used by various replicons as 'genetic arms' that allow the maintenance of themselves and associated genetic elements. TAs seem to be the 'selfish arms' that make the best use of the 'arms race' between bacterial genomes and plasmids.
Collapse
|
558
|
Seydlová G, Pohl R, Zborníková E, Ehn M, Šimák O, Panova N, Kolář M, Bogdanová K, Večeřová R, Fišer R, Šanderová H, Vítovská D, Sudzinová P, Pospíšil J, Benada O, Křížek T, Sedlák D, Bartůněk P, Krásný L, Rejman D. Lipophosphonoxins II: Design, Synthesis, and Properties of Novel Broad Spectrum Antibacterial Agents. J Med Chem 2017; 60:6098-6118. [PMID: 28654257 DOI: 10.1021/acs.jmedchem.7b00355] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The increase in the number of bacterial strains resistant to known antibiotics is alarming. In this study we report the synthesis of novel compounds termed Lipophosphonoxins II (LPPO II). We show that LPPO II display excellent activities against Gram-positive and -negative bacteria, including pathogens and multiresistant strains. We describe their mechanism of action-plasmatic membrane pore-forming activity selective for bacteria. Importantly, LPPO II neither damage nor cross the eukaryotic plasmatic membrane at their bactericidal concentrations. Further, we demonstrate LPPO II have low propensity for resistance development, likely due to their rapid membrane-targeting mode of action. Finally, we reveal that LPPO II are not toxic to either eukaryotic cells or model animals when administered orally or topically. Collectively, these results suggest that LPPO II are highly promising compounds for development into pharmaceuticals.
Collapse
Affiliation(s)
- Gabriela Seydlová
- Department of Genetics and Microbiology, Faculty of Science, Charles University , Viničná 5, 128 43 Prague 2, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i. , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Eva Zborníková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i. , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.,Department of Analytical Chemistry, Faculty of Science, Charles University , Albertov 6, 128 43 Prague 2, Czech Republic
| | - Marcel Ehn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i. , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Ondřej Šimák
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i. , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Natalya Panova
- Institute of Microbiology, Czech Academy of Sciences v.v.i. , Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Milan Kolář
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc , Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Kateřina Bogdanová
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc , Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Renata Večeřová
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc , Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Radovan Fišer
- Department of Genetics and Microbiology, Faculty of Science, Charles University , Viničná 5, 128 43 Prague 2, Czech Republic
| | - Hana Šanderová
- Institute of Microbiology, Czech Academy of Sciences v.v.i. , Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Dragana Vítovská
- Institute of Microbiology, Czech Academy of Sciences v.v.i. , Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Petra Sudzinová
- Department of Genetics and Microbiology, Faculty of Science, Charles University , Viničná 5, 128 43 Prague 2, Czech Republic.,Institute of Microbiology, Czech Academy of Sciences v.v.i. , Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Jiří Pospíšil
- Department of Genetics and Microbiology, Faculty of Science, Charles University , Viničná 5, 128 43 Prague 2, Czech Republic.,Institute of Microbiology, Czech Academy of Sciences v.v.i. , Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Oldřich Benada
- Institute of Microbiology, Czech Academy of Sciences v.v.i. , Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University , Albertov 6, 128 43 Prague 2, Czech Republic
| | - David Sedlák
- Institute of Molecular Genetics, Czech Academy of Sciences v.v.i. , Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Petr Bartůněk
- Institute of Molecular Genetics, Czech Academy of Sciences v.v.i. , Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Libor Krásný
- Institute of Microbiology, Czech Academy of Sciences v.v.i. , Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i. , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
559
|
Mukherjee A, Wheaton GH, Counts JA, Ijeomah B, Desai J, Kelly RM. VapC toxins drive cellular dormancy under uranium stress for the extreme thermoacidophile Metallosphaera prunae. Environ Microbiol 2017; 19:2831-2842. [PMID: 28585353 DOI: 10.1111/1462-2920.13808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/29/2017] [Indexed: 11/28/2022]
Abstract
When abruptly exposed to toxic levels of hexavalent uranium, the extremely thermoacidophilic archaeon Metallosphaera prunae, originally isolated from an abandoned uranium mine, ceased to grow, and concomitantly exhibited heightened levels of cytosolic ribonuclease activity that corresponded to substantial degradation of cellular RNA. The M. prunae transcriptome during 'uranium-shock' implicated VapC toxins as possible causative agents of the observed RNA degradation. Identifiable VapC toxins and PIN-domain proteins encoded in the M. prunae genome were produced and characterized, three of which (VapC4, VapC7, VapC8) substantially degraded M. prunae rRNA in vitro. RNA cleavage specificity for these VapCs mapped to motifs within M. prunae rRNA. Furthermore, based on frequency of cleavage sequences, putative target mRNAs for these VapCs were identified; these were closely associated with translation, transcription, and replication. It is interesting to note that Metallosphaera sedula, a member of the same genus and which has a nearly identical genome sequence but not isolated from a uranium-rich biotope, showed no evidence of dormancy when exposed to this metal. M. prunae utilizes VapC toxins for post-transcriptional regulation under uranium stress to enter a cellular dormant state, thereby providing an adaptive response to what would otherwise be a deleterious environmental perturbation.
Collapse
Affiliation(s)
- Arpan Mukherjee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Garrett H Wheaton
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James A Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Brenda Ijeomah
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jigar Desai
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| |
Collapse
|
560
|
Deter HS, Jensen RV, Mather WH, Butzin NC. Mechanisms for Differential Protein Production in Toxin-Antitoxin Systems. Toxins (Basel) 2017; 9:E211. [PMID: 28677629 PMCID: PMC5535158 DOI: 10.3390/toxins9070211] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 02/06/2023] Open
Abstract
Toxin-antitoxin (TA) systems are key regulators of bacterial persistence, a multidrug-tolerant state found in bacterial species that is a major contributing factor to the growing human health crisis of antibiotic resistance. Type II TA systems consist of two proteins, a toxin and an antitoxin; the toxin is neutralized when they form a complex. The ratio of antitoxin to toxin is significantly greater than 1.0 in the susceptible population (non-persister state), but this ratio is expected to become smaller during persistence. Analysis of multiple datasets (RNA-seq, ribosome profiling) and results from translation initiation rate calculators reveal multiple mechanisms that ensure a high antitoxin-to-toxin ratio in the non-persister state. The regulation mechanisms include both translational and transcriptional regulation. We classified E. coli type II TA systems into four distinct classes based on the mechanism of differential protein production between toxin and antitoxin. We find that the most common regulation mechanism is translational regulation. This classification scheme further refines our understanding of one of the fundamental mechanisms underlying bacterial persistence, especially regarding maintenance of the antitoxin-to-toxin ratio.
Collapse
Affiliation(s)
- Heather S Deter
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0435, USA.
- Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0435, USA.
| | - Roderick V Jensen
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0435, USA.
| | | | - Nicholas C Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA.
| |
Collapse
|
561
|
A Proteomic Signature of Dormancy in the Actinobacterium Micrococcus luteus. J Bacteriol 2017; 199:JB.00206-17. [PMID: 28484042 DOI: 10.1128/jb.00206-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/24/2017] [Indexed: 12/13/2022] Open
Abstract
Dormancy is a protective state in which diverse bacteria, including Mycobacterium tuberculosis, Staphylococcus aureus, Treponema pallidum (syphilis), and Borrelia burgdorferi (Lyme disease), curtail metabolic activity to survive external stresses, including antibiotics. Evidence suggests dormancy consists of a continuum of interrelated states, including viable but nonculturable (VBNC) and persistence states. VBNC and persistence contribute to antibiotic tolerance, reemergence from latent infections, and even quorum sensing and biofilm formation. Previous studies indicate that the protein mechanisms regulating persistence and VBNC states are not well understood. We have queried the VBNC state of Micrococcus luteus NCTC 2665 (MI-2665) by quantitative proteomics combining gel electrophoresis, high-performance liquid chromatography, and tandem mass spectrometry to elucidate some of these mechanisms. MI-2665 is a nonpathogenic actinobacterium containing a small (2.5-Mb), high-GC-content genome which exhibits a well-defined VBNC state induced by nutrient deprivation. The MI-2665 VBNC state demonstrated a loss of protein diversity accompanied by increased levels of 18 proteins that are conserved across actinobacteria, 14 of which have not been previously identified in VNBC. These proteins implicate an anaplerotic strategy in the transition to VBNC, including changes in the glyoxylate shunt, redox and amino acid metabolism, and ribosomal regulatory processes. Our data suggest that MI-2665 is a viable model for dissecting the protein mechanisms underlying the VBNC stress response and provide the first protein-level signature of this state. We expect that this protein signature will enable future studies deciphering the protein mechanisms of dormancy and identify novel therapeutic strategies effective against antibiotic-tolerant bacterial infections.IMPORTANCE Dormancy is a protective state enabling bacteria to survive antibiotics, starvation, and the immune system. Dormancy is comprised of different states, including persistent and viable but nonculturable (VBNC) states that contribute to the spread of bacterial infections. Therefore, it is imperative to identify how bacteria utilize these different dormancy states to survive antibiotic treatment. The objective of our research is to eliminate dormancy as a route to antibiotic tolerance by understanding the proteins that control dormancy in Micrococcus luteus NCTC 2665. This bacterium has unique advantages for studying dormancy, including a small genome and a well-defined and reproducible VBNC state. Our experiments implicate four previously identified and 14 novel proteins upregulated in VBNC that may regulate this critical survival mechanism.
Collapse
|
562
|
Belasco JG. Death by translation: ribosome-assisted degradation of mRNA by endonuclease toxins. FEBS Lett 2017. [PMID: 28649728 DOI: 10.1002/1873-3468.12715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Joel G Belasco
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, USA.,Department of Microbiology, New York University School of Medicine, NY, USA
| |
Collapse
|
563
|
Moreno-Del Álamo M, Tabone M, Lioy VS, Alonso JC. Toxin ζ Triggers a Survival Response to Cope with Stress and Persistence. Front Microbiol 2017; 8:1130. [PMID: 28690594 PMCID: PMC5481361 DOI: 10.3389/fmicb.2017.01130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022] Open
Abstract
Bacteria have evolved complex regulatory controls in response to various environmental stresses. Protein toxins of the ζ superfamily, found in prominent human pathogens, are broadly distributed in nature. We show that ζ is a uridine diphosphate-N-acetylglucosamine (UNAG)-dependent ATPase whose activity is inhibited in vitro by stoichiometric concentrations of ε2 antitoxin. In vivo, transient ζ expression promotes a reversible multi-level response by altering the pool of signaling purine nucleotides, which leads to growth arrest (dormancy), although a small cell subpopulation persists rather than tolerating toxin action. High c-di-AMP levels (absence of phosphodiesterase GdpP) decrease, and low c-di-AMP levels (absence of diadenylate cyclase DisA) increase the rate of ζ persistence. The absence of CodY, a transition regulator from exponential to stationary phase, sensitizes cells to toxin action, and suppresses persisters formed in the ΔdisA context. These changes, which do not affect the levels of stochastic ampicillin (Amp) persistence, sensitize cells to toxin and Amp action. Our findings provide an explanation for the connection between ζ-mediated growth arrest (with alterations in the GTP and c-di-AMP pools) and persistence formation.
Collapse
Affiliation(s)
- María Moreno-Del Álamo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CSIC)Madrid, Spain
| | - Mariangela Tabone
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CSIC)Madrid, Spain
| | - Virginia S Lioy
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CSIC)Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CSIC)Madrid, Spain
| |
Collapse
|
564
|
Absence of ppGpp Leads to Increased Mobilization of Intermediately Accumulated Poly(3-Hydroxybutyrate) in Ralstonia eutropha H16. Appl Environ Microbiol 2017; 83:AEM.00755-17. [PMID: 28455332 DOI: 10.1128/aem.00755-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/24/2017] [Indexed: 01/21/2023] Open
Abstract
In this study, we constructed a set of Ralstonia eutropha H16 strains with single, double, or triple deletions of the (p)ppGpp synthase/hydrolase (spoT1), (p)ppGpp synthase (spoT2), and/or polyhydroxybutyrate (PHB) depolymerase (phaZa1 or phaZa3) gene, and we determined the impact on the levels of (p)ppGpp and on accumulated PHB. Mutants with deletions of both the spoT1 and spoT2 genes were unable to synthesize detectable amounts of (p)ppGpp and accumulated only minor amounts of PHB, due to PhaZa1-mediated depolymerization of PHB. In contrast, unusually high levels of PHB were found in strains in which the (p)ppGpp concentration was increased by the overexpression of (p)ppGpp synthase (SpoT2) and the absence of (p)ppGpp hydrolase. Determination of (p)ppGpp levels in wild-type R. eutropha under different growth conditions and induction of the stringent response by amino acid analogs showed that the concentrations of (p)ppGpp during the growth phase determine the amount of PHB remaining in later growth phases by influencing the efficiency of the PHB mobilization system in stationary growth. The data reported for a previously constructed ΔspoT2 strain (C. J. Brigham, D. R. Speth, C. Rha, and A. J. Sinskey, Appl Environ Microbiol 78:8033-8044, 2012, https://doi.org/10.1128/AEM.01693-12) were identified as due to an experimental error in strain construction, and our results are in contrast to the previous indication that the spoT2 gene product is essential for PHB accumulation in R. eutrophaIMPORTANCE Polyhydroxybutyrate (PHB) is an important intracellular carbon and energy storage compound in many prokaryotes and helps cells survive periods of starvation and other stress conditions. Research activities in several laboratories over the past 3 decades have shown that both PHB synthase and PHB depolymerase are constitutively expressed in most PHB-accumulating bacteria, such as Ralstonia eutropha This implies that PHB synthase and depolymerase activities must be well regulated in order to avoid a futile cycle of simultaneous PHB synthesis and PHB degradation (mobilization). Previous reports suggested that the stringent response in Rhizobium etli and R. eutropha is involved in the regulation of PHB metabolism. However, the levels of (p)ppGpp and the influence of those levels on PHB accumulation and PHB mobilization have not yet been determined for any PHB-accumulating species. In this study, we optimized a (p)ppGpp extraction procedure and a high-performance liquid chromatography-mass spectrometry (HPLC-MS)-based detection method for the quantification of (p)ppGpp in R. eutropha This enabled us to study the relationship between the concentrations of (p)ppGpp and the accumulated levels of PHB in the wild type and in several constructed mutant strains. We show that overproduction of the alarmone (p)ppGpp correlated with reduced growth and massive overproduction of PHB. In contrast, in the absence of (p)ppGpp, mobilization of PHB was dramatically enhanced.
Collapse
|
565
|
Mamusa M, Sitia L, Barbero F, Ruyra A, Calvo TD, Montis C, Gonzalez-Paredes A, Wheeler GN, Morris CJ, McArthur M, Berti D. Cationic liposomal vectors incorporating a bolaamphiphile for oligonucleotide antimicrobials. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1767-1777. [PMID: 28610721 DOI: 10.1016/j.bbamem.2017.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/10/2017] [Accepted: 06/08/2017] [Indexed: 01/01/2023]
Abstract
Antibacterial resistance has become a serious crisis for world health over the last few decades, so that new therapeutic approaches are strongly needed to face the threat of resistant infections. Transcription factor decoys (TFD) are a promising new class of antimicrobial oligonucleotides with proven in vivo activity when combined with a bolaamphiphilic cationic molecule, 12-bis-THA. These two molecular species form stable nanoplexes which, however, present very scarce colloidal stability in physiological media, which poses the challenge of drug formulation and delivery. In this work, we reformulated the 12-bis-THA/TFD nanoplexes in a liposomal carrier, which retains the ability to protect the oligonucleotide therapeutic from degradation and deliver it across the bacterial cell wall. We performed a physical-chemical study to investigate how the incorporation of 12-bis-THA and TFD affects the structure of POPC- and POPC/DOPE liposomes. Analysis was performed using dynamic light scattering (DLS), ζ-potential measurements, small-angle x-ray scattering (SAXS), and steady-state fluorescence spectroscopy to better understand the structure of the liposomal formulations containing the 12-bis-THA/TFD complexes. Oligonucleotide delivery to model Escherichia coli bacteria was assessed by means of confocal scanning laser microscopy (CLSM), evidencing the requirement of a fusogenic helper lipid for transfection. Preliminary biological assessments suggested the necessity of further development by modulation of 12-bis-THA concentration in order to optimize its therapeutic index, i.e. the ratio of antibacterial activity to the observed cytotoxicity. In summary, POPC/DOPE/12-bis-THA liposomes appear as promising formulations for TFD delivery.
Collapse
Affiliation(s)
- Marianna Mamusa
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence. Via della Lastruccia 3, 50019 Sesto Fiorentino, (FI), Italy.
| | - Leopoldo Sitia
- Procarta Biosystems Ltd, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | | | - Angels Ruyra
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Teresa Díaz Calvo
- Procarta Biosystems Ltd, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence. Via della Lastruccia 3, 50019 Sesto Fiorentino, (FI), Italy
| | | | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Christopher J Morris
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Michael McArthur
- Procarta Biosystems Ltd, Norwich Research Park, Norwich NR4 7UH, United Kingdom; Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Debora Berti
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence. Via della Lastruccia 3, 50019 Sesto Fiorentino, (FI), Italy
| |
Collapse
|
566
|
Rifamycin action on RNA polymerase in antibiotic-tolerant Mycobacterium tuberculosis results in differentially detectable populations. Proc Natl Acad Sci U S A 2017; 114:E4832-E4840. [PMID: 28559332 DOI: 10.1073/pnas.1705385114] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) encounters stresses during the pathogenesis and treatment of tuberculosis (TB) that can suppress replication of the bacteria and render them phenotypically tolerant to most available drugs. Where studied, the majority of Mtb in the sputum of most untreated subjects with active TB have been found to be nonreplicating by the criterion that they do not grow as colony-forming units (cfus) when plated on agar. However, these cells are viable because they grow when diluted in liquid media. A method for generating such "differentially detectable" (DD) Mtb in vitro would aid studies of the biology and drug susceptibility of this population, but lack of independent confirmation of reported methods has contributed to skepticism about their existence. Here, we identified confounding artifacts that, when avoided, allowed development of a reliable method of producing cultures of ≥90% DD Mtb in starved cells. We then characterized several drugs according to whether they contribute to the generation of DD Mtb or kill them. Of the agents tested, rifamycins led to DD Mtb generation, an effect lacking in a rifampin-resistant strain with a mutation in rpoB, which encodes the canonical rifampin target, the β subunit of RNA polymerase. In contrast, thioridazine did not generate DD Mtb from starved cells but killed those generated by rifampin.
Collapse
|
567
|
Mishra S, Shukla P, Bhaskar A, Anand K, Baloni P, Jha RK, Mohan A, Rajmani RS, Nagaraja V, Chandra N, Singh A. Efficacy of β-lactam/β-lactamase inhibitor combination is linked to WhiB4-mediated changes in redox physiology of Mycobacterium tuberculosis. eLife 2017; 6:e25624. [PMID: 28548640 PMCID: PMC5473688 DOI: 10.7554/elife.25624] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/24/2017] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) expresses a broad-spectrum β-lactamase (BlaC) that mediates resistance to one of the highly effective antibacterials, β-lactams. Nonetheless, β-lactams showed mycobactericidal activity in combination with β-lactamase inhibitor, clavulanate (Clav). However, the mechanistic aspects of how Mtb responds to β-lactams such as Amoxicillin in combination with Clav (referred as Augmentin [AG]) are not clear. Here, we identified cytoplasmic redox potential and intracellular redox sensor, WhiB4, as key determinants of mycobacterial resistance against AG. Using computer-based, biochemical, redox-biosensor, and genetic strategies, we uncovered a functional linkage between specific determinants of β-lactam resistance (e.g. β-lactamase) and redox potential in Mtb. We also describe the role of WhiB4 in coordinating the activity of β-lactamase in a redox-dependent manner to tolerate AG. Disruption of WhiB4 enhances AG tolerance, whereas overexpression potentiates AG activity against drug-resistant Mtb. Our findings suggest that AG can be exploited to diminish drug-resistance in Mtb through redox-based interventions.
Collapse
Affiliation(s)
- Saurabh Mishra
- Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Prashant Shukla
- Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Kushi Anand
- Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Priyanka Baloni
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rajiv Kumar Jha
- Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Abhilash Mohan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Raju S Rajmani
- Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Valakunja Nagaraja
- Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Amit Singh
- Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
568
|
Yang QE, Walsh TR. Toxin-antitoxin systems and their role in disseminating and maintaining antimicrobial resistance. FEMS Microbiol Rev 2017; 41:343-353. [PMID: 28449040 PMCID: PMC5812544 DOI: 10.1093/femsre/fux006] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Indexed: 12/20/2022] Open
Abstract
Toxin-antitoxin systems (TAs) are ubiquitous among bacteria and play a crucial role in the dissemination and evolution of antibiotic resistance, such as maintaining multi-resistant plasmids and inducing persistence formation. Generally, activities of the toxins are neutralised by their conjugate antitoxins. In contrast, antitoxins are more liable to degrade under specific conditions such as stress, and free active toxins interfere with essential cellular processes including replication, translation and cell-wall synthesis. TAs have also been shown to be responsible for plasmid maintenance, stress management, bacterial persistence and biofilm formation. We discuss here the recent findings of these multifaceted TAs (type I-VI) and in particular examine the role of TAs in augmenting the dissemination and maintenance of multi-drug resistance in bacteria.
Collapse
Affiliation(s)
- Qiu E. Yang
- Division of Infection and Immunity, Heath Park Hospital, Cardiff University, Cardiff CF14 4XN, UK
| | - Timothy R. Walsh
- Division of Infection and Immunity, Heath Park Hospital, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
569
|
Pearce SC, McWhinnie RL, Nano FE. Synthetic temperature-inducible lethal gene circuits in Escherichia coli. MICROBIOLOGY-SGM 2017; 163:462-471. [PMID: 28430101 DOI: 10.1099/mic.0.000446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Temperature sensitivity is often used as a way to attenuate micro-organisms to convert them into live vaccines. In this work, we explore the use of temperature-sensitive (TS) genetic circuits that express lethal genes as a widely applicable approach to TS attenuation. We tested different combinations of TS repressors and cognate promoters controlling the expression of genes encoding restriction endonucleases inserted at four different non-essential sites in the Escherichia coli chromosome. We found that the presence of the restriction endonuclease genes did not affect the viability of the host strains at the permissive temperature, but that expression of the genes at elevated temperatures killed the strains to varying extents. The chromosomal insertion site of the lethal cassettes affected their functionality, and insertion at one site, ycgH, rendered them ineffective at inducing death at high temperature. Induction of a TS circuit in a growing culture led to a reduced cell mass and a reduction of the number of cells that could exclude a dye that indicated viability. Incubation of cells carrying a TS lethal gene circuit initially grown at low temperature and then suspended in phosphate buffered saline at high temperature led to about 100-fold loss of cell viability per day, compared to a minimal loss of viability for the parental strain. Strains carrying either one or two TS lethal circuits could generate mutants that survived at high temperature. These mutants included complete deletions of the lethal gene circuits.
Collapse
Affiliation(s)
- Stephanie C Pearce
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - Ralph L McWhinnie
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - Francis E Nano
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| |
Collapse
|
570
|
Molina-García L, Moreno-Del Álamo M, Botias P, Martín-Moldes Z, Fernández M, Sánchez-Gorostiaga A, Alonso-Del Valle A, Nogales J, García-Cantalejo J, Giraldo R. Outlining Core Pathways of Amyloid Toxicity in Bacteria with the RepA-WH1 Prionoid. Front Microbiol 2017; 8:539. [PMID: 28421043 PMCID: PMC5378768 DOI: 10.3389/fmicb.2017.00539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022] Open
Abstract
The synthetic bacterial prionoid RepA-WH1 causes a vertically transmissible amyloid proteinopathy in Escherichia coli that inhibits growth and eventually kills the cells. Recent in vitro studies show that RepA-WH1 builds pores through model lipid membranes, suggesting a possible mechanism for bacterial cell death. By comparing acutely (A31V) and mildly (ΔN37) cytotoxic mutant variants of the protein, we report here that RepA-WH1(A31V) expression decreases the intracellular osmotic pressure and compromise bacterial viability under either aerobic or anaerobic conditions. Both are effects expected from threatening membrane integrity and are in agreement with findings on the impairment by RepA-WH1(A31V) of the proton motive force (PMF)-dependent transport of ions (Fe3+) and ATP synthesis. Systems approaches reveal that, in aerobiosis, the PMF-independent respiratory dehydrogenase NdhII is induced in response to the reduction in intracellular levels of iron. While NdhII is known to generate H2O2 as a by-product of the autoxidation of its FAD cofactor, key proteins in the defense against oxidative stress (OxyR, KatE), together with other stress-resistance factors, are sequestered by co-aggregation with the RepA-WH1(A31V) amyloid. Our findings suggest a route for RepA-WH1 toxicity in bacteria: a primary hit of damage to the membrane, compromising bionergetics, triggers a stroke of oxidative stress, which is exacerbated due to the aggregation-dependent inactivation of enzymes and transcription factors that enable the cellular response to such injury. The proteinopathy caused by the prion-like protein RepA-WH1 in bacteria recapitulates some of the core hallmarks of human amyloid diseases.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - María Moreno-Del Álamo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Pedro Botias
- Genomics Unit, Complutense UniversityMadrid, Spain
| | - Zaira Martín-Moldes
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - María Fernández
- Proteomics Facility, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alicia Sánchez-Gorostiaga
- Department of Microbial Biotechnology, National Centre for Biotechnology, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Aída Alonso-Del Valle
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Juan Nogales
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | | | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
571
|
Tao Y, Wang Y, Huang S, Zhu P, Huang WE, Ling J, Xu J. Metabolic-Activity-Based Assessment of Antimicrobial Effects by D2O-Labeled Single-Cell Raman Microspectroscopy. Anal Chem 2017; 89:4108-4115. [DOI: 10.1021/acs.analchem.6b05051] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yifan Tao
- Operative
Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated
Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Yun Wang
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi Huang
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Zhu
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei E Huang
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Junqi Ling
- Operative
Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated
Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China
| | - Jian Xu
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
572
|
Radzikowski JL, Schramke H, Heinemann M. Bacterial persistence from a system-level perspective. Curr Opin Biotechnol 2017; 46:98-105. [PMID: 28292710 DOI: 10.1016/j.copbio.2017.02.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
Abstract
In recent years, our understanding about bacterial persistence has significantly advanced: we comprehend the persister phenotype better, more triggers for persistence entry have been found, and more insights in the involvement and role of toxin-antitoxin systems and other molecular mechanisms have been unravelled. In this review, we attempt to put these findings into an integrated, system-level perspective. From this point of view, persistence can be seen as a response to a strong perturbation of metabolic homeostasis, either triggered environmentally, or by means of intracellular stochasticity. Metabolic-flux-regulated resource allocation ensures stress protection, and several feedback mechanisms stabilize the cells in this protected state. We hope that this novel view can advance our understanding about persistence.
Collapse
Affiliation(s)
- Jakub Leszek Radzikowski
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hannah Schramke
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
573
|
Piskunova J, Maisonneuve E, Germain E, Gerdes K, Severinov K. Peptide-nucleotide antibiotic Microcin C is a potent inducer of stringent response and persistence in both sensitive and producing cells. Mol Microbiol 2017; 104:463-471. [PMID: 28164379 DOI: 10.1111/mmi.13640] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2017] [Indexed: 01/09/2023]
Abstract
Microcin C (McC) is a peptide-nucleotide antibiotic that inhibits aspartyl-tRNA synthetase. Here, we show that McC is a strong inducer of persistence in Escherichia coli. Persistence induced by McC is mediated by (p)ppGpp and requires chromosomally encoded toxin-antitoxin modules. McC-producing cells have increased persistence levels due to a combined effect of McC imported from the cultured medium and intracellularly synthesized antibiotic. McC-producing cells also induce persistence in sensitive cells during co-cultivation, underscoring complex interactions in bacterial communities where an antagonistic compound produced by one community member can benefit other members by increasing their ability to withstand antibiotics.
Collapse
Affiliation(s)
- Julia Piskunova
- Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Etienne Maisonneuve
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Elsa Germain
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Kenn Gerdes
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Konstantin Severinov
- Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Waksman Institute for Microbiology, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
| |
Collapse
|
574
|
Small Molecules That Sabotage Bacterial Virulence. Trends Pharmacol Sci 2017; 38:339-362. [PMID: 28209403 DOI: 10.1016/j.tips.2017.01.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/01/2017] [Accepted: 01/06/2017] [Indexed: 02/08/2023]
Abstract
The continued rise of antibiotic-resistant bacterial infections has motivated alternative strategies for target discovery and treatment of infections. Antivirulence therapies function through inhibition of in vivo required virulence factors to disarm the pathogen instead of directly targeting viability or growth. This approach to treating bacteria-mediated diseases may have advantages over traditional antibiotics because it targets factors specific for pathogenesis, potentially reducing selection for resistance and limiting collateral damage to the resident microbiota. This review examines vulnerable molecular mechanisms used by bacteria to cause disease and the antivirulence compounds that sabotage these virulence pathways. By expanding the study of antimicrobial targets beyond those that are essential for growth, antivirulence strategies offer new and innovative opportunities to combat infectious diseases.
Collapse
|
575
|
Liu X, Lu S, Liu Y, Meng W, Zheng B. Adsorption of sulfamethoxazole (SMZ) and ciprofloxacin (CIP) by humic acid (HA): characteristics and mechanism. RSC Adv 2017. [DOI: 10.1039/c7ra06231a] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The adsorption behavior and mechanisms of single adsorption and co-adsorption of ciprofloxacin and sulfamethoxazole with HA were studied in detail.
Collapse
Affiliation(s)
- Xiaohui Liu
- School of Environment
- Tsinghua University
- Beijing 100084
- China
- Dongtinghu Lake Ecological Observation and Research Station (DEORS)
| | - Shaoyong Lu
- Dongtinghu Lake Ecological Observation and Research Station (DEORS)
- Chinese Research Academy of Environmental Sciences
- Beijing 100012
- China
| | - Ying Liu
- College of Geography and Environment
- Shandong Normal University
- Jinan 250358
- PR China
| | - Wei Meng
- School of Environment
- Tsinghua University
- Beijing 100084
- China
- Dongtinghu Lake Ecological Observation and Research Station (DEORS)
| | - Binghui Zheng
- Dongtinghu Lake Ecological Observation and Research Station (DEORS)
- Chinese Research Academy of Environmental Sciences
- Beijing 100012
- China
| |
Collapse
|
576
|
Evolution of Phenotypic and Molecular Drug Susceptibility Testing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:221-246. [PMID: 29116638 DOI: 10.1007/978-3-319-64371-7_12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Drug Resistant Tuberculosis (DRTB) is an emerging problem world-wide. In order to control the disease and decrease the number of cases overtime a prompt diagnosis followed by an appropriate treatment should be provided to patients. Phenotypic DST based on liquid automated culture has greatly reduced the time needed to generate reliable data but has the drawback to be expensive and prone to contamination in the absence of appropriate infrastructures. In the past 10 years molecular biology tools have been developed. Those tools target the main mutations responsible for DRTB and are now globally accessible in term of cost and infrastructures needed for the implementation. The dissemination of the Xpert MTB/rif has radically increased the capacity to perform the detection of rifampicin resistant TB cases. One of the main challenges for the large scale implementation of molecular based tests is the emergence of conflicting results between phenotypic and genotypic tests. This mines the confidence of clinicians in the molecular tests and delays the initiation of an appropriate treatment. A new technique is revolutionizing the genotypic approach to DST: the WGS by Next-Generation Sequencing technologies. This methodology promises to become the solution for a rapid access to universal DST, able indeed to overcome the limitations of the current phenotypic and genotypic assays. Today the use of the generated information is still challenging in decentralized facilities due to the lack of automation for sample processing and standardization in the analysis.The growing knowledge of the molecular mechanisms at the basis of drug resistance and the introduction of high-performing user-friendly tools at peripheral level should allow the very much needed accurate diagnosis of DRTB in the near future.
Collapse
|