551
|
Abstract
National Cancer Institute has announced 24 provocative questions on cancer. Here I try to answer some of them by linking the dots of existing knowledge.
Collapse
Affiliation(s)
- Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, BLSC, L3-312, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
552
|
Del Barco S, Vazquez-Martin A, Cufí S, Oliveras-Ferraros C, Bosch-Barrera J, Joven J, Martin-Castillo B, Menendez JA. Metformin: multi-faceted protection against cancer. Oncotarget 2012; 2:896-917. [PMID: 22203527 PMCID: PMC3282095 DOI: 10.18632/oncotarget.387] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The biguanide metformin, a widely used drug for the treatment of type 2 diabetes, may exert cancer chemopreventive effects by suppressing the transformative and hyperproliferative processes that initiate carcinogenesis. Metformin's molecular targets in cancer cells (e.g., mTOR, HER2) are similar to those currently being used for directed cancer therapy. However, metformin is nontoxic and might be extremely useful for enhancing treatment efficacy of mechanism-based and biologically targeted drugs. Here, we first revisit the epidemiological, preclinical, and clinical evidence from the last 5 years showing that metformin is a promising candidate for oncology therapeutics. Second, the anticancer effects of metformin by both direct (insulin-independent) and indirect (insulin-dependent) mechanisms are discussed in terms of metformin-targeted processes and the ontogenesis of cancer stem cells (CSC), including Epithelial-to-Mesenchymal Transition (EMT) and microRNAs-regulated dedifferentiation of CSCs. Finally, we present preliminary evidence that metformin may regulate cellular senescence, an innate safeguard against cellular immortalization. There are two main lines of evidence that suggest that metformin's primary target is the immortalizing step during tumorigenesis. First, metformin activates intracellular DNA damage response checkpoints. Second, metformin attenuates the anti-senescence effects of the ATP-generating glycolytic metabotype-the Warburg effect-, which is required for self-renewal and proliferation of CSCs. If metformin therapy presents an intrinsic barrier against tumorigenesis by lowering the threshold for stress-induced senescence, metformin therapeutic strategies may be pivotal for therapeutic intervention for cancer. Current and future clinical trials will elucidate whether metformin has the potential to be used in preventive and treatment settings as an adjuvant to current cancer therapeutics.
Collapse
Affiliation(s)
- Sonia Del Barco
- Medical Oncology, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
553
|
Abstract
In this issue of the journal, Bao and colleagues report (beginning on page 355) that the antidiabetic drug metformin targets pancreatic cancer stem cells through, at least partially, the modulation of miRNA expression and subsequent regulation of stem cell renewal and signaling factors. In this Perspective, we briefly discuss the cancer stem cell hypothesis, its clinical relevance, and how targeting the mTOR pathway may yield an avenue for disrupting the cancer stem cell compartment and thus yield long-term therapeutic benefit in multiple cancers.
Collapse
Affiliation(s)
- Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
554
|
Xiao X, He Q, Lu C, Werle KD, Zhao RX, Chen J, Davis BC, Cui R, Liang J, Xu ZX. Metformin impairs the growth of liver kinase B1-intact cervical cancer cells. Gynecol Oncol 2012; 127:249-55. [PMID: 22735790 DOI: 10.1016/j.ygyno.2012.06.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/15/2012] [Accepted: 06/19/2012] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Metformin is one of the most widely used drugs for the treatment of type 2 diabetes. Recent investigations demonstrated that application of metformin reduces cancer risk. The present study aimed to determine the role of liver kinase B1 (LKB1) in the response of cervical cancer cells to metformin. METHODS LKB1 expression and the integrity of LKB1-AMPK signaling were determined with immunoblot in 6 cervical cancer cell lines. Cellular sensitivity to metformin was analyzed with MTT assay. RESULTS Metformin inhibited growth of cervical cancer cells, C33A, Me180, and CaSki, but was less effective against HeLa, HT-3, and MS751 cells. Analyzing the expression status and the integrity of LKB1-AMPK-mTOR signaling, we found that cervical cancer cells sensitive to metformin were LKB1 intact and exerted an integral AMPK-mTOR signaling response after the treatment. Ectopic expression of LKB1 with stable transduction system or inducible expression construct in endogenous LKB1 deficient cells improved the activation of AMPK, promoted the inhibition of mTOR, and prompted the sensitivity of cells to metformin. In contrast, knock-down of LKB1 compromised cellular response to metformin. Our further investigation demonstrated that metformin could induce both apoptosis and autophagy in cervical cancer cells when LKB1 is expressed. CONCLUSIONS Metformin is a potential drug for the treatment of cervical cancers, in particular to those with intact LKB1 expression. Administration of cell metabolism agonists may enhance LKB1 tumor suppression, inhibit cell growth, and reduce tumor cell viability via the activation of LKB1-AMPK signaling.
Collapse
Affiliation(s)
- Xuxian Xiao
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
555
|
Pan J, Chen C, Jin Y, Fuentes-Mattei E, Velazquez-Tores G, Benito JM, Konopleva M, Andreeff M, Lee MH, Yeung SCJ. Differential impact of structurally different anti-diabetic drugs on proliferation and chemosensitivity of acute lymphoblastic leukemia cells. Cell Cycle 2012; 11:2314-26. [PMID: 22659796 DOI: 10.4161/cc.20770] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hyperglycemia during hyper-CVAD chemotherapy is associated with poor outcomes of acute lymphoblastic leukemia (ALL) (Cancer 2004; 100: 1179-85). The optimal clinical strategy to manage hyperglycemia during hyper-CVAD is unclear. To examine whether anti-diabetic pharmacotherapy can influence chemosensitivity of ALL cells, we examined the impacts of different anti-diabetic agents on ALL cell lines and patient samples. Pharmacologically achievable concentrations of insulin, aspart and glargine significantly increased the number of ALL cells, and aspart and glargine did so at lower concentrations than human insulin. In contrast, metformin and rosiglitazone significantly decreased the cell number. Human insulin and analogs activated AKT/mTOR signaling and stimulated ALL cell proliferation (as measured by flow cytometric methods), but metformin and rosiglitazone blocked AKT/mTOR signaling and inhibited proliferation. Metformin 500 μM and rosiglitazone 10 μM were found to sensitize Reh cells to daunorubicin, while aspart, glargine and human insulin (all at 1.25 mIU/L) enhanced chemoresistance. Metformin and rosiglitazone enhanced daunorubicin-induced apoptosis, while insulin, aspart and glargine antagonized daunorubicin-induced apoptosis. In addition, metformin increased etoposide-induced and L-asparaginase-induced apoptosis; rosiglitazone increased etoposide-induced and vincristine-induced apoptosis. In conclusion, our results suggest that use of insulins to control hyperglycemia in ALL patients may contribute to anthracycline chemoresistance, while metformin and thiazolidinediones may improve chemosensitivity to anthracycline as well as other chemotherapy drugs through their different impacts on AKT/mTOR signaling in leukemic cells. Our data suggest that the choice of anti-diabetic pharmacotherapy during chemotherapy may influence clinical outcomes in ALL.
Collapse
Affiliation(s)
- Jingxuan Pan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
556
|
Martelli AM, Chiarini F, Evangelisti C, Ognibene A, Bressanin D, Billi AM, Manzoli L, Cappellini A, McCubrey JA. Targeting the liver kinase B1/AMP-activated protein kinase pathway as a therapeutic strategy for hematological malignancies. Expert Opin Ther Targets 2012; 16:729-42. [PMID: 22686561 DOI: 10.1517/14728222.2012.694869] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Despite considerable advances, several hematological malignancies remain incurable with standard treatments. Therefore, there is a need for novel targeted and less toxic therapies, particularly for patients who develop resistance to traditional chemotherapeutic drugs. The liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) signaling pathway has recently emerged as a tumor suppressor axis. A critical point is that the LKB1/AMPK network remains functional in a wide range of cancers and could be stimulated by drugs, such as N,N-dimethylimidodicarbonimidic diamide (metformin) or 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR). AREAS COVERED The literature data show that drugs activating LKB1/AMPK signaling induced cell cycle arrest, caspase-dependent apoptosis or autophagy in hematopoietic tumors. Moreover, metformin effectively inhibited mammalian target of rapamycin complex 1 (mTORC1)-controlled oncogenetic protein translation, which does not occur with allosteric mTORC1 inhibitors, such as rapamycin and its derivatives. Metformin was also capable of targeting leukemic stem cells, the most relevant target for leukemia eradication. EXPERT OPINION Data emerging from preclinical settings suggest that the LKB1/AMPK pathway is critically involved in regulating proliferation and survival of malignant hematopoietic cells. Thus, it is proposed that drugs activating the LKB1/AMPK axis may offer a novel and less toxic treatment option for some types of hematological malignancies.
Collapse
Affiliation(s)
- Alberto M Martelli
- University of Bologna, Human Anatomy, via Irnerio 48, Bologna, 40126, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
557
|
Kalariya NM, Shoeb M, Ansari NH, Srivastava SK, Ramana KV. Antidiabetic drug metformin suppresses endotoxin-induced uveitis in rats. Invest Ophthalmol Vis Sci 2012; 53:3431-40. [PMID: 22562515 DOI: 10.1167/iovs.12-9432] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To investigate the therapeutic effects of metformin, a commonly used antidiabetic drug, in preventing endotoxin-induced uveitis (EIU) in rats. METHODS EIU in Lewis rats was developed by subcutaneous injection of lipopolysaccharide (LPS; 150 μg). Metformin (300 mg/kg body weight, intraperitoneally) or its carrier was injected either 12 hours before or 2 hours after LPS induction. Three and 24 hours after EIU, eyes were enucleated and aqueous humor (AqH) was collected. The MILLIPLEX-MAG Rat cytokine-chemokine magnetic bead array was used to determine inflammatory cytokines. The expression of Cox-2, phosphorylation of AMPK, and NF-κB (p65) were determined immunohistochemically. Primary human nonpigmented ciliary epithelial cells (HNPECs) were used to determine the in vitro efficacy of metformin. RESULTS Compared with controls, the EIU rat AqH had significantly increased number of infiltrating cells and increased levels of various cytokines and chemokines (TNF-α, MCP-1, IL-1β, MIP-1α, IL-6, Leptin, and IL-18) and metformin significantly prevented the increase. Metformin also prevented the expression of Cox-2 and phosphorylation of p65, and increased the activation of AMPK in the ciliary bodies and retinal tissues. Moreover, metformin prevented the expression of Cox-2, iNOS, and activation of NF-kB in the HNPECs and decreased the levels of NO and PGE2 in cell culture media. CONCLUSIONS Our results for the first time demonstrate a novel role of the antidiabetic drug, metformin, in suppressing uveitis in rats and suggest that this drug could be developed to prevent uveitis complications.
Collapse
Affiliation(s)
- Nilesh M Kalariya
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | |
Collapse
|
558
|
Targeting metabolism for cancer treatment and prevention: metformin, an old drug with multi-faceted effects. Oncogene 2012; 32:1475-87. [PMID: 22665053 DOI: 10.1038/onc.2012.181] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding the complexity of cancer and of the underlying regulatory networks provides a new paradigm that tackles cancer development and treatment through a system biology approach, contemporarily acting on various intersecting pathways. Cancer cell metabolism is an old pathogenetic issue that has recently gained new interest as target for therapeutic approaches. More than 70 years ago, Warburg discovered that malignant cells generally have altered metabolism with high rates of glucose uptake and increased glycolysis, even under aerobic condition. Observational studies have provided evidence that impaired metabolism, obesity, hyperglycemia and hyperinsulinemia may have a role in cancer development, progression and prognosis, and actually diabetic and obese patients have increased cancer risk. On the other hand, caloric restriction has been shown to prolong life span and reduce cancer incidence in several animal models, having an impact on different metabolic pathways. Metformin, an antidiabetic drug widely used for over 40 years, mimics caloric restriction acting on cell metabolism at multiple levels, reducing all energy-consuming processes in the cells, including cell proliferation. By overviewing molecular mechanisms of action, epidemiological evidences, experimental data in tumor models and early clinical study results, this review provides information supporting the promising use of metformin in cancer prevention and treatment.
Collapse
|
559
|
Klubo-Gwiezdzinska J, Jensen K, Costello J, Patel A, Hoperia V, Bauer A, Burman KD, Wartofsky L, Vasko V. Metformin inhibits growth and decreases resistance to anoikis in medullary thyroid cancer cells. Endocr Relat Cancer 2012; 19:447-56. [PMID: 22389381 DOI: 10.1530/erc-12-0046] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Medullary thyroid cancer (MTC) is associated with activation of mammalian target of rapamycin (mTOR) signaling pathways. Recent studies showed that the antidiabetic agent metformin decreases proliferation of cancer cells through 5'-AMP-activated protein kinase (AMPK)-dependent inhibition of mTOR. In the current study, we assessed the effect of metformin on MTC cells. For this purpose, we determined growth, viability, migration, and resistance to anoikis assays using two MTC-derived cell lines (TT and MZ-CRC-1). Expressions of molecular targets of metformin were examined in MTC cell lines and in 14 human MTC tissue samples. We found that metformin inhibited growth and decreased expression of cyclin D1 in MTC cells. Treatment with metformin was associated with inhibition of mTOR/p70S6K/pS6 signaling and downregulation of pERK in both TT and MZ-CRC-1 cells. Metformin had no significant effects on pAKT in the cell lines examined. Metformin-inducible AMPK activation was noted only in TT cells. Treatment with AMPK inhibitor (compound C) or AMPK silencing did not prevent growth inhibitory effects of metformin in TT cells. Metformin had no effect on MTC cell migration but reduced the ability of cells to form multicellular spheroids in nonadherent conditions. Immunostaining of human MTC showed over-expression of cyclin D1 in all tumors compared with corresponding normal tissue. Activation of mTOR/p70S6K was detected in 8/14 (57.1%) examined tumors. Together, these findings indicate that growth inhibitory effects in MTC cells are associated with downregulation of both mTOR/6SK and pERK signaling pathways. Expression of metformin's molecular targets in human MTC cells suggests its potential utility for the treatment of MTC in patients.
Collapse
Affiliation(s)
- Joanna Klubo-Gwiezdzinska
- Department of Pediatrics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
560
|
Vu K, Busaidy N, Cabanillas ME, Konopleva M, Faderl S, Thomas DA, O'Brien S, Broglio K, Ensor J, Escalante C, Andreeff M, Kantarjian H, Lavis V, Yeung SCJ. A randomized controlled trial of an intensive insulin regimen in patients with hyperglycemic acute lymphoblastic leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2012; 12:355-62. [PMID: 22658895 DOI: 10.1016/j.clml.2012.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/18/2012] [Accepted: 05/03/2012] [Indexed: 12/22/2022]
Abstract
UNLABELLED Hyperglycemia during hyper-CVAD (fractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone alternating with methotrexate and high-dose cytarabine, with methylprednisolone premedication) chemotherapy is associated with poor outcomes of acute lymphoblastic leukemia (ALL). To examine whether intensive insulin therapy could improve outcomes, a randomized trial was conducted that compared glargine plus aspart vs. conventional therapy. Intensive insulin did not improve ALL clinical outcomes despite improved glycemic control. Secondary analysis suggests that the choice of antidiabetic pharmacotherapy may influence ALL outcomes. INTRODUCTION Hyperglycemia during hyper-CVAD (fractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone alternating with methotrexate and high-dose cytarabine, with methylprednisolone premedication) chemotherapy is associated with poor outcomes of acute lymphoblastic leukemia (ALL). PATIENTS AND METHODS To examine whether an intensive insulin regimen could improve outcomes compared with conventional antidiabetic pharmacotherapy, a randomized trial was conducted that compared glargine plus aspart vs. conventional therapy (control). Between April 2004 and July 2008, 52 patients newly diagnosed with ALL, Burkitt lymphoma, or lymphoblastic lymphoma who were on hyper-CVAD in the inpatient setting and had a random serum glucose level >180 mg/dL on ≥2 occasions during chemotherapy were enrolled. RESULTS The trial was terminated early due to futility regarding ALL clinical outcomes despite improved glycemic control. Secondary analysis revealed that molar insulin-to-C-peptide ratio (I/C) > 0.175 (a surrogate measure of exogenous insulin usage) was associated with decreased overall survival, complete remission duration and progression-free survival (PFS), whereas metformin and/or thiazolidinedione usage were associated with increased PFS. In multivariate analyses, factors that significantly predicted short overall survival included age ≥ 60 years (P = .0002), I/C ≥ 0.175 (P = .0016), and average glucose level ≥ 180 mg/dL (P = .0236). Factors that significantly predicted short PFS included age ≥ 60 years (P = .0008), I/C ≥ 0.175 (P = .0002), high systemic risk (P = .0173) and average glucose level ≥ 180 mg/dL (P = .0249). I/C ≥ 0.175 was the only significant (P = .0042) factor that predicted short complete remission duration. CONCLUSIONS A glargine-plus-aspart intensive insulin regimen did not improve ALL outcomes in patients with hyperglycemia. Exogenous insulin may be associated with poor outcomes, whereas metformin and thiazolidinediones may be associated with improved outcomes. Analysis of these results suggests that the choice of antidiabetic pharmacotherapy may influence ALL outcomes.
Collapse
Affiliation(s)
- Khanh Vu
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
561
|
Abstract
The anti-diabetic drug metformin is rapidly emerging as a potential anti-cancer agent. Metformin, effective in treating type 2 diabetes and the insulin resistance syndromes, improves insulin resistance by reducing hepatic gluconeogenesis and by enhancing glucose uptake by skeletal muscle. Epidemiological studies have consistently associated metformin use with decreased cancer incidence and cancer-related mortality. Furthermore, numerous preclinical and clinical studies have demonstrated anti-cancer effects of metformin, leading to an explosion of interest in evaluating this agent in human cancer. The effects of metformin on circulating insulin levels indicate a potential efficacy towards cancers associated with hyperinsulinaemia; however, metformin may also directly inhibit tumour growth. In this review, we describe the mechanism of action of metformin and summarise the epidemiological, clinical and preclinical evidence supporting a role for metformin in the treatment of cancer. In addition, the challenges associated with translating preclinical results into therapeutic benefit in the clinical setting will be discussed.
Collapse
Affiliation(s)
- Ryan J O Dowling
- Division of Signalling Biology, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | | | | | | |
Collapse
|
562
|
Duque JE, Velez J, Samudio I, Lai E. Metformin as a Novel Component of Metronomic Chemotherapeutic Use: A Hypothesis. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.jecm.2012.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
563
|
Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nat Commun 2012; 3:865. [PMID: 22643892 DOI: 10.1038/ncomms1859] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 04/23/2012] [Indexed: 12/25/2022] Open
Abstract
Diabetic patients treated with metformin have a reduced incidence of cancer and cancer-related mortality. Here we show that metformin affects engraftment and growth of breast cancer tumours in mice. This correlates with the induction of metabolic changes compatible with clear anticancer effects. We demonstrate that microRNA modulation underlies the anticancer metabolic actions of metformin. In fact, metformin induces DICER expression and its effects are severely impaired in DICER knocked down cells. Conversely, ectopic expression of DICER recapitulates the effects of metformin in vivo and in vitro. The microRNAs upregulated by metformin belong mainly to energy metabolism pathways. Among the messenger RNAs downregulated by metformin, we found c-MYC, IRS-2 and HIF1alpha. Downregulation of c-MYC requires AMP-activated protein kinase-signalling and mir33a upregulation by metformin. Ectopic expression of c-MYC attenuates the anticancer metabolic effects of metformin. We suggest that DICER modulation, mir33a upregulation and c-MYC targeting have an important role in the anticancer metabolic effects of metformin.
Collapse
|
564
|
Distinct perturbation of the translatome by the antidiabetic drug metformin. Proc Natl Acad Sci U S A 2012; 109:8977-82. [PMID: 22611195 DOI: 10.1073/pnas.1201689109] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Metformin has been reported to lower cancer incidence among type II diabetics. Metformin exhibits antiproliferative and antineoplastic effects associated with inhibition of mammalian target of rapamycin complex 1 (mTORC1), but the mechanisms are poorly understood. We provide a unique genome-wide analysis of translational targets of canonical mTOR inhibitors (rapamycin and PP242) compared with metformin, revealing that metformin controls gene expression at the level of mRNA translation to an extent comparable to that of canonical mTOR inhibitors. Importantly, metformin's antiproliferative activity can be explained by selective translational suppression of mRNAs encoding cell-cycle regulators via the mTORC1/eukaryotic translation initiation factor 4E-binding protein pathway. Thus, metformin selectively inhibits translation of mRNAs encoding proteins that promote neoplastic proliferation, which should facilitate studies on metformin and related biguanides in cancer prevention and treatment.
Collapse
|
565
|
Lamming DW, Sabatini DM, Baur JA. Pharmacologic Means of Extending Lifespan. JOURNAL OF CLINICAL & EXPERIMENTAL PATHOLOGY 2012; Suppl 4:7327. [PMID: 25379357 PMCID: PMC4219537 DOI: 10.4172/2161-0681.s4-002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Dudley W. Lamming
- Department of Biology, MIT, Cambridge, MA 02139, Howard
Hughes Medical Institute, MIT, Cambridge, MA 02139; Whitehead Institute for
Biomedical Research, Cambridge MA 02142, Broad Institute of Harvard and MIT, Seven
Cambridge Center, Cambridge, MA 02142, The David H. Koch Institute for Integrative
Cancer Research at MIT, Cambridge, MA 02139, USA
| | - David M. Sabatini
- Department of Biology, MIT, Cambridge, MA 02139, Howard
Hughes Medical Institute, MIT, Cambridge, MA 02139; Whitehead Institute for
Biomedical Research, Cambridge MA 02142, Broad Institute of Harvard and MIT, Seven
Cambridge Center, Cambridge, MA 02142, The David H. Koch Institute for Integrative
Cancer Research at MIT, Cambridge, MA 02139, USA
| | - Joseph A. Baur
- Department of Physiology, Institute for Diabetes, Obesity,
and Metabolism, Perelman School of Medicine, University of Pennsylvania,
Philadelphia PA 19104, USA
| |
Collapse
|
566
|
Sheng B, Liu J, Li GH. Metformin preconditioning protects Daphnia pulex from lethal hypoxic insult involving AMPK, HIF and mTOR signaling. Comp Biochem Physiol B Biochem Mol Biol 2012; 163:51-8. [PMID: 22564403 DOI: 10.1016/j.cbpb.2012.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/12/2012] [Accepted: 04/27/2012] [Indexed: 02/05/2023]
Abstract
Hypoxic tolerance is subjected to modification during environmental stress. Understanding the mechanisms underlying the plasticity of hypoxic tolerance will be helpful for clinical applications such as stroke prevention. In a freshwater invertebrate, Daphnia pulex, we found that preconditioning with the antidiabetic drug metformin protects the animals from hypoxic insult. Metformin is known to activate the cellular energy sensor, AMP-activated protein kinase (AMPK). Application of the AMPK antagonist, compound C, effectively abolished the protective action by metformin. Meanwhile, the AMPK agonist AICAR failed to mimic the protective effect of metformin. At transcript level, metformin treatment increased the expression of hypoxia-inducible factor (HIF) α and β genes, as well as the HIF target genes in an AMPK-dependent manner, while AICAR treatment alone failed to increase the expression of HIF genes. Metformin treatment also increased the expression of AMPK α and γ genes, and this effect was blocked by compound C. These observations suggest that HIF activation and HIF target gene expression are possibly involved in metformin-mediated protection, while AMPK activation is necessary, but not sufficient for metformin-induced protection. Since increased hypoxic tolerance involves regenerative responses and thus protein synthesis, we measured the gene expression of the components of mTOR signaling pathway. Metformin increased the gene expression of raptor, a component of mTORC1 and known to control protein synthesis, and such increase was also eliminated by compound C. Taken together, metformin preconditioning activates multiple signaling pathways involved in gene expression and protein synthesis.
Collapse
Affiliation(s)
- Bo Sheng
- Laboratory of Anesthesiology and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | | | | |
Collapse
|
567
|
Li W, Yuan Y, Huang L, Qiao M, Zhang Y. Metformin alters the expression profiles of microRNAs in human pancreatic cancer cells. Diabetes Res Clin Pract 2012; 96:187-95. [PMID: 22245693 DOI: 10.1016/j.diabres.2011.12.028] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/19/2011] [Indexed: 12/14/2022]
Abstract
AIMS To investigate the effect of metformin on the expression profiles of microRNAs in human pancreatic cancer cells. METHODS MicroRNAs real-time PCR Array was applied to investigate differentially expressed miRNAs in Sw1990 cells treated with or without metformin. Stem-loop real time RT-PCR was used to confirm the results of the array assay in Sw1990 and Panc-1 cells. The effects of miR-26a on cell growth, apoptosis, invasion and migration abilities were respectively examined by CCK8 assay, Apoptosis assay, Matrigel invasion and migration assay. HMGA1 was proved to be a target of miR-26a by Luciferase reporter assay, Real-time PCR and Western-blotting. RESULTS Nine miRNAs were significantly up-regulated in metformin treated cells. Metformin up-regulated the expression of miR-26a, miR-192 and let-7c in a dose-dependent manner. Forced expression of miR-26a significantly inhibited cell proliferation, invasion, migration and increased cell apoptosis, whereas knockdown of miR-26a obtained the opposite effect. Furthermore, we demonstrated that HMGA1, an oncogene, is a direct target of miR-26a. Nude mice xenograft models confirmed that metformin up-regulated the level of miR-26a and surpressed the expression of HMGA1 in vivo. CONCLUSION These observations suggested that modulation of miRNA expression may be an important mechanism underlying the biological effects of metformin.
Collapse
Affiliation(s)
- Weiguang Li
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, PR China
| | | | | | | | | |
Collapse
|
568
|
Song CW, Lee H, Dings RPM, Williams B, Powers J, Santos TD, Choi BH, Park HJ. Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells. Sci Rep 2012; 2:362. [PMID: 22500211 PMCID: PMC3324825 DOI: 10.1038/srep00362] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 03/02/2012] [Indexed: 12/24/2022] Open
Abstract
The anti-cancer effects of metformin, the most widely used drug for type 2 diabetes, alone or in combination with ionizing radiation were studied with MCF-7 human breast cancer cells and FSaII mouse fibrosarcoma cells. Clinically achievable concentrations of metformin caused significant clonogenic death in cancer cells. Importantly, metformin was preferentially cytotoxic to cancer stem cells relative to non-cancer stem cells. Metformin increased the radiosensitivity of cancer cells in vitro, and significantly enhanced the radiation-induced growth delay of FSaII tumors (s.c.) in the legs of C3H mice. Both metformin and ionizing radiation activated AMPK leading to inactivation of mTOR and suppression of its downstream effectors such as S6K1 and 4EBP1, a crucial signaling pathway for proliferation and survival of cancer cells, in vitro as well as in the in vivo tumors. Conclusion: Metformin kills and radiosensitizes cancer cells and eradicates radioresistant cancer stem cells by activating AMPK and suppressing mTOR.
Collapse
Affiliation(s)
- Chang W Song
- Radiobiology Laboratory, Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, U.S.A
| | | | | | | | | | | | | | | |
Collapse
|
569
|
The Interactions between Insulin and Androgens in Progression to Castrate-Resistant Prostate Cancer. Adv Urol 2012; 2012:248607. [PMID: 22548055 PMCID: PMC3324133 DOI: 10.1155/2012/248607] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/06/2012] [Indexed: 12/31/2022] Open
Abstract
An association between the metabolic syndrome and reduced testosterone levels has been identified, and a specific inverse relationship between insulin and testosterone levels suggests that an important metabolic crosstalk exists between these two hormonal axes; however, the mechanisms by which insulin and androgens may be reciprocally regulated are not well described. Androgen-dependant gene pathways regulate the growth and maintenance of both normal and malignant prostate tissue, and androgen-deprivation therapy (ADT) in patients exploits this dependence when used to treat recurrent and metastatic prostate cancer resulting in tumour regression. A major systemic side effect of ADT includes induction of key features of the metabolic syndrome and the consistent feature of hyperinsulinaemia. Recent studies have specifically identified a correlation between elevated insulin and high-grade PCa and more rapid progression to castrate resistant disease. This paper examines the relationship between insulin and androgens in the context of prostate cancer progression. Prostate cancer patients present a promising cohort for the exploration of insulin stabilising agents as adjunct treatments for hormone deprivation or enhancers of chemosensitivity for treatment of advanced prostate cancer.
Collapse
|
570
|
Vitale-Cross L, Molinolo AA, Martin D, Younis RH, Maruyama T, Patel V, Chen W, Schneider A, Gutkind JS. Metformin prevents the development of oral squamous cell carcinomas from carcinogen-induced premalignant lesions. Cancer Prev Res (Phila) 2012; 5:562-73. [PMID: 22467081 DOI: 10.1158/1940-6207.capr-11-0502] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a major public health concern. The recent identification of the mTOR complex 1 (mTORC1) signaling pathway as a highly prevalent molecular signature underlying HNSCC pathogenesis has provided the foundation to search for novel therapeutic approaches to prevent and treat HNSCC. Here, we asked whether metformin, the most widely used medication for the treatment of type II diabetes, which acts in part by stimulating the AMP-activated protein kinase (AMPK) signaling pathway thereby reducing mTORC1 activity, may lower the risk of HNSCC development. Indeed, we show that metformin reduces the growth of HNSCC cells and diminishes their mTORC1 activity by both AMPK-dependent and -independent mechanisms. We also optimized an oral-specific carcinogenesis mouse model that results in the accumulation of multiple oral premalignant lesions at the end of the carcinogen exposure, some of which then spontaneously progress into HNSCC. Using this mouse model, we observed that metformin specifically inhibits mTORC1 in the basal proliferating epithelial layer of oral premalignant lesions. Remarkably, metformin prevented the development of HNSCC by reducing significantly the size and number of carcinogen-induced oral tumoral lesions and by preventing their spontaneous conversion to squamous cell carcinomas. Collectively, our data underscore the potential clinical benefits of using metformin as a targeted chemopreventive agent in the control of HNSCC development and progression.
Collapse
Affiliation(s)
- Lynn Vitale-Cross
- Molecular Carcinogenesis Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
571
|
Bhalla K, Hwang BJ, Dewi RE, Twaddel W, Goloubeva OG, Wong KK, Saxena NK, Biswal S, Girnun GD. Metformin prevents liver tumorigenesis by inhibiting pathways driving hepatic lipogenesis. Cancer Prev Res (Phila) 2012; 5:544-52. [PMID: 22467080 DOI: 10.1158/1940-6207.capr-11-0228] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A number of factors have been identified that increase the risk of hepatocellular carcinoma (HCC). Recently it has become appreciated that type II diabetes increases the risk of developing HCC. This represents a patient population that can be identified and targeted for cancer prevention. The biguanide metformin is a first-line therapy for the treatment of type II diabetes in which it exerts its effects primarily on the liver. A role of metformin in HCC is suggested by studies linking metformin intake for control of diabetes with a reduced risk of HCC. Although a number of preclinical studies show the anticancer properties of metformin in a number of tissues, no studies have directly examined the effect of metformin on preventing carcinogenesis in the liver, one of its main sites of action. We show in these studies that metformin protected mice against chemically induced liver tumors. Interestingly, metformin did not increase AMPK activation, often shown to be a metformin target. Rather metformin decreased the expression of several lipogenic enzymes and lipogenesis. In addition, restoring lipogenic gene expression by ectopic expression of the lipogenic transcription factor SREBP1c rescues metformin-mediated growth inhibition. This mechanism of action suggests that metformin may also be useful for patients with other disorders associated with HCC in which increased lipid synthesis is observed. As a whole these studies show that metformin prevents HCC and that metformin should be evaluated as a preventive agent for HCC in readily identifiable at-risk patients.
Collapse
Affiliation(s)
- Kavita Bhalla
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore Maryland 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
572
|
Bhalla K, Hwang BJ, Dewi RE, Twaddel W, Goloubeva OG, Wong KK, Saxena NK, Biswal S, Girnun GD. Metformin prevents liver tumorigenesis by inhibiting pathways driving hepatic lipogenesis. CANCER PREVENTION RESEARCH (PHILADELPHIA, PA.) 2012. [PMID: 22467080 DOI: 10.1158/1940-6207.capr-11-0228.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A number of factors have been identified that increase the risk of hepatocellular carcinoma (HCC). Recently it has become appreciated that type II diabetes increases the risk of developing HCC. This represents a patient population that can be identified and targeted for cancer prevention. The biguanide metformin is a first-line therapy for the treatment of type II diabetes in which it exerts its effects primarily on the liver. A role of metformin in HCC is suggested by studies linking metformin intake for control of diabetes with a reduced risk of HCC. Although a number of preclinical studies show the anticancer properties of metformin in a number of tissues, no studies have directly examined the effect of metformin on preventing carcinogenesis in the liver, one of its main sites of action. We show in these studies that metformin protected mice against chemically induced liver tumors. Interestingly, metformin did not increase AMPK activation, often shown to be a metformin target. Rather metformin decreased the expression of several lipogenic enzymes and lipogenesis. In addition, restoring lipogenic gene expression by ectopic expression of the lipogenic transcription factor SREBP1c rescues metformin-mediated growth inhibition. This mechanism of action suggests that metformin may also be useful for patients with other disorders associated with HCC in which increased lipid synthesis is observed. As a whole these studies show that metformin prevents HCC and that metformin should be evaluated as a preventive agent for HCC in readily identifiable at-risk patients.
Collapse
Affiliation(s)
- Kavita Bhalla
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore Maryland 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
573
|
Melnik BC. Leucine signaling in the pathogenesis of type 2 diabetes and obesity. World J Diabetes 2012; 3:38-53. [PMID: 22442749 PMCID: PMC3310004 DOI: 10.4239/wjd.v3.i3.38] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 02/29/2012] [Accepted: 03/09/2012] [Indexed: 02/06/2023] Open
Abstract
Epidemiological evidence points to increased dairy and meat consumption, staples of the Western diet, as major risk factors for the development of type 2 diabetes (T2D). This paper presents a new concept and comprehensive review of leucine-mediated cell signaling explaining the pathogenesis of T2D and obesity by leucine-induced over-stimulation of mammalian target of rapamycin complex 1 (mTORC1). mTORC1, a pivotal nutrient-sensitive kinase, promotes growth and cell proliferation in response to glucose, energy, growth factors and amino acids. Dairy proteins and meat stimulate insulin/insulin-like growth factor 1 signaling and provide high amounts of leucine, a primary and independent stimulator for mTORC1 activation. The downstream target of mTORC1, the kinase S6K1, induces insulin resistance by phosphorylation of insulin receptor substrate-1, thereby increasing the metabolic burden of β-cells. Moreover, leucine-mediated mTORC1-S6K1-signaling plays an important role in adipogenesis, thus increasing the risk of obesity-mediated insulin resistance. High consumption of leucine-rich proteins explains exaggerated mTORC1-dependent insulin secretion, increased β-cell growth and β-cell proliferation promoting an early onset of replicative β-cell senescence with subsequent β-cell apoptosis. Disturbances of β-cell mass regulation with increased β-cell proliferation and apoptosis as well as insulin resistance are hallmarks of T2D, which are all associated with hyperactivation of mTORC1. In contrast, the anti-diabetic drug metformin antagonizes leucine-mediated mTORC1 signaling. Plant-derived polyphenols and flavonoids are identified as natural inhibitors of mTORC1 and exert anti-diabetic and anti-obesity effects. Furthermore, bariatric surgery in obesity reduces increased plasma levels of leucine and other branched-chain amino acids. Attenuation of leucine-mediated mTORC1 signaling by defining appropriate upper limits of the daily intake of leucine-rich animal and dairy proteins may offer a great chance for the prevention of T2D and obesity, as well as other epidemic diseases of civilization with increased mTORC1 signaling, especially cancer and neurodegenerative diseases, which are frequently associated with T2D.
Collapse
Affiliation(s)
- Bodo C Melnik
- Bodo C Melnik, Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49090 Osnabrück, Germany
| |
Collapse
|
574
|
Matsuo J, Tsukumo Y, Saito S, Tsukahara S, Sakurai J, Sato S, Kondo H, Ushijima M, Matsuura M, Watanabe T, Tomida A. Hyperactivation of 4E-Binding Protein 1 as a Mediator of Biguanide-Induced Cytotoxicity during Glucose Deprivation. Mol Cancer Ther 2012; 11:1082-91. [DOI: 10.1158/1535-7163.mct-11-0871] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
575
|
Shi WY, Xiao D, Wang L, Dong LH, Yan ZX, Shen ZX, Chen SJ, Chen Y, Zhao WL. Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death Dis 2012; 3:e275. [PMID: 22378068 PMCID: PMC3317343 DOI: 10.1038/cddis.2012.13] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) acts as a major sensor of cellular energy status in cancers and is critically involved in cell sensitivity to anticancer agents. Here, we showed that AMPK was inactivated in lymphoma and related to the upregulation of the mammalian target of rapamycin (mTOR) pathway. AMPK activator metformin potentially inhibited the growth of B- and T-lymphoma cells. Strong antitumor effect was also observed on primary lymphoma cells while sparing normal hematopoiesis ex vivo. Metformin-induced AMPK activation was associated with the inhibition of the mTOR signaling without involving AKT. Moreover, lymphoma cell response to the chemotherapeutic agent doxorubicin and mTOR inhibitor temsirolimus was significantly enhanced when co-treated with metformin. Pharmacologic and molecular knock-down of AMPK attenuated metformin-mediated lymphoma cell growth inhibition and drug sensitization. In vivo, metformin induced AMPK activation, mTOR inhibition and remarkably blocked tumor growth in murine lymphoma xenografts. Of note, metformin was equally effective when given orally. Combined treatment of oral metformin with doxorubicin or temsirolimus triggered lymphoma cell autophagy and functioned more efficiently than either agent alone. Taken together, these data provided first evidence for the growth-inhibitory and drug-sensitizing effect of metformin on lymphoma. Selectively targeting mTOR pathway through AMPK activation may thus represent a promising new strategy to improve treatment of lymphoma patients.
Collapse
Affiliation(s)
- W-Y Shi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
576
|
Hindlet P, Barraud C, Boschat L, Farinotti R, Bado A, Buyse M. Rosiglitazone and metformin have opposite effects on intestinal absorption of oligopeptides via the proton-dependent PepT1 transporter. Mol Pharmacol 2012; 81:319-27. [PMID: 22108913 DOI: 10.1124/mol.111.073874] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The intestinal H(+)/peptide cotransporter 1 (PepT1) plays a major role in nitrogen supply to the body by mediating intestinal absorption of di- and tripeptides. Previous studies have reported that in animal models of type 2 diabetes/obesity, PepT1 activity and expression were markedly reduced. This prompted us to investigate the effects of two antidiabetic drugs, rosiglitazone and metformin, on PepT1 activity/expression in a murine diet-induced obesity model. C57BL/6J male mice were fed a high-fat diet (HFD) or a standard chow for 6 weeks and then were treated for 7 days with metformin (250 mg/kg/day) and/or rosiglitazone (8 mg/kg/day). For in vitro studies, Caco-2 enterocyte-like cells were treated for 7 days with metformin (10 mM) and/or rosiglitazone (10 μM). A 7-day rosiglitazone treatment increased PepT1 activity and prevented the 2-fold HFD-induced reduction in PepT1 transport. Metformin alone did not modify PepT1 activity but counteracted rosiglitazone-induced PepT1-mediated transport. As with the in vivo studies, rosiglitazone treatment up-regulated PepT1 transport activity with concomitant induction of S6 ribosomal protein activation in vitro. Furthermore, metformin decreased PepT1 expression (mRNA and protein) and its transport activity. The effect of metformin was linked to a reduction of phosphorylated S6 ribosomal protein (active form) and of phosphorylated 4E-BP1 (inactive form), a translation repressor. These data demonstrate that two antidiabetic drugs exert opposite effects on the PepT1 transport function probably through direct action on enterocytes. In our type 2 diabetes/obesity model, rosiglitazone, a peroxisome proliferator-activated receptor-γ agonist compensated for the HFD-induced PepT1 down-regulation, whereas metformin reversed rosiglitazone activity at the translational level.
Collapse
Affiliation(s)
- Patrick Hindlet
- Clinical Pharmacy Department (EA4123), Paris-Sud 11 University, Châtenay-Malabry, France.
| | | | | | | | | | | |
Collapse
|
577
|
Abstract
Although several early phase clinical trials raised enthusiasm for the use of insulin-like growth factor I receptor (IGF1R)-specific antibodies for cancer treatment, initial Phase III results in unselected patients have been disappointing. Further clinical studies may benefit from the use of predictive biomarkers to identify probable responders, the use of rational combination therapies and the consideration of alternative targeting strategies, such as ligand-specific antibodies and receptor-specific tyrosine kinase inhibitors. Targeting insulin and IGF signalling also needs to be considered in the broader context of the pathophysiology that relates obesity and diabetes to neoplasia, and the effects of anti-diabetic drugs, including metformin, on cancer risk and prognosis. The insulin and IGFI receptor family is also relevant to the development of PI3K-AKT pathway inhibitors.
Collapse
Affiliation(s)
- Michael Pollak
- Lady Davis Research Institute and McGill University, Montreal, Quebec H3T1E2, Canada.
| |
Collapse
|
578
|
Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J 2012; 441:1-21. [PMID: 22168436 DOI: 10.1042/bj20110892] [Citation(s) in RCA: 767] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ribosomal protein S6K (S6 kinase) represents an extensively studied effector of the TORC1 [TOR (target of rapamycin) complex 1], which possesses important yet incompletely defined roles in cellular and organismal physiology. TORC1 functions as an environmental sensor by integrating signals derived from diverse environmental cues to promote anabolic and inhibit catabolic cellular functions. mTORC1 (mammalian TORC1) phosphorylates and activates S6K1 and S6K2, whose first identified substrate was rpS6 (ribosomal protein S6), a component of the 40S ribosome. Studies over the past decade have uncovered a number of additional S6K1 substrates, revealing multiple levels at which the mTORC1-S6K1 axis regulates cell physiology. The results thus far indicate that the mTORC1-S6K1 axis controls fundamental cellular processes, including transcription, translation, protein and lipid synthesis, cell growth/size and cell metabolism. In the present review we summarize the regulation of S6Ks, their cellular substrates and functions, and their integration within rapidly expanding mTOR (mammalian TOR) signalling networks. Although our understanding of the role of mTORC1-S6K1 signalling in physiology remains in its infancy, evidence indicates that this signalling axis controls, at least in part, glucose homoeostasis, insulin sensitivity, adipocyte metabolism, body mass and energy balance, tissue and organ size, learning, memory and aging. As dysregulation of this signalling axis contributes to diverse disease states, improved understanding of S6K regulation and function within mTOR signalling networks may enable the development of novel therapeutics.
Collapse
|
579
|
Shen L, Sun X, Fu Z, Yang G, Li J, Yao L. The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy. Clin Cancer Res 2012; 18:1561-7. [PMID: 22307140 DOI: 10.1158/1078-0432.ccr-11-3040] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is well established that the altered metabolism exhibited by cancer cells, including high rates of glycolysis, lactate production, and biosynthesis of lipids, nucleotides, and other macromolecules, and which may occur either as a consequence or as a cause of tumorigenesis, plays an essential role in cancer progression. Recently, the tumor suppressor p53 was found to play a central role in this process. Here, we review the role of p53 in modulating tumor metabolism. Specifically, we focus on the functions of p53 in regulating aerobic glycolysis, oxidative phosphorylation, the pentose phosphate pathway, fatty acid synthesis and oxidation, and glutamine metabolism, and we discuss the therapeutic strategy whereby p53 helps to prevent malignant progression.
Collapse
Affiliation(s)
- Lan Shen
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, The People's Republic of China
| | | | | | | | | | | |
Collapse
|
580
|
Abstract
PURPOSE OF REVIEW To focus on the potential role of metformin, a widely used antidiabetic drug, in cancer treatment. RECENT FINDINGS Epidemiological, preclinical and cellular studies have shown in the last 6 years that metformin exerts antitumoral properties. Here, we review the very last findings concerning metformin action in cancer. The results of the first clinical trials as well as the combined action of metformin and chemotherapeutics agents in vitro and in vivo will be discussed. Recent studies show that metformin could also regulate inflammation and, therefore, may play a role in tumor microenvironment. Finally, we will present the latest publications concerning the molecular mechanisms implicated in metformin action, especially the AMP-activated kinase-independent pathways. SUMMARY The numerous in-vitro and in-vivo studies warrant the ongoing clinical trials, which should definitively help us to determine if metformin could be used in cancer therapy.
Collapse
|
581
|
Bo S, Benso A, Durazzo M, Ghigo E. Does use of metformin protect against cancer in Type 2 diabetes mellitus? J Endocrinol Invest 2012; 35:231-5. [PMID: 22490993 DOI: 10.1007/bf03345423] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus has been associated with an increased cancer risk, which can be modified by specific hypoglycemic drugs. In particular, metformin, the most frequently prescribed biguanide, is now considered a protective agent against cancer incidence and mortality in Type 2 diabetic patients. AIMS To review the potential associations between metformin use and cancer incidence and mortality and the possible biological links implicated in these associations. MATERIALS AND METHODS We searched English-language original investigations published through September 2011. RESULTS Metformin could block the mitogenic effects of insulin, but this effect does not entirely explain the reduction in cancer incidence. Metformin also plays a direct inhibition of cancer cell growth via the inhibitory effects of AMP-activated protein kinase on the mTOR pathway, which regulates cell growth and proliferation. Accordingly, many epidemiological studies have shown that metformin use is associated with a lower cancer incidence and mortality through a dose-response relationship, with greater exposure being associated with stronger risk reduction. Randomized clinical trials testing the effects of metformin on both recurrence and survival in early-stage breast cancer are on-going; these trials are based on pilot studies demonstrating an adjuvant effect of this drug in breast cancer. CONCLUSIONS Metformin is an inexpensive and safe drug, that may modify the increased cancer risk of Type 2 diabetic patients. On-going clinical trials will show whether this drug can enhance the effect of chemotherapy in the treatment of cancer.
Collapse
Affiliation(s)
- S Bo
- Department of Internal Medicine, University of Turin, Italy.
| | | | | | | |
Collapse
|
582
|
Algire C, Moiseeva O, Deschênes-Simard X, Amrein L, Petruccelli L, Birman E, Viollet B, Ferbeyre G, Pollak MN. Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prev Res (Phila) 2012; 5:536-43. [PMID: 22262811 DOI: 10.1158/1940-6207.capr-11-0536] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pharmacoepidemiologic studies provide evidence that use of metformin, a drug commonly prescribed for type II diabetes, is associated with a substantial reduction in cancer risk. Experimental models show that metformin inhibits the growth of certain neoplasms by cell autonomous mechanisms such as activation of AMP kinase with secondary inhibition of protein synthesis or by an indirect mechanism involving reduction in gluconeogenesis leading to a decline in insulin levels and reduced proliferation of insulin-responsive cancers. Here, we show that metformin attenuates paraquat-induced elevations in reactive oxygen species (ROS), and related DNA damage and mutations, but has no effect on similar changes induced by H(2)0(2), indicating a reduction in endogenous ROS production. Importantly, metformin also inhibited Ras-induced ROS production and DNA damage. Our results reveal previously unrecognized inhibitory effects of metformin on ROS production and somatic cell mutation, providing a novel mechanism for the reduction in cancer risk reported to be associated with exposure to this drug.
Collapse
Affiliation(s)
- Carolyn Algire
- Division of Experimental Medicine, McGill University and Segal Cancer Centre of Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
583
|
Hanna RK, Zhou C, Malloy KM, Sun L, Zhong Y, Gehrig PA, Bae-Jump VL. Metformin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and modulation of the mTOR pathway. Gynecol Oncol 2012; 125:458-69. [PMID: 22252099 DOI: 10.1016/j.ygyno.2012.01.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/29/2011] [Accepted: 01/08/2012] [Indexed: 01/22/2023]
Abstract
OBJECTIVES To examine the effects of combination therapy with metformin and paclitaxel in endometrial cancer cell lines. METHODS ECC-1 and Ishikawa endometrial cancer cell lines were used. Cell proliferation was assessed after exposure to paclitaxel and metformin. Cell cycle progression was assessed by flow cytometry. hTERT expression was determined by real-time RT-PCR. Western immunoblotting was performed to determine the effect of metformin/paclitaxel on the mTOR pathway. RESULTS Paclitaxel inhibited proliferation in a dose-dependent manner in both cell lines with IC(50) values of 1-5nM and 5-10nM for Ishikawa and ECC-1 cells, respectively. Simultaneous exposure of cells to various doses of paclitaxel in combination with metformin (0.5mM) resulted in a significant synergistic anti-proliferative effect in both cell lines (Combination Index<1). Metformin induced G1 arrest in both cell lines. Paclitaxel alone or in combination with metformin resulted in predominantly G2 arrest. Metformin decreased hTERT mRNA expression while paclitaxel alone had no effect on telomerase activity. Metformin stimulated AMPK phosphorylation and decreased phosphorylation of the S6 protein. In contrast, paclitaxel inhibited AMPK phosphorylation in the ECC-1 cell line and induced phosphorylation of S6 in both cell lines. Treatment with metformin and paclitaxel resulted in decreased phosphorylation of S6 in both cell lines but only had an additive effect on AMPK phosphorylation in the ECC-1 cell line. CONCLUSIONS Metformin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and modulation of the mTOR pathway. This combination may be a promising targeted therapy for endometrial cancer.
Collapse
Affiliation(s)
- Rabbie K Hanna
- University of North Carolina, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Chapel Hill, NC, USA
| | | | | | | | | | | | | |
Collapse
|
584
|
Abstract
Considerable efforts have been made since the 1950s to better understand the cellular and molecular mechanisms of action of metformin, a potent antihyperglycaemic agent now recommended as the first-line oral therapy for T2D (Type 2 diabetes). The main effect of this drug from the biguanide family is to acutely decrease hepatic glucose production, mostly through a mild and transient inhibition of the mitochondrial respiratory chain complex I. In addition, the resulting decrease in hepatic energy status activates AMPK (AMP-activated protein kinase), a cellular metabolic sensor, providing a generally accepted mechanism for the action of metformin on hepatic gluconeogenesis. The demonstration that respiratory chain complex I, but not AMPK, is the primary target of metformin was recently strengthened by showing that the metabolic effect of the drug is preserved in liver-specific AMPK-deficient mice. Beyond its effect on glucose metabolism, metformin has been reported to restore ovarian function in PCOS (polycystic ovary syndrome), reduce fatty liver, and to lower microvascular and macrovascular complications associated with T2D. Its use has also recently been suggested as an adjuvant treatment for cancer or gestational diabetes and for the prevention in pre-diabetic populations. These emerging new therapeutic areas for metformin will be reviewed together with recent findings from pharmacogenetic studies linking genetic variations to drug response, a promising new step towards personalized medicine in the treatment of T2D.
Collapse
|
585
|
Bailey KM, Wojtkowiak JW, Hashim AI, Gillies RJ. Targeting the metabolic microenvironment of tumors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 65:63-107. [PMID: 22959024 DOI: 10.1016/b978-0-12-397927-8.00004-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The observation of aerobic glycolysis by tumor cells in 1924 by Otto Warburg, and subsequent innovation of imaging glucose uptake by tumors in patients with PET-CT, has incited a renewed interest in the altered metabolism of tumors. As tumors grow in situ, a fraction of it is further away from their blood supply, leading to decreased oxygen concentrations (hypoxia), which induces the hypoxia response pathways of HIF1α, mTOR, and UPR. In normal tissues, these responses mitigate hypoxic stress and induce neoangiogenesis. In tumors, these pathways are dysregulated and lead to decreased perfusion and exacerbation of hypoxia as a result of immature and chaotic blood vessels. Hypoxia selects for a glycolytic phenotype and resultant acidification of the tumor microenvironment, facilitated by upregulation of proton transporters. Acidification selects for enhanced metastatic potential and reduced drug efficacy through ion trapping. In this review, we provide a comprehensive summary of preclinical and clinical drugs under development for targeting aerobic glycolysis, acidosis, hypoxia and hypoxia response pathways. Hypoxia and acidosis can be manipulated, providing further therapeutic benefit for cancers that feature these common phenotypes.
Collapse
Affiliation(s)
- Kate M Bailey
- Department of Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | |
Collapse
|
586
|
Natural-Agent Mechanisms and Early-Phase Clinical Development. NATURAL PRODUCTS IN CANCER PREVENTION AND THERAPY 2012; 329:241-52. [DOI: 10.1007/128_2012_341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
587
|
Kumar NB, Vadaparampil ST, Mahajan N, Lilienfeld HS, Lee JH, Laronga C, Hakam A, Hein JJ, Egan KM, Arun B, Pal T. Metformin- A Promising Agent for Chemoprevention in BRCA1 Carriers. ACTA ACUST UNITED AC 2012; 1. [PMID: 26097796 PMCID: PMC4474476 DOI: 10.4172/2161-1041.1000104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nagi B Kumar
- Departments of Cancer Epidemiology The University of Texas MD Anderson Cancer Center, Houston, Texas ; Oncological Sciences University of South Florida College of Medicine, Tampa Florida
| | - Susan T Vadaparampil
- Health Outcomes and Behavior, The University of Texas MD Anderson Cancer Center, Houston, Texas ; Oncological Sciences University of South Florida College of Medicine, Tampa Florida
| | - Nupam Mahajan
- Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas ; Oncological Sciences University of South Florida College of Medicine, Tampa Florida
| | - Howard S Lilienfeld
- Breast Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas ; Oncological Sciences University of South Florida College of Medicine, Tampa Florida
| | - Ji-Hyun Lee
- Departments of Cancer Epidemiology The University of Texas MD Anderson Cancer Center, Houston, Texas ; Breast Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christine Laronga
- Breast Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas ; Oncological Sciences University of South Florida College of Medicine, Tampa Florida
| | - Ardeshir Hakam
- Pathology, at the H. Lee Moffitt Cancer Center & Research Institute ; Oncological Sciences University of South Florida College of Medicine, Tampa Florida
| | - John J Hein
- Departments of Cancer Epidemiology The University of Texas MD Anderson Cancer Center, Houston, Texas ; Oncological Sciences University of South Florida College of Medicine, Tampa Florida
| | - Kathleen M Egan
- Departments of Cancer Epidemiology The University of Texas MD Anderson Cancer Center, Houston, Texas ; Oncological Sciences University of South Florida College of Medicine, Tampa Florida
| | - Banu Arun
- Breast Medical Oncology and Clinical Cancer Prevention, and Co-Director of Clinical Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tuya Pal
- Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas ; Oncological Sciences University of South Florida College of Medicine, Tampa Florida
| |
Collapse
|
588
|
Abstract
Recent epidemiological investigations conducted in diabetic cohorts and cancer patients have found that metformin users have lower risks for cancer than those using insulin or insulin secretagogues. Studies conducted in various animal tumor models and cancer cell lines have demonstrated that metformin prevents tumor development or inhibits cell proliferation. In addition, a recent clinical trial has shown that short-term use of metformin reduces aberrant crypt foci (ACF) formation in non-diabetic patients with ACF. The antitumor activity of metformin may be mediated through its regulatory effect on hormonal, metabolic, and immune functions. Metformin achieves glycemic control by reducing hepatic glucose production and increasing the muscle intake of glucose, thus lowering levels of circulating glucose and, consequently, insulin. The major molecular targets of metformin are the liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) signaling and mammalian target of rapamycin (mTOR) pathways, which are central in the regulation of cellular energy homeostasis and play a crucial role in the control of cell division and cell proliferation. Metformin has been shown to improve endothelial function, decrease inflammatory activity, and regulate immune function. Increasing experimental evidence provides a strong biological rationale for metformin as an antitumor and chemopreventive agent. Metformin is being tested as an adjuvant cancer therapy in clinical settings, and metformin is recommended for all cases of Type 2 diabetes without contraindications. As described in this review, the chemopreventive value of metformin is not restricted to diabetic or obese individuals.
Collapse
Affiliation(s)
- Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
589
|
|
590
|
He X, Esteva FJ, Ensor J, Hortobagyi GN, Lee MH, Yeung SCJ. Metformin and thiazolidinediones are associated with improved breast cancer-specific survival of diabetic women with HER2+ breast cancer. Ann Oncol 2011; 23:1771-80. [PMID: 22112968 DOI: 10.1093/annonc/mdr534] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Insulin/insulin-like growth factor-I (IGF-I) signaling is a mechanism mediating the promoting effect of type 2 diabetes (DM2) on cancer. Human epidermal growth factor receptor (HER2), insulin receptor and IGF-I receptor involve the same PI3K/AKT/mTOR signaling, and different antidiabetic pharmacotherapy may differentially affect this pathway, leading to different prognoses of HER2+ breast cancer. METHODS We reviewed 1983 consecutive patients with HER2+ breast cancer treated between 1 January 1998 and 30 September 2010. The overall survival, breast cancer-specific death rate, age, race, nuclear grade, stage, menopausal status, estrogen and progesterone receptor status, body mass index and classes of antidiabetic pharmacotherapy were analyzed. RESULTS A Cox regression analysis showed that DM2 [P=0.026, hazard ratio (HR)=1.42, 95 % confidence interval (95 % CI) 1.04-1.94] predicted poor survival of stage≥2 HER2+ breast cancer. In Kaplan-Meier analysis, metformin predicted lengthened survival and so did thiazolidinediones. Analyzing only the diabetics, Cox regression showed that metformin (P=0.041, HR=0.52, 95 % CI 0.28-0.97) and thiazolidinediones (P=0.036; HR=0.41, 95% CI 0.18-0.93) predicted lengthened survival, and competing risk analysis showed that metformin and thiazolidinediones were associated with decreased breast cancer-specific mortality (P=0.023, HR=0.47, 95% CI 0.24-0.90 and P=0.044, HR=0.42, 95 % CI 0.18-0.98, respectively). CONCLUSIONS Thiazolidinediones and metformin users are associated with better clinical outcomes than nonusers in diabetics with stage≥2 HER2+ breast cancer. The choice of antidiabetic pharmacotherapy may influence prognosis of this group.
Collapse
Affiliation(s)
- X He
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
591
|
Bao B, Wang Z, Ali S, Ahmad A, Azmi AS, Sarkar SH, Banerjee S, Kong D, Li Y, Thakur S, Sarkar FH. Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prev Res (Phila) 2011; 5:355-64. [PMID: 22086681 DOI: 10.1158/1940-6207.capr-11-0299] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States, which is, in part, due to intrinsic (de novo) and extrinsic (acquired) resistance to conventional therapeutics, suggesting that innovative treatment strategies are required for overcoming therapeutic resistance to improve overall survival of patients. Oral administration of metformin in patients with diabetes mellitus has been reported to be associated with reduced risk of pancreatic cancer and that metformin has been reported to kill cancer stem cells (CSC); however, the exact molecular mechanism(s) has not been fully elucidated. In the current study, we examined the effect of metformin on cell proliferation, cell migration and invasion, and self-renewal capacity of CSCs and further assessed the expression of CSC marker genes and microRNAs (miRNA) in human pancreatic cancer cells. We found that metformin significantly decreased cell survival, clonogenicity, wound-healing capacity, sphere-forming capacity (pancreatospheres), and increased disintegration of pancreatospheres in both gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cells. Metformin also decreased the expression of CSC markers,CD44, EpCAM,EZH2, Notch-1, Nanog and Oct4, and caused reexpression of miRNAs (let-7a,let-7b, miR-26a, miR-101, miR-200b, and miR-200c) that are typically lost in pancreatic cancer and especially in pancreatospheres. We also found that reexpression of miR-26a by transfection led to decreased expression of EZH2 and EpCAM in pancreatic cancer cells. These results clearly suggest that the biologic effects of metformin are mediated through reexpression of miRNAs and decreased expression of CSC-specific genes, suggesting that metformin could be useful for overcoming therapeutic resistance of pancreatic cancer cells.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 Hudson Webber Cancer Research Center, 4100 John R Street, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
592
|
Martinez-Outschoorn UE, Goldberg A, Lin Z, Ko YH, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F, Lisanti MP. Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells. Cancer Biol Ther 2011; 12:924-38. [PMID: 22041887 DOI: 10.4161/cbt.12.10.17780] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Here, we show that tamoxifen resistance is induced by cancer-associated fibroblasts (CAFs). Coculture of estrogen receptor positive (ER+) MCF7 cells with fibroblasts induces tamoxifen and fulvestrant resistance with 4.4 and 2.5-fold reductions, respectively, in apoptosis compared with homotypic MCF7 cell cultures. Treatment of MCF7 cells cultured alone with high-energy mitochondrial "fuels" (L-lactate or ketone bodies) is sufficient to confer tamoxifen resistance, mimicking the effects of coculture with fibroblasts. To further demonstrate that epithelial cancer cell mitochondrial activity is the origin of tamoxifen resistance, we employed complementary pharmacological and genetic approaches. First, we studied the effects of two mitochondrial "poisons," namely metformin and arsenic trioxide (ATO), on fibroblast-induced tamoxifen resistance. We show here that treatment with metformin or ATO overcomes fibroblast-induced tamoxifen resistance in MCF7 cells. Treatment with the combination of tamoxifen plus metformin or ATO leads to increases in glucose uptake in MCF7 cells, reflecting metabolic uncoupling between epithelial cancer cells and fibroblasts. In coculture, tamoxifen induces the upregulation of TIGAR (TP53-induced glycolysis and apoptosis regulator), a p53 regulated gene that simultaneously inhibits glycolysis, autophagy and apoptosis and reduces ROS generation, thereby promoting oxidative mitochondrial metabolism. To genetically mimic the effects of coculture, we next recombinantly overexpressed TIGAR in MCF7 cells. Remarkably, TIGAR overexpression protects epithelial cancer cells from tamoxifen-induced apoptosis, providing genetic evidence that increased mitochondrial function confers tamoxifen resistance. Finally, CAFs also protect MCF7 cells against apoptosis induced by other anticancer agents, such as the topoisomerase inhibitor doxorubicin (adriamycin) and the PARP-1 inhibitor ABT-888. These results suggest that the tumor microenvironment may be a general mechanism for conferring drug resistance. In summary, we have discovered that mitochondrial activity in epithelial cancer cells drives tamoxifen resistance in breast cancer and that mitochondrial "poisons" are able to re-sensitize these cancer cells to tamoxifen. In this context, TIGAR may be a key "druggable" target for preventing drug resistance in cancer cells, as it protects cancer cells against the onset of stress-induced mitochondrial dys-function and aerobic glycolysis.
Collapse
Affiliation(s)
- Ubaldo E Martinez-Outschoorn
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
593
|
The role of the phosphatidylinositol 3-kinase (PI3K) pathway in the development and treatment of uterine cancer. Gynecol Oncol 2011; 123:411-20. [DOI: 10.1016/j.ygyno.2011.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/03/2011] [Accepted: 08/03/2011] [Indexed: 11/19/2022]
|
594
|
Obara I, Géranton SM, Hunt SP. Axonal protein synthesis: a potential target for pain relief? Curr Opin Pharmacol 2011; 12:42-8. [PMID: 22033338 DOI: 10.1016/j.coph.2011.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 10/04/2011] [Indexed: 11/15/2022]
Abstract
Research on the role of axonal protein synthesis in the regulation of nociceptive mechanisms has grown significantly over the past four years. Recent advances include evidence that local translation of mRNA can occur in adult primary afferents under the control of the mammalian target of rapamycin (mTOR) and the extracellular signal-regulated kinase (ERK) signaling pathways. Studies investigating the effect of mTOR and ERK pathway inhibitors in a number of pain models suggest that these signaling pathways may act independently, depending on the type of sensory afferents studied. The evidence that nociception can be regulated at the level of mRNA translation in nociceptors has important implications for the understanding of the mechanisms of nociceptive plasticity and therefore for therapeutic interventions in chronic pain conditions.
Collapse
Affiliation(s)
- Ilona Obara
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom.
| | | | | |
Collapse
|
595
|
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in growth and survival of BCR-ABL transformed cells. AMPK kinase is a metabolic sensor that exhibits suppressive effects on the mTOR pathway and negatively regulates mTOR activity. We report that AMPK activators, such as metformin and 5-aminoimidazole-4-carboxamide ribonucleotide, suppress activation of the mTOR pathway in BCR-ABL-expressing cells. Treatment with these inhibitors results in potent suppression of chronic myeloid leukemia leukemic precursors and Ph(+) acute lymphoblastic leukemia cells, including cells expressing the T315I-BCR-ABL mutation. Altogether, our data suggest that AMPK is an attractive target for the treatment of BCR-ABL-expressing malignancies and raise the potential for use of AMPK activators in the treatment of refractory chronic myeloid leukemia and Ph(+) acute lymphoblastic leukemia.
Collapse
|
596
|
Monteagudo S, Pérez-Martínez FC, Pérez-Carrión MD, Guerra J, Merino S, Sánchez-Verdú MP, Ceña V. Inhibition of p42 MAPK using a nonviral vector-delivered siRNA potentiates the anti-tumor effect of metformin in prostate cancer cells. Nanomedicine (Lond) 2011; 7:493-506. [PMID: 21995500 DOI: 10.2217/nnm.11.61] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIMS The aim of this work was to study if a G1-polyamidoamine dendrimer/siRNA dendriplex can remove the p42 MAPK protein in prostate cancer cells and to potentiate the anti-tumoral effect of the antidiabetic drug metformin and taxane docetaxel. MATERIAL & METHODS The dendriplex uptake was studied using flow cytometry analysis. Transfection efficiency was determined by measuring p42 MAPK mRNA and protein levels. Anti-tumoral effects were determined by measuring cellular proliferation and damage. RESULTS The dendriplex siRNA/G1-polyamidoamine dendrimer decreased both p42 MAPK mRNA and protein levels by more than 80%, which potentiates the anti-tumoral effects of metformin. CONCLUSION Blockade of the MAPK pathway using a dendrimer-vehiculized siRNA to block the MAPK signaling pathway in prostate cancer cells can potentiate the anti-tumoral activity of anticancer drugs, indicating that the combination of siRNA-mediated blockade of survival signals plus anti-tumoral therapy might be a useful approach for cancer therapy.
Collapse
|
597
|
Segal ED, Yasmeen A, Beauchamp MC, Rosenblatt J, Pollak M, Gotlieb WH. Relevance of the OCT1 transporter to the antineoplastic effect of biguanides. Biochem Biophys Res Commun 2011; 414:694-9. [PMID: 21986525 DOI: 10.1016/j.bbrc.2011.09.134] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 09/27/2011] [Indexed: 01/11/2023]
Abstract
Epidemiologic and laboratory data suggesting that metformin has antineoplastic activity have led to ongoing clinical trials. However, pharmacokinetic issues that may influence metformin activity have not been studied in detail. The organic cation transporter 1 (OCT1) is known to play an important role in cellular uptake of metformin in the liver. We show that siRNA knockdown of OCT1 reduced sensitivity of epithelial ovarian cancer cells to metformin, but interestingly not to another biguanide, phenformin, with respect to both activation of AMP kinase and inhibition of proliferation. We observed that there is heterogeneity between primary human tumors with respect to OCT1 expression. These results suggest that there may be settings where drug uptake limits direct action of metformin on neoplastic cells, raising the possibility that metformin may not be the optimal biguanide for clinical investigation.
Collapse
Affiliation(s)
- Eric D Segal
- Division of Gynecologic Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
598
|
Lee KH, Hsu EC, Guh JH, Yang HC, Wang D, Kulp SK, Shapiro CL, Chen CS. Targeting energy metabolic and oncogenic signaling pathways in triple-negative breast cancer by a novel adenosine monophosphate-activated protein kinase (AMPK) activator. J Biol Chem 2011; 286:39247-58. [PMID: 21917926 DOI: 10.1074/jbc.m111.264598] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The antitumor activities of the novel adenosine monophosphate-activated protein kinase (AMPK) activator, OSU-53, were assessed in in vitro and in vivo models of triple-negative breast cancer. OSU-53 directly stimulated recombinant AMPK kinase activity (EC(50), 0.3 μM) and inhibited the viability and clonogenic growth of MDA-MB-231 and MDA-MB-468 cells with equal potency (IC(50), 5 and 2 μM, respectively) despite lack of LKB1 expression in MDA-MB-231 cells. Nonmalignant MCF-10A cells, however, were unaffected. Beyond AMPK-mediated effects on mammalian target of rapamycin signaling and lipogenesis, OSU-53 also targeted multiple AMPK downstream pathways. Among these, the protein phosphatase 2A-dependent dephosphorylation of Akt is noteworthy because it circumvents the feedback activation of Akt that results from mammalian target of rapamycin inhibition. OSU-53 also modulated energy homeostasis by suppressing fatty acid biosynthesis and shifting the metabolism to oxidation by up-regulating the expression of key regulators of mitochondrial biogenesis, such as a peroxisome proliferator-activated receptor γ coactivator 1α and the transcription factor nuclear respiratory factor 1. Moreover, OSU-53 suppressed LPS-induced IL-6 production, thereby blocking subsequent Stat3 activation, and inhibited hypoxia-induced epithelial-mesenchymal transition in association with the silencing of hypoxia-inducible factor 1a and the E-cadherin repressor Snail. In MDA-MB-231 tumor-bearing mice, daily oral administration of OSU-53 (50 and 100 mg/kg) suppressed tumor growth by 47-49% and modulated relevant intratumoral biomarkers of drug activity. However, OSU-53 also induced protective autophagy that attenuated its antiproliferative potency. Accordingly, cotreatment with the autophagy inhibitor chloroquine increased the in vivo tumor-suppressive activity of OSU-53. OSU-53 is a potent, orally bioavailable AMPK activator that acts through a broad spectrum of antitumor activities.
Collapse
Affiliation(s)
- Kuen-Haur Lee
- Division of Medicinal Chemistry, College of Pharmacy, Ohio State University, Columbus, Ohio 43210-1291, USA
| | | | | | | | | | | | | | | |
Collapse
|
599
|
Adachi S, Yasuda I, Kawaguchi J, Yamauchi T, Nakashima M, Itani M, Nakamura M, Yoshioka T, Moriwaki H, Kozawa O. Ultraviolet enhances the sensitivity of pancreatic cancer cells to gemcitabine by activation of 5' AMP-activated protein kinase. Biochem Biophys Res Commun 2011; 414:53-9. [PMID: 21945432 DOI: 10.1016/j.bbrc.2011.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/05/2011] [Indexed: 01/19/2023]
Abstract
Although gemcitabine is recognized as the standard drug for the treatment of advanced pancreatic cancer, the clinical outcome is not satisfactory. We recently reported that relatively high dose ultraviolet-C (UV-C; 200J) inhibits cell growth by desensitization of epidermal growth factor receptor (EGFR) in human pancreatic cancer cells. In the present study, we investigated the combination effects of low dose UV-C (10J) and gemcitabine on apoptosis and cell growth in these cells. UV-C enhanced gemcitabine-induced suppression of cell viability. In addition, the combination use clearly induced apoptosis, while neither UV-C nor gemcitabine alone did. Concurrently, combination use caused the decrease in the EGFR protein level and reduced EGF-induced activation of Akt pathway, subsequently resulting in accumulation of β-catenin. The order of the treatment with UV-C and gemcitabine did not affect their synergistic effects on apoptosis and cell growth. Interestingly, combination use synergistically induced phosphorylation of 5' AMP-activated protein kinase (AMPK) alpha at Thr172 and acetyl-CoA carboxylase at Ser79 as a downstream molecular target of AMPK. AMPK activator, 5-aminoimidazole-4-carboxamide-1-β-riboside, induced apoptosis and suppressed cell growth in these cells, thus suggesting that combination effects of UV-C and gemcitabine is due to the activation of AMPK. Together, our findings could provide a new aspect of pancreatic cancer therapy.
Collapse
Affiliation(s)
- Seiji Adachi
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
600
|
Aljada A, Mousa SA. Metformin and neoplasia: implications and indications. Pharmacol Ther 2011; 133:108-15. [PMID: 21924289 DOI: 10.1016/j.pharmthera.2011.09.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 08/20/2011] [Indexed: 01/08/2023]
Abstract
Metformin has been shown to exert anti-neoplastic and chemopreventive activities in epidemiological and animal studies. This review article discusses the epidemiological studies and examines the possible mechanisms by which metformin exerts its anti-carcinogenic activities in breast, colon, ovarian, lung, and prostate cancers. We performed a systematic review of the clinical studies examining the anti-neoplastic activities of metformin and the potential mechanisms associated with these activities. Several observational and biological studies revealed a significant association between metformin and reduction in cancer incidence. The mechanisms by which metformin exerts these effects are unknown. This action may be mediated through activation of AMP-activated protein kinase (AMPK), inhibition of the mammalian target of rapamycin (mTOR) pathway, and inhibition of insulin like growth factors (IGFs), and many others. Further laboratory investigation and large, prospective population clinical trials are required to elucidate metformin anti-neoplastic and chemo-preventive actions.
Collapse
Affiliation(s)
- Ahmad Aljada
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudia Arabia.
| | | |
Collapse
|