551
|
Reschen ME, Gaulton KJ, Lin D, Soilleux EJ, Morris AJ, Smyth SS, O'Callaghan CA. Lipid-induced epigenomic changes in human macrophages identify a coronary artery disease-associated variant that regulates PPAP2B Expression through Altered C/EBP-beta binding. PLoS Genet 2015; 11:e1005061. [PMID: 25835000 PMCID: PMC4383549 DOI: 10.1371/journal.pgen.1005061] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 02/09/2015] [Indexed: 01/17/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified over 40 loci that affect risk of coronary artery disease (CAD) and the causal mechanisms at the majority of loci are unknown. Recent studies have suggested that many causal GWAS variants influence disease through altered transcriptional regulation in disease-relevant cell types. We explored changes in transcriptional regulation during a key pathophysiological event in CAD, the environmental lipid-induced transformation of macrophages to lipid-laden foam cells. We used a combination of open chromatin mapping with formaldehyde-assisted isolation of regulatory elements (FAIRE-seq) and enhancer and transcription factor mapping using chromatin immuno-precipitation (ChIP-seq) in primary human macrophages before and after exposure to atherogenic oxidized low-density lipoprotein (oxLDL), with resultant foam cell formation. OxLDL-induced foam cell formation was associated with changes in a subset of open chromatin and active enhancer sites that strongly correlated with expression changes of nearby genes. OxLDL-regulated enhancers were enriched for several transcription factors including C/EBP-beta, which has no previously documented role in foam cell formation. OxLDL exposure up-regulated C/EBP-beta expression and increased genomic binding events, most prominently around genes involved in inflammatory response pathways. Variants at CAD-associated loci were significantly and specifically enriched in the subset of chromatin sites altered by oxLDL exposure, including rs72664324 in an oxLDL-induced enhancer at the PPAP2B locus. OxLDL increased C/EBP beta binding to this site and C/EBP beta binding and enhancer activity were stronger with the protective A allele of rs72664324. In addition, expression of the PPAP2B protein product LPP3 was present in foam cells in human atherosclerotic plaques and oxLDL exposure up-regulated LPP3 in macrophages resulting in increased degradation of pro-inflammatory mediators. Our results demonstrate a genetic mechanism contributing to CAD risk at the PPAP2B locus and highlight the value of studying epigenetic changes in disease processes involving pathogenic environmental stimuli.
Collapse
Affiliation(s)
- Michael E. Reschen
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kyle J. Gaulton
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Da Lin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Elizabeth J. Soilleux
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford and Department of Cellular Pathology, John Radcliffe Hospital, Oxford, United Kingdom
| | - Andrew J. Morris
- Division of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Veterans Affairs Medical Center, Lexington, Kentucky, United States of America
| | - Susan S. Smyth
- Division of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Veterans Affairs Medical Center, Lexington, Kentucky, United States of America
| | | |
Collapse
|
552
|
Sasson IE, Vitins AP, Mainigi MA, Moley KH, Simmons RA. Pre-gestational vs gestational exposure to maternal obesity differentially programs the offspring in mice. Diabetologia 2015; 58:615-24. [PMID: 25608625 PMCID: PMC4452998 DOI: 10.1007/s00125-014-3466-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 11/04/2014] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS Maternal obesity is associated with an increased risk of obesity and impaired glucose homeostasis in offspring. However, it is not known whether a gestational or pre-gestational exposure confers similar risks, and if so, what the underlying mechanisms are. METHODS We used reciprocal two-cell embryo transfers between mice fed either a control or high-fat diet (HFD) starting at the time of weaning. Gene expression in placenta was assessed by microarray analyses. RESULTS A pre-gestational exposure to a maternal HFD (HFD/control) impaired fetal and placental growth despite a normal gestational milieu. Expression of imprinted genes and genes regulating vasculogenesis and lipid metabolism was markedly altered in placenta of HFD/control. An exposure to an HFD (control/HFD) only during gestation also resulted in fetal growth restriction and decreased placental weight. Interestingly, only a gestational exposure to an HFD (control/HFD) resulted in obesity and impaired glucose tolerance in adulthood. CONCLUSIONS/INTERPRETATION An HFD during pregnancy has profound consequences for the offspring later in life. Our data demonstrate that the mechanism underlying this phenomenon is not related to placental dysfunction, intrauterine growth restriction or postnatal weight gain, but rather an inability of the progeny to adapt to the abnormal gestational milieu of an HFD. Thus, the ability to adapt to an adverse intrauterine environment is conferred prior to pregnancy and it is possible that the effects of a maternal HFD may be transmitted to subsequent generations.
Collapse
Affiliation(s)
- Isaac E. Sasson
- Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alexa P. Vitins
- Center for Research on Reproduction and Women’s Health, Biomedical Research Building II/III 1308, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Monica A. Mainigi
- Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kelle H. Moley
- Department of Obstetrics and Gynecology, Washington University in St Louis, St Louis, MO, USA
| | - Rebecca A. Simmons
- Center for Research on Reproduction and Women’s Health, Biomedical Research Building II/III 1308, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA. Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
553
|
Abstract
Lysophosphatidic acid (LPA) and its receptors, LPA1-6, are integral parts of signaling pathways involved in cellular proliferation, migration and survival. These signaling pathways are of therapeutic interest for the treatment of multiple types of cancer and to reduce cancer metastasis and side effects. Validated therapeutic potential of key receptors, as well as recent structure-activity relationships yielding compounds with low nanomolar potencies are exciting recent advances in the field. Some compounds have proven efficacious in vivo against tumor proliferation and metastasis, bone cancer pain and the pulmonary fibrosis that can result as a side effect of pulmonary cancer radiation treatment. However, recent studies have identified that LPA contributes through multiple pathways to the development of chemotherapeutic resistance suggesting new applications for LPA antagonists in cancer treatment. This review summarizes the roles of LPA signaling in cancer pathophysiology and recent progress in the design and evaluation of LPA agonists and antagonists.
Collapse
|
554
|
Purba ER, Leuhery EA, Oguro A, Imaoka S. The metabolism of lysophosphatidic acids by allelic variants of human soluble epoxide hydrolase. Drug Metab Pharmacokinet 2015; 30:75-81. [DOI: 10.1016/j.dmpk.2014.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/13/2014] [Accepted: 09/02/2014] [Indexed: 01/23/2023]
|
555
|
Jacobo SMP, Kazlauskas A. Insulin-like growth factor 1 (IGF-1) stabilizes nascent blood vessels. J Biol Chem 2015; 290:6349-60. [PMID: 25564613 DOI: 10.1074/jbc.m114.634154] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Here we report that VEGF-A and IGF-1 differ in their ability to stabilize newly formed blood vessels and endothelial cell tubes. Although VEGF-A failed to support an enduring vascular response, IGF-1 stabilized neovessels generated from primary endothelial cells derived from various vascular beds and mouse retinal explants. In these experimental systems, destabilization/regression was driven by lysophosphatidic acid (LPA). Because previous studies have established that Erk antagonizes LPA-mediated regression, we considered whether Erk was an essential component of IGF-dependent stabilization. Indeed, IGF-1 lost its ability to stabilize neovessels when the Erk pathway was inhibited pharmacologically. Furthermore, stabilization was associated with prolonged Erk activity. In the presence of IGF-1, Erk activity persisted longer than in the presence of VEGF or LPA alone. These studies reveal that VEGF and IGF-1 can have distinct inputs in the angiogenic process. In contrast to VEGF, IGF-1 stabilizes neovessels, which is dependent on Erk activity and associated with prolonged activation.
Collapse
Affiliation(s)
- Sarah Melissa P Jacobo
- From the Department of Ophthalmology, Harvard Medical School, The Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02115
| | - Andrius Kazlauskas
- From the Department of Ophthalmology, Harvard Medical School, The Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02115
| |
Collapse
|
556
|
González-Gil I, Zian D, Vázquez-Villa H, Ortega-Gutiérrez S, López-Rodríguez ML. The status of the lysophosphatidic acid receptor type 1 (LPA1R). MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00333k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The current status of the LPA1receptor and its ligands in the drug development pipeline is reviewed.
Collapse
Affiliation(s)
- Inés González-Gil
- Departamento de Química Orgánica I
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- E-28040 Madrid
- Spain
| | - Debora Zian
- Departamento de Química Orgánica I
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- E-28040 Madrid
- Spain
| | - Henar Vázquez-Villa
- Departamento de Química Orgánica I
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- E-28040 Madrid
- Spain
| | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica I
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- E-28040 Madrid
- Spain
| | - María L. López-Rodríguez
- Departamento de Química Orgánica I
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- E-28040 Madrid
- Spain
| |
Collapse
|
557
|
Stoddard NC, Chun J. Promising pharmacological directions in the world of lysophosphatidic Acid signaling. Biomol Ther (Seoul) 2015; 23:1-11. [PMID: 25593637 PMCID: PMC4286743 DOI: 10.4062/biomolther.2014.109] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 12/18/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a signaling lipid that binds to six known lysophosphatidic acid receptors (LPARs), named LPA1-LPA6. These receptors initiate signaling cascades relevant to development, maintenance, and healing processes throughout the body. The diversity and specificity of LPA signaling, especially in relation to cancer and autoimmune disorders, makes LPA receptor modulation an attractive target for drug development. Several LPAR-specific analogues and small molecules have been synthesized and are efficacious in attenuating pathology in disease models. To date, at least three compounds have passed phase I and phase II clinical trials for idiopathic pulmonary fibrosis and systemic sclerosis. This review focuses on the promising therapeutic directions emerging in LPA signaling toward ameliorating several diseases, including cancer, fibrosis, arthritis, hydrocephalus, and traumatic injury.
Collapse
Affiliation(s)
- Nicole C Stoddard
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037 ; Biomedical Sciences Graduate Program, University of California, San Diego, School of Medicine, La Jolla, CA 92037, USA
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
558
|
Kihara Y, Mizuno H, Chun J. Lysophospholipid receptors in drug discovery. Exp Cell Res 2014; 333:171-177. [PMID: 25499971 DOI: 10.1016/j.yexcr.2014.11.020] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/24/2014] [Indexed: 11/17/2022]
Abstract
Lysophospholipids (LPs), including lysophosphatidic acid (LPA), sphingosine 1-phospate (S1P), lysophosphatidylinositol (LPI), and lysophosphatidylserine (LysoPS), are bioactive lipids that transduce signals through their specific cell-surface G protein-coupled receptors, LPA1-6, S1P1-5, LPI1, and LysoPS1-3, respectively. These LPs and their receptors have been implicated in both physiological and pathophysiological processes such as autoimmune diseases, neurodegenerative diseases, fibrosis, pain, cancer, inflammation, metabolic syndrome, bone formation, fertility, organismal development, and other effects on most organ systems. Advances in the LP receptor field have enabled the development of novel small molecules targeting LP receptors for several diseases. Most notably, fingolimod (FTY720, Gilenya, Novartis), an S1P receptor modulator, became the first FDA-approved medicine as an orally bioavailable drug for treating relapsing forms of multiple sclerosis. This success is currently being followed by multiple, mechanistically related compounds targeting S1P receptor subtypes, which are in various stages of clinical development. In addition, an LPA1 antagonist, BMS-986020 (Bristol-Myers Squibb), is in Phase 2 clinical development for treating idiopathic pulmonary fibrosis, as a distinct compound, SAR100842 (Sanofi) for the treatment of systemic sclerosis and related fibrotic diseases. This review summarizes the current state of drug discovery in the LP receptor field.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, DNC-118, 10550 N, Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hirotaka Mizuno
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, DNC-118, 10550 N, Torrey Pines Road, La Jolla, CA 92037, USA; Exploratory Research Laboratories, Ono Pharmaceutical Co., Ltd., Ibaraki 300-4247, Japan
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, DNC-118, 10550 N, Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
559
|
Yun CC, Kumar A. Diverse roles of LPA signaling in the intestinal epithelium. Exp Cell Res 2014; 333:201-207. [PMID: 25433271 DOI: 10.1016/j.yexcr.2014.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/05/2014] [Indexed: 12/19/2022]
Abstract
Lysophosphatidic acid (LPA) is a lipid mediator that modulates a wide variety of cellular functions. Elevated LPA signaling has been reported in patients with colorectal cancer or inflammatory bowel diseases, and the tumorigenic role of LPA has been demonstrated in experimental models of colon cancer. However, emerging evidence indicates the importance of LPA signaling in epithelial wound healing and regulation of intestinal electrolyte transport. Here, we briefly review current knowledge of the biological roles of LPA signaling in the intestinal tract.
Collapse
Affiliation(s)
- C Chris Yun
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA.
| | - Ajay Kumar
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
560
|
Morales-Lázaro SL, Rosenbaum T. A painful link between the TRPV1 channel and lysophosphatidic acid. Life Sci 2014; 125:15-24. [PMID: 25445434 DOI: 10.1016/j.lfs.2014.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/30/2014] [Accepted: 10/04/2014] [Indexed: 10/24/2022]
Abstract
The Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is expressed mainly by sensory neurons that detect noxious stimuli from the environment such as high temperatures and pungent compounds (such as allicin and capsaicin) and has been extensively linked to painful and inflammatory processes. This extraordinary protein also responds to endogenous stimuli among which we find molecules of a lipidic nature. We recently described that lysophosphatidic acid (LPA), a bioactive lysophospholipid linked to the generation and maintenance of pain, can directly activate TRPV1 and produce pain by binding to the channels' C-terminal region, specifically to residue K710. In an effort to further understand how activation of TRPV1 is achieved by this negatively-charged lipid, we used several synthetic and naturally-occurring lipids to determine the structural requirements that need to be met by these charged lipids in order to produce the activation of TRPV1. In this review, we detail the findings obtained by other research groups and our own on the field of TRPV1-regulation by negatively-charged lipids and discuss the possible therapeutic relevance of these findings on the basis of the role of TRPV1 in pathophysiological processes.
Collapse
Affiliation(s)
- Sara L Morales-Lázaro
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
| | - Tamara Rosenbaum
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
561
|
Rzehak P, Hellmuth C, Uhl O, Kirchberg FF, Peissner W, Harder U, Grote V, Weber M, Xhonneux A, Langhendries JP, Ferre N, Closa-Monasterolo R, Verduci E, Riva E, Socha P, Gruszfeld D, Koletzko B. Rapid growth and childhood obesity are strongly associated with lysoPC(14:0). ANNALS OF NUTRITION AND METABOLISM 2014; 64:294-303. [PMID: 25300273 DOI: 10.1159/000365037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Despite the growing interest in the early-origins-of-later-disease hypothesis, little is known about the metabolic underpinnings linking infant weight gain and childhood obesity. OBJECTIVE To discover biomarkers reflective of weight change in the first 6 months and overweight/obesity at age 6 years via a targeted metabolomics approach. DESIGN This analysis comprised 726 infants from a European multicenter randomized trial (Childhood Obesity Programme, CHOP) for whom plasma blood samples at age 6 months and anthropometric data up to the age of 6 years were available. 'Rapid growth' was defined as a positive difference in weight within the first 6 months of life standardized to WHO growth standards. Weight change was regressed on each of 168 metabolites (acylcarnitines, lysophosphatidylcholines, sphingomyelins, and amino acids). Metabolites significant after Bonferroni's correction were tested as predictors of later overweight/obesity. RESULTS Among the overall 19 significant metabolites, 4 were associated with rapid growth and 15 were associated with a less-than-ideal weight change. After adjusting for feeding group, only the lysophosphatidylcholine LPCaC14:0 remained significantly associated with rapid weight gain (β = 0.18). Only LPCaC14:0 at age 6 months was predictive of overweight/obesity at age 6 years (OR 1.33; 95% CI 1.04-1.69). CONCLUSION LPCa14:0 is strongly related to rapid growth in infancy and childhood overweight/obesity. This suggests that LPCaC14:0 levels may represent a metabolically programmed effect of infant weight gain on the later obesity risk. However, these results require confirmation by independent cohorts.
Collapse
Affiliation(s)
- Peter Rzehak
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
562
|
Kim NH, Kim S, Hong JS, Jeon SH, Huh SO. Application of in utero electroporation of G-protein coupled receptor (GPCR) genes, for subcellular localization of hardly identifiable GPCR in mouse cerebral cortex. Mol Cells 2014; 37:554-61. [PMID: 25078448 PMCID: PMC4132308 DOI: 10.14348/molcells.2014.0159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 01/06/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a lipid growth factor that exerts diverse biological effects through its cognate receptors (LPA1-LPA6). LPA1, which is predominantly expressed in the brain, plays a pivotal role in brain development. However, the role of LPA1 in neuronal migration has not yet been fully elucidated. Here, we delivered LPA1 to mouse cerebral cortex using in utero electroporation. We demonstrated that neuronal migration in the cerebral cortex was not affected by the overexpression of LPA1. Moreover, these results can be applied to the identification of the localization of LPA1. The subcellular localization of LPA1 was endogenously present in the perinuclear area, and overexpressed LPA1 was located in the plasma membrane. Furthermore, LPA1 in developing mouse cerebral cortex was mainly expressed in the ventricular zone and the cortical plate. In summary, the overexpression of LPA1 did not affect neuronal migration, and the protein expression of LPA1 was mainly located in the ventricular zone and cortical plate within the developing mouse cerebral cortex. These studies have provided information on the role of LPA1 in brain development and on the technical advantages of in utero electroporation.
Collapse
Affiliation(s)
- Nam-Ho Kim
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Chuncheon 200-702, Korea
- Present address: Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Seunghyuk Kim
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Chuncheon 200-702, Korea
| | - Jae Seung Hong
- Department of Physical Education, Hallym University, Chuncheon 200-702, Korea
| | - Sung Ho Jeon
- Department of Life Science and Center for Aging and Health Care, Hallym University, Chuncheon 200-702, Korea
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Chuncheon 200-702, Korea
| |
Collapse
|