601
|
Affiliation(s)
- Jill E Slansky
- From the Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora (J.E.S.); and the Department of Molecular and Medical Genetics, Oregon Health and Science University, and the Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Portland (P.T.S.)
| | - Paul T Spellman
- From the Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora (J.E.S.); and the Department of Molecular and Medical Genetics, Oregon Health and Science University, and the Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Portland (P.T.S.)
| |
Collapse
|
602
|
Alcazer V, Bonaventura P, Tonon L, Wittmann S, Caux C, Depil S. Neoepitopes-based vaccines: challenges and perspectives. Eur J Cancer 2019; 108:55-60. [DOI: 10.1016/j.ejca.2018.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/30/2022]
|
603
|
Huang S, Ju W, Zhu Z, Han M, Sun C, Tang Y, Hou Y, Zhang Z, Yang J, Zhang Y, Wang L, Lin F, Chen H, Xie R, Zhu C, Wang D, Wu L, Zhao Q, Chen M, Zhou Q, Guo Z, He X. Comprehensive and combined omics analysis reveals factors of ischemia-reperfusion injury in liver transplantation. Epigenomics 2019; 11:527-542. [PMID: 30700158 DOI: 10.2217/epi-2018-0189] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM To explore molecular mechanisms underlying liver ischemia-reperfusion injury (IRI). MATERIALS & METHODS Four Gene Expression Omnibus datasets comprising liver transplantation data were collected for a comprehensive analysis. A proteomic analysis was performed and used for correlations analysis with transcriptomic. RESULTS & CONCLUSION Ten differentially expressed genes were co-upregulated in four Gene Expression Omnibus datasets, including ATF3, CCL4, DNAJB1, DUSP5, JUND, KLF6, NFKBIA, PLAUR, PPP1R15A and TNFAIP3. The combined analysis demonstrated ten coregulated genes/proteins, including HBB, HBG2, CA1, SLC4A1, PLIN2, JUNB, HBA1, MMP9, SLC2A1 and PADI4. The coregulated differentially expressed genes and coregulated genes/proteins formed a tight interaction network and could serve as the core factors underlying IRI. Comprehensive and combined omics analyses revealed key factors underlying liver IRI, and thus having potential clinical significance.
Collapse
Affiliation(s)
- Shanzhou Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Weiqiang Ju
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Zebin Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Ming Han
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Yunhua Tang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Yuchen Hou
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Zhiheng Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Jie Yang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Yixi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Linhe Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Fanxiong Lin
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Haitian Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Rongxing Xie
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Caihui Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Dongping Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Linwei Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Maogen Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Qi Zhou
- Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen University, Huizhou, Guangdong 516081, PR China.,Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| |
Collapse
|
604
|
Abstract
Clonal hematopoiesis is a common, age-related process in which a somatically mutated hematopoietic precursor gives rise to a genetically distinct subpopulation in the blood. This phenomenon has been observed in populations across the globe and, while virtually non-existent in children is estimated to affect >10% of the 70-and-older age group. The mutations are thought to occur in stem cells, which makes them pre-cancerous, and precursors to cancer stem cells. Many of the genes most commonly mutated in clonal hematopoiesis are also recurrently mutated in leukemia, genes such as DNMT3A, TET2, ASXL1, JAK2, and TP53. However, between 40% and 60% of cases arise from the accumulation of what appear to be random mutations outside of known driver genes. Clonal hematopoiesis is frequently present in otherwise healthy individuals and may persist for many years. Though largely asymptomatic, carrying these somatic mutations confers a small but significantly increased risk of leukemic transformation, affecting 0.5-1% carriers per year; although most genes confer an increased risk of transformation, mutations in TP53 and U2AF1 appear to carry a particularly high risk for transformation. Additionally, a patient's history of prior treatment with cytotoxic chemotherapy and/or radiation are correlated with the development of clonal hematopoiesis; in the setting of chemotherapy treatment of solid tumors, hematopoietic mutations in TP53 and PPM1D appear to contribute to outgrowth of clones that may lead to subsequent malignancy. The presence of a clone also imparts a significantly increased risk of cardiovascular disease, which in some cases appears to be due to increased inflammation and atherosclerosis. Clonal hematopoiesis is correlated with several other diseases as well, including diabetes, chronic pulmonary disease, and aplastic anemia, with other associations probably yet to be uncovered.
Collapse
Affiliation(s)
- Alexander J Silver
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
605
|
Abstract
As a newly discovered type of RNA, circular RNAs (circRNAs) are widespread throughout the eukaryotic genome. The expression of circRNAs is regulated by both cis-elements and trans-factors, and the expression pattern of circRNAs is cell type- and disease-specific. Similar to other types of non-coding RNAs, functions of circRNAs are also versatile. CircRNAs have been reported previously to function as microRNA (miRNA) sponges, protein sponges, coding RNAs or scaffolds for protein complexes. Recently, several circRNAs have been reported to play important roles in human malignancies, including glioma. Here, we reviewed several reports related to circRNAs and glioma, as well as the potential diagnostic and therapeutic applications of circRNAs in brain cancer. In general, some circRNAs, such as circSMARCA5 and circCFH, are found to be expressed in a glioma-specific pattern, these circRNAs may be used as tumor biomarkers. In addition, some circRNAs have been found to play oncogenic roles in glioma (e.g., circNFIX and circNT5E), whereas others have been reported to function as tumor suppressors (e.g., circFBXW7 and circSHPRH). Furthermore, circRNA is a good tool for protein expression because of its higher stability compared to linear RNAs. Thus, circRNAs may also be an ideal choice for gene/protein delivery in future brain cancer therapies. There are some challenges in circRNA research in glioma and other diseases. Research related to circRNAs in glioma is comparatively new and many mysteries remain to be solved.
Collapse
Affiliation(s)
- Jinglei Liu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, China
| | - Kun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, China
| | - Nunu Huang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, China
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, China
| |
Collapse
|
606
|
Splicing molecular biology and novel therapies in diffuse malignant peritoneal mesothelioma. EBioMedicine 2019; 39:7-8. [PMID: 30612942 PMCID: PMC6355435 DOI: 10.1016/j.ebiom.2018.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/19/2018] [Indexed: 11/20/2022] Open
|
607
|
Shirley BC, Mucaki EJ, Rogan PK. Pan-cancer repository of validated natural and cryptic mRNA splicing mutations. F1000Res 2018; 7:1908. [PMID: 31275557 PMCID: PMC6544075 DOI: 10.12688/f1000research.17204.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2019] [Indexed: 11/20/2022] Open
Abstract
We present a major public resource of mRNA splicing mutations validated according to multiple lines of evidence of abnormal gene expression. Likely mutations present in all tumor types reported in the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) were identified based on the comparative strengths of splice sites in tumor versus normal genomes, and then validated by respectively comparing counts of splice junction spanning and abundance of transcript reads in RNA-Seq data from matched tissues and tumors lacking these mutations. The comprehensive resource features 341,486 of these validated mutations, the majority of which (69.9%) are not present in the Single Nucleotide Polymorphism Database (dbSNP 150). There are 131,347 unique mutations which weaken or abolish natural splice sites, and 222,071 mutations which strengthen cryptic splice sites (11,932 affect both simultaneously). 28,812 novel or rare flagged variants (with <1% population frequency in dbSNP) were observed in multiple tumor tissue types. An algorithm was developed to classify variants into splicing molecular phenotypes that integrates germline heterozygosity, degree of information change and impact on expression. The classification thresholds were calibrated against the ClinVar clinical database phenotypic assignments. Variants are partitioned into allele-specific alternative splicing, likely aberrant and aberrant splicing phenotypes. Single variants or chromosome ranges can be queried using a Global Alliance for Genomics and Health (GA4GH)-compliant, web-based Beacon "Validated Splicing Mutations" either separately or in aggregate alongside other Beacons through the public Beacon Network, as well as through our website. The website provides additional information, such as a visual representation of supporting RNAseq results, gene expression in the corresponding normal tissues, and splicing molecular phenotypes.
Collapse
Affiliation(s)
| | - Eliseos J Mucaki
- Biochemistry, University of Western Ontario, London, Ontario, N6A 2C1, Canada
| | - Peter K Rogan
- CytoGnomix Inc., London, Ontario, N5X 3X5, Canada.,Biochemistry, University of Western Ontario, London, Ontario, N6A 2C1, Canada.,Computer Science, University of Western Ontario, London, Ontario, N6A 2C1, Canada.,Oncology, University of Western Ontario, London, Ontario, N6A 2C1, Canada
| |
Collapse
|
608
|
Escobar-Hoyos L, Knorr K, Abdel-Wahab O. Aberrant RNA Splicing in Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018; 3:167-185. [PMID: 32864546 DOI: 10.1146/annurev-cancerbio-030617-050407] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RNA splicing, the enzymatic process of removing segments of premature RNA to produce mature RNA, is a key mediator of proteome diversity and regulator of gene expression. Increased systematic sequencing of the genome and transcriptome of cancers has identified a variety of means by which RNA splicing is altered in cancer relative to normal cells. These findings, in combination with the discovery of recurrent change-of-function mutations in splicing factors in a variety of cancers, suggest that alterations in splicing are drivers of tumorigenesis. Greater characterization of altered splicing in cancer parallels increasing efforts to pharmacologically perturb splicing and early-phase clinical development of small molecules that disrupt splicing in patients with cancer. Here we review recent studies of global changes in splicing in cancer, splicing regulation of mitogenic pathways critical in cancer transformation, and efforts to therapeutically target splicing in cancer.
Collapse
Affiliation(s)
- Luisa Escobar-Hoyos
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Weill Cornell Medical College, New York, NY 10065, USA.,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
609
|
Zhang J, Shen L, Johnston SA. Using Frameshift Peptide Arrays for Cancer Neo-Antigens Screening. Sci Rep 2018; 8:17366. [PMID: 30478295 PMCID: PMC6255861 DOI: 10.1038/s41598-018-35673-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/05/2018] [Indexed: 12/30/2022] Open
Abstract
It has been demonstrated that DNA mutations generating neo-antigens are important for an effective immune response to tumors as evident from recent clinical studies of immune checkpoint inhibitors (ICIs). Further, it was shown that frameshift peptides (FSP) generated in tumors from insertions and deletions (INDELs) of microsatellites (MS) in coding region are a very good correlate of positive response to PD1 treatment. However, these types of DNA-sourced FSPs are infrequent in cancer. We hypothesize that tumors may also generate FSPs in transcription errors through INDELs in MS or by exon mis-splicing. Since there are a finite number of predictable sequences of such possible FSPs in the genome, we propose that peptide arrays with all possible FSPs could be used to analyze antibody reactivity to FSPs in patient sera as a FS neo-antigen screen. If this were the case it would facilitate finding common tumor neoantigens for cancer vaccines. Here we test this proposal using an array of 377 predicted FS antigens. The results of screening 9 types of dog cancer sera indicate that cancer samples had significantly higher antibody responses against FSPs than non-cancer samples. Both common reactive FSPs and cancer-type specific immune responses were detected. In addition, the protection of a common reactive FSP was tested in mouse tumor models, comparing to the non-reactive FSPs. The mouse homologs non-reactive FSPs did not offer protection in either the mouse melanoma or breast cancer models while the reactive FSP did in both models. The tumor protection was positively correlated to antibody response to the FSP. These data suggest that FSP arrays could be used for cancer neo-antigen screening.
Collapse
Affiliation(s)
- Jian Zhang
- The Biodesign Institute Center for Innovations in Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Luhui Shen
- The Biodesign Institute Center for Innovations in Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Stephen Albert Johnston
- The Biodesign Institute Center for Innovations in Medicine, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
610
|
Wang BD, Lee NH. Aberrant RNA Splicing in Cancer and Drug Resistance. Cancers (Basel) 2018; 10:E458. [PMID: 30463359 PMCID: PMC6266310 DOI: 10.3390/cancers10110458] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022] Open
Abstract
More than 95% of the 20,000 to 25,000 transcribed human genes undergo alternative RNA splicing, which increases the diversity of the proteome. Isoforms derived from the same gene can have distinct and, in some cases, opposing functions. Accumulating evidence suggests that aberrant RNA splicing is a common and driving event in cancer development and progression. Moreover, aberrant splicing events conferring drug/therapy resistance in cancer is far more common than previously envisioned. In this review, aberrant splicing events in cancer-associated genes, namely BCL2L1, FAS, HRAS, CD44, Cyclin D1, CASP2, TMPRSS2-ERG, FGFR2, VEGF, AR and KLF6, will be discussed. Also highlighted are the functional consequences of aberrant splice variants (BCR-Abl35INS, BIM-γ, IK6, p61 BRAF V600E, CD19-∆2, AR-V7 and PIK3CD-S) in promoting resistance to cancer targeted therapy or immunotherapy. To overcome drug resistance, we discuss opportunities for developing novel strategies to specifically target the aberrant splice variants or splicing machinery that generates the splice variants. Therapeutic approaches include the development of splice variant-specific siRNAs, splice switching antisense oligonucleotides, and small molecule inhibitors targeting splicing factors, splicing factor kinases or the aberrant oncogenic protein isoforms.
Collapse
Affiliation(s)
- Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA.
| | - Norman H Lee
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, GW Cancer Center, Washington, DC 20037, USA.
| |
Collapse
|
611
|
Finotello F, Eduati F. Multi-Omics Profiling of the Tumor Microenvironment: Paving the Way to Precision Immuno-Oncology. Front Oncol 2018; 8:430. [PMID: 30345255 PMCID: PMC6182075 DOI: 10.3389/fonc.2018.00430] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/13/2018] [Indexed: 12/20/2022] Open
Abstract
The tumor microenvironment (TME) is a multifaceted ecosystem characterized by profound cellular heterogeneity, dynamicity, and complex intercellular cross-talk. The striking responses obtained with immune checkpoint blockers, i.e., antibodies targeting immune-cell regulators to boost antitumor immunity, have demonstrated the enormous potential of anticancer treatments that target TME components other than tumor cells. However, as checkpoint blockade is currently beneficial only to a limited fraction of patients, there is an urgent need to understand the mechanisms orchestrating the immune response in the TME to guide the rational design of more effective anticancer therapies. In this Mini Review, we give an overview of the methodologies that allow studying the heterogeneity of the TME from multi-omics data generated from bulk samples, single cells, or images of tumor-tissue slides. These include approaches for the characterization of the different cell phenotypes and for the reconstruction of their spatial organization and inter-cellular cross-talk. We discuss how this broader vision of the cellular heterogeneity and plasticity of tumors, which is emerging thanks to these methodologies, offers the opportunity to rationally design precision immuno-oncology treatments. These developments are fundamental to overcome the current limitations of targeted agents and checkpoint blockers and to bring long-term clinical benefits to a larger fraction of cancer patients.
Collapse
Affiliation(s)
- Francesca Finotello
- Biocenter, Division for Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Federica Eduati
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
612
|
Bezu L, Kepp O, Cerrato G, Pol J, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Peptide-based vaccines in anticancer therapy. Oncoimmunology 2018; 7:e1511506. [PMID: 30524907 PMCID: PMC6279318 DOI: 10.1080/2162402x.2018.1511506] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
Peptide-based anticancer vaccination aims at stimulating an immune response against one or multiple tumor-associated antigens (TAAs) following immunization with purified, recombinant or synthetically engineered epitopes. Despite high expectations, the peptide-based vaccines that have been explored in the clinic so far had limited therapeutic activity, largely due to cancer cell-intrinsic alterations that minimize antigenicity and/or changes in the tumor microenvironment that foster immunosuppression. Several strategies have been developed to overcome such limitations, including the use of immunostimulatory adjuvants, the co-treatment with cytotoxic anticancer therapies that enable the coordinated release of damage-associated molecular patterns, and the concomitant blockade of immune checkpoints. Personalized peptide-based vaccines are also being explored for therapeutic activity in the clinic. Here, we review recent preclinical and clinical progress in the use of peptide-based vaccines as anticancer therapeutics.Abbreviations: CMP: carbohydrate-mimetic peptide; CMV: cytomegalovirus; DC: dendritic cell; FDA: Food and Drug Administration; HPV: human papillomavirus; MDS: myelodysplastic syndrome; MHP: melanoma helper vaccine; NSCLC: non-small cell lung carcinoma; ODD: orphan drug designation; PPV: personalized peptide vaccination; SLP: synthetic long peptide; TAA: tumor-associated antigen; TNA: tumor neoantigen
Collapse
Affiliation(s)
- Lucillia Bezu
- Faculty of Medicine, University of Paris Sud/Paris XI, Le Kremlin-Bicêtre, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Giulia Cerrato
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Jonathan Pol
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic.,Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic.,Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Faculty of Medicine, University of Paris Sud/Paris XI, Le Kremlin-Bicêtre, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,INSERM, U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
613
|
Abstract
In this issue of Cancer Cell, Kahles et al. perform a comprehensive analysis of RNA splicing across cancer types and identify novel correlations between genetic alterations and splicing in cancer. In addition, they identify that tumor-specific splicing has the potential to generate a large new class of tumor-specific neoantigens.
Collapse
Affiliation(s)
- Luisa Escobar Hoyos
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, 408 E. 69th Street, New York, NY 10065, USA; David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Stony Brook University, New York, NY 10065, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, 408 E. 69th Street, New York, NY 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|