601
|
The Working Modules of Long Noncoding RNAs in Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:49-67. [PMID: 27376731 DOI: 10.1007/978-981-10-1498-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is clear that RNA is more than just a messenger between gene and protein. The mammalian genome is pervasively transcribed, giving rise to tens of thousands of noncoding transcripts, especially long noncoding RNAs (lncRNAs). Whether all of these large transcripts are functional remains to be elucidated, but it is evident that there are many lncRNAs that seem not to be the "noise" of the transcriptome. Recent studies have set out to decode the regulatory role and functional diversity of lncRNAs in human physiological and pathological processes, and accumulating evidence suggests that most of the functional lncRNAs achieve their biological functions by controlling gene expression. In this chapter, we will organize these studies to provide a detailed description of the involvement of lncRNAs in the major steps of gene expression that include epigenetic regulation, RNA transcription, posttranscriptional RNA processing, protein translation, and posttranslational protein modification and highlight the molecular mechanisms through which lncRNAs function, involving the interactions between lncRNAs and other biological macromolecules.
Collapse
|
602
|
Xiao L, Rao JN, Cao S, Liu L, Chung HK, Zhang Y, Zhang J, Liu Y, Gorospe M, Wang JY. Long noncoding RNA SPRY4-IT1 regulates intestinal epithelial barrier function by modulating the expression levels of tight junction proteins. Mol Biol Cell 2015; 27:617-26. [PMID: 26680741 PMCID: PMC4750922 DOI: 10.1091/mbc.e15-10-0703] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022] Open
Abstract
Epithelial cells line the intestinal mucosa and form an important barrier to a wide array of noxious substances in the lumen. Disruption of the barrier integrity occurs commonly in various pathologies. Long noncoding RNAs (lncRNAs) control diverse biological processes, but little is known about the role of lncRNAs in regulation of the gut permeability. Here we show that the lncRNA SPRY4-IT1 regulates the intestinal epithelial barrier function by altering expression of tight junction (TJ) proteins. SPRY4-IT1 silencing led to dysfunction of the epithelial barrier in cultured cells by decreasing the stability of mRNAs encoding TJ proteins claudin-1, claudin-3, occludin, and JAM-1 and repressing their translation. In contrast, increasing the levels of SPRY4-IT1 in the intestinal mucosa protected the gut barrier in mice exposed to septic stress by increasing the abundance of TJ proteins. SPRY4-IT1 directly interacted with TJ mRNAs, and this process was enhanced through the association with the RNA-binding protein HuR. Of interest, the intestinal mucosa from patients with increased gut permeability exhibited a decrease in the levels of SPRY4-IT1. These findings highlight a novel role for SPRY4-IT1 in controlling the intestinal epithelial barrier and define a mechanism by which SPRY4-IT1 modulates TJ expression by altering the stability and translation of TJ mRNAs.
Collapse
Affiliation(s)
- Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Shan Cao
- Department of -Gastroenterology, People's Hospital, Peking University, Beijing 100044, China
| | - Lan Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Yun Zhang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Jennifer Zhang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Yulan Liu
- Department of -Gastroenterology, People's Hospital, Peking University, Beijing 100044, China
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201 Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
603
|
Ouyang J, Hu J, Chen JL. lncRNAs regulate the innate immune response to viral infection. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:129-43. [PMID: 26667656 PMCID: PMC7169827 DOI: 10.1002/wrna.1321] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/14/2015] [Accepted: 11/04/2015] [Indexed: 01/01/2023]
Abstract
Long noncoding RNAs (lncRNAs) are extensively expressed in mammalian cells and play a crucial role as RNA regulators in various cellular processes. Increasing data reveal that they function in innate antiviral immunity through complex mechanisms. Thousands of lncRNAs are regulated by RNA virus or DNA virus infection. The significant differential expression of lncRNAs is induced by virus or host antiviral signaling mediated by interferons (IFNs) and tumor necrosis factor‐α. In turn, these lncRNAs modulate the host immune response including the pathogen recognition receptor (PRR)‐related signaling, the translocation and activation of transcription factors, the production of IFNs and cytokines, the IFN‐activated JAK‐STAT signaling and the transcription of antiviral IFN‐stimulated genes (ISGs). Using gain‐ or loss‐of‐function analysis, the effect of lncRNAs on viral replication has been investigated to elucidate the essential role of lncRNA in the host–virus interaction. lncRNAs have shown specifically elevated or decreased levels in patients with viral diseases, suggesting the possibility of clinical application as biomarkers. Here we review the current advances of viral infection‐associated host lncRNAs, their functional significance in different aspects of antiviral immune response, the specific mechanisms and unsolved issues. We also summarize the regulation of lncRNAs by viruses, PRR agonists and cytokines. In addition, virus‐encoded lncRNAs and their functional involvement in host–virus interaction are addressed. WIREs RNA 2016, 7:129–143. doi: 10.1002/wrna.1321 This article is categorized under:
RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Jing Ouyang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiayue Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ji-Long Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
604
|
Mechanisms of Long Non-coding RNAs in Mammalian Nervous System Development, Plasticity, Disease, and Evolution. Neuron 2015; 88:861-877. [DOI: 10.1016/j.neuron.2015.09.045] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
605
|
Taylor DH, Chu ETJ, Spektor R, Soloway PD. Long non-coding RNA regulation of reproduction and development. Mol Reprod Dev 2015; 82:932-56. [PMID: 26517592 PMCID: PMC4762656 DOI: 10.1002/mrd.22581] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
Abstract
Noncoding RNAs (ncRNAs) have long been known to play vital roles in eukaryotic gene regulation. Studies conducted over a decade ago revealed that maturation of spliced, polyadenylated coding mRNA occurs by reactions involving small nuclear RNAs and small nucleolar RNAs; mRNA translation depends on activities mediated by transfer RNAs and ribosomal RNAs, subject to negative regulation by micro RNAs; transcriptional competence of sex chromosomes and some imprinted genes is regulated in cis by ncRNAs that vary by species; and both small-interfering RNAs and piwi-interacting RNAs bound to Argonaute-family proteins regulate post-translational modifications on chromatin and local gene expression states. More recently, gene-regulating noncoding RNAs have been identified, such as long intergenic and long noncoding RNAs (collectively referred to as lncRNAs)--a class totaling more than 100,000 transcripts in humans, which include some of the previously mentioned RNAs that regulate dosage compensation and imprinted gene expression. Here, we provide an overview of lncRNA activities, and then review the role of lncRNAs in processes vital to reproduction, such as germ cell specification, sex determination and gonadogenesis, sex hormone responses, meiosis, gametogenesis, placentation, non-genetic inheritance, and pathologies affecting reproductive tissues. Results from many species are presented to illustrate the evolutionarily conserved processes lncRNAs are involved in.
Collapse
Affiliation(s)
- David H. Taylor
- Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York
| | - Erin Tsi-Jia Chu
- Field of Comparative Biomedical Sciences, Cornell University, Ithaca, New York
| | - Roman Spektor
- Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York
| | - Paul D. Soloway
- Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York
- Field of Comparative Biomedical Sciences, Cornell University, Ithaca, New York
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| |
Collapse
|
606
|
T-cells require post-transcriptional regulation for accurate immune responses. Biochem Soc Trans 2015; 43:1201-7. [DOI: 10.1042/bst20150154] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytotoxic T-cells are crucial to protect us from intracellular pathogens and malignant cells. When T-cells become activated, they rapidly secrete cytokines, chemokines and cytotoxic granules that are critical to clear infected cells. However, when not properly regulated, these toxic effector molecules become one of the key mediators of autoimmune diseases. Therefore, a tight and multi-layered regulation of gene expression and protein production is required to ensure a protective yet balanced immune response. In this review, we describe how post-transcriptional events modulate the production of effector molecules in T-cells. In particular, we will focus on the role of cis-regulatory elements within the 3′-UTR of specific mRNAs and on RNA-binding proteins (RBPs) and non-coding RNAs that control the initiation and resolution of T-cell responses.
Collapse
|
607
|
Abstract
Recent years have witnessed the discovery of several classes of noncoding RNAs (ncRNAs), which are indispensable for the regulation of cellular processes. Many of these RNAs are regulatory in nature with functions in gene expression regulation such as piwi-interacting RNAs, small interfering RNAs and micro RNAs. Long noncoding RNAs (lncRNAs) comprise the most recently characterized class. LncRNAs are involved in transcriptional regulation, chromatin remodeling, imprinting, splicing, and translation, among other critical functions in the cell. Recent studies have elucidated the importance of lncRNAs in hematopoietic development. Dysregulation of lncRNA expression is a feature of various diseases and cancers, and is also seen in hematopoietic malignancies. This article focuses on lncRNAs that have been implicated in the pathogenesis of hematopoietic malignancies.
Collapse
Affiliation(s)
- Norma I Rodríguez-Malavé
- Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, University of California Los Angeles, Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, University of California Los Angeles Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, University of California Los Angeles, Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, University of California Los Angeles
| | - Dinesh S Rao
- Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, University of California Los Angeles, Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, University of California Los Angeles Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, University of California Los Angeles, Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, University of California Los Angeles Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, University of California Los Angeles, Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, University of California Los Angeles
| |
Collapse
|
608
|
Chen L, Kang C. miRNA interventions serve as 'magic bullets' in the reversal of glioblastoma hallmarks. Oncotarget 2015; 6:38628-42. [PMID: 26439688 PMCID: PMC4770725 DOI: 10.18632/oncotarget.5926] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 09/06/2015] [Indexed: 01/04/2023] Open
Abstract
microRNAs (miRNAs) are no longer deemed small pieces of RNA "trash" in the human transcriptome but are considered to be master regulators of gene expression that are critical in maintaining cellular homeostasis post-transcriptionally. The concept triggers great interest in studying miRNA dysregulations in human diseases, especially in cancers. Glioblastoma (GBM) has long been the leading cause of the high mortality and morbidity of CNS tumors in adults, which is a consequence of the lack of strategies to reverse the hallmark features of GBM (e.g., borderless expansion and diffuse infiltration). In the past decade, dissecting the molecular architecture of GBM has led to a better understanding of the molecular basis of the hallmarks, generating many promising pharmacological protein targets. However, few clinical responses have been highlighted, suggesting the demand for new therapeutic strategies and targets. In this review, we systemically summarize the context-dependently validated miRNAs with one or more functional targets in the development of GBM hallmarks and review the current miRNA-targeting strategies. We note that only a few miRNA-based therapeutics are trialed for clinical significance, and none of them is tailored to GBM, thereby urging us to bring miRNA therapeutics to the front line either alone or in combination.
Collapse
Affiliation(s)
- Luyue Chen
- Laboratory of Neuro-Oncology, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunsheng Kang
- Laboratory of Neuro-Oncology, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
609
|
Venkatesh T, Suresh PS, Tsutsumi R. Non-coding RNAs: Functions and applications in endocrine-related cancer. Mol Cell Endocrinol 2015; 416:88-96. [PMID: 26360585 DOI: 10.1016/j.mce.2015.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 01/25/2023]
Abstract
A significant fraction of the human genome is transcribed as non-coding RNAs (ncRNAs). This non-coding transcriptome has challenged the notion of the central dogma and its involvement in transcriptional and post-transcriptional regulation of gene expression is well established. Interestingly, several ncRNAs are dysregulated in cancer and current non-coding transcriptome research aims to use our increasing knowledge of these ncRNAs for the development of cancer biomarkers and anti-cancer drugs. In endocrine-related cancers, for which survival rates can be relatively low, there is a need for such advancements. In this review, we aimed to summarize the roles and clinical implications of recently discovered ncRNAs, including long ncRNAs, PIWI-interacting RNAs, tRNA- and Y RNA-derived ncRNAs, and small nucleolar RNAs, in endocrine-related cancers affecting both sexes. We focus on recent studies highlighting discoveries in ncRNA biology and expression in cancer, and conclude with a discussion on the challenges and future directions, including clinical application. ncRNAs show great promise as diagnostic tools and therapeutic targets, but further work is necessary to realize the potential of these unconventional transcripts.
Collapse
MESH Headings
- Biomarkers, Tumor/classification
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Endocrine Gland Neoplasms/genetics
- Endocrine Gland Neoplasms/metabolism
- Endocrine Gland Neoplasms/therapy
- Female
- Gene Expression Regulation
- Humans
- Male
- RNA, Long Noncoding/classification
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering/classification
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Small Nucleolar/classification
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Thejaswini Venkatesh
- Nitte University Centre for Science Education and Research (NUCSER), Nitte University, Deralakatte, Mangalore 575 018, Karnataka, India
| | - Padmanaban S Suresh
- Department of Biosciences, Mangalore University, Mangalagangothri, Mangalore 574 199, Karnataka, India.
| | - Rie Tsutsumi
- Division of Nutrition and Metabolism, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| |
Collapse
|
610
|
Lü M, Tian H, Cao YX, He X, Chen L, Song X, Ping P, Huang H, Sun F. Downregulation of miR-320a/383-sponge-like long non-coding RNA NLC1-C (narcolepsy candidate-region 1 genes) is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation. Cell Death Dis 2015; 6:e1960. [PMID: 26539909 PMCID: PMC4670917 DOI: 10.1038/cddis.2015.267] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/21/2015] [Accepted: 08/25/2015] [Indexed: 01/09/2023]
Abstract
Long non-coding RNAs (lncRNAs), which are extensively transcribed from the genome, have been proposed to be key regulators of diverse biological processes. However, little is known about the role of lncRNAs in regulating spermatogenesis in human males. Here, using microarray technology, we show altered expression of lncRNAs in the testes of infertile men with maturation arrest (MA) or hypospermatogenesis (Hypo), with 757 and 2370 differentially down-regulated and 475 and 163 up-regulated lncRNAs in MA and Hypo, respectively. These findings were confirmed by quantitative real-time PCR (qRT-PCR) assays on select lncRNAs, including HOTTIP, imsrna320, imsrna292 and NLC1-C (narcolepsy candidate-region 1 genes). Interestingly, NLC1-C, also known as long intergenic non-protein-coding RNA162 (LINC00162), was down-regulated in the cytoplasm and accumulated in the nucleus of spermatogonia and primary spermatocytes in the testes of infertile men with mixed patterns of MA compared with normal control. The accumulation of NLC1-C in the nucleus repressed miR-320a and miR-383 transcript and promoted testicular embryonal carcinoma cell proliferation by binding to Nucleolin. Here, we define a novel mechanism by which lncRNAs modulate miRNA expression at the transcriptional level by binding to RNA-binding proteins to regulate human spermatogenesis.
Collapse
MESH Headings
- Adult
- Carcinoma, Embryonal/genetics
- Carcinoma, Embryonal/metabolism
- Carcinoma, Embryonal/pathology
- Case-Control Studies
- Cell Proliferation/genetics
- Down-Regulation
- Embryonal Carcinoma Stem Cells/metabolism
- Embryonal Carcinoma Stem Cells/physiology
- Humans
- Infertility, Male/genetics
- Infertility, Male/metabolism
- Infertility, Male/pathology
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Neoplasms, Germ Cell and Embryonal/genetics
- Neoplasms, Germ Cell and Embryonal/metabolism
- Neoplasms, Germ Cell and Embryonal/pathology
- Phosphoproteins/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA-Binding Proteins/metabolism
- Testicular Neoplasms/genetics
- Testicular Neoplasms/metabolism
- Testicular Neoplasms/pathology
- Young Adult
- Nucleolin
Collapse
Affiliation(s)
- M Lü
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Reproduction Medical Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Shanghai Key Laboratory for Reproductive Medicine, Shanghai, China
| | - H Tian
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Y-x Cao
- Reproduction Medical Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - X He
- Reproduction Medical Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - L Chen
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - X Song
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - P Ping
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - H Huang
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory for Reproductive Medicine, Shanghai, China
| | - F Sun
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory for Reproductive Medicine, Shanghai, China
| |
Collapse
|
611
|
Aune TM, Crooke PS, Spurlock CF. Long noncoding RNAs in T lymphocytes. J Leukoc Biol 2015; 99:31-44. [PMID: 26538526 DOI: 10.1189/jlb.1ri0815-389r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/07/2015] [Indexed: 01/04/2023] Open
Abstract
Long noncoding RNAs are recently discovered regulatory RNA molecules that do not code for proteins but influence a vast array of biologic processes. In vertebrates, the number of long noncoding RNA genes is thought to greatly exceed the number of protein-coding genes. It is also thought that long noncoding RNAs drive the biologic complexity observed in vertebrates compared with that in invertebrates. Evidence of this complexity has been found in the T-lymphocyte compartment of the adaptive immune system. In the present review, we describe our current level of understanding of the expression of specific long or large intergenic or intervening long noncoding RNAs during T-lymphocyte development in the thymus and differentiation in the periphery and highlight the mechanisms of action that specific long noncoding RNAs employ to regulate T-lymphocyte function, both in vitro and in vivo.
Collapse
Affiliation(s)
- Thomas M Aune
- Departments of *Medicine and Mathematics, Vanderbilt University, Nashville, Tennessee, USA
| | - Phillip S Crooke
- Departments of *Medicine and Mathematics, Vanderbilt University, Nashville, Tennessee, USA
| | - Charles F Spurlock
- Departments of *Medicine and Mathematics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
612
|
Silva A, Bullock M, Calin G. The Clinical Relevance of Long Non-Coding RNAs in Cancer. Cancers (Basel) 2015; 7:2169-82. [PMID: 26516918 PMCID: PMC4695884 DOI: 10.3390/cancers7040884] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/13/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs have long been associated with cancer development and progression, and since their earliest discovery, their clinical potential in identifying and characterizing the disease has been pursued. Long non-coding (lncRNAs), a diverse class of RNA transcripts >200 nucleotides in length with limited protein coding potential, has been only modestly studied relative to other categories of non-coding RNAs. However, recent data suggests they too may be important players in cancer. In this article, we consider the value of lncRNAs in the clinical setting, and in particular their potential roles as diagnostic and prognostic markers in cancer. Furthermore, we summarize the most significant studies linking lncRNA expression in human biological samples to cancer outcomes. The diagnostic sensitivity, specificity and validity of these non-coding RNA transcripts is compared in the various biological compartments in which they have been detected including tumor tissue, whole body fluids and exosomes.
Collapse
Affiliation(s)
- Andreia Silva
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX 77054, USA.
- Instituto de Investigação em Saúde, Universidade do Porto, Porto 4200, Portugal.
- INEB-Institute of Biomedical Engineering, Universidade do Porto, Rua do Campo Alegre 823, Porto 4150-180, Portugal.
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal.
| | - Marc Bullock
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX 77054, USA.
- Cancer Sciences Unit, University of Southampton School of Medicine, Southampton SO16 6YD, UK.
- Department of Surgery, University Hospital Southampton, Southampton SO16 6YD, UK.
| | - George Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX 77054, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX 77054, USA.
| |
Collapse
|
613
|
Abstract
Accumulating recent evidence identified the ribosome as binding target for numerous small and long non-protein-coding RNAs (ncRNAs) in various organisms of all 3 domains of life. Therefore it appears that ribosome-associated ncRNAs (rancRNAs) are a prevalent, yet poorly understood class of cellular transcripts. Since rancRNAs are associated with the arguable most central enzyme of the cell it seems plausible to propose a role in translation control. Indeed first experimental evidence on small rancRNAs has been presented, linking ribosome association with fine-tuning the rate of protein biosynthesis in a stress-dependent manner.
Collapse
Affiliation(s)
- Andreas Pircher
- a Department of Chemistry and Biochemistry ; University of Bern ; Bern , Switzerland
| | | | | |
Collapse
|
614
|
Zheng J, Dong P, Mao Y, Chen S, Wu X, Li G, Lu Z, Yu F. lincRNA-p21 inhibits hepatic stellate cell activation and liver fibrogenesis via p21. FEBS J 2015; 282:4810-21. [PMID: 26433205 DOI: 10.1111/febs.13544] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/19/2015] [Accepted: 09/29/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Jianjian Zheng
- Wenzhou Key Laboratory of Surgery; The First Affiliated Hospital of Wenzhou Medical University; China
| | - Peihong Dong
- Department of Infectious Diseases; The First Affiliated Hospital of Wenzhou Medical University; China
| | - Yuqing Mao
- Department of Gastroenterology; Jinshan Hospital of Fudan University; Shanghai China
| | - Shaolong Chen
- Department of Infectious Diseases; Huashan Hospital; Fudan University; Shanghai China
| | - Xiaoli Wu
- Department of Gastroenterology; The First Affiliated Hospital of Wenzhou Medical University; Wenzhou China
| | - Guojun Li
- Department of Hepatology; Ningbo Yinzhou Second Hospital; China
| | - Zhongqiu Lu
- Department of Emergency; The First Affiliated Hospital of Wenzhou Medical University; China
| | - Fujun Yu
- Department of Infectious Diseases; The First Affiliated Hospital of Wenzhou Medical University; China
| |
Collapse
|
615
|
Fortes P, Morris KV. Long noncoding RNAs in viral infections. Virus Res 2015; 212:1-11. [PMID: 26454188 DOI: 10.1016/j.virusres.2015.10.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 01/11/2023]
Abstract
Viral infections induce strong modifications in the cell transcriptome. Among the RNAs whose expression is altered by infection are long noncoding RNAs (lncRNAs). LncRNAs are transcripts with potential to function as RNA molecules. Infected cells may express viral lncRNAs, cellular lncRNAs and chimeric lncRNAs formed by viral and cellular sequences. Some viruses express viral lncRNAs whose function is essential for viral viability. They are transcribed by polymerase II or III and some of them can be processed by unique maturation steps performed by host cell machineries. Some viral lncRNAs control transcription, stability or translation of cellular and viral genes. Surprisingly, similar functions can be exerted by cellular lncRNAs induced by infection. Expression of cellular lncRNAs may be altered in response to viral replication or viral protein expression. However, many cellular lncRNAs respond to the antiviral pathways induced by infection. In fact, many lncRNAs function as positive or negative regulators of the innate antiviral response. Our current knowledge about the identity and function of lncRNAs in infected cells is very limited. However, research into this field has already helped in the identification of novel cellular pathways and may help in the development of therapeutic tools for the treatment of viral infections, autoimmune diseases, neurological disorders and cancer.
Collapse
Affiliation(s)
- Puri Fortes
- Center for Applied Medical Research (CIMA) and Navarra Institute for Health Research (IdiSNA), Department of Gene Therapy and Hepatology, University of Navarra, Pamplona, Spain.
| | - Kevin V Morris
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA; School of Biotechnology and Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
616
|
Abstract
Viral infections induce strong modifications in the cell transcriptome. Among the RNAs whose expression is altered by infection are long noncoding RNAs (lncRNAs). LncRNAs are transcripts with potential to function as RNA molecules. Infected cells may express viral lncRNAs, cellular lncRNAs and chimeric lncRNAs formed by viral and cellular sequences. Some viruses express viral lncRNAs whose function is essential for viral viability. They are transcribed by polymerase II or III and some of them can be processed by unique maturation steps performed by host cell machineries. Some viral lncRNAs control transcription, stability or translation of cellular and viral genes. Surprisingly, similar functions can be exerted by cellular lncRNAs induced by infection. Expression of cellular lncRNAs may be altered in response to viral replication or viral protein expression. However, many cellular lncRNAs respond to the antiviral pathways induced by infection. In fact, many lncRNAs function as positive or negative regulators of the innate antiviral response. Our current knowledge about the identity and function of lncRNAs in infected cells is very limited. However, research into this field has already helped in the identification of novel cellular pathways and may help in the development of therapeutic tools for the treatment of viral infections, autoimmune diseases, neurological disorders and cancer.
Collapse
Affiliation(s)
- Puri Fortes
- Center for Applied Medical Research (CIMA) and Navarra Institute for Health Research (IdiSNA), Department of Gene Therapy and Hepatology, University of Navarra, Pamplona, Spain.
| | - Kevin V Morris
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA; School of Biotechnology and Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
617
|
Yoon JH, Jo MH, White EJF, De S, Hafner M, Zucconi BE, Abdelmohsen K, Martindale JL, Yang X, Wood WH, Shin YM, Song JJ, Tuschl T, Becker KG, Wilson GM, Hohng S, Gorospe M. AUF1 promotes let-7b loading on Argonaute 2. Genes Dev 2015; 29:1599-604. [PMID: 26253535 PMCID: PMC4536308 DOI: 10.1101/gad.263749.115] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Yoon et al. discovered that RBP AU-rich-binding factor 1 (AUF1) promotes let-7b loading onto Argonaute 2 (AGO2), the catalytic component of the RNA-induced silencing complex (RISC). In turn, AGO2–let-7 triggered target mRNA decay. Eukaryotic gene expression is tightly regulated post-transcriptionally by RNA-binding proteins (RBPs) and microRNAs. The RBP AU-rich-binding factor 1 (AUF1) isoform p37 was found to have high affinity for the microRNA let-7b in vitro (Kd = ∼6 nM) in cells. Ribonucleoprotein immunoprecipitation, in vitro association, and single-molecule-binding analyses revealed that AUF1 promoted let-7b loading onto Argonaute 2 (AGO2), the catalytic component of the RNA-induced silencing complex (RISC). In turn, AGO2–let-7 triggered target mRNA decay. Our findings uncover a novel mechanism by which AUF1 binding and transfer of microRNA let-7 to AGO2 facilitates let-7-elicited gene silencing.
Collapse
Affiliation(s)
- Je-Hyun Yoon
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myung Hyun Jo
- Department of Physics and Astronomy, Institute of Applied Physics, National Center for Creative Research Initiatives, Seoul National University, Seoul 151-747, Korea
| | - Elizabeth J F White
- Department of Biochemistry and Molecular Biology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Supriyo De
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Beth E Zucconi
- Department of Biochemistry and Molecular Biology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - William H Wood
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Yu Mi Shin
- Cancer Metastasis Control Center, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-338, Korea
| | - Ji-Joon Song
- Cancer Metastasis Control Center, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-338, Korea
| | - Thomas Tuschl
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, Rockefeller University, New York, New York 10065, USA
| | - Kevin G Becker
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Sungchul Hohng
- Department of Physics and Astronomy, Institute of Applied Physics, National Center for Creative Research Initiatives, Seoul National University, Seoul 151-747, Korea
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
618
|
LincRNA-p21 predicts favorable clinical outcome and impairs tumorigenesis in diffuse large B cell lymphoma patients treated with R-CHOP chemotherapy. Clin Exp Med 2015; 17:1-8. [DOI: 10.1007/s10238-015-0396-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/30/2015] [Indexed: 01/06/2023]
|
619
|
Carnero E, Fortes P. HCV infection, IFN response and the coding and non-coding host cell genome. Virus Res 2015; 212:85-102. [PMID: 26454190 DOI: 10.1016/j.virusres.2015.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 02/07/2023]
Abstract
HCV is an ideal model to study how the infected cell is altered to allow the establishment of a chronic infection. After infection, the transcriptome of the cell changes in response to the virus or to the antiviral pathways induced by infection. The cell has evolved to sense HCV soon after infection and to activate antiviral pathways. In turn, HCV has evolved to block the antiviral pathways induced by the cell and, at the same time, to use some for its own benefit. In this review, we summarize the proviral and antiviral factors induced in HCV infected cells. These factors can be proteins and microRNAs, but also long noncoding RNAs (lncRNAs) that are induced by infection. Interestingly, several of the lncRNAs upregulated after HCV infection have oncogenic functions, suggesting that upregulation of lncRNAs could explain, at least in part, the increased rate of liver tumors observed in HCV-infected patients. Other lncRNAs induced by HCV infection may regulate the expression of coding genes required for replication or control genes involved in the cellular antiviral response. Given the evolutionary pressure imposed by viral infections and that lncRNAs are specially targeted by evolution, we believe that the study of proviral and antiviral lncRNAs may lead to unexpected discoveries that may have a strong impact on basic science and translational research.
Collapse
Affiliation(s)
- Elena Carnero
- Center for Applied Medical Research (CIMA) and Navarra Institute for Health Research (IdiSNA), Department of Gene Therapy and Hepatology, University of Navarra, Pamplona, Spain
| | - Puri Fortes
- Center for Applied Medical Research (CIMA) and Navarra Institute for Health Research (IdiSNA), Department of Gene Therapy and Hepatology, University of Navarra, Pamplona, Spain.
| |
Collapse
|
620
|
Akhade VS, Dighe SN, Kataruka S, Rao MRS. Mechanism of Wnt signaling induced down regulation of mrhl long non-coding RNA in mouse spermatogonial cells. Nucleic Acids Res 2015; 44:387-401. [PMID: 26446991 PMCID: PMC4705645 DOI: 10.1093/nar/gkv1023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022] Open
Abstract
Long non coding RNAs (lncRNAs) have emerged as important regulators of various biological processes. LncRNAs also behave as response elements or targets of signaling pathway(s) mediating cellular function. Wnt signaling is important in regulating mammalian spermatogenesis. Mrhl RNA negatively regulates canonical Wnt pathway and gets down regulated upon Wnt signaling activation in mouse spermatogonial cells. Also, mrhl RNA regulates expression of genes pertaining to Wnt pathway and spermatogenesis by binding to chromatin. In the present study, we delineate the detailed molecular mechanism of Wnt signaling induced mrhl RNA down regulation in mouse spermatogonial cells. Mrhl RNA has an independent transcription unit and our various experiments like Chromatin Immunoprecipitation (in cell line as well as mouse testis) and shRNA mediated down regulation convincingly show that β-catenin and TCF4, which are the key effector proteins of the Wnt signaling pathway are required for down regulation of mrhl RNA. We have identified Ctbp1 as the co-repressor and its occupancy on mrhl RNA promoter depends on both β-catenin and TCF4. Upon Wnt signaling activation, Ctbp1 mediated histone repression marks increase at the mrhl RNA promoter. We also demonstrate that Wnt signaling induced mrhl RNA down regulation results in an up regulation of various meiotic differentiation marker genes.
Collapse
Affiliation(s)
- Vijay Suresh Akhade
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Shrinivas Nivrutti Dighe
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Shubhangini Kataruka
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Manchanahalli R Satyanarayana Rao
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
621
|
Lourenco GF, Janitz M, Huang Y, Halliday GM. Long noncoding RNAs in TDP-43 and FUS/TLS-related frontotemporal lobar degeneration (FTLD). Neurobiol Dis 2015. [DOI: 10.1016/j.nbd.2015.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
622
|
Abstract
Non-coding RNAs have gained increasing attention, as their physiological and pathological functions are being gradually uncovered. MicroRNAs are the most well-studied ncRNAs, which play essential roles in translational repression and mRNA degradation. In contrast, long non-coding RNAs are distinguished from other small/short non-coding RNAs by length and regulate chromatin remodeling, gene transcription and posttranscriptional modifications. Recently, circular RNAs have emerged as endogenous, abundant, conserved and stable in mammalian cells. It has been demonstrated that circular RNAs can function as miRNA sponges. Other possible biological functions of circular RNAs are still under investigation. In this review, the biogenesis and biological functions of the three major types of ncRNAs, including miRNAs, lncRNAs and circRNAs, are overviewed. In addition, the role of ncRNAs in human diseases and potential clinical applications of ncRNAs are discussed.
Collapse
Affiliation(s)
- Nan Wu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
623
|
Etebari K, Furlong MJ, Asgari S. Genome wide discovery of long intergenic non-coding RNAs in Diamondback moth (Plutella xylostella) and their expression in insecticide resistant strains. Sci Rep 2015; 5:14642. [PMID: 26411386 PMCID: PMC4585956 DOI: 10.1038/srep14642] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/02/2015] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in genomic imprinting, cancer, differentiation and regulation of gene expression. Here, we identified 3844 long intergenic ncRNAs (lincRNA) in Plutella xylostella, which is a notorious pest of cruciferous plants that has developed field resistance to all classes of insecticides, including Bacillus thuringiensis (Bt) endotoxins. Further, we found that some of those lincRNAs may potentially serve as precursors for the production of small ncRNAs. We found 280 and 350 lincRNAs that are differentially expressed in Chlorpyrifos and Fipronil resistant larvae. A survey on P. xylostella midgut transcriptome data from Bt-resistant populations revealed 59 altered lincRNA in two resistant strains compared with the susceptible population. We validated the transcript levels of a number of putative lincRNAs in deltamethrin-resistant larvae that were exposed to deltamethrin, which indicated that this group of lincRNAs might be involved in the response to xenobiotics in this insect. To functionally characterize DBM lincRNAs, gene ontology (GO) enrichment of their associated protein-coding genes was extracted and showed over representation of protein, DNA and RNA binding GO terms. The data presented here will facilitate future studies to unravel the function of lincRNAs in insecticide resistance or the response to xenobiotics of eukaryotic cells.
Collapse
Affiliation(s)
- Kayvan Etebari
- School of Biological Sciences, The University of Queensland, Brisbane QLD 4072 Australia
| | - Michael J Furlong
- School of Biological Sciences, The University of Queensland, Brisbane QLD 4072 Australia
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane QLD 4072 Australia
| |
Collapse
|
624
|
Lin CY, Xu HM. Novel perspectives of long non-coding RNAs in esophageal carcinoma. Carcinogenesis 2015; 36:1255-62. [PMID: 26392258 DOI: 10.1093/carcin/bgv136] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/12/2015] [Indexed: 12/16/2022] Open
Abstract
Esophageal carcinoma (EC) is one of the most aggressive cancer types worldwide. However, the underlying genomic events of EC are not fully understood. It is becoming evident that long non-coding RNAs (lncRNAs) play vital roles in tumorgenesis, metastasis, prognosis and diagnosis. Accumulating EC-related lncRNAs have been verified to involve in various biological processes through diverse functions including signal, decoy, scaffold and guide. However, the molecular mechanism of lncRNAs in EC has not been fully explored. In this review, we outline the functions and underlying mechanism of EC-related lncRNAs to pave the way for identification of novel potential biomarkers for EC.
Collapse
Affiliation(s)
- Chen-Yu Lin
- Department of The Engineering Research Center of Peptide Drug Discovery and Development and Department of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Han-Mei Xu
- Department of The Engineering Research Center of Peptide Drug Discovery and Development and Department of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
625
|
Abstract
Transcriptional and epigenetic regulation is critical for proper heart development, cardiac homeostasis, and pathogenesis. Long noncoding RNAs have emerged as key components of the transcriptional regulatory pathways that govern cardiac development as well as stress response, signaling, and remodeling in cardiac pathologies. Within the past few years, studies have identified many long noncoding RNAs in the context of cardiovascular biology and have begun to reveal the key functions of these transcripts. In this review, we discuss the growing roles of long noncoding RNAs in different aspects of cardiovascular development as well as pathological responses during injury or disease. In addition, we discuss diverse mechanisms by which long noncoding RNAs orchestrate cardiac transcriptional programs. Finally, we explore the exciting potential of this novel class of transcripts as biomarkers and novel therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Gizem Rizki
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge
| | - Laurie A Boyer
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge.
| |
Collapse
|
626
|
Tang Y, Jin X, Xiang Y, Chen Y, Shen CX, Zhang YC, Li YG. The lncRNA MALAT1 protects the endothelium against ox-LDL-induced dysfunction via upregulating the expression of the miR-22-3p target genes CXCR2 and AKT. FEBS Lett 2015; 589:3189-96. [PMID: 26364720 DOI: 10.1016/j.febslet.2015.08.046] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 08/23/2015] [Indexed: 01/17/2023]
Abstract
CXCR2 plays a key role in protecting the integrity of the endothelium. Emerging evidence has demonstrated that the long ncRNAs (lncRNA) Human metastasis associated lung adenocarcinoma transcript 1 (MALAT1) participates in the regulation of the pathophysiological processes. However, whether there is crosstalk between CXCR2 and MALAT1 remains unknown. In this study, we demonstrated that MALAT1 was upregulated in patients with unstable angina. MALAT1 silencing significantly downregulated the expression of the miR-22-3p target gene CXCR2 via reversing the effect of the miR-22-3p, resulting in the aggravation of Oxidized low-density lipoprotein (ox-LDL)-induced endothelial injury; this process was associated with the AKT pathway. Thus, MALAT1 protects the endothelium from ox-LDL-induced endothelial dysfunction partly through competing with miR-22-3p for endogenous RNA.
Collapse
Affiliation(s)
- Yong Tang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xian Jin
- Department of Cardiology, Central Hospital of Minhang District, Shanghai, China; Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yin Xiang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Chen
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cheng-xing Shen
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ya-chen Zhang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Yi-gang Li
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
627
|
Zhou Z, Shen Y, Khan MR, Li A. LncReg: a reference resource for lncRNA-associated regulatory networks. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav083. [PMID: 26363021 PMCID: PMC4565966 DOI: 10.1093/database/bav083] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 08/18/2015] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs (lncRNAs) are critical in the regulation of various biological processes. In recent years, plethora of lncRNAs have been identified in mammalian genomes through different approaches, and the researchers are constantly reporting the regulatory roles of these lncRNAs, which leads to complexity of literature about particular lncRNAs. Therefore, for the convenience of the researchers, we collected regulatory relationships of the lncRNAs and built a database called ‘LncReg’. This database is developed by collecting 1081 validated lncRNA-associated regulatory entries, including 258 non-redundant lncRNAs and 571 non-redundant genes. With regulatory relationships information, LncReg can provide overall perspectives of regulatory networks of lncRNAs and comprehensive data for bioinformatics research, which is useful for understanding the functional roles of lncRNAs. Database URL: http://bioinformatics.ustc.edu.cn/lncreg/
Collapse
Affiliation(s)
- Zhong Zhou
- School of Information Science and Technology, Centers for Biomedical Engineering and
| | - Yi Shen
- School of Information Science and Technology, Centers for Biomedical Engineering and
| | - Muhammad Riaz Khan
- School of Life Science, University of Science and Technology of China, 443 Huangshan Road, Hefei 230027, China
| | - Ao Li
- School of Information Science and Technology, Centers for Biomedical Engineering and
| |
Collapse
|
628
|
Abdelmohsen K, Gorospe M. Noncoding RNA control of cellular senescence. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:615-29. [PMID: 26331977 DOI: 10.1002/wrna.1297] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 12/23/2022]
Abstract
Senescent cells accumulate in normal tissues with advancing age and arise by long-term culture of primary cells. Senescence develops following exposure to a range of stress-causing agents and broadly influences the physiology and pathology of tissues, organs, and systems in the body. While many proteins are known to control senescence, numerous noncoding (nc)RNAs are also found to promote or repress the senescent phenotype. Here, we review the regulatory ncRNAs (primarily microRNAs and lncRNAs) identified to-date as key modulators of senescence. We highlight the major senescent pathways (p53/p21 and pRB/p16), as well as the senescence-associated secretory phenotype (SASP) and other senescence-associated events governed by ncRNAs, and discuss the importance of understanding comprehensively the ncRNAs implicated in cell senescence.
Collapse
Affiliation(s)
- Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
629
|
DeMicco A, Naradikian MS, Sindhava VJ, Yoon JH, Gorospe M, Wertheim GB, Cancro MP, Bassing CH. B Cell-Intrinsic Expression of the HuR RNA-Binding Protein Is Required for the T Cell-Dependent Immune Response In Vivo. THE JOURNAL OF IMMUNOLOGY 2015; 195:3449-62. [PMID: 26320247 DOI: 10.4049/jimmunol.1500512] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/03/2015] [Indexed: 11/19/2022]
Abstract
The HuR RNA-binding protein posttranscriptionally controls expression of genes involved in cellular survival, proliferation, and differentiation. To determine roles of HuR in B cell development and function, we analyzed mice with B lineage-specific deletion of the HuR gene. These HuRΔ/Δ mice have reduced numbers of immature bone marrow and mature splenic B cells, with only the former rescued by p53 inactivation, indicating that HuR supports B lineage cells through developmental stage-specific mechanisms. Upon in vitro activation, HuRΔ/Δ B cells have a mild proliferation defect and impaired ability to produce mRNAs that encode IgH chains of secreted Abs, but no deficiencies in survival, isotype switching, or expression of germinal center (GC) markers. In contrast, HuRΔ/Δ mice have minimal serum titers of all Ab isotypes, decreased numbers of GC and plasma B cells, and few peritoneal B-1 B cells. Moreover, HuRΔ/Δ mice have severely decreased GCs, T follicular helper cells, and high-affinity Abs after immunization with a T cell-dependent Ag. This failure of HuRΔ/Δ mice to mount a T cell-dependent Ab response contrasts with the ability of HuRΔ/Δ B cells to become GC-like in vitro, indicating that HuR is essential for aspects of B cell activation unique to the in vivo environment. Consistent with this notion, we find in vitro stimulated HuRΔ/Δ B cells exhibit modestly reduced surface expression of costimulatory molecules whose expression is similarly decreased in humans with common variable immunodeficiency. HuRΔ/Δ mice provide a model to identify B cell-intrinsic factors that promote T cell-dependent immune responses in vivo.
Collapse
Affiliation(s)
- Amy DeMicco
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104; Cell and Molecular Biology Graduate Group, Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Martin S Naradikian
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Vishal J Sindhava
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Je-Hyun Yoon
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224; and
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224; and
| | - Gerald B Wertheim
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Michael P Cancro
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104; Cell and Molecular Biology Graduate Group, Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
630
|
A pathophysiological view of the long non-coding RNA world. Oncotarget 2015; 5:10976-96. [PMID: 25428918 PMCID: PMC4294373 DOI: 10.18632/oncotarget.2770] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/14/2014] [Indexed: 12/13/2022] Open
Abstract
Because cells are constantly exposed to micro-environmental changes, they require the ability to adapt to maintain a dynamic equilibrium. Proteins are considered critical for the regulation of gene expression, which is a fundamental process in determining the cellular responses to stimuli. Recently, revolutionary findings in RNA research and the advent of high-throughput genomic technologies have revealed a pervasive transcription of the human genome, which generates many long non-coding RNAs (lncRNAs) whose roles are largely undefined. However, there is evidence that lncRNAs are involved in several cellular physiological processes such as adaptation to stresses, cell differentiation, maintenance of pluripotency and apoptosis. The correct balance of lncRNA levels is crucial for the maintenance of cellular equilibrium, and the dysregulation of lncRNA expression is linked to many disorders; certain transcripts are useful prognostic markers for some of these pathologies. This review revisits the classic concept of cellular homeostasis from the perspective of lncRNAs specifically to understand how this novel class of molecules contributes to cellular balance and how its dysregulated expression can lead to the onset of pathologies such as cancer.
Collapse
|
631
|
Xu J, Li Y, Lu J, Pan T, Ding N, Wang Z, Shao T, Zhang J, Wang L, Li X. The mRNA related ceRNA-ceRNA landscape and significance across 20 major cancer types. Nucleic Acids Res 2015; 43:8169-82. [PMID: 26304537 PMCID: PMC4787795 DOI: 10.1093/nar/gkv853] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022] Open
Abstract
Cross-talk between competitive endogenous RNAs (ceRNAs) through shared miRNAs represents a novel layer of gene regulation that plays important roles in the physiology and development of cancers. However, a global view of their system-level properties across various types of cancers is still unknown. Here, we constructed the mRNA related ceRNA–ceRNA interaction landscape across 20 cancer types by systematically analyzing molecular profiles of 5203 tumors and miRNA regulations. Our study highlights the conserved features shared by pan-cancer and higher similarity within similar origin cell type. Moreover, a core ceRNA network was identified. Function analysis identified a common theme of cancer hallmarks, however they exhibit phenotype-specific connectivity patterns. Besides, we found a marked rewiring in the ceRNA program between various cancers, and further revealed conserved and rewired network ceRNA hubs in each cancer, which were tensely competitive interactions to constitute conserved and cancer-specific modules. By providing mechanistic linkage between known cancer miRNAs, their mediated ceRNA–ceRNA interactions, and the associations with known cancer hallmarks, the inferred cancer ceRNA–ceRNA interaction landscape will serve as a powerful public resource for further biological discoveries of tumorigenesis.
Collapse
Affiliation(s)
- Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yongsheng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jianping Lu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Tao Pan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Na Ding
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Zishan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Tingting Shao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jinwen Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
632
|
LincRNA-p21: Implications in Human Diseases. Int J Mol Sci 2015; 16:18732-40. [PMID: 26270659 PMCID: PMC4581268 DOI: 10.3390/ijms160818732] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 07/04/2015] [Accepted: 08/04/2015] [Indexed: 01/17/2023] Open
Abstract
Long noncoding RNAs (lncRNAs), which lack significant protein-coding capacity, regulate various biological processes through diverse and as yet poorly understood molecular mechanisms. However, a number of studies in the past few years have documented important functions for lncRNAs in human diseases. Among these lncRNAs, lincRNA-p21 has been proposed to be a novel regulator of cell proliferation, apoptosis and DNA damage response, and involved in the initiation and progression of human diseases. In this review, we summarize the current knowledge of lincRNA-p21, mainly focus on the known biological functions and its underlying mechanisms. Moreover, we highlight the growing body of evidences for the importance of lincRNA-p21 in diverse human diseases, which indicate lincRNA-p21 as a potential diagnostic marker and/or a valuable therapeutic target for these diseases.
Collapse
|
633
|
Lee KP, Shin YJ, Panda AC, Abdelmohsen K, Kim JY, Lee SM, Bahn YJ, Choi JY, Kwon ES, Baek SJ, Kim SY, Gorospe M, Kwon KS. miR-431 promotes differentiation and regeneration of old skeletal muscle by targeting Smad4. Genes Dev 2015. [PMID: 26215566 PMCID: PMC4536309 DOI: 10.1101/gad.263574.115] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Lee et al. show that elevating miR-431 improved the myogenic capacity of old myoblasts, while inhibiting endogenous miR-431 lowered myogenesis. In an in vivo model of muscle regeneration following cardiotoxin injury, ectopic miR-431 injection greatly improved muscle regeneration and reduced SMAD4 levels. The myogenic capacity of myoblasts decreases in skeletal muscle with age. In addition to environmental factors, intrinsic factors are important for maintaining the regenerative potential of muscle progenitor cells, but their identities are largely unknown. Here, comparative analysis of microRNA (miRNA) expression profiles in young and old myoblasts uncovered miR-431 as a novel miRNA showing markedly reduced abundance in aged myoblasts. Importantly, elevating miR-431 improved the myogenic capacity of old myoblasts, while inhibiting endogenous miR-431 lowered myogenesis. Bioinformatic and biochemical analyses revealed that miR-431 directly interacted with the 3′ untranslated region (UTR) of Smad4 mRNA, which encodes one of the downstream effectors of TGF-β signaling. In keeping with the low levels of miR-431 in old myoblasts, SMAD4 levels increased in this myoblast population. Interestingly, in an in vivo model of muscle regeneration following cardiotoxin injury, ectopic miR-431 injection greatly improved muscle regeneration and reduced SMAD4 levels. Consistent with the finding that the mouse miR-431 seed sequence in the Smad4 3′ UTR is conserved in the human SMAD4 3′ UTR, inhibition of miR-431 also repressed the myogenic capacity of human skeletal myoblasts. Taken together, our results suggest that the age-associated miR-431 plays a key role in maintaining the myogenic ability of skeletal muscle with age.
Collapse
Affiliation(s)
- Kwang-Pyo Lee
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Yeo Jin Shin
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, Korea University of Science and Technology, Daejeon 305-333, Republic of Korea
| | - Amaresh C Panda
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Ji Young Kim
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Seung-Min Lee
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Young Jae Bahn
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Jeong Yi Choi
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Eun-Soo Kwon
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Su-Jin Baek
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon 305-333, Republic of Korea; Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Seon-Young Kim
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon 305-333, Republic of Korea; Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Ki-Sun Kwon
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, Korea University of Science and Technology, Daejeon 305-333, Republic of Korea
| |
Collapse
|
634
|
Abstract
The discovery of long non-coding RNAs (lncRNAs) and the elucidation of the mechanisms by which they affect different disease states are providing researchers with a better understanding of a wide array of disease pathways. Moreover, lncRNAs are presenting themselves as both unique diagnostic biomarkers as well as novel targets against which to develop new therapeutics. Here we will explore the intricate network of non-coding RNAs associated with infection by the human immunodeficiency virus (HIV). Non-coding RNAs derived from both the human host as well as those from HIV itself are emerging as important regulatory elements. We discuss here the various mechanisms through which both small and long non-coding RNAs impact viral replication, pathogenesis and disease progression. Given the lack of an effective vaccine or cure for HIV and the scale of the current pandemic, a deeper understanding of the complex interplay between non-coding RNAs and HIV will support the development of innovative strategies for the treatment of HIV/acquired immunodeficiency disease (AIDS).
Collapse
Affiliation(s)
- Daniel C Lazar
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| | - Kevin V Morris
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA; School of Biotechnology and Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia.
| | - Sheena M Saayman
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
635
|
Moresi V, Marroncelli N, Adamo S. New insights into the epigenetic control of satellite cells. World J Stem Cells 2015; 7:945-955. [PMID: 26240681 PMCID: PMC4515437 DOI: 10.4252/wjsc.v7.i6.945] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/12/2015] [Accepted: 05/11/2015] [Indexed: 02/06/2023] Open
Abstract
Epigenetics finely tunes gene expression at a functional level without modifying the DNA sequence, thereby contributing to the complexity of genomic regulation. Satellite cells (SCs) are adult muscle stem cells that are important for skeletal post-natal muscle growth, homeostasis and repair. The understanding of the epigenome of SCs at different stages and of the multiple layers of the post-transcriptional regulation of gene expression is constantly expanding. Dynamic interactions between different epigenetic mechanisms regulate the appropriate timing of muscle-specific gene expression and influence the lineage fate of SCs. In this review, we report and discuss the recent literature about the epigenetic control of SCs during the myogenic process from activation to proliferation and from their commitment to a muscle cell fate to their differentiation and fusion to myotubes. We describe how the coordinated activities of the histone methyltransferase families Polycomb group (PcG), which represses the expression of developmentally regulated genes, and Trithorax group, which antagonizes the repressive activity of the PcG, regulate myogenesis by restricting gene expression in a time-dependent manner during each step of the process. We discuss how histone acetylation and deacetylation occurs in specific loci throughout SC differentiation to enable the time-dependent transcription of specific genes. Moreover, we describe the multiple roles of microRNA, an additional epigenetic mechanism, in regulating gene expression in SCs, by repressing or enhancing gene transcription or translation during each step of myogenesis. The importance of these epigenetic pathways in modulating SC activation and differentiation renders them as promising targets for disease interventions. Understanding the most recent findings regarding the epigenetic mechanisms that regulate SC behavior is useful from the perspective of pharmacological manipulation for improving muscle regeneration and for promoting muscle homeostasis under pathological conditions.
Collapse
|
636
|
Mechanisms of Evolutionary Innovation Point to Genetic Control Logic as the Key Difference Between Prokaryotes and Eukaryotes. J Mol Evol 2015. [PMID: 26208881 DOI: 10.1007/s00239-015-9688-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The evolution of life from the simplest, original form to complex, intelligent animal life occurred through a number of key innovations. Here we present a new tool to analyze these key innovations by proposing that the process of evolutionary innovation may follow one of three underlying processes, namely a Random Walk, a Critical Path, or a Many Paths process, and in some instances may also constitute a "Pull-up the Ladder" event. Our analysis is based on the occurrence of function in modern biology, rather than specific structure or mechanism. A function in modern biology may be classified in this way either on the basis of its evolution or the basis of its modern mechanism. Characterizing key innovations in this way helps identify the likelihood that an innovation could arise. In this paper, we describe the classification, and methods to classify functional features of modern organisms into these three classes based on the analysis of how a function is implemented in modern biology. We present the application of our categorization to the evolution of eukaryotic gene control. We use this approach to support the argument that there are few, and possibly no basic chemical differences between the functional constituents of the machinery of gene control between eukaryotes, bacteria and archaea. This suggests that the difference between eukaryotes and prokaryotes that allows the former to develop the complex genetic architecture seen in animals and plants is something other than their chemistry. We tentatively identify the difference as a difference in control logic, that prokaryotic genes are by default 'on' and eukaryotic genes are by default 'off.' The Many Paths evolutionary process suggests that, from a 'default off' starting point, the evolution of the genetic complexity of higher eukaryotes is a high probability event.
Collapse
|
637
|
Grammatikakis I, Panda AC, Abdelmohsen K, Gorospe M. Long noncoding RNAs(lncRNAs) and the molecular hallmarks of aging. Aging (Albany NY) 2015; 6:992-1009. [PMID: 25543668 PMCID: PMC4298369 DOI: 10.18632/aging.100710] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During aging, progressive deleterious changes increase the risk of disease and death. Prominent molecular hallmarks of aging are genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, cellular senescence, stem cell exhaustion, and altered intercellular communication. Long noncoding RNAs (lncRNAs) play important roles in a wide range of biological processes, including age-related diseases like cancer, cardiovascular pathologies, and neurodegenerative disorders. Evidence is emerging that lncRNAs influence the molecular processes that underlie age-associated phenotypes. Here, we review our current understanding of lncRNAs that control the development of aging traits.
Collapse
Affiliation(s)
- Ioannis Grammatikakis
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Amaresh C Panda
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
638
|
Abstract
Next-generation sequencing has greatly improved our knowledge of the mammalian transcriptome, identifying thousands of non-coding RNAs (ncRNAs), which are RNAs that rather than translate for proteins, have regulatory functions. Perhaps unsurprisingly, dysregulation of individual ncRNAs has been associated with the development of pathologies, including of the cardiovascular system. The best-characterized group of ncRNAs is represented by the short, highly conserved RNAs named microRNAs (miRNAs). This ncRNA species, which principally exerts an inhibitory action on gene expression, has been implicated in many cardiovascular diseases. Unfortunately, the complexity of action of other types of ncRNA, such as long ncRNAs, has somewhat hampered the study of their role in cardiovascular pathologies. A detailed characterization of the mechanism of action of these different ncRNA species would be conducive to a better understanding of the cellular processes underlying cardiovascular disease and may lead to the development of innovative therapeutic strategies. Here, we give an overview of the current knowledge on the function of ncRNAs and their roles in cardiovascular disease development, concentrating mainly on microRNAs and long ncRNAs.
Collapse
Affiliation(s)
- Leonardo Elia
- Humanitas Clinical and Research Center, Via Manzoni 113, 20089 Rozzano, MI, Italy; Milan Unit, Institute of Genetic and Biomedical Research, Via Manzoni 113, 20089 Rozzano, MI, Italy.
| | - Gianluigi Condorelli
- Humanitas Clinical and Research Center, Via Manzoni 113, 20089 Rozzano, MI, Italy; Milan Unit, Institute of Genetic and Biomedical Research, Via Manzoni 113, 20089 Rozzano, MI, Italy; University of Milan, Via Manzoni 113, 20089 Rozzano, MI, Italy.
| |
Collapse
|
639
|
Expanding the p53 regulatory network: LncRNAs take up the challenge. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015. [PMID: 26196323 DOI: 10.1016/j.bbagrm.2015.07.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) are rapidly emerging as important regulators of gene expression in a wide variety of physiological and pathological cellular processes. In particular, a number of studies revealed that some lncRNAs participate in the p53 pathway, the unquestioned protagonist of tumor suppressor response. Indeed, several lncRNAs are not only part of the large pool of genes coordinated by p53 transcription factor, but are also required by p53 to fine-tune its response and to fully accomplish its tumor suppressor program. In this review we will discuss the current and fast growing knowledge about the contribution of lncRNAs to the complexity of the p53 network, the different mechanisms by which they affect gene regulation in this context, and their involvement in cancer. The incipient impact of lncRNAs in the p53 biological response may encourage the development of therapies and diagnostic methods focused on these noncoding molecules. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
|
640
|
Gunzburg MJ, Sivakumaran A, Pendini NR, Yoon JH, Gorospe M, Wilce MCJ, Wilce JA. Cooperative interplay of let-7 mimic and HuR with MYC RNA. Cell Cycle 2015; 14:2729-33. [PMID: 26177105 DOI: 10.1080/15384101.2015.1069930] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Both RNA-binding proteins (RBP) and miRNA play important roles in the regulation of mRNA expression, often acting together to regulate a target mRNA. In some cases the RBP and miRNA have been reported to act competitively, but in other instances they function cooperatively. Here, we investigated HuR function as an enhancer of let-7-mediated translational repression of c-Myc despite the separation of their binding sites. Using an in vitro system, we determined that a let-7 mimic, consisting of single-stranded (ss)DNA complementary to the let-7 binding site, enhanced the affinity of HuR for a 122-nt MYC RNA encompassing both binding sites. This finding supports the biophysical principle of cooperative binding by an RBP and miRNA purely through interactions at distal mRNA binding sites.
Collapse
Affiliation(s)
- Menachem J Gunzburg
- a Biochemistry and Molecular Biology; Monash University ; Melbourne , VIC Australia
| | | | | | | | | | | | | |
Collapse
|
641
|
Identification of lncRNA MEG3 Binding Protein Using MS2-Tagged RNA Affinity Purification and Mass Spectrometry. Appl Biochem Biotechnol 2015; 176:1834-45. [PMID: 26155902 DOI: 10.1007/s12010-015-1680-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 05/25/2015] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) are nonprotein coding transcripts longer than 200 nucleotides. Recently in mammals, thousands of long noncoding RNAs have been identified and studied as key molecular players in different biological processes with protein complexes. As a long noncoding RNA, maternally expressed gene 3 (MEG3) plays an important role in many cellular processes. However, the mechanism underlying MEG3 regulatory effects remains enigmatic. By using the specific interaction between MS2 coat protein and MS2 RNA hairpin, we developed a method (MS2-tagged RNA affinity purification and mass spectrometry (MTRAP-MS)) to identify proteins that interact with MEG3. Mass spectrometry and gene ontology (GO) analysis showed that MEG3 binding proteins possess nucleotide binding properties and take part in transport, translation, and other biological processes. In addition, interleukin enhancer binding factor 3 (ILF3) and poly(A) binding protein, cytoplasmic 3 (PABPC3) were validated for their interaction with MEG3. These findings indicate that the newly developed method can effectively enrich lncRNA binding proteins and provides a strong basis for studying MEG3 functions.
Collapse
|
642
|
Liz J, Esteller M. lncRNAs and microRNAs with a role in cancer development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:169-76. [PMID: 26149773 DOI: 10.1016/j.bbagrm.2015.06.015] [Citation(s) in RCA: 423] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/03/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022]
Abstract
Most diseases, including human cancer, are frequently associated with an altered transcription pattern. The alteration of the transcriptome is not restricted to the production of aberrant levels of protein-coding RNAs, but also refers to the dysregulation of the expression of the multiple noncoding members that comprise the human genome. Unexpectedly, recent RNA-seq data of the human transcriptome have revealed that less than 2% of the genome encodes protein-coding transcripts, even though the vast majority of the genome is actively transcribed into non-coding RNAs (ncRNAs) under different conditions. In this review, we present an updated version of the mechanistic aspects of some long non-coding RNAs (lncRNAs) that play critical roles in human cancer. Most importantly, we focus on the interplay between lncRNAs and microRNAs, and the importance of such interactions during the tumorigenic process, providing new insight into the regulatory mechanisms underlying several ncRNA classes of importance in cancer, particularly transcribed ultraconserved regions (T-UCRs). This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Julia Liz
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain; Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
643
|
Kim J, Kim KM, Noh JH, Yoon JH, Abdelmohsen K, Gorospe M. Long noncoding RNAs in diseases of aging. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:209-21. [PMID: 26141605 DOI: 10.1016/j.bbagrm.2015.06.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/13/2015] [Accepted: 06/24/2015] [Indexed: 12/22/2022]
Abstract
Aging is a process during which progressive deteriorating of cells, tissues, and organs over time lead to loss of function, disease, and death. Towards the goal of extending human health span, there is escalating interest in understanding the mechanisms that govern aging-associated pathologies. Adequate regulation of expression of coding and noncoding genes is critical for maintaining organism homeostasis and preventing disease processes. Long noncoding RNAs (lncRNAs) are increasingly recognized as key regulators of gene expression at all levels--transcriptional, post-transcriptional and post-translational. In this review, we discuss our emerging understanding of lncRNAs implicated in aging illnesses. We focus on diseases arising from age-driven impairment in energy metabolism (obesity, diabetes), the declining capacity to respond homeostatically to proliferative and damaging stimuli (cancer, immune dysfunction), and neurodegeneration. We identify the lncRNAs involved in these ailments and discuss the rising interest in lncRNAs as diagnostic and therapeutic targets to ameliorate age-associated pathologies and prolong health. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Jiyoung Kim
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kyoung Mi Kim
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ji Heon Noh
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Je-Hyun Yoon
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
644
|
Abstract
The modENCODE (Model Organism Encyclopedia of DNA Elements) Consortium aimed to map functional elements-including transcripts, chromatin marks, regulatory factor binding sites, and origins of DNA replication-in the model organisms Drosophila melanogaster and Caenorhabditis elegans. During its five-year span, the consortium conducted more than 2,000 genome-wide assays in developmentally staged animals, dissected tissues, and homogeneous cell lines. Analysis of these data sets provided foundational insights into genome, epigenome, and transcriptome structure and the evolutionary turnover of regulatory pathways. These studies facilitated a comparative analysis with similar data types produced by the ENCODE Consortium for human cells. Genome organization differs drastically in these distant species, and yet quantitative relationships among chromatin state, transcription, and cotranscriptional RNA processing are deeply conserved. Of the many biological discoveries of the modENCODE Consortium, we highlight insights that emerged from integrative studies. We focus on operational and scientific lessons that may aid future projects of similar scale or aims in other, emerging model systems.
Collapse
Affiliation(s)
- James B Brown
- Department of Statistics, University of California, Berkeley, California 94720;
| | | |
Collapse
|
645
|
Guo X, Gao L, Wang Y, Chiu DKY, Wang T, Deng Y. Advances in long noncoding RNAs: identification, structure prediction and function annotation. Brief Funct Genomics 2015; 15:38-46. [PMID: 26072035 PMCID: PMC5863772 DOI: 10.1093/bfgp/elv022] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Long noncoding RNAs (lncRNAs), generally longer than 200 nucleotides and with poor protein coding potential, are usually considered collectively as a heterogeneous class of RNAs. Recently, an increasing number of studies have shown that lncRNAs can involve in various critical biological processes and a number of complex human diseases. Not only the primary sequences of many lncRNAs are directly interrelated to a specific functional role, strong evidence suggests that their secondary structures are even more interrelated to their known functions. As functional molecules, lncRNAs have become more and more relevant to many researchers. Here, we review recent, state-of-the-art advances in the three levels (the primary sequence, the secondary structure and the function annotation) of the lncRNA research, as well as computational methods for lncRNA data analysis.
Collapse
|
646
|
Fatima R, Akhade VS, Pal D, Rao SMR. Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets. MOLECULAR AND CELLULAR THERAPIES 2015; 3:5. [PMID: 26082843 PMCID: PMC4469312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/19/2015] [Indexed: 11/21/2023]
Abstract
Long noncoding RNAs are emerging as key players in various fundamental biological processes. We highlight the varied molecular mechanisms by which lncRNAs modulate gene expression in diverse cellular contexts and their role in early mammalian development in this review. Furthermore, it is being increasingly recognized that altered expression of lncRNAs is specifically associated with tumorigenesis, tumor progression and metastasis. We discuss various lncRNAs implicated in different cancer types with a focus on their clinical applications as potential biomarkers and therapeutic targets in the pathology of diverse cancers.
Collapse
Affiliation(s)
- Roshan Fatima
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Vijay Suresh Akhade
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Debosree Pal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Satyanarayana MR Rao
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| |
Collapse
|
647
|
Fatima R, Akhade VS, Pal D, Rao SM. Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets. MOLECULAR AND CELLULAR THERAPIES 2015; 3:5. [PMID: 26082843 PMCID: PMC4469312 DOI: 10.1186/s40591-015-0042-6] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/19/2015] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs are emerging as key players in various fundamental biological processes. We highlight the varied molecular mechanisms by which lncRNAs modulate gene expression in diverse cellular contexts and their role in early mammalian development in this review. Furthermore, it is being increasingly recognized that altered expression of lncRNAs is specifically associated with tumorigenesis, tumor progression and metastasis. We discuss various lncRNAs implicated in different cancer types with a focus on their clinical applications as potential biomarkers and therapeutic targets in the pathology of diverse cancers.
Collapse
Affiliation(s)
- Roshan Fatima
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Vijay Suresh Akhade
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Debosree Pal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Satyanarayana Mr Rao
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| |
Collapse
|
648
|
Abstract
Recent systematic genomic studies have revealed a broad spectrum of lncRNAs that are involved in a variety of disease (diseases), including tumor progression, by regulating gene expression at epigenetic, transcriptional and post-transcriptional levels. However, their exact roles of physiological function and the mechanism (mechanisms) of action are yet to be clarified. In breast cancer research, several lncRNAs are identified as tumor driving oncogenic lncRNAs and few are identified as tumor suppressive lncRNAs. They are involved in cell growth, apoptosis, cell migration and invasiveness as well as cancer cell stemness. Therefore, this new class of RNAs may serve as biomarkers for diagnostic and prognostic purpose and also as potential therapeutic targets. This review summarizes the current information about lncRNAs that are particularly involved in breast cancer progression and also discusses the potential translational application of these newly discovered nucleic acids.
Collapse
Affiliation(s)
| | - Sambad Sharma
- 2500 N. State, Jackson MS 39216, University of Mississippi Medical Center, Cancer Institute
| | - Kounosuke Watabe
- Pathology Unit, Istituto Nazionale Tumori Fondazione "G. Pascale", via Mariano Semmola 80131, Napoli, Italy,
| |
Collapse
|
649
|
Greco S, Gorospe M, Martelli F. Noncoding RNA in age-related cardiovascular diseases. J Mol Cell Cardiol 2015; 83:142-55. [PMID: 25640162 PMCID: PMC5509469 DOI: 10.1016/j.yjmcc.2015.01.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/14/2022]
Abstract
Eukaryotic gene expression is tightly regulated transcriptionally and post-transcriptionally by a host of noncoding (nc)RNAs. The best-studied class of short ncRNAs, microRNAs, mainly repress gene expression post-transcriptionally. Long noncoding (lnc)RNAs, which comprise RNAs differing widely in length and function, can regulate gene transcription as well as post-transcriptional mRNA fate. Collectively, ncRNAs affect a broad range of age-related physiologic deteriorations and pathologies, including reduced cardiovascular vigor and age-associated cardiovascular disease. This review presents an update of our understanding of regulatory ncRNAs contributing to cardiovascular health and disease as a function of advancing age. We will discuss (1) regulatory ncRNAs that control aging-associated cardiovascular homeostasis and disease, (2) the concepts, approaches, and methodologies needed to study regulatory ncRNAs in cardiovascular aging and (3) the challenges and opportunities that age-associated regulatory ncRNAs present in cardiovascular physiology and pathology. This article is part of a Special Issue entitled "CV Aging".
Collapse
Affiliation(s)
- Simona Greco
- Laboratory of Molecular Cardiology, Policlinico San Donato-IRCCS, Milan, 20097, Italy
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA.
| | - Fabio Martelli
- Laboratory of Molecular Cardiology, Policlinico San Donato-IRCCS, Milan, 20097, Italy.
| |
Collapse
|
650
|
Blume CJ, Hotz-Wagenblatt A, Hüllein J, Sellner L, Jethwa A, Stolz T, Slabicki M, Lee K, Sharathchandra A, Benner A, Dietrich S, Oakes CC, Dreger P, te Raa D, Kater AP, Jauch A, Merkel O, Oren M, Hielscher T, Zenz T. p53-dependent non-coding RNA networks in chronic lymphocytic leukemia. Leukemia 2015; 29:2015-23. [DOI: 10.1038/leu.2015.119] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/02/2015] [Accepted: 04/30/2015] [Indexed: 12/23/2022]
|