601
|
Stewart KL, Hughes E, Yates EA, Middleton DA, Radford SE. Molecular Origins of the Compatibility between Glycosaminoglycans and Aβ40 Amyloid Fibrils. J Mol Biol 2017; 429:2449-2462. [PMID: 28697887 PMCID: PMC5548265 DOI: 10.1016/j.jmb.2017.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 10/25/2022]
Abstract
The Aβ peptide forms extracellular plaques associated with Alzheimer's disease. In addition to protein fibrils, amyloid plaques also contain non-proteinaceous components, including glycosaminoglycans (GAGs). We have shown previously that the GAG low-molecular-weight heparin (LMWH) binds to Aβ40 fibrils with a three-fold-symmetric (3Q) morphology with higher affinity than Aβ40 fibrils in alternative structures, Aβ42 fibrils, or amyloid fibrils formed from other sequences. Solid-state NMR analysis of the GAG-3Q fibril complex revealed an interaction site at the corners of the 3Q fibril structure, but the origin of the binding specificity remained obscure. Here, using a library of short heparin polysaccharides modified at specific sites, we show that the N-sulfate or 6-O-sulfate of glucosamine, but not the 2-O-sulfate of iduronate within heparin is required for 3Q binding, indicating selectivity in the interactions of the GAG with the fibril that extends beyond general electrostatic complementarity. By creating 3Q fibrils containing point substitutions in the amino acid sequence, we also show that charged residues at the fibril three-fold apices provide the majority of the binding free energy, while charged residues elsewhere are less critical for binding. The results indicate, therefore, that LMWH binding to 3Q fibrils requires a precise molecular complementarity of the sulfate moieties on the GAG and charged residues displayed on the fibril surface. Differences in GAG binding to fibrils with distinct sequence and/or structure may thus contribute to the diverse etiology and progression of amyloid diseases.
Collapse
Affiliation(s)
- Katie L Stewart
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Eleri Hughes
- Department of Chemistry, University of Lancaster, Lancaster LA1 4YB, UK
| | - Edwin A Yates
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - David A Middleton
- Department of Chemistry, University of Lancaster, Lancaster LA1 4YB, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
602
|
Chen YC. Impact of a discordant helix on β-amyloid structure, aggregation ability and toxicity. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:681-687. [DOI: 10.1007/s00249-017-1235-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/26/2017] [Accepted: 06/26/2017] [Indexed: 11/24/2022]
|
603
|
Zinke M, Fricke P, Samson C, Hwang S, Wall JS, Lange S, Zinn-Justin S, Lange A. Bacteriophage Tail-Tube Assembly Studied by Proton-Detected 4D Solid-State NMR. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maximilian Zinke
- Department of Molecular Biophysics; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin Germany
| | - Pascal Fricke
- Department of Molecular Biophysics; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin Germany
| | - Camille Samson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris-Sud, Université Paris-Saclay; Gif-sur-Yvette Cedex France
| | - Songhwan Hwang
- Department of Molecular Biophysics; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin Germany
| | | | - Sascha Lange
- Department of Molecular Biophysics; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin Germany
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris-Sud, Université Paris-Saclay; Gif-sur-Yvette Cedex France
| | - Adam Lange
- Department of Molecular Biophysics; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin Germany
- Institut für Biologie; Humboldt-Universität zu Berlin; Berlin Germany
| |
Collapse
|
604
|
Bakou M, Hille K, Kracklauer M, Spanopoulou A, Frost CV, Malideli E, Yan LM, Caporale A, Zacharias M, Kapurniotu A. Key aromatic/hydrophobic amino acids controlling a cross-amyloid peptide interaction versus amyloid self-assembly. J Biol Chem 2017; 292:14587-14602. [PMID: 28684415 DOI: 10.1074/jbc.m117.774893] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 07/02/2017] [Indexed: 12/28/2022] Open
Abstract
The interaction of the intrinsically disordered polypeptide islet amyloid polypeptide (IAPP), which is associated with type 2 diabetes (T2D), with the Alzheimer's disease amyloid-β (Aβ) peptide modulates their self-assembly into amyloid fibrils and may link the pathogeneses of these two cell-degenerative diseases. However, the molecular determinants of this interaction remain elusive. Using a systematic alanine scan approach, fluorescence spectroscopy, and other biophysical methods, including heterocomplex pulldown assays, far-UV CD spectroscopy, the thioflavin T binding assay, transmission EM, and molecular dynamics simulations, here we identified single aromatic/hydrophobic residues within the amyloid core IAPP region as hot spots or key residues of its cross-interaction with Aβ40(42) peptide. Importantly, we also find that none of these residues in isolation plays a key role in IAPP self-assembly, whereas simultaneous substitution of four aromatic/hydrophobic residues with Ala dramatically impairs both IAPP self-assembly and hetero-assembly with Aβ40(42). Furthermore, our experiments yielded several novel IAPP analogs, whose sequences are highly similar to that of IAPP but have distinct amyloid self- or cross-interaction potentials. The identified similarities and major differences controlling IAPP cross-peptide interaction with Aβ40(42) versus its amyloid self-assembly offer a molecular basis for understanding the underlying mechanisms. We propose that these insights will aid in designing intervention strategies and novel IAPP analogs for the management of type 2 diabetes, Alzheimer's disease, or other diseases related to IAPP dysfunction or cross-amyloid interactions.
Collapse
Affiliation(s)
- Maria Bakou
- From the Division of Peptide Biochemistry, Technische Universität München, D-85354 Freising, Germany and
| | - Kathleen Hille
- From the Division of Peptide Biochemistry, Technische Universität München, D-85354 Freising, Germany and
| | - Michael Kracklauer
- From the Division of Peptide Biochemistry, Technische Universität München, D-85354 Freising, Germany and
| | - Anna Spanopoulou
- From the Division of Peptide Biochemistry, Technische Universität München, D-85354 Freising, Germany and
| | - Christina V Frost
- the Physik Department, Technische Universität München, D-85748 Garching, Germany
| | - Eleni Malideli
- From the Division of Peptide Biochemistry, Technische Universität München, D-85354 Freising, Germany and
| | - Li-Mei Yan
- From the Division of Peptide Biochemistry, Technische Universität München, D-85354 Freising, Germany and
| | - Andrea Caporale
- From the Division of Peptide Biochemistry, Technische Universität München, D-85354 Freising, Germany and
| | - Martin Zacharias
- the Physik Department, Technische Universität München, D-85748 Garching, Germany
| | - Aphrodite Kapurniotu
- From the Division of Peptide Biochemistry, Technische Universität München, D-85354 Freising, Germany and
| |
Collapse
|
605
|
Maity S, Viazovkina E, Gall A, Lyubchenko YL. Single-molecule probing of amyloid nano-ensembles using the polymer nanoarray approach. Phys Chem Chem Phys 2017; 19:16387-16394. [PMID: 28621364 PMCID: PMC5536842 DOI: 10.1039/c7cp02691a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Soluble amyloid-beta (Aβ) oligomers are the prime causative agents of cognitive deficits during early stages of Alzheimer's disease (AD). The transient nature of the oligomers makes them difficult to characterize by traditional techniques, suggesting that advanced approaches are necessary. Previously developed fluorescence-based tethered approach for probing intermolecular interactions (TAPIN) and AFM-based single-molecule force spectroscopy are capable of probing dimers of Aβ peptides. In this paper, a novel polymer nanoarray approach to probe trimers and tetramers formed by the Aβ(14-23) segment of Aβ protein at the single-molecule level is applied. By using this approach combined with TAPIN and AFM force spectroscopy, the impact of pH on the assembly of these oligomers was characterized. Experimental results reveal that pH affects the oligomer assembly process. At neutral pH, trimers and tetramers assemble into structures with a similar stability, while at acidic conditions (pH 3.7), the oligomers adopt a set of structures with different lifetimes and strengths. Models for the assembly of Aβ(14-23) trimers and tetramers based on the results obtained is proposed.
Collapse
Affiliation(s)
- Sibaprasad Maity
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA.
| | | | | | | |
Collapse
|
606
|
Chiti F, Dobson CM. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu Rev Biochem 2017; 86:27-68. [DOI: 10.1146/annurev-biochem-061516-045115] [Citation(s) in RCA: 1831] [Impact Index Per Article: 228.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Peptides and proteins have been found to possess an inherent tendency to convert from their native functional states into intractable amyloid aggregates. This phenomenon is associated with a range of increasingly common human disorders, including Alzheimer and Parkinson diseases, type II diabetes, and a number of systemic amyloidoses. In this review, we describe this field of science with particular reference to the advances that have been made over the last decade in our understanding of its fundamental nature and consequences. We list the proteins that are known to be deposited as amyloid or other types of aggregates in human tissues and the disorders with which they are associated, as well as the proteins that exploit the amyloid motif to play specific functional roles in humans. In addition, we summarize the genetic factors that have provided insight into the mechanisms of disease onset. We describe recent advances in our knowledge of the structures of amyloid fibrils and their oligomeric precursors and of the mechanisms by which they are formed and proliferate to generate cellular dysfunction. We show evidence that a complex proteostasis network actively combats protein aggregation and that such an efficient system can fail in some circumstances and give rise to disease. Finally, we anticipate the development of novel therapeutic strategies with which to prevent or treat these highly debilitating and currently incurable conditions.
Collapse
Affiliation(s)
- Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” Section of Biochemistry, Università di Firenze, 50134 Firenze, Italy
| | - Christopher M. Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
607
|
Abstract
Curli are functional amyloids produced by proteobacteria like Escherichia coli as part of the extracellular matrix that holds cells together into biofilms. The molecular events that occur during curli nucleation and fiber extension remain largely unknown. Combining observations from curli amyloidogenesis in bulk solutions with real-time in situ nanoscopic imaging at the single-fiber level, we show that curli display polar growth, and we detect two kinetic regimes of fiber elongation. Single fibers exhibit stop-and-go dynamics characterized by bursts of steady-state growth alternated with periods of stagnation. At high subunit concentrations, fibers show constant, unperturbed burst growth. Curli follow a one-step nucleation process in which monomers contemporaneously fold and oligomerize into minimal fiber units that have growth characteristics identical to those of the mature fibrils. Kinetic data and interaction studies of curli fibrillation in the presence of the natural inhibitor CsgC show that the inhibitor binds curli fibers and predominantly acts at the level of fiber elongation.
Collapse
|
608
|
Phage display and kinetic selection of antibodies that specifically inhibit amyloid self-replication. Proc Natl Acad Sci U S A 2017; 114:6444-6449. [PMID: 28584111 DOI: 10.1073/pnas.1700407114] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aggregation of the amyloid β peptide (Aβ) into amyloid fibrils is a defining characteristic of Alzheimer's disease. Because of the complexity of this aggregation process, effective therapeutic inhibitors will need to target the specific microscopic steps that lead to the production of neurotoxic species. We introduce a strategy for generating fibril-specific antibodies that selectively suppress fibril-dependent secondary nucleation of the 42-residue form of Aβ (Aβ42). We target this step because it has been shown to produce the majority of neurotoxic species during aggregation of Aβ42. Starting from large phage display libraries of single-chain antibody fragments (scFvs), the three-stage approach that we describe includes (i) selection of scFvs with high affinity for Aβ42 fibrils after removal of scFvs that bind Aβ42 in its monomeric form; (ii) ranking, by surface plasmon resonance affinity measurements, of the resulting candidate scFvs that bind to the Aβ42 fibrils; and (iii) kinetic screening and analysis to find the scFvs that inhibit selectively the fibril-catalyzed secondary nucleation process in Aβ42 aggregation. By applying this approach, we have identified four scFvs that inhibit specifically the fibril-dependent secondary nucleation process. Our method also makes it possible to discard antibodies that inhibit elongation, an important factor because the suppression of elongation does not target directly the production of toxic oligomers and may even lead to its increase. On the basis of our results, we suggest that the method described here could form the basis for rationally designed immunotherapy strategies to combat Alzheimer's and related neurodegenerative diseases.
Collapse
|
609
|
Aprile FA, Sormanni P, Perni M, Arosio P, Linse S, Knowles TPJ, Dobson CM, Vendruscolo M. Selective targeting of primary and secondary nucleation pathways in Aβ42 aggregation using a rational antibody scanning method. SCIENCE ADVANCES 2017; 3:e1700488. [PMID: 28691099 PMCID: PMC5479649 DOI: 10.1126/sciadv.1700488] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/26/2017] [Indexed: 05/19/2023]
Abstract
Antibodies targeting Aβ42 are under intense scrutiny because of their therapeutic potential for Alzheimer's disease. To enable systematic searches, we present an "antibody scanning" strategy for the generation of a panel of antibodies against Aβ42. Each antibody in the panel is rationally designed to target a specific linear epitope, with the selected epitopes scanning the Aβ42 sequence. By screening in vitro the panel to identify the specific microscopic steps in the Aβ42 aggregation process influenced by each antibody, we identify two antibodies that target specifically the primary and the secondary nucleation steps, which are key for the production of Aβ42 oligomers. These two antibodies act, respectively, to delay the onset of aggregation and to block the proliferation of aggregates, and correspondingly reduce the toxicity in a Caenorhabditis elegans model overexpressing Aβ42. These results illustrate how the antibody scanning method described here can be used to readily obtain very small antibody libraries with extensive coverage of the sequences of target proteins.
Collapse
Affiliation(s)
- Francesco A. Aprile
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Pietro Sormanni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Michele Perni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, 221 00 Lund, Sweden
| | - Tuomas P. J. Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Christopher M. Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
610
|
Quittot N, Sebastiao M, Bourgault S. Modulation of amyloid assembly by glycosaminoglycans: from mechanism to biological significance. Biochem Cell Biol 2017; 95:329-337. [DOI: 10.1139/bcb-2016-0236] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glycosaminoglycans (GAGs) are long and unbranched polysaccharides that are abundant in the extracellular matrix and basement membrane of multicellular organisms. These linear polyanionic macromolecules are involved in many physiological functions from cell adhesion to cellular signaling. Interestingly, amyloid fibrils extracted from patients afflicted with protein misfolding diseases are virtually always associated with GAGs. Amyloid fibrils are highly organized nanostructures that have been historically associated with pathological states, such as Alzheimer’s disease and systemic amyloidoses. However, recent studies have identified functional amyloids that accomplish crucial physiological roles in almost all living organisms, from bacteria to insects and mammals. Over the last 2 decades, numerous reports have revealed that sulfated GAGs accelerate and (or) promote the self-assembly of a large diversity of proteins, both inherently amyloidogenic and non-aggregation prone. Despite the fact that many studies have investigated the molecular mechanism(s) by which GAGs induce amyloid assembly, the mechanistic elucidation of GAG-mediated amyloidogenesis still remains the subject of active research. In this review, we expose the contribution of GAGs in amyloid assembly, and we discuss the pathophysiological and functional significance of GAG-mediated fibrillization. Finally, we propose mechanistic models of the unique and potent ability of sulfated GAGs to hasten amyloid fibril formation.
Collapse
Affiliation(s)
- Noé Quittot
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
| | - Mathew Sebastiao
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
| | - Steve Bourgault
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
| |
Collapse
|
611
|
Jain MG, Lalli D, Stanek J, Gowda C, Prakash S, Schwarzer TS, Schubeis T, Castiglione K, Andreas LB, Madhu PK, Pintacuda G, Agarwal V. Selective 1H- 1H Distance Restraints in Fully Protonated Proteins by Very Fast Magic-Angle Spinning Solid-State NMR. J Phys Chem Lett 2017; 8:2399-2405. [PMID: 28492324 DOI: 10.1021/acs.jpclett.7b00983] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Very fast magic-angle spinning (MAS > 80 kHz) NMR combined with high-field magnets has enabled the acquisition of proton-detected spectra in fully protonated solid samples with sufficient resolution and sensitivity. One of the primary challenges in structure determination of protein is observing long-range 1H-1H contacts. Here we use band-selective spin-lock pulses to obtain selective 1H-1H contacts (e.g., HN-HN) on the order of 5-6 Å in fully protonated proteins at 111 kHz MAS. This approach is a major advancement in structural characterization of proteins given that magnetization can be selectively transferred between protons that are 5-6 Å apart despite the presence of other protons at shorter distance. The observed contacts are similar to those previously observed only in perdeuterated proteins with selective protonation. Simulations and experiments show the proposed method has performance that is superior to that of the currently used methods. The method is demonstrated on GB1 and a β-barrel membrane protein, AlkL.
Collapse
Affiliation(s)
- Mukul G Jain
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research , 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - Daniela Lalli
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon , 5 rue de la Doua, 69100 Villeurbanne, France
| | - Jan Stanek
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon , 5 rue de la Doua, 69100 Villeurbanne, France
| | - Chandrakala Gowda
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research , 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - Satya Prakash
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research , 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - Tom S Schwarzer
- Institute of Biochemical Engineering, Technical University of Munich , Boltzmannstraße 15, D-85748 Garching, Germany
| | - Tobias Schubeis
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon , 5 rue de la Doua, 69100 Villeurbanne, France
| | - Kathrin Castiglione
- Institute of Biochemical Engineering, Technical University of Munich , Boltzmannstraße 15, D-85748 Garching, Germany
| | - Loren B Andreas
- Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, D-37077 Göttingen, Germany
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research , 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
- Department of Chemical Sciences, Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon , 5 rue de la Doua, 69100 Villeurbanne, France
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research , 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| |
Collapse
|
612
|
Abstract
Throughout biology, amyloids are key structures in both functional proteins and the end product of pathologic protein misfolding. Amyloids might also represent an early precursor in the evolution of life because of their small molecular size and their ability to self-purify and catalyze chemical reactions. They also provide attractive backbones for advanced materials. When β-strands of an amyloid are arranged parallel and in register, side chains from the same position of each chain align, facilitating metal chelation when the residues are good ligands such as histidine. High-resolution structures of metalloamyloids are needed to understand the molecular bases of metal-amyloid interactions. Here we combine solid-state NMR and structural bioinformatics to determine the structure of a zinc-bound metalloamyloid that catalyzes ester hydrolysis. The peptide forms amphiphilic parallel β-sheets that assemble into stacked bilayers with alternating hydrophobic and polar interfaces. The hydrophobic interface is stabilized by apolar side chains from adjacent sheets, whereas the hydrated polar interface houses the Zn2+-binding histidines with binding geometries unusual in proteins. Each Zn2+ has two bis-coordinated histidine ligands, which bridge adjacent strands to form an infinite metal-ligand chain along the fibril axis. A third histidine completes the protein ligand environment, leaving a free site on the Zn2+ for water activation. This structure defines a class of materials, which we call metal-peptide frameworks. The structure reveals a delicate interplay through which metal ions stabilize the amyloid structure, which in turn shapes the ligand geometry and catalytic reactivity of Zn2.
Collapse
|
613
|
Cheng Q, Qiang W. Solid-State-NMR-Structure-Based Inhibitor Design to Achieve Selective Inhibition of the Parallel-in-Register β-Sheet versus Antiparallel Iowa Mutant β-Amyloid Fibrils. J Phys Chem B 2017; 121:5544-5552. [DOI: 10.1021/acs.jpcb.7b02953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qinghui Cheng
- Department of Chemistry, The State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Wei Qiang
- Department of Chemistry, The State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
614
|
Nano-assembly of amyloid β peptide: role of the hairpin fold. Sci Rep 2017; 7:2344. [PMID: 28539626 PMCID: PMC5443804 DOI: 10.1038/s41598-017-02454-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022] Open
Abstract
Structural investigations have revealed that β hairpin structures are common features in amyloid fibrils, suggesting that these motifs play an important role in amyloid assembly. To test this hypothesis, we characterized the effect of the hairpin fold on the aggregation process using a model β hairpin structure, consisting of two Aβ(14–23) monomers connected by a turn forming YNGK peptide. AFM studies of the assembled aggregates revealed that the hairpin forms spherical structures whereas linear Aβ(14–23) monomers form fibrils. Additionally, an equimolar mixture of the monomer and the hairpin assembles into non-fibrillar aggregates, demonstrating that the hairpin fold dramatically changes the morphology of assembled amyloid aggregates. To understand the molecular mechanism underlying the role of the hairpin fold on amyloid assembly, we performed single-molecule probing experiments to measure interactions between hairpin and monomer and two hairpin complexes. The studies reveal that the stability of hairpin-monomer complexes is much higher than hairpin-hairpin complexes. Molecular dynamics simulations revealed a novel intercalated complex for the hairpin and monomer and Monte Carlo modeling further demonstrated that such nano-assemblies have elevated stability compared with stability of the dimer formed by Aβ(14–23) hairpin. The role of such folding on the amyloid assembly is also discussed.
Collapse
|
615
|
Ni QZ, Markhasin E, Can TV, Corzilius B, Tan KO, Barnes AB, Daviso E, Su Y, Herzfeld J, Griffin RG. Peptide and Protein Dynamics and Low-Temperature/DNP Magic Angle Spinning NMR. J Phys Chem B 2017; 121:4997-5006. [PMID: 28437077 DOI: 10.1021/acs.jpcb.7b02066] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In DNP MAS NMR experiments at ∼80-110 K, the structurally important -13CH3 and -15NH3+ signals in MAS spectra of biological samples disappear due to the interference of the molecular motions with the 1H decoupling. Here we investigate the effect of these dynamic processes on the NMR line shapes and signal intensities in several typical systems: (1) microcrystalline APG, (2) membrane protein bR, (3) amyloid fibrils PI3-SH3, (4) monomeric alanine-CD3, and (5) the protonated and deuterated dipeptide N-Ac-VL over 78-300 K. In APG, the three-site hopping of the Ala-Cβ peak disappears completely at 112 K, concomitant with the attenuation of CP signals from other 13C's and 15N's. Similarly, the 15N signal from Ala-NH3+ disappears at ∼173 K, concurrent with the attenuation in CP experiments of other 15N's as well as 13C's. In bR and PI3-SH3, the methyl groups are attenuated at ∼95 K, while all other 13C's remain unaffected. However, both systems exhibit substantial losses of intensity at ∼243 K. Finally, with spectra of Ala and N-Ac-VL, we show that it is possible to extract site specific dynamic data from the temperature dependence of the intensity losses. Furthermore, 2H labeling can assist with recovering the spectral intensity. Thus, our study provides insight into the dynamic behavior of biological systems over a wide range of temperatures, and serves as a guide to optimizing the sensitivity and resolution of structural data in low temperature DNP MAS NMR spectra.
Collapse
Affiliation(s)
- Qing Zhe Ni
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Evgeny Markhasin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Thach V Can
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Björn Corzilius
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kong Ooi Tan
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alexander B Barnes
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Eugenio Daviso
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Yongchao Su
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Judith Herzfeld
- Department of Chemistry, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
616
|
Donovan KJ, Silvers R, Linse S, Griffin RG. 3D MAS NMR Experiment Utilizing Through-Space 15N- 15N Correlations. J Am Chem Soc 2017; 139:6518-6521. [PMID: 28447786 DOI: 10.1021/jacs.7b01159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We demonstrate a novel 3D NNC magic angle spinning NMR experiment that generates 15N-15N internuclear contacts in protein systems using an optimized 15N-15N proton assisted recoupling (PAR) mixing period and a 13C dimension for improved resolution. The optimized PAR condition permits the acquisition of high signal-to-noise 3D data that enables backbone chemical shift assignments using a strategy that is complementary to current schemes. The spectra can also provide distance constraints. The utility of the experiment is demonstrated on an M0Aβ1-42 fibril sample that yields high-quality data that is readily assigned and interpreted. The 3D NNC experiment therefore provides a powerful platform for solid-state protein studies and is broadly applicable to a variety of systems and experimental conditions.
Collapse
Affiliation(s)
- Kevin J Donovan
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Robert Silvers
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University , Lund 221 00, Sweden
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
617
|
Wang T, Jo H, DeGrado WF, Hong M. Water Distribution, Dynamics, and Interactions with Alzheimer's β-Amyloid Fibrils Investigated by Solid-State NMR. J Am Chem Soc 2017; 139:6242-6252. [PMID: 28406028 PMCID: PMC5808936 DOI: 10.1021/jacs.7b02089] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Water is essential for protein folding and assembly of amyloid fibrils. Internal water cavities have been proposed for several amyloid fibrils, but no direct structural and dynamical data have been reported on the water dynamics and site-specific interactions of water with the fibrils. Here we use solid-state NMR spectroscopy to investigate the water interactions of several Aβ40 fibrils. 1H spectral lineshapes, T2 relaxation times, and two-dimensional (2D) 1H-13C correlation spectra show that there are five distinct water pools: three are peptide-bound water, while two are highly dynamic water that can be assigned to interfibrillar water and bulk-like matrix water. All these water pools are associated with the fibrils on the nanometer scale. Water-transferred 2D correlation spectra allow us to map out residue-specific hydration and give evidence for the presence of a water pore in the center of the three-fold symmetric wild-type Aβ40 fibril. In comparison, the loop residues and the intramolecular strand-strand interface have low hydration, excluding the presence of significant water cavities in these regions. The Osaka Aβ40 mutant shows lower hydration and more immobilized water than wild-type Aβ40, indicating the influence of peptide structure on the dynamics and distribution of hydration water. Finally, the highly mobile interfibrillar and matrix water exchange with each other on the time scale of seconds, suggesting that fibril bundling separates these two water pools, and water molecules must diffuse along the fibril axis before exchanging between these two environments. These results provide insights and experimental constraints on the spatial distribution and dynamics of water pools in these amyloid fibrils.
Collapse
Affiliation(s)
- Tuo Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry and Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California 94143, United States
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry and Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California 94143, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
618
|
Irie Y, Murakami K, Hanaki M, Hanaki Y, Suzuki T, Monobe Y, Takai T, Akagi KI, Kawase T, Hirose K, Irie K. Synthetic Models of Quasi-Stable Amyloid β40 Oligomers with Significant Neurotoxicity. ACS Chem Neurosci 2017; 8:807-816. [PMID: 28026168 DOI: 10.1021/acschemneuro.6b00390] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The formation of soluble oligomers of amyloid β42 and 40 (Aβ42, Aβ40) is the initial event in the pathogenesis of Alzheimer's disease (AD). Based on previous systematic proline replacement and solid-state NMR, we proposed a toxic dimer structure of Aβ42, a highly aggregative alloform, with a turn at positions 22 and 23, and a hydrophobic core in the C-terminal region. However, in addition to Aβ42, Aβ40 dimers can also contribute to AD progression because of the more abundance of Aβ40 monomer in biological fluids. Here, we describe the synthesis and characterization of three dimer models of the toxic-conformation constrained E22P-Aβ40 using l,l-2,6-diaminopimeric acid (DAP) or l,l-2,8-diaminoazelaic acid (DAZ) linker at position 30, which is incorporated into the intermolecular parallel β-sheet region, and DAP at position 38 in the C-terminal hydrophobic core. E22P-A30DAP-Aβ40 dimer (1) and E22P-A30DAZ-Aβ40 dimer (2) existed mainly in oligomeric states even after 2 weeks incubation without forming fibrils, unlike the corresponding monomer. Their neurotoxicity toward SH-SY5Y neuroblastoma cells was very weak. In contrast, E22P-G38DAP-Aβ40 dimer (3) formed β-sheet-rich oligomeric aggregates, and exhibited more potent neurotoxicity than the corresponding monomer. Ion mobility-mass spectrometry suggested that high molecular-weight oligomers (12-24-mer) of 3 form, but not for 1 and 2 after 4 h incubation. These findings indicate that formation of the hydrophobic core at the C-terminus, rather than intermolecular parallel β-sheet, triggers the formation of toxic Aβ oligomers. Compound 3 may be a suitable model for studying the etiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Yumi Irie
- Division
of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuma Murakami
- Division
of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Mizuho Hanaki
- Division
of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yusuke Hanaki
- Division
of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takashi Suzuki
- Division
of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yoko Monobe
- National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Tomoyo Takai
- National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Ken-ichi Akagi
- National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | | | | | - Kazuhiro Irie
- Division
of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
619
|
Xu L, Ma B, Nussinov R, Thompson D. Familial Mutations May Switch Conformational Preferences in α-Synuclein Fibrils. ACS Chem Neurosci 2017; 8:837-849. [PMID: 28075555 PMCID: PMC7900905 DOI: 10.1021/acschemneuro.6b00406] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis of Parkinson's disease is closely associated with the aggregation of the α-synuclein protein. Several familial mutants have been identified and shown to affect the aggregation kinetics of α-synuclein through distinct molecular mechanisms. Quantitative evaluation of the relative stabilities of the wild type and mutant fibrils is crucial for understanding the aggregation process and identifying the key component steps. In this work, we examined two topologically different α-synuclein fibril structures that are either determined by solid-state NMR method or modeled based on solid-state NMR data, and characterized their conformational properties and thermodynamic stabilities using molecular dynamics simulations. We show that the two fibril morphologies have comparable size, solvent exposure, secondary structures, and similar molecule/peptide binding modes; but different stabilities. Familial mutations do not significantly alter the overall fibril structures but shift their relative stabilities. Distinct mutations display altered fibril conformational behavior, suggesting different propagation preferences, reminiscent of cross-seeding among prion strains and tau deletion mutants. The simulations quantify the hydrophobic and electrostatic interactions, as well as N-terminal dynamics, that may contribute to the divergent aggregation kinetics that has been observed experimentally. Our results indicate that small molecule and peptide inhibitors may share the same binding region, providing molecular recognition that is independent of fibril conformation.
Collapse
Affiliation(s)
- Liang Xu
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
620
|
Tomaselli S, Pagano K, D’Arrigo C, Molinari H, Ragona L. Evidence of Molecular Interactions of Aβ1-42 with N-Terminal Truncated Beta Amyloids by NMR. ACS Chem Neurosci 2017; 8:759-765. [PMID: 28135060 DOI: 10.1021/acschemneuro.6b00456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aβ peptides, the main protein components of Alzheimer's disease (AD) plaques, derive from a proteolytic cleavage of the amyloid precursor protein. Due to heterogeneous cleavage sites, a series of Aβ peptides, including the major and widely studied species Aβ1-40 (Aβ40) and Aβ1-42 (Aβ42), are produced. In addition to the C-terminal heterogeneity of Aβ peptides, significant amounts of N-terminal truncated (Aβ3-42) and pyroglutamate-modified amyloid-β peptides (AβpE3-42) have been identified in AD affected brains and shown to be more cytotoxic than unmodified Aβ peptides. Little is known about the properties of their mixtures with Aβ42. Nuclear Magnetic Resonance spectroscopy is here employed to investigate the interaction of N-truncated peptides with Aβ42 at different molar ratios. We highlight the critical concentration of N-truncated forms influencing the aggregation kinetics of Aβ42. We provide evidence, at residue level, that the C-terminal region of Aβ42 is the locus of transient specific interactions with highly aggregation prone N-truncated alloforms.
Collapse
Affiliation(s)
- Simona Tomaselli
- Istituto per lo Studio delle Macromolecole, CNR, Via Corti 12, 20133 Milan, Italy
| | - Katiuscia Pagano
- Istituto per lo Studio delle Macromolecole, CNR, Via Corti 12, 20133 Milan, Italy
| | - Cristina D’Arrigo
- Istituto per lo Studio delle Macromolecole, CNR, Via De Marini 6, 16149 Genoa, Italy
| | - Henriette Molinari
- Istituto per lo Studio delle Macromolecole, CNR, Via Corti 12, 20133 Milan, Italy
| | - Laura Ragona
- Istituto per lo Studio delle Macromolecole, CNR, Via Corti 12, 20133 Milan, Italy
| |
Collapse
|
621
|
Rodriguez RA, Chen LY, Plascencia-Villa G, Perry G. Elongation affinity, activation barrier, and stability of Aβ42 oligomers/fibrils in physiological saline. Biochem Biophys Res Commun 2017; 487:444-449. [PMID: 28427941 DOI: 10.1016/j.bbrc.2017.04.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 11/26/2022]
Abstract
Amyloid-beta (Aβ) peptides, Aβ40 and the more neurotoxic Aβ42, have been the subject of many research efforts for Alzheimer's disease. In two recent independent investigations, the atomistic structure of Aβ42 fibril has been clearly established in the S-shaped conformation consisting of three β-sheets stabilized by salt bridges formed between the Lys28 sidechain and the C-terminus of Ala42. This structure distinctively differs from the long-known structure of Aβ40 in the β-hairpin shaped conformation consisting of two β-sheets. Recent in silico investigations based on all-atom models have reached closer agreement with the in vitro measurements of Aβ40 thermodynamics. In this study, we present an in silico investigation of Aβ42 thermodynamics. Using the established force field parameters in seven sets of all-atom simulations, we examined the stability of small Aβ42 oligomers in physiological saline. We computed the elongation affinity of the S-shaped Aβ42 fibril, reaching agreement with the experimental data. We also estimated the Arrhenius activation barrier along the elongation pathway (from the disordered conformation of a free Aβ42 peptide to its S-shaped conformation on a fibril) that amounts to about 16 kcal/mol, which is consistent with the experimental data. Based on these quantitative agreements, we conclude that aggregation of Aβ42 peptides into fibrils is thermodynamically slow without precipitation by extrinsic factors such as heparan sulfate proteoglycan and highlight the possibility to prevent Aβ42 aggregation by eliminating some precipitation factors or by increasing competitive agents to capture and transport free Aβ42 peptides from the cerebrospinal fluid.
Collapse
Affiliation(s)
- Roberto A Rodriguez
- Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Liao Y Chen
- Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
622
|
Shankar R, Ernst M, Madhu PK, Vosegaard T, Nielsen NC, Nielsen AB. A general theoretical description of the influence of isotropic chemical shift in dipolar recoupling experiments for solid-state NMR. J Chem Phys 2017; 146:134105. [DOI: 10.1063/1.4979123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
623
|
Man VH, Nguyen PH, Derreumaux P. Conformational Ensembles of the Wild-Type and S8C Aβ1-42 Dimers. J Phys Chem B 2017; 121:2434-2442. [PMID: 28245647 PMCID: PMC5944329 DOI: 10.1021/acs.jpcb.7b00267] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We characterized the dimer of the amyloid-β wild-type (WT) peptide, Aβ, of 42 residues and its disulfide-bond-locked double mutant (S8C) by replica exchange molecular dynamics simulations. Aβ dimers are known to be the smallest toxic species in Alzheimer's disease, and the S8C mutant has been shown experimentally to form an exclusive homogeneous and neurotoxic dimer. Our 50 μs all-atom simulations reveal similar secondary structures and collision cross-sections but very different intramolecular and intermolecular conformations upon double S8C mutation. Both dimers are very dynamic with hundreds of free-energy minima that differ from the U-shape and S-shape conformations of the peptides in the fibrils. The only common structural feature, shared by both species with a probability of 4% in WT and 12% in S8C-S8C, is a three-stranded β-sheet spanning the 17-23, 29-36, and 39-41 residues, which does not exist in the Aβ40 WT dimers.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, United States
| | - Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
624
|
Lucato CM, Lupton CJ, Halls ML, Ellisdon AM. Amyloidogenicity at a Distance: How Distal Protein Regions Modulate Aggregation in Disease. J Mol Biol 2017; 429:1289-1304. [PMID: 28342736 DOI: 10.1016/j.jmb.2017.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022]
Abstract
The misfolding of proteins to form amyloid is a key pathological feature of several progressive, and currently incurable, diseases. A mechanistic understanding of the pathway from soluble, native protein to insoluble amyloid is crucial for therapeutic design, and recent efforts have helped to elucidate the key molecular events that trigger protein misfolding. Generally, either global or local structural perturbations occur early in amyloidogenesis to expose aggregation-prone regions of the protein that can then self-associate to form toxic oligomers. Surprisingly, these initiating structural changes are often caused or influenced by protein regions distal to the classically amyloidogenic sequences. Understanding the importance of these distal regions in the pathogenic process has highlighted many remaining knowledge gaps regarding the precise molecular events that occur in classic aggregation pathways. In this review, we discuss how these distal regions can influence aggregation in disease and the recent technical and conceptual advances that have allowed this insight.
Collapse
Affiliation(s)
- Christina M Lucato
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Christopher J Lupton
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew M Ellisdon
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
625
|
Wälti MA, Orts J, Riek R. Quenched hydrogen-deuterium exchange NMR of a disease-relevant Aβ(1-42) amyloid polymorph. PLoS One 2017; 12:e0172862. [PMID: 28319116 PMCID: PMC5358797 DOI: 10.1371/journal.pone.0172862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/12/2017] [Indexed: 11/21/2022] Open
Abstract
Alzheimer’s disease is associated with the aggregation into amyloid fibrils of Aβ(1–42) and Aβ(1–40) peptides. Interestingly, these fibrils often do not obtain one single structure but rather show different morphologies, so-called polymorphs. Here, we compare quenched hydrogen-deuterium (H/D) exchange of a disease-relevant Aβ(1–42) fibril for which the 3D structure has been determined by solid-state NMR with H/D exchange previously determined on another structural polymorph. This comparison reveals secondary structural differences between the two polymorphs suggesting that the two polymorphisms can be classified as segmental polymorphs.
Collapse
Affiliation(s)
| | - Julien Orts
- Laboratorium für Physikalische Chemie, ETH Zürich, Zürich, Switzerland
| | - Roland Riek
- Laboratorium für Physikalische Chemie, ETH Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
626
|
Nucleobindin 1 binds to multiple types of pre-fibrillar amyloid and inhibits fibrillization. Sci Rep 2017; 7:42880. [PMID: 28220836 PMCID: PMC5318909 DOI: 10.1038/srep42880] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/16/2017] [Indexed: 11/08/2022] Open
Abstract
During amyloid fibril formation, amyloidogenic polypeptides misfold and self assemble into soluble pre-fibrillar aggregates, i.e., protofibrils, which elongate and mature into insoluble fibrillar aggregates. An emerging class of chaperones, chaperone-like amyloid binding proteins (CLABPs), has been shown to interfere with aggregation of particular misfolded amyloid peptides or proteins. We have discovered that the calcium-binding protein nuclebindin-1 (NUCB1) is a novel CLABP. We show that NUCB1 inhibits aggregation of islet-amyloid polypeptide associated with type 2 diabetes mellitus, a-synuclein associated with Parkinson’s disease, transthyretin V30M mutant associated with familial amyloid polyneuropathy, and Aβ42 associated with Alzheimer’s disease by stabilizing their respective protofibril intermediates. Kinetic studies employing the modeling software AmyloFit show that NUCB1 affects both primary nucleation and secondary nucleation. We hypothesize that NUCB1 binds to the common cross-β-sheet structure of protofibril aggregates to “cap” and stabilize soluble macromolecular complexes. Transmission electron microscopy and atomic force microscopy were employed to characterize the size, shape and volume distribution of multiple sources of NUCB1-capped protofibrils. Interestingly, NUCB1 prevents Aβ42 protofibril toxicity in a cellular assay. NUCB1-stabilized amyloid protofibrils could be used as immunogens to prepare conformation-specific antibodies and as novel tools to develop screens for anti-protofibril diagnostics and therapeutics.
Collapse
|
627
|
Chandra B, Korn A, Maity BK, Adler J, Rawat A, Krueger M, Huster D, Maiti S. Stereoisomers Probe Steric Zippers in Amyloid-β. J Phys Chem B 2017; 121:1835-1842. [PMID: 28140589 DOI: 10.1021/acs.jpcb.6b12332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Shape complementarity between close-packed residues plays a critical role in the amyloid aggregation process. Here, we probe such "steric zipper" interactions in amyloid-β (Aβ40), whose aggregation is linked to Alzheimer's disease, by replacing natural residues by their stereoisomers. Such mutations are expected to specifically destabilize the shape sensitive "packing" interactions, which may potentially increase their solubility and change other properties. We study the stereomutants DF19 and DL34 and also the DA2/DF4/DH6/DS8 mutant of Aβ40. F19-L34 is a critical contact in a tightly packed region of Aβ, while residues 1-9 are known to be disordered. While both DF19 and DL34 slow down the kinetics of aggregation and form amyloid fibrils efficiently, only DL34 increases the final solubility. DF19 gives rise to additional off-pathway aggregation which results in large, kinetically stable aggregates, and has lower net solubility. DA2/DF4/DH6/DS8 does not have an effect on the kinetics or the solubility. Notably, both DF19 and DL34 oligomers have a significantly lower level of interactions with lipid vesicles and live cells. We conclude that stereoisomers can cause complex site dependent changes in amyloid properties, and provide an effective tool to determine the role of individual residues in shaping the packed interiors of amyloid aggregates.
Collapse
Affiliation(s)
- Bappaditya Chandra
- Department of Chemical Science, Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Alexander Korn
- Institut für Medizinische Physik und Biophysik, Universität Leipzig , Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Barun Kumar Maity
- Department of Chemical Science, Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Juliane Adler
- Institut für Medizinische Physik und Biophysik, Universität Leipzig , Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Anoop Rawat
- Department of Chemical Science, Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Martin Krueger
- Institut für Medizinische Physik und Biophysik, Universität Leipzig , Härtelstrasse 16-18, D-04107 Leipzig, Germany.,Institut für Anatomie, Universität Leipzig , Liebigstr. 13, D-04103 Leipzig, Germany
| | - Daniel Huster
- Institut für Medizinische Physik und Biophysik, Universität Leipzig , Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Sudipta Maiti
- Department of Chemical Science, Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
628
|
Bertolani A, Pizzi A, Pirrie L, Gazzera L, Morra G, Meli M, Colombo G, Genoni A, Cavallo G, Terraneo G, Metrangolo P. Crystal Structure of the DFNKF Segment of Human Calcitonin Unveils Aromatic Interactions between Phenylalanines. Chemistry 2017; 23:2051-2058. [PMID: 27806188 PMCID: PMC5573999 DOI: 10.1002/chem.201604639] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Indexed: 12/24/2022]
Abstract
Although intensively studied, the high-resolution crystal structure of the peptide DFNKF, the core-segment of human calcitonin, has never been described. Here we report how the use of iodination as a strategy to promote crystallisation and facilitate phase determination, allowed us to solve, for the first time, the single-crystal X-ray structure of a DFNKF derivative. Computational studies suggest that both the iodinated and the wild-type peptides populate very similar conformations. Furthermore, the conformer found in the solid-state structure is one of the most populated in solution, making the crystal structure a reliable model for the peptide in solution. The crystal structure of DFNKF(I) confirms the overall features of the amyloid cross-β spine and highlights how aromatic-aromatic interactions are important structural factors in the self-assembly of this peptide. A detailed analysis of such interactions is reported.
Collapse
Affiliation(s)
- Arianna Bertolani
- Laboratory of Nanostructured Fluorinated Materials (NFMLab)Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”Politecnico di MilanoVia L. Mancinelli 720131MilanoItaly
| | - Andrea Pizzi
- Laboratory of Nanostructured Fluorinated Materials (NFMLab)Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”Politecnico di MilanoVia L. Mancinelli 720131MilanoItaly
| | - Lisa Pirrie
- Laboratory of Nanostructured Fluorinated Materials (NFMLab)Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”Politecnico di MilanoVia L. Mancinelli 720131MilanoItaly
| | - Lara Gazzera
- Laboratory of Nanostructured Fluorinated Materials (NFMLab)Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”Politecnico di MilanoVia L. Mancinelli 720131MilanoItaly
| | - Giulia Morra
- Istituto di Chimica del Riconoscimento MolecolareCNRVia Mario Bianco 920131MilanoItaly
| | - Massimiliano Meli
- Istituto di Chimica del Riconoscimento MolecolareCNRVia Mario Bianco 920131MilanoItaly
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento MolecolareCNRVia Mario Bianco 920131MilanoItaly
| | - Alessandro Genoni
- Laboratoire SRSMC, UMR 7565CNRSVandoeuvre-lès-Nancy54506France
- Laboratoire SRSMC, UMR 7565Université de LorraineVandoeuvre-lès-Nancy54506France
| | - Gabriella Cavallo
- Laboratory of Nanostructured Fluorinated Materials (NFMLab)Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”Politecnico di MilanoVia L. Mancinelli 720131MilanoItaly
| | - Giancarlo Terraneo
- Laboratory of Nanostructured Fluorinated Materials (NFMLab)Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”Politecnico di MilanoVia L. Mancinelli 720131MilanoItaly
| | - Pierangelo Metrangolo
- Laboratory of Nanostructured Fluorinated Materials (NFMLab)Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”Politecnico di MilanoVia L. Mancinelli 720131MilanoItaly
- Istituto di Chimica del Riconoscimento MolecolareCNRVia Mario Bianco 920131MilanoItaly
- HYBER Centre of ExcellenceDepartment of Applied PhysicsAalto University, P.O. Box 1510002150EspooFinland
| |
Collapse
|
629
|
Bellucci L, Bussi G, Di Felice R, Corni S. Fibrillation-prone conformations of the amyloid-β-42 peptide at the gold/water interface. NANOSCALE 2017; 9:2279-2290. [PMID: 28124697 DOI: 10.1039/c6nr06010b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Proteins in the proximity of inorganic surfaces and nanoparticles may undergo profound adjustments that trigger biomedically relevant processes, such as protein fibrillation. The mechanisms that govern protein-surface interactions at the molecular level are still poorly understood. In this work, we investigate the adsorption onto a gold surface, in water, of an amyloid-β (Aβ) peptide, which is the amyloidogenic peptide involved in Alzheimer's disease. The entire adsorption process, from the peptide in bulk water to its conformational relaxation on the surface, is explored by large-scale atomistic molecular dynamics (MD) simulations. We start by providing a description of the conformational ensemble of Aβ in solution by a 22 μs temperature replica exchange MD simulation, which is consistent with previous results. Then, we obtain a statistical description of how the peptide approaches the gold surface by multiple MD simulations, identifying the preferential gold-binding sites and giving a kinetic picture of the association process. Finally, relaxation of the Aβ conformations at the gold/water interface is performed by a 19 μs Hamiltonian-temperature replica exchange MD simulation. We find that the conformational ensemble of Aβ is strongly perturbed by the presence of the surface. In particular, at the gold/water interface the population of the conformers akin to amyloid fibrils is significantly enriched, suggesting that this extended contact geometry may promote fibrillation.
Collapse
Affiliation(s)
- Luca Bellucci
- Center S3, CNR Institute of Nanoscience, via Campi 213/A, 41125 Modena, Italy.
| | - Giovanni Bussi
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
| | - Rosa Di Felice
- Center S3, CNR Institute of Nanoscience, via Campi 213/A, 41125 Modena, Italy. and Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Stefano Corni
- Center S3, CNR Institute of Nanoscience, via Campi 213/A, 41125 Modena, Italy.
| |
Collapse
|
630
|
Xiang S, Kulminskaya N, Habenstein B, Biernat J, Tepper K, Paulat M, Griesinger C, Becker S, Lange A, Mandelkow E, Linser R. A Two-Component Adhesive: Tau Fibrils Arise from a Combination of a Well-Defined Motif and Conformationally Flexible Interactions. J Am Chem Soc 2017; 139:2639-2646. [PMID: 28124562 DOI: 10.1021/jacs.6b09619] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fibrillar aggregates of Aβ and Tau in the brain are the major hallmarks of Alzheimer's disease. Most Tau fibers have a twisted appearance, but the twist can be variable and even absent. This ambiguity, which has also been associated with different phenotypes of tauopathies, has led to controversial assumptions about fibril constitution, and it is unclear to-date what the molecular causes of this polymorphism are. To tackle this question, we used solid-state NMR strategies providing assignments of non-seeded three-repeat-domain Tau3RD with an inherent heterogeneity. This is in contrast to the general approach to characterize the most homogeneous preparations by construct truncation or intricate seeding protocols. Here, carbon and nitrogen chemical-shift conservation between fibrils revealed invariable secondary-structure properties, however, with inter-monomer interactions variable among samples. Residues with variable amide shifts are localized mostly to N- and C-terminal regions within the rigid beta structure in the repeat region of Tau3RD. By contrast, the hexapeptide motif in repeat R3, a crucial motif for fibril formation, shows strikingly low variability of all NMR parameters: Starting as a nucleation site for monomer-monomer contacts, this six-residue sequence element also turns into a well-defined structural element upon fibril formation. Given the absence of external causes in vitro, the interplay of structurally differently conserved elements in this protein likely reflects an intrinsic property of Tau fibrils.
Collapse
Affiliation(s)
- Shengqi Xiang
- Department NMR-Based Structural Biology, Max-Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Natalia Kulminskaya
- Department NMR-Based Structural Biology, Max-Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Birgit Habenstein
- Department NMR-Based Structural Biology, Max-Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany.,Institut Européen de Chimie et Biologie (IECB), Université de Bordeaux/CBMN UMR5248 , 2 rue Robert Escarpit, 33600 Pessac, France
| | - Jacek Biernat
- DZNE, German Center for Neurodegenerative Diseases , Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.,CAESAR Research Center , Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Katharina Tepper
- DZNE, German Center for Neurodegenerative Diseases , Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.,CAESAR Research Center , Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Maria Paulat
- Department NMR-Based Structural Biology, Max-Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Griesinger
- Department NMR-Based Structural Biology, Max-Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Becker
- Department NMR-Based Structural Biology, Max-Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Adam Lange
- Department NMR-Based Structural Biology, Max-Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany.,Institut für Biologie, Humboldt-Universität zu Berlin , Invalidenstrasse 110, 10115 Berlin, Germany.,Department of Molecular Biophysics, Leibniz-Institut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Eckhard Mandelkow
- DZNE, German Center for Neurodegenerative Diseases , Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.,CAESAR Research Center , Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.,Hamburg Outstation, c/o DESY, Max-Planck-Institute for Metabolism Research , Notkestrasse 85, 22607 Hamburg, Germany
| | - Rasmus Linser
- Department NMR-Based Structural Biology, Max-Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany.,Department Chemistry and Pharmacy, Ludwig-Maximilians-University Munich , Butenandtstrasse 5-13, 81377 Munich, Germany
| |
Collapse
|
631
|
Grisanti L, Pinotsi D, Gebauer R, Kaminski Schierle GS, Hassanali AA. A computational study on how structure influences the optical properties in model crystal structures of amyloid fibrils. Phys Chem Chem Phys 2017; 19:4030-4040. [PMID: 28111679 PMCID: PMC7612978 DOI: 10.1039/c6cp07564a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Amyloid fibrils have been shown to have peculiar optical properties since they can exhibit fluorescence in the absence of aromatic residues. In a recent study, we have shown that proton transfer (PT) events along hydrogen bonds (HBs) are coupled to absorption in the near UV range. Here, we gain more insights into the different types of hydrogen bonding interactions that occur in our model systems and the molecular factors that control the susceptibility of the protons to undergo PT and how this couples to the optical properties. In the case of the strong N-C termini interactions, a nearby methionine residue stabilizes the non-zwitterionic NH2-COOH pair, while zwitterionic NH3+-COO- is stabilized by the proximity of nearby crystallographic water molecules. Proton motion along the hydrogen bonds in the fibril is intimately coupled to the compression of the heavier atoms, similar to what is observed in bulk water. Small changes in the compression of the hydrogen bonds in the protein can lead to significant changes in both the ground and excited state potential energy surfaces associated with PT. Finally, we also reinforce the importance of nuclear quantum fluctuations of protons in the HBs of the amyloid proteins.
Collapse
Affiliation(s)
- Luca Grisanti
- International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy.
| | - Dorothea Pinotsi
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK
| | - Ralph Gebauer
- International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy.
| | - Gabriele S Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK
| | - Ali A Hassanali
- International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy.
| |
Collapse
|
632
|
Guo C, Hou G, Lu X, Polenova T. Mapping protein-protein interactions by double-REDOR-filtered magic angle spinning NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2017; 67:95-108. [PMID: 28120201 PMCID: PMC6258002 DOI: 10.1007/s10858-016-0086-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/25/2016] [Indexed: 05/03/2023]
Abstract
REDOR-based experiments with simultaneous 1H-13C and 1H-15N dipolar dephasing are explored for investigating intermolecular protein-protein interfaces in complexes formed by a U-13C,15N-labeled protein and its natural abundance binding partner. The application of a double-REDOR filter (dREDOR) results in a complete dephasing of proton magnetization in the U-13C,15N-enriched molecule while the proton magnetization of the unlabeled binding partner is not dephased. This retained proton magnetization is then transferred across the intermolecular interface by 1H-13C or 1H-15N cross polarization, permitting to establish the residues of the U-13C,15N-labeled protein, which constitute the binding interface. To assign the interface residues, this dREDOR-CPMAS element is incorporated as a building block into 13C-13C correlation experiments. We established the validity of this approach on U-13C,15N-histidine and on a structurally characterized complex of dynactin's U-13C,15N-CAP-Gly domain with end-binding protein 1 (EB1). The approach introduced here is broadly applicable to the analysis of intermolecular interfaces when one of the binding partners in a complex cannot be isotopically labeled.
Collapse
Affiliation(s)
- Changmiao Guo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| | - Xingyu Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
633
|
Structural variation in amyloid-β fibrils from Alzheimer's disease clinical subtypes. Nature 2017; 541:217-221. [PMID: 28052060 PMCID: PMC5233555 DOI: 10.1038/nature20814] [Citation(s) in RCA: 491] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022]
Abstract
Aggregation of amyloid-β peptides into fibrils or other self-assembled states is central to the pathogenesis of Alzheimer's disease. Fibrils formed in vitro by 40- and 42-residue amyloid-β peptides (Aβ40 and Aβ42) are polymorphic, with variations in molecular structure that depend on fibril growth conditions. Recent experiments suggest that variations in amyloid-β fibril structure in vivo may correlate with variations in Alzheimer's disease phenotype, in analogy to distinct prion strains that are associated with different clinical and pathological phenotypes. Here we investigate correlations between structural variation and Alzheimer's disease phenotype using solid-state nuclear magnetic resonance (ssNMR) measurements on Aβ40 and Aβ42 fibrils prepared by seeded growth from extracts of Alzheimer's disease brain cortex. We compared two atypical Alzheimer's disease clinical subtypes-the rapidly progressive form (r-AD) and the posterior cortical atrophy variant (PCA-AD)-with a typical prolonged-duration form (t-AD). On the basis of ssNMR data from 37 cortical tissue samples from 18 individuals, we find that a single Aβ40 fibril structure is most abundant in samples from patients with t-AD and PCA-AD, whereas Aβ40 fibrils from r-AD samples exhibit a significantly greater proportion of additional structures. Data for Aβ42 fibrils indicate structural heterogeneity in most samples from all patient categories, with at least two prevalent structures. These results demonstrate the existence of a specific predominant Aβ40 fibril structure in t-AD and PCA-AD, suggest that r-AD may relate to additional fibril structures and indicate that there is a qualitative difference between Aβ40 and Aβ42 aggregates in the brain tissue of patients with Alzheimer's disease.
Collapse
|
634
|
Abstract
Dozens of proteins are known to convert to the aggregated amyloid state. These include fibrils associated with systemic and neurodegenerative diseases and cancer, functional amyloid fibrils in microorganisms and animals, and many denatured proteins. Amyloid fibrils can be much more stable than other protein assemblies. In contrast to globular proteins, a single protein sequence can aggregate into several distinctly different amyloid structures, termed polymorphs, and a given polymorph can reproduce itself by seeding. Amyloid polymorphs may be the molecular basis of prion strains. Whereas the Protein Data Bank contains some 100,000 globular protein and 3,000 membrane protein structures, only a few dozen amyloid protein structures have been determined, and most of these are short segments of full amyloid-forming proteins. Regardless, these amyloid structures illuminate the architecture of the amyloid state, including its stability and its capacity for formation of polymorphs.
Collapse
Affiliation(s)
- David S Eisenberg
- Howard Hughes Medical Institute and Molecular Biology Institute, University of California, Los Angeles, California 90095-1570; ,
| | - Michael R Sawaya
- Howard Hughes Medical Institute and Molecular Biology Institute, University of California, Los Angeles, California 90095-1570; ,
| |
Collapse
|
635
|
Bauer T, Dotta C, Balacescu L, Gath J, Hunkeler A, Böckmann A, Meier BH. Line-Broadening in Low-Temperature Solid-State NMR Spectra of Fibrils. JOURNAL OF BIOMOLECULAR NMR 2017; 67:51-61. [PMID: 28161758 DOI: 10.1007/s10858-016-0083-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
The temperature-dependent resonance-line broadening of HET-s(218-289) in its amyloid form is investigated in the range between 110 K and 280 K. Significant differences are observed between residues in the structured hydrophobic triangular core, which are broadened the least and can be detected down to 100 K, and in the solvent-exposed parts, which are broadened the most and often disappear from the observed spectrum around 200 K. Below the freezing of the bulk water, around 273 K, the protein fibrils are still surrounded by a layer of mobile water whose thickness decreases with temperature, leading to drying out of the fibrils.
Collapse
Affiliation(s)
- Thomas Bauer
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093, Zurich, Switzerland
| | - Claudio Dotta
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093, Zurich, Switzerland
| | - Livia Balacescu
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093, Zurich, Switzerland
| | - Julia Gath
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093, Zurich, Switzerland
| | - Andreas Hunkeler
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093, Zurich, Switzerland
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS, Université de Lyon 1, 7 passage du Vercors, 69367, Lyon, France.
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093, Zurich, Switzerland.
| |
Collapse
|
636
|
Ngo ST, Luu XC, Nguyen MT, Le CN, Vu VV. In silico studies of solvated F19W amyloid β (11–40) trimer. RSC Adv 2017. [DOI: 10.1039/c7ra07187f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
REMD studies shows that F19W mutation does not change in the overall structure of Aβ11–40 trimer significantly but increases it flexibility, consistent with the observed formation of the same fibril structures at slower rates.
Collapse
Affiliation(s)
- Son Tung Ngo
- Computational Chemistry Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| | - Xuan-Cuong Luu
- NTT Hi-Tech Institute
- Nguyen Tat Thanh University
- Ho Chi Minh City
- Vietnam
| | | | - Chinh N. Le
- NTT Hi-Tech Institute
- Nguyen Tat Thanh University
- Ho Chi Minh City
- Vietnam
| | - Van V. Vu
- NTT Hi-Tech Institute
- Nguyen Tat Thanh University
- Ho Chi Minh City
- Vietnam
| |
Collapse
|
637
|
Elucidating the Aβ42 Anti-Aggregation Mechanism of Action of Tramiprosate in Alzheimer's Disease: Integrating Molecular Analytical Methods, Pharmacokinetic and Clinical Data. CNS Drugs 2017; 31:495-509. [PMID: 28435985 PMCID: PMC5488121 DOI: 10.1007/s40263-017-0434-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Amyloid beta (Aβ) oligomers play a critical role in the pathogenesis of Alzheimer's disease (AD) and represent a promising target for drug development. Tramiprosate is a small-molecule Aβ anti-aggregation agent that was evaluated in phase III clinical trials for AD but did not meet the primary efficacy endpoints; however, a pre-specified subgroup analysis revealed robust, sustained, and clinically meaningful cognitive and functional effects in patients with AD homozygous for the ε4 allele of apolipoprotein E4 (APOE4/4 homozygotes), who carry an increased risk for the disease. Therefore, to build on this important efficacy attribute and to further improve its pharmaceutical properties, we have developed a prodrug of tramiprosate ALZ-801 that is in advanced stages of clinical development. To elucidate how tramiprosate works, we investigated its molecular mechanism of action (MOA) and the translation to observed clinical outcomes. OBJECTIVE The two main objectives of this research were to (1) elucidate and characterize the MOA of tramiprosate via an integrated application of three independent molecular methodologies and (2) present an integrated translational analysis that links the MOA, conformation of the target, stoichiometry, and pharmacokinetic dose exposure to the observed clinical outcome in APOE4/4 homozygote subjects. METHOD We used three molecular analytical methods-ion mobility spectrometry-mass spectrometry (IMS-MS), nuclear magnetic resonance (NMR), and molecular dynamics-to characterize the concentration-related interactions of tramiprosate versus Aβ42 monomers and the resultant conformational alterations affecting aggregation into oligomers. The molecular stoichiometry of the tramiprosate versus Aβ42 interaction was further analyzed in the context of clinical pharmacokinetic dose exposure and central nervous system Aβ42 levels (i.e., pharmacokinetic-pharmacodynamic translation in humans). RESULTS We observed a multi-ligand interaction of tramiprosate with monomeric Aβ42, which differs from the traditional 1:1 binding. This resulted in the stabilization of Aβ42 monomers and inhibition of oligomer formation and elongation, as demonstrated by IMS-MS and molecular dynamics. Using NMR spectroscopy and molecular dynamics, we also showed that tramiprosate bound to Lys16, Lys28, and Asp23, the key amino acid side chains of Aβ42 that are responsible for both conformational seed formation and neuronal toxicity. The projected molar excess of tramiprosate versus Aβ42 in humans using the dose effective in patients with AD aligned with the molecular stoichiometry of the interaction, providing a clear clinical translation of the MOA. A consistent alignment of these preclinical-to-clinical elements describes a unique example of translational medicine and supports the efficacy seen in symptomatic patients with AD. This unique "enveloping mechanism" of tramiprosate also provides a potential basis for tramiprosate dose selection for patients with homozygous AD at earlier stages of disease. CONCLUSION We have identified the molecular mechanism that may account for the observed clinical efficacy of tramiprosate in patients with APOE4/4 homozygous AD. In addition, the integrated application of the molecular methodologies (i.e., IMS-MS, NMR, and thermodynamics analysis) indicates that it is feasible to modulate and control the Aβ42 conformational dynamics landscape by a small molecule, resulting in a favorable Aβ42 conformational change that leads to a clinically relevant amyloid anti-aggregation effect and inhibition of oligomer formation. This novel enveloping MOA of tramiprosate has potential utility in the development of disease-modifying therapies for AD and other neurodegenerative diseases caused by misfolded proteins.
Collapse
|
638
|
Karas JA, Noor A, Schieber C, Connell TU, Separovic F, Donnelly PS. The efficient synthesis and purification of amyloid-β(1–42) using an oligoethylene glycol-containing photocleavable lysine tag. Chem Commun (Camb) 2017; 53:6903-6905. [DOI: 10.1039/c7cc03147e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An oligoethylene glycol-containing photocleavable lysine tag was developed to facilitate the efficient synthesis and purification of the Aβ42 peptide.
Collapse
Affiliation(s)
- John A. Karas
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
- Australia
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
| | - Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
- Australia
| | - Christine Schieber
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
- Australia
| | - Timothy U. Connell
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
- Australia
| | - Frances Separovic
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
- Australia
| | - Paul S. Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
- Australia
| |
Collapse
|
639
|
Ngo ST, Hung HM, Truong DT, Nguyen MT. Replica exchange molecular dynamics study of the truncated amyloid beta (11–40) trimer in solution. Phys Chem Chem Phys 2017; 19:1909-1919. [DOI: 10.1039/c6cp05511g] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure of the 3Aβ11–40 oligomer is determined for the first time using T-REMD simulations.
Collapse
Affiliation(s)
- Son Tung Ngo
- Computational Chemistry Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| | | | - Duc Toan Truong
- Department of Theoretical Physics
- Ho Chi Minh City University of Science
- Ho Chi Minh City
- Vietnam
| | - Minh Tho Nguyen
- Computational Chemistry Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| |
Collapse
|
640
|
Tran J, Chang D, Hsu F, Wang H, Guo Z. Cross-seeding between Aβ40 and Aβ42 in Alzheimer's disease. FEBS Lett 2016; 591:177-185. [PMID: 27981583 DOI: 10.1002/1873-3468.12526] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 12/23/2022]
Abstract
Aβ42 is the major component of parenchymal plaques in the brain of Alzheimer's patients, while Aβ40 is the major component of cerebrovascular plaques. Since Aβ40 and Aβ42 coexist in the brain, understanding the interaction between Aβ40 and Aβ42 during their aggregation is important to delineate the molecular mechanism underlying Alzheimer's disease. Here, we present a rigorous and systematic study of the cross-seeding effects between Aβ40 and Aβ42. We show that Aβ40 fibril seeds can promote Aβ42 aggregation in a concentration-dependent manner, and vice versa. Our results also suggest that seeded aggregation and spontaneous aggregation may be two separate pathways. These findings may partly resolve conflicting observations in the literature regarding the cross-seeding effects between Aβ40 and Aβ42.
Collapse
Affiliation(s)
- Joyce Tran
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Dennis Chang
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Frederick Hsu
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Hongsu Wang
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Zhefeng Guo
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
641
|
Structure of Crenezumab Complex with Aβ Shows Loss of β-Hairpin. Sci Rep 2016; 6:39374. [PMID: 27996029 PMCID: PMC5171940 DOI: 10.1038/srep39374] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/21/2016] [Indexed: 12/12/2022] Open
Abstract
Accumulation of amyloid-β (Aβ) peptides and amyloid plaque deposition in brain is postulated as a cause of Alzheimer's disease (AD). The precise pathological species of Aβ remains elusive although evidence suggests soluble oligomers may be primarily responsible for neurotoxicity. Crenezumab is a humanized anti-Aβ monoclonal IgG4 that binds multiple forms of Aβ, with higher affinity for aggregated forms, and that blocks Aβ aggregation, and promotes disaggregation. To understand the structural basis for this binding profile and activity, we determined the crystal structure of crenezumab in complex with Aβ. The structure reveals a sequential epitope and conformational requirements for epitope recognition, which include a subtle but critical element that is likely the basis for crenezumab's versatile binding profile. We find interactions consistent with high affinity for multiple forms of Aβ, particularly oligomers. Of note, crenezumab also sequesters the hydrophobic core of Aβ and breaks an essential salt-bridge characteristic of the β-hairpin conformation, eliminating features characteristic of the basic organization in Aβ oligomers and fibrils, and explains crenezumab's inhibition of aggregation and promotion of disaggregation. These insights highlight crenezumab's unique mechanism of action, particularly regarding Aβ oligomers, and provide a strong rationale for the evaluation of crenezumab as a potential AD therapy.
Collapse
|
642
|
Riek R, Eisenberg DS. The activities of amyloids from a structural perspective. Nature 2016; 539:227-235. [PMID: 27830791 DOI: 10.1038/nature20416] [Citation(s) in RCA: 359] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/14/2016] [Indexed: 12/16/2022]
Abstract
The aggregation of proteins into structures known as amyloids is observed in many neurodegenerative diseases, including Alzheimer's disease. Amyloids are composed of pairs of tightly interacting, many stranded and repetitive intermolecular β-sheets, which form the cross-β-sheet structure. This structure enables amyloids to grow by recruitment of the same protein and its repetition can transform a weak biological activity into a potent one through cooperativity and avidity. Amyloids therefore have the potential to self-replicate and can adapt to the environment, yielding cell-to-cell transmissibility, prion infectivity and toxicity.
Collapse
Affiliation(s)
- Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| | - David S Eisenberg
- UCLA-DOE Institute, Los Angeles, California 90095-1570, USA.,Howard Hughes Medical Institute, Los Angeles, California 90095-1570, USA
| |
Collapse
|
643
|
Peccati F, Pantaleone S, Solans-Monfort X, Sodupe M. Fluorescent Markers for Amyloid-β Detection: Computational Insights. Isr J Chem 2016. [DOI: 10.1002/ijch.201600114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Francesca Peccati
- Departament de Química; Universitat Autònoma de Barcelona; 08193 Bellaterra Spain
| | - Stefano Pantaleone
- Departament de Química; Universitat Autònoma de Barcelona; 08193 Bellaterra Spain
| | | | - Mariona Sodupe
- Departament de Química; Universitat Autònoma de Barcelona; 08193 Bellaterra Spain
| |
Collapse
|
644
|
Vugmeyster L, Ostrovsky D, Clark MA, Falconer IB, Hoatson GL, Qiang W. Fast Motions of Key Methyl Groups in Amyloid-β Fibrils. Biophys J 2016; 111:2135-2148. [PMID: 27851938 PMCID: PMC5113154 DOI: 10.1016/j.bpj.2016.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/18/2016] [Accepted: 10/05/2016] [Indexed: 11/28/2022] Open
Abstract
Amyloid-β (Aβ) peptide is the major component of plaques found in Alzheimer's disease patients. Using solid-state 2H NMR relaxation performed on selectively deuterated methyl groups, we probed the dynamics in the threefold symmetric and twofold symmetric polymorphs of native Aβ as well as the protofibrils of the D23N mutant. Specifically, we investigated the methyl groups of two leucine residues that belong to the hydrophobic core (L17 and L34) as well as M35 residues belonging to the hydrophobic interface between the cross-β subunits, which has been previously found to be water-accessible. Relaxation measurements performed over 310-140 K and two magnetic field strengths provide insights into conformational variability within and between polymorphs. Core packing variations within a single polymorph are similar to what is observed for globular proteins for the core residues, whereas M35 exhibits a larger degree of variability. M35 site is also shown to undergo a solvent-dependent dynamical transition in which slower amplitude motions of methyl axes are activated at high temperature. The motions, modeled as a diffusion of methyl axis, have activation energy by a factor of 2.7 larger in the twofold compared with the threefold polymorph, whereas D23N protofibrils display a value similar to the threefold polymorph. This suggests enhanced flexibility of the hydrophobic interface in the threefold polymorph. This difference is only observed in the hydrated state and is absent in the dry fibrils, highlighting the role of solvent at the cavity. In contrast, the dynamic behavior of the core is hydration-independent.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado at Denver, Denver, Colorado.
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado at Denver, Denver, Colorado
| | - Matthew A Clark
- Department of Chemistry, University of Alaska Anchorage, Anchorage, Alaska
| | - Isaac B Falconer
- Department of Chemistry, University of Colorado at Denver, Denver, Colorado
| | - Gina L Hoatson
- Department of Physics, College of William and Mary, Williamsburg, Virginia
| | - Wei Qiang
- Department of Chemistry, Binghamton University, Binghamton, New York
| |
Collapse
|
645
|
Lendel C, Sparrman T, Mayzel M, Andersson CE, Karlsson G, Härd T. Combined Solution- and Magic Angle Spinning NMR Reveals Regions of Distinct Dynamics in Amyloid β Protofibrils. ChemistrySelect 2016. [DOI: 10.1002/slct.201601468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christofer Lendel
- Dept. of Chemistry and Biotechnology; Swedish University of Agricultural Sciences (SLU); Uppsala Sweden
- Dept. of Chemistry - present address; KTH Royal Institute of Technology; Stockholm Sweden
| | | | - Maxim Mayzel
- Swedish NMR Centre; University of Gothenburg; Gothenburg Sweden
| | - C. Evalena Andersson
- Dept. of Chemistry and Biotechnology; Swedish University of Agricultural Sciences (SLU); Uppsala Sweden
- Dept. of Cell and Molecular Biology - present address; Uppsala University; Uppsala Sweden
| | - Göran Karlsson
- Swedish NMR Centre; University of Gothenburg; Gothenburg Sweden
| | - Torleif Härd
- Dept. of Chemistry and Biotechnology; Swedish University of Agricultural Sciences (SLU); Uppsala Sweden
| |
Collapse
|
646
|
Ruiz J, Boehringer R, Grogg M, Raya J, Schirer A, Crucifix C, Hellwig P, Schultz P, Torbeev V. Covalent Tethering and Residues with Bulky Hydrophobic Side Chains Enable Self-Assembly of Distinct Amyloid Structures. Chembiochem 2016; 17:2274-2285. [PMID: 27717158 DOI: 10.1002/cbic.201600440] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 11/10/2022]
Abstract
Polymorphism is a common property of amyloid fibers that complicates their detailed structural and functional studies. Here we report experiments illustrating the chemical principles that enable the formation of amyloid polymorphs with distinct stoichiometric composition. Using appropriate covalent tethering we programmed self-assembly of a model peptide corresponding to the [20-41] fragment of human β2-microglobulin into fibers with either trimeric or dimeric amyloid cores. Using a set of biophysical and biochemical methods we demonstrated their distinct structural, morphological, and templating properties. Furthermore, we showed that supramolecular approaches in which the peptide is modified with bulky substituents can also be applied to modulate the formation of different fiber polymorphs. Such strategies, when applied to disease-related peptides and proteins, will greatly help in the evaluation of the biological properties of structurally distinct amyloids.
Collapse
Affiliation(s)
- Jérémy Ruiz
- ISIS (Institut de Science et d'Ingénierie Supramoléculaires) and, icFRC (International Center for Frontier Research in Chemistry), University of Strasbourg, CNRS-, UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| | - Régis Boehringer
- ISIS (Institut de Science et d'Ingénierie Supramoléculaires) and, icFRC (International Center for Frontier Research in Chemistry), University of Strasbourg, CNRS-, UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| | - Marcel Grogg
- ISIS (Institut de Science et d'Ingénierie Supramoléculaires) and, icFRC (International Center for Frontier Research in Chemistry), University of Strasbourg, CNRS-, UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| | - Jésus Raya
- Membrane Biophysics and NMR, Institute of Chemistry, University of Strasbourg, CNRS-, UMR 7177, 4 rue Blaise Pascal, 67008, Strasbourg, France
| | - Alicia Schirer
- Laboratory of Bioelectrochemistry and Spectroscopy, University of Strasbourg, CNRS-, UMR 7140, 1 rue Blaise Pascal, 67070, Strasbourg, France
| | - Corinne Crucifix
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM-U964, University of Strasbourg, CNRS-, UMR 7104, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Petra Hellwig
- Laboratory of Bioelectrochemistry and Spectroscopy, University of Strasbourg, CNRS-, UMR 7140, 1 rue Blaise Pascal, 67070, Strasbourg, France
| | - Patrick Schultz
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM-U964, University of Strasbourg, CNRS-, UMR 7104, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Vladimir Torbeev
- ISIS (Institut de Science et d'Ingénierie Supramoléculaires) and, icFRC (International Center for Frontier Research in Chemistry), University of Strasbourg, CNRS-, UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| |
Collapse
|
647
|
Bastidas OH, Green B, Sprague M, Peters MH. Few Ramachandran Angle Changes Provide Interaction Strength Increase in Aβ42 versus Aβ40 Amyloid Fibrils. Sci Rep 2016; 6:36499. [PMID: 27808259 PMCID: PMC5093553 DOI: 10.1038/srep36499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/17/2016] [Indexed: 12/30/2022] Open
Abstract
The pathology of Alzheimer's disease can ultimately be traced to the increased aggregation stability of Aβ42 peptides which possess two extra residues (Ile 41 &Ala 42) that the non-pathological strain (Aβ40) lacks. We have found Aβ42 fibrils to exhibit stronger energies in inter-chain interactions and we have also identified the cause for this increase to be the result of different Ramachandran angle values in certain residues of the Aβ42 strain compared to Aβ40. These unique angle configurations result in the peptide planes in the fibril structures to be more vertical along the fibril axis for Aβ42 which thus reduces the inter-atomic distance between interacting atoms on vicinal peptide chains thereby increasing the electrostatic interaction energies. We lastly postulate that these different Ramachandran angle values could possibly be traced to the unique conformational folding avenues sampled by the Aβ42 peptide owing to the presence of its two extra residues.
Collapse
Affiliation(s)
- Oscar H Bastidas
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Benjamin Green
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Mary Sprague
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Michael H Peters
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
648
|
Tu Y, Ma S, Liu F, Sun Y, Dong X. Hematoxylin Inhibits Amyloid β-Protein Fibrillation and Alleviates Amyloid-Induced Cytotoxicity. J Phys Chem B 2016; 120:11360-11368. [PMID: 27749059 DOI: 10.1021/acs.jpcb.6b06878] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulation and aggregation of amyloid β-protein (Aβ) play an important role in the pathogenesis of Alzheimer's disease. There has been increased interest in finding new anti-amyloidogenic compounds to inhibit Aβ aggregation. Herein, thioflavin T fluorescent assay and transmission electron microscopy results showed that hematoxylin, a natural organic molecule extracted from Caesalpinia sappan, was a powerful inhibitor of Aβ42 fibrillogenesis. Circular dichroism studies revealed hematoxylin reduced the β-sheet content of Aβ42 and made it assemble into antiparallel arrangement, which induced Aβ42 to form off-pathway aggregates. As a result, hematoxylin greatly alleviated Aβ42-induced cytotoxicity. Molecular dynamics simulations revealed the detailed interactions between hematoxylin and Aβ42. Four binding sites of hematoxylin on Aβ42 hexamer were identified, including the N-terminal region, S8GY10 region, turn region, and C-terminal region. Notably, abundant hydroxyl groups made hematoxylin prefer to interact with Aβ42 via hydrogen bonds. This also contributed to the formation of π-π stacking and hydrophobic interactions. Taken together, the research proved that hematoxylin was a potential agent against Aβ fibrillogenesis and cytotoxicity.
Collapse
Affiliation(s)
- Yilong Tu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
| | - Shuai Ma
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
| | - Fufeng Liu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China.,College of Biotechnology and National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology , Tianjin 300457, P. R. China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
| |
Collapse
|
649
|
Abstract
![]()
In
this paper, we investigate the coassembly of peptides derived
from the central and C-terminal regions of the β-amyloid peptide
(Aβ). In the preceding paper, J. Am. Chem. Soc.2016, DOI: 10.1021/jacs.6b06000, we established that peptides containing residues 17–23 (LVFFAED)
from the central region of Aβ and residues 30–36 (AIIGLMV)
from the C-terminal region of Aβ assemble to form homotetramers
consisting of two hydrogen-bonded dimers. Here, we mix these tetramer-forming
peptides and determine how they coassemble. Incorporation of a single 15N isotopic label into each peptide provides a spectroscopic
probe with which to elucidate the coassembly of the peptides by 1H,15N HSQC. Job’s method of continuous variation
and nonlinear least-squares fitting reveal that the peptides form
a mixture of heterotetramers in 3:1, 2:2, and 1:3 stoichiometries,
in addition to the homotetramers. These studies also establish the
relative stability of each tetramer and show that the 2:2 heterotetramer
predominates. 15N-Edited NOESY shows the 2:2 heterotetramer
comprises two different homodimers, rather than two heterodimers.
The peptides within the heterotetramer segregate in forming the homodimer
subunits, but the two homodimers coassemble in forming the heterotetramer.
These studies show that the central and C-terminal regions of Aβ
can preferentially segregate within β-sheets and that the resulting
segregated β-sheets can further coassemble.
Collapse
Affiliation(s)
- Nicholas L Truex
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| | - James S Nowick
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| |
Collapse
|
650
|
Truex NL, Wang Y, Nowick JS. Assembly of Peptides Derived from β-Sheet Regions of β-Amyloid. J Am Chem Soc 2016; 138:13882-13890. [PMID: 27642651 PMCID: PMC5089065 DOI: 10.1021/jacs.6b06000] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
In
Alzheimer’s disease, aggregation of the β-amyloid
peptide (Aβ) results in the formation of oligomers and fibrils
that are associated with neurodegeneration. Aggregation of Aβ
occurs through interactions between different regions of the peptide.
This paper and the accompanying paper constitute a two-part investigation
of two key regions of Aβ: the central region and the C-terminal
region. These two regions promote aggregation and adopt β-sheet
structure in the fibrils, and may also do so in the oligomers. In
this paper, we study the assembly of macrocyclic β-sheet peptides
that contain residues 17–23 (LVFFAED) from the central region
and residues 30–36 (AIIGLMV) from the C-terminal region. These
peptides assemble to form tetramers. Each tetramer consists of two
hydrogen-bonded dimers that pack through hydrophobic interactions
in a sandwich-like fashion. Incorporation of a single 15N isotopic label into each peptide provides a spectroscopic probe
with which to elucidate the β-sheet assembly and interaction: 1H,15N HSQC studies facilitate the identification
of the monomers and tetramers; 15N-edited NOESY studies
corroborate the pairing of the dimers within the tetramers. In the
following paper, J. Am. Chem. Soc.2016, DOI: 10.1021/jacs.6b06001, we will extend these studies to elucidate the coassembly of the
peptides to form heterotetramers.
Collapse
Affiliation(s)
- Nicholas L Truex
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| | - Yilin Wang
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| | - James S Nowick
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| |
Collapse
|