601
|
Cerebral cavernous malformations: from molecular pathogenesis to genetic counselling and clinical management. Eur J Hum Genet 2011; 20:134-40. [PMID: 21829231 DOI: 10.1038/ejhg.2011.155] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cerebral cavernous (or capillary-venous) malformations (CCM) have a prevalence of about 0.1-0.5% in the general population. Genes mutated in CCM encode proteins that modulate junction formation between vascular endothelial cells. Mutations lead to the development of abnormal vascular structures.In this article, we review the clinical features, molecular and genetic basis of the disease, and management.
Collapse
|
602
|
Tapia S, Rojas M, Morales P, Ramirez MA, Diaz ES. The Laminin-Induced Acrosome Reaction in Human Sperm Is Mediated by Src Kinases and the Proteasome1. Biol Reprod 2011; 85:357-66. [DOI: 10.1095/biolreprod.111.092254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
603
|
Integrin signaling, cell survival, and anoikis: distinctions, differences, and differentiation. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:738137. [PMID: 21785723 PMCID: PMC3139189 DOI: 10.1155/2011/738137] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 01/06/2011] [Accepted: 03/10/2011] [Indexed: 01/01/2023]
Abstract
Cell survival and apoptosis implicate an increasing complexity of players and signaling pathways which regulate not only the decision-making process of surviving (or dying), but as well the execution of cell death proper. The same complex nature applies to anoikis, a form of caspase-dependent apoptosis that is largely regulated by integrin-mediated, cell-extracellular matrix interactions. Not surprisingly, the regulation of cell survival, apoptosis, and anoikis furthermore implicates additional mechanistic distinctions according to the specific tissue, cell type, and species. Incidentally, studies in recent years have unearthed yet another layer of complexity in the regulation of these cell processes, namely, the implication of cell differentiation state-specific mechanisms. Further analyses of such differentiation state-distinct mechanisms, either under normal or physiopathological contexts, should increase our understanding of diseases which implicate a deregulation of integrin function, cell survival, and anoikis.
Collapse
|
604
|
Lamsoul I, Burande CF, Razinia Z, Houles TC, Menoret D, Baldassarre M, Erard M, Moog-Lutz C, Calderwood DA, Lutz PG. Functional and structural insights into ASB2alpha, a novel regulator of integrin-dependent adhesion of hematopoietic cells. J Biol Chem 2011; 286:30571-30581. [PMID: 21737450 DOI: 10.1074/jbc.m111.220921] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
By providing contacts between hematopoietic cells and the bone marrow microenvironment, integrins are implicated in cell adhesion and thereby in control of cell fate of normal and leukemia cells. The ASB2 gene, initially identified as a retinoic acid responsive gene and a target of the promyelocytic leukemia retinoic acid receptor α oncoprotein in acute promyelocytic leukemia cells, encodes two isoforms, a hematopoietic-type (ASB2α) and a muscle-type (ASB2β) that are involved in hematopoietic and myogenic differentiation, respectively. ASB2α is the specificity subunit of an E3 ubiquitin ligase complex that targets filamins to proteasomal degradation. To examine the relationship of the ASB2α structure to E3 ubiquitin ligase function, functional assays and molecular modeling were performed. We show that ASB2α, through filamin A degradation, enhances adhesion of hematopoietic cells to fibronectin, the main ligand of β1 integrins. Furthermore, we demonstrate that a short N-terminal region specific to ASB2α, together with ankyrin repeats 1 to 10, is necessary for association of ASB2α with filamin A. Importantly, the ASB2α N-terminal region comprises a 9-residue segment with predicted structural homology to the filamin-binding motifs of migfilin and β integrins. Together, these data provide new insights into the molecular mechanisms of ASB2α binding to filamin.
Collapse
Affiliation(s)
- Isabelle Lamsoul
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Clara F Burande
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Ziba Razinia
- Department of Pharmacology and Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Thibault C Houles
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Delphine Menoret
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Massimiliano Baldassarre
- Department of Pharmacology and Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Monique Erard
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Christel Moog-Lutz
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - David A Calderwood
- Department of Pharmacology and Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Pierre G Lutz
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France.
| |
Collapse
|
605
|
Lu D, Kassab GS. Role of shear stress and stretch in vascular mechanobiology. J R Soc Interface 2011; 8:1379-85. [PMID: 21733876 DOI: 10.1098/rsif.2011.0177] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Blood vessels are under constant mechanical loading from blood pressure and flow which cause internal stresses (endothelial shear stress and circumferential wall stress, respectively). The mechanical forces not only cause morphological changes of endothelium and blood vessel wall, but also trigger biochemical and biological events. There is considerable evidence that physiologic stresses and strains (stretch) exert vasoprotective roles via nitric oxide and provide a homeostatic oxidative balance. A perturbation of tissue stresses and strains can disturb biochemical homeostasis and lead to vascular remodelling and possible dysfunction (e.g. altered vasorelaxation, tone, stiffness, etc.). These distinct biological endpoints are caused by some common biochemical pathways. The focus of this brief review is to point out some possible commonalities in the molecular pathways in response to endothelial shear stress and circumferential wall stretch.
Collapse
Affiliation(s)
- Deshun Lu
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | | |
Collapse
|
606
|
Multiscale simulations suggest a mechanism for integrin inside-out activation. Proc Natl Acad Sci U S A 2011; 108:11890-5. [PMID: 21730166 DOI: 10.1073/pnas.1104505108] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Integrins are large cell-surface adhesion receptors that can be activated to a high affinity state by the formation of an intracellular complex between the integrin β-subunit tail, the membrane, and talin. The F2 and F3 subdomains of the talin head play a key role in formation of this complex. Here, activation of the integrin αIIb/β3 dimer by the talin head domain was probed using multiscale molecular dynamics simulations. A number of novel insights emerge from these studies, including (i) the importance of the integrin αIIb subunit F992 and F993 residues in stabilizing the "off" state of the αIIb/β3 dimer, (ii) a crucial role for negatively charged groups in the F2-F3/membrane interaction, (iii) binding of the talin F2-F3 domain to negatively charged lipid headgroups in the membrane induces a reorientation of the β transmembrane (TM) domain, (iv) an increase in the tilt angle of the β TM domain relative to the bilayer normal helps to destabilize the α/β TM interaction and promote a scissor-like movement of the integrin TM helices. These results, combined with various published experimental observations, suggest a model for the mechanism of inside-out activation of integrins by talin.
Collapse
|
607
|
Montuori N, Bifulco K, Carriero MV, La Penna C, Visconte V, Alfano D, Pesapane A, Rossi FW, Salzano S, Rossi G, Ragno P. The cross-talk between the urokinase receptor and fMLP receptors regulates the activity of the CXCR4 chemokine receptor. Cell Mol Life Sci 2011; 68:2453-67. [PMID: 20972812 PMCID: PMC11114667 DOI: 10.1007/s00018-010-0564-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 09/10/2010] [Accepted: 10/07/2010] [Indexed: 01/15/2023]
Abstract
The receptor (CXCR4) for the stromal-derived factor-1 (SDF1) and the urokinase-receptor (uPAR) are up-regulated in various tumors. We show that CXCR4-transfected cells migrate toward SDF1 on collagen (CG) and do not on vitronectin (VN). Co-expression of cell-surface uPAR, which is a VN receptor, impairs SDF1-induced migration on CG and allows migration on VN. Blocking fMLP receptors (fMLP-R), alpha-v integrins or the uPAR region capable to interact with fMLP-Rs, impairs migration of uPAR/CXCR4-transfected cells on VN and restores their migration on CG. uPAR co-expression also reduces the adherence of CXCR4-expressing cells to various components of the extracellular matrix (ECM) and influences the partitioning of beta1 and alpha-v integrins to membrane lipid-rafts, affecting ECM-dependent signaling. uPAR interference in CXCR4 activity has been confirmed in cells from prostate carcinoma. Our results demonstrate that uPAR expression regulates the adhesive and migratory ability of CXCR4-expressing cells through a mechanism involving fMLP receptors and alpha-v integrins.
Collapse
Affiliation(s)
- Nunzia Montuori
- Department of Cellular and Molecular Biology and Pathology, “Federico II” University, Naples, Italy
| | - Katia Bifulco
- Department of Experimental Oncology, National Cancer Institute, Naples, Italy
| | | | - Claudio La Penna
- Department of Cellular and Molecular Biology and Pathology, “Federico II” University, Naples, Italy
| | - Valeria Visconte
- Department of Cellular and Molecular Biology and Pathology, “Federico II” University, Naples, Italy
| | - Daniela Alfano
- Department of Chemistry, University of Salerno, Via Ponte don Melillo, 84084 Fisciano (Salerno), Italy
| | - Ada Pesapane
- Department of Cellular and Molecular Biology and Pathology, “Federico II” University, Naples, Italy
| | - Francesca Wanda Rossi
- Department of Clinical Immunology and Allergy, “Federico II” University, Naples, Italy
| | - Salvatore Salzano
- Institute of Experimental Endocrinology and Oncology (National Research Council), Naples, Italy
| | - Guido Rossi
- Department of Cellular and Molecular Biology and Pathology, “Federico II” University, Naples, Italy
| | - Pia Ragno
- Department of Chemistry, University of Salerno, Via Ponte don Melillo, 84084 Fisciano (Salerno), Italy
| |
Collapse
|
608
|
WEI XL. Construction and Analysis for Molecular Interaction Network of Cell Adhesion*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
609
|
Zhang QW, Wang X, Wan YL, Liu YC, Zhu J. shRNA-mediated down-regulation of paxillin reduces cell invasion in human colon adenocarcinoma cell line SW480. Shijie Huaren Xiaohua Zazhi 2011; 19:1693-1697. [DOI: 10.11569/wcjd.v19.i16.1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of short hairpin RNA (shRNA)-mediated down-regulation of paxillin expression on cell invasion in human colorectal adenocarcinoma cell line SW480 in vitro.
METHODS: shRNA targeting the paxillin gene was constructed and transfected into SW480 cells. SW480 cells were divided into three groups: untransfected cells, cells transfected with a control shRNA, and those transfected with a paxillin-specific shRNA. After transfection, the invasion of cells was analyzed by Transwell migration assay.
RESULTS: The expression of paxillin was inhibited in SW480 cells after the transfection of paxillin-specific shRNA. The numbers of cells passing the Transwell membrane were significantly lower in cells transfected with the paxillin-specific shRNA than in untransfected cells and those transfected with control shRNA (23.33 ± 6.12 vs 62.00 ± 6.26, 55.00 ± 13.04, F = 30.976, P < 0.05).
CONCLUSION: Down-regulation of paxillin gene expression reduces cell invasion in human colon adenocarcinoma cell line SW480 in vitro.
Collapse
|
610
|
Dual effects of β3 integrin subunit expression on human pancreatic cancer models. Cell Oncol (Dordr) 2011; 34:393-405. [DOI: 10.1007/s13402-011-0039-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2010] [Indexed: 01/09/2023] Open
|
611
|
Human liver sinusoidal endothelial cells respond to interaction with Entamoeba histolytica by changes in morphology, integrin signalling and cell death. Cell Microbiol 2011; 13:1091-106. [DOI: 10.1111/j.1462-5822.2011.01604.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
612
|
Affiliation(s)
- Christian Frantz
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
613
|
Paccani SR, Finetti F, Davi M, Patrussi L, D'Elios MM, Ladant D, Baldari CT. The Bordetella pertussis adenylate cyclase toxin binds to T cells via LFA-1 and induces its disengagement from the immune synapse. ACTA ACUST UNITED AC 2011; 208:1317-30. [PMID: 21576384 PMCID: PMC3173238 DOI: 10.1084/jem.20101558] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Bordella pertussis toxin CyaA binds to LFA-1 on T cells and disrupts the immune synapse. The Bordetella pertussis adenylate cyclase toxin (CyaA) assists infection by potently suppressing the host immune response. Although CyaA effectively targets T lymphocytes, its putative receptor on these cells is unknown. Here, we show that CyaA binds to T cells via the β2 integrin LFA-1 in its active conformation. CyaA clusters with LFA-1 at the immune synapse (IS), from which it induces the premature disengagement of LFA-1 concomitant with the dissipation of talin, which tethers the integrin to the underlying actin cytoskeleton. The CyaA-induced redistribution of LFA-1 was cAMP- and protein kinase A (PKA)–dependent. These results not only identify LFA-1 as a CyaA receptor on T cells but unveil a novel mechanism of immunosuppression whereby the toxin parasitizes its interaction with LFA-1 to inhibit signaling at the IS through the local production of cAMP. The data also provide novel insights into the role of cAMP/PKA signaling in controlling the dynamics of the IS.
Collapse
|
614
|
The role of β3-integrins in tumor angiogenesis: context is everything. Curr Opin Cell Biol 2011; 23:630-7. [PMID: 21565482 DOI: 10.1016/j.ceb.2011.03.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 03/26/2011] [Indexed: 02/07/2023]
Abstract
Integrins are a family of cell-extracellular matrix adhesion molecules that play important roles in tumor angiogenesis. αvβ3-Integrin has received much attention as a potential anti-angiogenic target because it is upregulated in tumor-associated blood vessels. Agents targeting αvβ3-integrin are now showing some success in phase III clinical trails for the treatment of glioblastoma, but the exact function of this integrin in tumor angiogenesis is still relatively unknown. This review highlights some of the recent data illustrating that β3-integrins play both pro-angiogenic and anti-angiogenic roles in tumor angiogenesis depending on the context. Specifically we will discuss how the following differentially influence β3-integrin's role in tumor angiogenesis: first, cell-matrix interactions, second, β3-integrin inhibitor doses, third, cell type, and fourth, other interacting molecules.
Collapse
|
615
|
Rooney N, Streuli CH. How integrins control mammary epithelial differentiation: a possible role for the ILK-PINCH-Parvin complex. FEBS Lett 2011; 585:1663-72. [PMID: 21570968 DOI: 10.1016/j.febslet.2011.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 01/15/2023]
Abstract
Differentiation into tissue-specific cell types occurs in response to numerous external signals. Integrins impart signals from the extracellular matrix microenvironment that are required for cell differentiation. However, the precise cytoplasmic transducers of these signals are yet to be understood properly. In lactating mammary epithelial cells, integrin-linked kinase has been identified as an indispensable integrin-signalling adaptor that enables the activation of Rac1, which is necessary for prolactin-induced milk protein expression. Here we use examples from various tissues to summarise possible mechanisms by which ILK and its binding partners PINCH and Parvin (ILK-PINCH-Parvin complex) could be required for Rac activation and mammary epithelial differentiation.
Collapse
Affiliation(s)
- Nicholas Rooney
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences and Manchester Breast Centre, University of Manchester, Manchester, UK
| | | |
Collapse
|
616
|
Filla MS, Schwinn MK, Nosie AK, Clark RW, Peters DM. Dexamethasone-associated cross-linked actin network formation in human trabecular meshwork cells involves β3 integrin signaling. Invest Ophthalmol Vis Sci 2011; 52:2952-9. [PMID: 21273548 DOI: 10.1167/iovs.10-6618] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To determine whether cross-linked actin networks (CLANs) formed in dexamethasone (DEX)-treated human trabecular meshwork (HTM) cells are structurally similar to those formed after β3 integrin activation and involve αvβ3 integrin signaling. METHODS Two HTM cell strains and an αvβ3 integrin-overexpressing immortalized TM cell line were used. DEX- or ethanol-pretreated HTM cells were plated on fibronectin with or without β3 integrin-activating mAb AP-5. Immunofluorescence microscopy was used to identify phalloidin-labeled CLANs and to ascertain the presence of α-actinin, PIP(2), and syndecan-4 within them. β3 Integrin signaling involvement was determined using a PI3-kinase (LY294002) or Rac1 (NSC23766) inhibitor. αvβ3 Integrin expression levels and the β3 integrin activation state were determined by fluorescence-activated cell sorter analysis and immunofluorescence microscopy. RESULTS CLANs associated with either DEX treatment or β3 integrin activation contained syndecan-4, PIP(2), and α-actinin. In the absence of mAb AP-5, LY294002 did not affect DEX-associated CLAN formation, whereas NSC23766 decreased the percentage of CLAN-positive cells by 80%. In the presence of mAb AP-5, both inhibitors decreased DEX-associated CLAN formation. DEX pretreatment increased β3 integrin-induced CLAN formation nearly sixfold and the level of αvβ3 integrin expression and activation threefold compared with control cells. Activated β3 integrin-positive adhesions increased nearly fivefold in DEX-treated cells. αvβ3 Integrin overexpression in TM-1 cells increased CLAN formation twofold. CONCLUSIONS DEX-associated CLANs were structurally similar to those induced by mAb AP-5 and involved both increased expression and activation of αvβ3 integrins. Thus, glucocorticoid-induced CLAN formation may involve enhanced β3 integrin signaling in HTM cells, possibly by an inside-out signaling mechanism.
Collapse
Affiliation(s)
- Mark S Filla
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Medical School, Madison, USA
| | | | | | | | | |
Collapse
|
617
|
Park SH, Choi BH, Park SR, Min BH. Chondrogenesis of Rabbit Mesenchymal Stem Cells in Fibrin/Hyaluronan Composite ScaffoldIn Vitro. Tissue Eng Part A 2011; 17:1277-86. [DOI: 10.1089/ten.tea.2010.0337] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sang-Hyug Park
- Cell Therapy Center, Ajou University Medical Center, Suwon, Korea
- Department of Molecular Science and Technology, Ajou University Medical Center, Suwon, Korea
| | - Byung Hyune Choi
- Division of Biomedical and Bioengineering Sciences, Inha University College of Medicine, Incheon, Korea
| | - So Ra Park
- Department of Physiology, Inha University College of Medicine, Incheon, Korea
| | - Byoung-Hyun Min
- Cell Therapy Center, Ajou University Medical Center, Suwon, Korea
- Department of Molecular Science and Technology, Ajou University Medical Center, Suwon, Korea
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea
| |
Collapse
|
618
|
Wei XL. Notice of Retraction: Visualization and Analysis of Integrin Signaling Network. 2011 5TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING 2011:1-4. [DOI: 10.1109/icbbe.2011.5780095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
619
|
Copland IB, Galipeau J. Death and inflammation following somatic cell transplantation. Semin Immunopathol 2011; 33:535-50. [DOI: 10.1007/s00281-011-0274-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 04/14/2011] [Indexed: 12/13/2022]
|
620
|
Geiger B, Yamada KM. Molecular architecture and function of matrix adhesions. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005033. [PMID: 21441590 DOI: 10.1101/cshperspect.a005033] [Citation(s) in RCA: 391] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell adhesions mediate important bidirectional interactions between cells and the extracellular matrix. They provide an interactive interface between the extracellular chemical and physical environment and the cellular scaffolding and signaling machinery. This dynamic, reciprocal regulation of intracellular processes and the matrix is mediated by membrane receptors such as the integrins, as well as many other components that comprise the adhesome. Adhesome constituents assemble themselves into different types of cell adhesion structures that vary in molecular complexity and change over time. These cell adhesions play crucial roles in cell migration, proliferation, and determination of cell fate.
Collapse
Affiliation(s)
- Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
621
|
Mouguelar VS, Cabada MO, Coux G. The integrin-binding motif RGDS induces protein tyrosine phosphorylation without activation in Bufo arenarum (Amphibia) oocytes. Reproduction 2011; 141:581-93. [DOI: 10.1530/rep-10-0411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Integrins are cell adhesion molecules that are thought to be involved in sperm–oocyte interaction. Nevertheless, their function in mammalian fertilization is still controversial, as different species behave differently. In amphibians, their role is mainly supported byXenopus laevisstudies, where RGDS peptide induces oocyte activation. We recently provided evidence suggesting the presence and involvement of integrins in the interaction of the oocyte plasma membrane (PM) with sperm in the amphibianBufo arenarum. In order to understand the role of integrin homologs in oocytes and their possible contribution to egg activation mechanisms, we examined the presence of integrin subunits and the effect of RGDS peptide on oocytes and during fertilization. Western blot studies detected integrin subunits α5, αV and β1 in oocytes. In sperm, we could detect only the αV integrin subunit. We found that RGDS peptide was unable to elicit egg activation or MAPK dephosphorylation, but can induce reversible inhibition of fertilization. A similar partial inhibition was produced by an anti-β1 integrin antibody. Using an anti-phosphotyrosine antibody we found major changes in phosphotyrosine-containing proteins in egg extracts minutes after fertilization. Cytosol and PMs isolated from oocytes and fertilized eggs showed additional fertilization-induced phosphorylated proteins. Some of these were also present in cytosol and PMs from RGDS-treated oocytes (partially mimicking fertilization). These findings suggest thatB. arenarumfertilization involves integrins (e.g. β1 subunit) as adhesion proteins. Our data support the view that RGDS-binding receptors may function as signaling receptors inB. arenarumoocytes, but integrin engagement by RGDS is not sufficient for oocyte activation.
Collapse
|
622
|
Signaling mechanism of cell adhesion molecules in breast cancer metastasis: potential therapeutic targets. Breast Cancer Res Treat 2011; 128:7-21. [PMID: 21499686 DOI: 10.1007/s10549-011-1499-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/31/2011] [Indexed: 01/13/2023]
Abstract
Metastasis is responsible for the majority of breast cancer-related deaths. The metastatic spread of cancer cells is a complicated process that requires considerable flexibility in the adhesive properties of both tumor cells and other interacting cells. Cell adhesion molecules (CAMs) are membrane receptors that mediate cell-cell and cell-matrix interactions, and are essential for transducing intracellular signals responsible for adhesion, migration, invasion, angiogensis, and organ-specific metastasis. This review will discuss the recent advances in our understanding on the biological functions, signaling mechanisms, and therapeutic potentials of important CAMs involved in breast cancer metastasis.
Collapse
|
623
|
Hsu CC, Chuang WJ, Chang CH, Tseng YL, Peng HC, Huang TF. Improvements in endotoxemic syndromes using a disintegrin, rhodostomin, through integrin αvβ3-dependent pathway. J Thromb Haemost 2011; 9:593-602. [PMID: 21143376 DOI: 10.1111/j.1538-7836.2010.04163.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVES Septic shock is a major cause of morbidity and mortality in intensive care units, but there is still no effective therapy for the patients. We evaluated the effects of rhodostomin (Rn), an Arg-Gly-Asp-containing snake venom disintegrin, on lipopolysaccharide (LPS)-activated phagocytes in vitro and LPS-induced endotoxemia in vivo. METHODS AND RESULTS Rn inhibited adhesion, migration, cytokine production and mitogen-activated protein kinase (MAPK) activation of macrophage induced by LPS. Flow cytometric analysis revealed that Rn specifically blocked anti-αv mAb binding to RAW264.7. Besides inhibiting MAPK activation of THP-1, Rn bound to LPS-activated THP-1 and specifically blocked anti-αvβ3 mAb binding to THP-1. Binding assays proved that integrin αvβ3 was the binding site for rhodostomin on phagocytes. Rn reversed the enhancement of fibronectin and vitronectin on LPS-induced monocyte adhesion and cytokine release. Transfection of integrin αv siRNA also inhibited LPS-induced activation of monocyte, and Rn exerted no further inhibitory effect. Furthermore, Rn significantly decreased the production of tumor necrosis factor-α (TNF-a), interleukin (IL)-6, -1β and -10 and attenuated cardiovascular dysfunction, including blood pressure and heart pulse, and thrombocytopenia in LPS-induced endotoxemic mice. Rn also protected against tissue inflammation as evidenced by histological examination. CONCLUSIONS Rn may interact with αvβ3 integrin of monocytes/macrophages leading to interfere with the activation of phagocytes triggered by LPS. These results suggest that the protective function of Rn in LPS-induced endotoxemia may be attributed to its anti-inflammation activities in vivo.
Collapse
Affiliation(s)
- C-C Hsu
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
624
|
Honarmandi P, Lee H, Lang MJ, Kamm RD. A microfluidic system with optical laser tweezers to study mechanotransduction and focal adhesion recruitment. LAB ON A CHIP 2011; 11:684-94. [PMID: 21152510 DOI: 10.1039/c0lc00487a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We present a new method to locally apply mechanical tensile and compressive force on single cells based on integration of a microfluidic device with an optical laser tweezers. This system can locate a single cell within customized wells exposing a square-like membrane segment to a functionalized bead. Beads are coated with extracellular matrix (ECM) proteins of interest (e.g. fibronectin) to activate specific membrane receptors (e.g. integrins). The functionalized beads are trapped and manipulated by optical tweezers to apply mechanical load on the ECM-integrin-cytoskeleton linkage. Activation of the receptor is visualized by accumulation of expressed fluorescent proteins. This platform facilitates isolation of single cells and excitation by tensile/compressive forces applied directly to the focal adhesion via specific membrane receptors. Protein assembly or recruitment in a focal adhesion can then be monitored and identified using fluorescent imaging. This platform is used to study the recruitment of vinculin upon the application of external tensile force to single endothelial cells. Vinculin appears to be recruited above the forced bead as an elliptical cloud, centered 2.1 ± 0.5 μm from the 2 μm bead center. The mechanical stiffness of the membrane patch inferred from this measurement is 42.9 ± 6.4 pN μm(-1) for a 5 μm × 5 μm membrane segment. This method provides a foundation for further studies of mechanotransduction and tensile stiffness of single cells.
Collapse
Affiliation(s)
- Peyman Honarmandi
- Massachusetts Institute of Technology (MIT), Department of Biological Engineering, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
625
|
|
626
|
Zhang D, Kobayashi T, Kojima T, Kanenishi K, Hagiwara Y, Abe M, Okura H, Hamano Y, Sun G, Maeda M, Jishage KI, Noda T, Hino O. Deficiency of the Erc/mesothelin gene ameliorates renal carcinogenesis in Tsc2 knockout mice. Cancer Sci 2011; 102:720-7. [PMID: 21205090 DOI: 10.1111/j.1349-7006.2011.01846.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Genetic crossing experiments were performed between tuberous sclerosis-2 (Tsc2) KO and expressed in renal carcinoma (Erc) KO mice to analyze the function of the Erc/mesothelin gene in renal carcinogenesis. We found the number and size of renal tumors were significantly less in Tsc2+/-;Erc-/- mice than in Tsc2+/-;Erc+/+ and Tsc2+/-;Erc+/- mice. Tumors from Tsc2+/-;Erc-/- mice exhibited reduced cell proliferation and increased apoptosis, as determined by proliferating cell nuclear antigen (Ki67) and TUNEL analysis, respectively. Adhesion to collagen-coated plates in vitro was enhanced in Erc-restored cells and decreased in Erc-suppressed cells with siRNA. Tumor formation by Tsc2-deficient cells in nude mice was remarkably suppressed by stable knockdown of Erc with shRNA. Western blot analysis showed that the phosphorylation of focal adhesion kinase, Akt and signal transducer and activator of transcription protein 3 were weaker in Erc-deficient/suppressed cells compared with Erc-expressed cells. These results indicate that deficiency of the Erc/mesothelin gene ameliorates renal carcinogenesis in Tsc2 KO mice and inhibits the phosphorylation of several kinases of cell adhesion mechanism. This suggests that Erc/mesothelin may have an important role in the promotion and/or maintenance of carcinogenesis by influencing cell-substrate adhesion via the integrin-related signal pathway.
Collapse
Affiliation(s)
- Danqing Zhang
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
627
|
Anthis NJ, Campbell ID. The tail of integrin activation. Trends Biochem Sci 2011; 36:191-8. [PMID: 21216149 DOI: 10.1016/j.tibs.2010.11.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/29/2010] [Accepted: 11/30/2010] [Indexed: 12/13/2022]
Abstract
Integrins are essential adhesion receptors found on the surfaces of all metazoan cells. As regulators of cell migration and extracellular matrix assembly, these membrane-spanning heterodimers are critical for embryonic development, tissue repair and immune responses. Signals transmitted by integrins from outside to inside the cell promote cell survival and proliferation, but integrin affinity for extracellular ligands can also be controlled by intracellular cues. This bidirectional signaling is mediated by the short cytoplasmic tails of the two integrin subunits. Recent structural and functional studies of various integrin fragments and complexes between the cytoplasmic tails and intracellular proteins, such as talin, have provided new insight into the signaling processes centered around the tails, particularly inside-out integrin activation.
Collapse
Affiliation(s)
- Nicholas J Anthis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | | |
Collapse
|
628
|
Spatial regulation of cell adhesion in the Drosophila wing is mediated by Delilah, a potent activator of βPS integrin expression. Dev Biol 2011; 351:99-109. [PMID: 21215259 DOI: 10.1016/j.ydbio.2010.12.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 01/04/2023]
Abstract
In spite of our conceptual view of how differential gene expression is used to define different cell identities, we still do not understand how different cell identities are translated into actual cell properties. The example discussed here is that of the fly wing, which is composed of two main cell types: vein and intervein cells. These two cell types differ in many features, including their adhesive properties. One of the major differences is that intervein cells express integrins, which are required for the attachment of the two wing layers to each other, whereas vein cells are devoid of integrin expression. The major signaling pathways that divide the wing to vein and intervein domains have been characterized. However, the genetic programs that execute these two alternative differentiation programs are still very roughly drawn. Here we identify the bHLH protein Delilah (Dei) as a mediator between signaling pathways that specify intervein cell-fate and one of the most significant realizators of this fate, βPS integrin. Dei's expression is restricted to intervein territories where it acts as a potent activator of βPS integrin expression. In the absence of normal Dei activity the level of βPS integrin is reduced, leading to a failure of adhesion between the dorsal and ventral wing layers and a consequent formation of wing blisters. The effect of Dei on βPS expression is not restricted to the wing, suggesting that Dei functions as a general genetic switch, which is turned on wherever a sticky cell-identity is determined and integrin-based adhesion is required.
Collapse
|
629
|
Waese EY, Stanford WL. One-step generation of murine embryonic stem cell-derived mesoderm progenitors and chondrocytes in a serum-free monolayer differentiation system. Stem Cell Res 2011; 6:34-49. [DOI: 10.1016/j.scr.2010.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 08/23/2010] [Accepted: 08/27/2010] [Indexed: 01/21/2023] Open
|
630
|
Abstract
Integrin adhesion receptors are essential for the development and functioning of multicellular animals. Integrins mediate cell adhesion to the extracellular matrix and to counter-receptors on adjacent cells, and the ability of integrins to bind extracellular ligands is regulated in response to intracellular signals that act on the short cytoplasmic tails of integrin subunits. Integrin activation, the rapid conversion of integrin receptors from low to high affinity, requires binding of talin to integrin β tails and, once bound, talin provides a connection from activated integrins to the actin cytoskeleton. A wide range of experimental approaches have contributed to the current understanding of the importance of talin in integrin signaling. Here, we describe two methods that have been central to our investigations of talin; a biochemical assay that has allowed characterization of interactions between integrin cytoplasmic tails and talin, and a fluorescent-activated cell-sorting procedure to assess integrin activation in cultured cells expressing talin domains, mutants, dominant negative constructs, or shRNA.
Collapse
Affiliation(s)
- Mohamed Bouaouina
- Department of Pharmacology and Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, CT, USA
| | | | | |
Collapse
|
631
|
Schneider JG, Amend SH, Weilbaecher KN. Integrins and bone metastasis: integrating tumor cell and stromal cell interactions. Bone 2011; 48:54-65. [PMID: 20850578 PMCID: PMC3010439 DOI: 10.1016/j.bone.2010.09.016] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 09/04/2010] [Indexed: 01/24/2023]
Abstract
Integrins on both tumor cells and the supporting host stromal cells in bone (osteoclasts, new blood vessels, inflammatory cells, platelets and bone marrow stromal cells) play key roles in enhancing bone metastasis. Tumor cells localize to specific tissues through integrin-mediated contacts with extracellular matrix and stromal cells. Integrin expression and signaling are perturbed in cancer cells, allowing them to "escape" from cell-cell and cell-matrix tethers, invade, migrate and colonize within new tissues and matrices. Integrin signaling through αvβ3 and VLA-4 on tumor cells can promote tumor metastasis to and proliferation in the bone microenvironment. Osteoclast (OC) mediated bone resorption is a critical component of bone metastasis and can promote tumor growth in bone and αvβ3 integrins are critical to OC function and development. Tumors in the bone microenvironment can recruit new blood vessel formation, platelets, pro-tumor immune cells and bone marrow stromal cells that promote tumor growth and invasion in bone. Integrins and their ligands play critical roles in platelet aggregation (αvβ3 and αIIbβ3), hematopoietic cell mobilization (VLA-4 and osteopontin), neoangiogenesis (αvβ3, αvβ5, α6β4, and β1 integrin) and stromal function (osteopontin and VLA-4). Integrins are involved in the pathogenesis of bone metastasis at many levels and further study to define integrin dysregulation by cancer will yield new therapeutic targets for the prevention and treatment of bone metastasis.
Collapse
Affiliation(s)
- Jochen G. Schneider
- Institute for Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Germany, and Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg
| | - Sarah H. Amend
- Department of Medicine and Division of Oncology, Washington University, School of Medicine, St. Louis, MO, USA
| | - Katherine N. Weilbaecher
- Department of Medicine and Division of Oncology, Washington University, School of Medicine, St. Louis, MO, USA
- Corresponding author: Katherine Weilbaecher, Department of Medicine and Cell Biology and Physiology, Division of Oncology, Washington University, School of Medicine, 660 S. Euclid Ave, PO Box 8069, St. Louis, MO, 63110, USA
| |
Collapse
|
632
|
Brown AC, Rowe JA, Barker TH. Guiding epithelial cell phenotypes with engineered integrin-specific recombinant fibronectin fragments. Tissue Eng Part A 2010; 17:139-50. [PMID: 20695776 DOI: 10.1089/ten.tea.2010.0199] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The extracellular matrix (ECM) provides important cues for directing cell phenotype. Cells interact with underlying ECM through cell-surface receptors known as integrins, which bind to specific sequences on their ligands. During tissue development, repair, and regeneration of epithelial tissues, cells must interact with an interstitial fibronectin (Fn)-rich matrix, which has been shown to direct a more migratory/repair phenotype, presumably through interaction with Fn's cell binding domain comprised of both synergy Pro-His-Ser-Arg-Asn (PHSRN) and Arg-Gly-Asp (RGD) sequences. We hypothesized that the Fn synergy site is critical to the regulation of epithelial cell phenotype by directing integrin specificity. Epithelial cells were cultured on Fn fragments displaying stabilized synergy and RGD (FnIII9'10), or RGD alone (FnIII10) and cell phenotype analyzed by cytoskeleton changes, epithelial cell-cell contacts, changes in gene expression of epithelial and mesenchymal markers, and wound healing assay. Data indicate that epithelial cells engage RGD only with αv integrins and display a significant shift toward a mesenchymal phenotype due, in part, to enhanced transforming growth factor-β activation and/or signaling compared with cells on the synergy containing FnIII9'10. These studies demonstrate the importance of synergy in regulating epithelial cell phenotype relevant to tissue engineering as well as the utility of engineered integrin-specific ECM fragments in guiding cell phenotype.
Collapse
Affiliation(s)
- Ashley C Brown
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332-0535, USA
| | | | | |
Collapse
|
633
|
Noninvasive measurements of integrin microclustering under altered membrane cholesterol levels. Biophys J 2010; 99:853-61. [PMID: 20682263 DOI: 10.1016/j.bpj.2010.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 04/22/2010] [Accepted: 05/17/2010] [Indexed: 02/04/2023] Open
Abstract
Reported herein is a method that can be used to study the role of cholesterol in the microclustering of a ubiquitous class of membrane receptors, termed integrins. Integrin microclustering was measured using a fluorescence resonance energy transfer assay that does not require direct attachment of fluorescent donors or acceptors onto the integrins, and thus minimizes unwanted perturbations to integrin clustering. Membrane cholesterol levels were reduced using methyl-beta-cyclodextrin (mbetaCD), as confirmed by Amplex Red assays of total cellular lipid or plasma membrane lipid extract. Subsequent changes in integrin microclustering were measured in cells expressing wild-type (WT) or mutant integrins. Although less integrin microclustering was measured after 27% membrane cholesterol depletion in a cell line expressing WT integrins, there was no statistically significant change for cells expressing alpha-cytoplasmic integrin mutants after a 45% reduction in plasma membrane cholesterol, and a significant increase in clustering for cells expressing ligand-binding domain integrin mutants after a 57% decrease in membrane cholesterol. These results are explained by differences in WT and mutant integrin partitioning into lipid nanodomains. Restoration of original cholesterol levels was used to confirm that the measured changes in membrane properties were cholesterol-dependent. No correlations between lipid diffusion and integrin microclustering were measured by means of fluorescence recovery after photobleaching using a fluorescent lipid mimetic. Similar lipid diffusion coefficients were measured after cholesterol depletion, irrespective of the integrins being expressed.
Collapse
|
634
|
Involvement of murine β-1,4-galactosyltransferase V in lactosylceramide biosynthesis. Glycoconj J 2010; 27:685-95. [PMID: 21057870 DOI: 10.1007/s10719-010-9313-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/28/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
Human β-1,4-galactosyltransferase (β-1,4-GalT) V was shown to be involved in the biosynthesis of N-glycans, O-glycans and lactosylceramide (Lac-Cer) by in vitro studies. To determine its substrate specificity, enzymatic activity and its products were analyzed using mouse embryonic fibroblast (MEF) cells from β-1,4-GalT V (B4galt5)-mutant mice. Analysis of expression levels of the β-1,4-GalT I-VI genes revealed that the expression of the β-1,4-GalT V gene in B4galt5 ( +/- ) - and B4galt5 ( -/- ) -derived MEF cells are a half and null when compared to that of B4galt5 ( +/+ )-derived MEF cells without altering the expression levels of other β-1,4-GalT genes. These MEF cells showed no apparent difference in their growth. When β-1,4-GalT activities were determined towards GlcNAcβ-S-pNP, no significant difference in its specific activity was obtained among B4galt5 ( +/+ )-, B4galt5 ( +/- ) - and B4galt5 ( -/- ) -derived MEF cells. No significant differences were obtained in structures and amounts of N-glycans and lectin bindings to membrane glycoproteins among B4galt5 ( +/+ )-, B4galt5 ( +/- ) - and B4galt5 ( -/- ) -derived MEF cells. However, when cell homogenates were incubated with glucosylceramide in the presence of UDP-[(3)H]Gal, Lac-Cer synthase activity in B4galt5 ( +/- ) - and B4galt5 ( -/- ) -derived MEF cells decreased to 41% and 11% of that of B4galt5 ( +/+ )-derived MEF cells. Consistent with this, amounts of Lac-Cer and its derivative GM3 in B4galt5 ( -/- ) -derived MEF cells decreased remarkably when compared with those of B4galt5 ( +/+ )-derived MEF cells. These results indicate that murine β-1,4-GalT V is involved in Lac-Cer biosynthesis.
Collapse
|
635
|
Ode A, Duda GN, Glaeser JD, Matziolis G, Frauenschuh S, Perka C, Wilson CJ, Kasper G. Toward biomimetic materials in bone regeneration: functional behavior of mesenchymal stem cells on a broad spectrum of extracellular matrix components. J Biomed Mater Res A 2010; 95:1114-24. [PMID: 20878902 DOI: 10.1002/jbm.a.32909] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/18/2010] [Accepted: 06/07/2010] [Indexed: 11/09/2022]
Abstract
Bone defect treatments can be augmented by mesenchymal stem cell (MSC) based therapies. MSC interaction with the extracellular matrix (ECM) of the surrounding tissue regulates their functional behavior. Understanding of these specific regulatory mechanisms is essential for the therapeutic stimulation of MSC in vivo. However, these interactions are presently only partially understood. This study examined in parallel, for the first time, the effects on the functional behavior of MSCs of 13 ECM components from bone, cartilage and hematoma compared to a control protein, and hence draws conclusions for rational biomaterial design. ECM components specifically modulated MSC adhesion, migration, proliferation, and osteogenic differentiation, for example, fibronectin facilitated migration, adhesion, and proliferation, but not osteogenic differentiation, whereas fibrinogen enhanced adhesion and proliferation, but not migration. Subsequently, the integrin expression pattern of MSCs was determined and related to the cell behavior on specific ECM components. Finally, on this basis, peptide sequences are reported for the potential stimulation of MSC functions. Based on the results of this study, ECM component coatings could be designed to specifically guide cell functions.
Collapse
Affiliation(s)
- Andrea Ode
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
636
|
Kwak TK, Kim H, Jung O, Lee SA, Kang M, Kim HJ, Park JM, Kim SH, Lee JW. Glucosamine treatment-mediated O-GlcNAc modification of paxillin depends on adhesion state of rat insulinoma INS-1 cells. J Biol Chem 2010; 285:36021-31. [PMID: 20829364 DOI: 10.1074/jbc.m110.129601] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-protein interactions and/or signaling activities at focal adhesions, where integrin-mediated adhesion to extracellular matrix occurs, are critical for the regulation of adhesion-dependent cellular functions. Although the phosphorylation and activities of focal adhesion molecules have been intensively studied, the effects of the O-GlcNAc modification of their Ser/Thr residues on cellular functions have been largely unexplored. We investigated the effects of O-GlcNAc modification on actin reorganization and morphology of rat insulinoma INS-1 cells after glucosamine (GlcN) treatment. We found that paxillin, a key adaptor molecule in focal adhesions, could be modified by O-GlcNAc in INS-1 cells treated with GlcN and in pancreatic islets from mice treated with streptozotocin. Ser-84/85 in human paxillin appeared to be modified by O-GlcNAc, which was inversely correlated to Ser-85 phosphorylation (Ser-83 in rat paxillin). Integrin-mediated adhesion signaling inhibited the GlcN treatment-enhanced O-GlcNAc modification of paxillin. Adherent INS-1 cells treated with GlcN showed restricted protrusions, whereas untreated cells showed active protrusions for multiple-elongated morphologies. Upon GlcN treatment, expression of a triple mutation (S83A/S84A/S85A) resulted in no further restriction of protrusions. Together these observations suggest that murine pancreatic β cells may have restricted actin organization upon GlcN treatment by virtue of the O-GlcNAc modification of paxillin, which can be antagonized by a persistent cell adhesion process.
Collapse
Affiliation(s)
- Tae Kyoung Kwak
- Cancer Research Institute, Department of Tumor Biology, School of Dentistry, Seoul National University, Seoul 110-799
| | | | | | | | | | | | | | | | | |
Collapse
|
637
|
Deng H, Bell JB, Simmonds AJ. Vestigial is required during late-stage muscle differentiation in Drosophila melanogaster embryos. Mol Biol Cell 2010; 21:3304-16. [PMID: 20685961 PMCID: PMC2947467 DOI: 10.1091/mbc.e10-04-0364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Drosophila member of the vestigial-like gene family (vestigial) is known primarily as a transcriptional activator that defines cell identity during Drosophila wing differentiation. We show that during embryo development Vestigial also has a role during specification of muscle–muscle attachments in ventral longitudinal muscles. The somatic muscles of Drosophila develop in a complex pattern that is repeated in each embryonic hemi-segment. During early development, progenitor cells fuse to form a syncytial muscle, which further differentiates via expression of muscle-specific factors that induce specific responses to external signals to regulate late-stage processes such as migration and attachment. Initial communication between somatic muscles and the epidermal tendon cells is critical for both of these processes. However, later establishment of attachments between longitudinal muscles at the segmental borders is largely independent of the muscle–epidermal attachment signals, and relatively little is known about how this event is regulated. Using a combination of null mutations and a truncated version of Sd that binds Vg but not DNA, we show that Vestigial (Vg) is required in ventral longitudinal muscles to induce formation of stable intermuscular attachments. In several muscles, this activity may be independent of Sd. Furthermore, the cell-specific differentiation events induced by Vg in two cells fated to form attachments are coordinated by Drosophila epidermal growth factor signaling. Thus, Vg is a key factor to induce specific changes in ventral longitudinal muscles 1–4 identity and is required for these cells to be competent to form stable intermuscular attachments with each other.
Collapse
Affiliation(s)
- Hua Deng
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H8, Canada
| | | | | |
Collapse
|
638
|
Recent advances in the understanding of the molecular mechanisms regulating platelet integrin αIIbβ3 activation. Protein Cell 2010; 1:627-37. [PMID: 21203935 DOI: 10.1007/s13238-010-0089-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Accepted: 06/24/2010] [Indexed: 12/26/2022] Open
Abstract
Integrins are allosteric cell adhesion receptors that cycle from a low to a high affinity ligand binding state, a complex process of receptor activation that is of particular importance in blood cells such as platelets or leukocytes. Here we highlight recent progress in the understanding of the molecular pathways that regulate integrin activation in platelets and leukocytes, with a special focus on the structural changes in platelet integrin αIIbβ3 brought about by key intracellular proteins, namely talin and kindlins, that are of crucial importance in the regulation of integrin function. Evidence that the small GTPase Rap1 and its guanine exchange factor CalDAG-GEF1, together with RIAM, a Rap1GTP adaptor protein, promote the interaction of talin with the integrin β subunit, has greatly contributed to fill the gap in our understanding of the signaling pathway from G-coupled agonist receptors and their phospholipase C-dependant second messengers, to integrin activation. Studies of patients with the rare blood cell disorder LAD-III have contributed to the identification of kindlins as new co-regulators of the talin-dependent integrin activation process in platelets and leukocytes, underlining the relevance for the in-depth investigation of patients with rare genetic blood cell disorders.
Collapse
|
639
|
Tripathi BK, Zelenka PS. Cdk5: A regulator of epithelial cell adhesion and migration. Cell Adh Migr 2010; 4:333-6. [PMID: 20190570 DOI: 10.4161/cam.4.3.11131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell adhesion is a fundamental property of epithelial cells required for anchoring, migration and survival. During cell migration, the formation and disruption of adhesion sites is stringently regulated by integration of multiple, sequential signals acting in distinct regions of the cell. Recent findings implicate cyclin dependent kinase 5 (Cdk5) in the signaling pathways that regulate cell adhesion and migration of a variety of cell types. Experiments with epithelial cell lines indicate that Cdk5 activity exerts its effects by limiting Src activity in regions where Rho activity is required for stress fiber contraction and by phosphorylating the talin head to stabilize nascent focal adhesions. Both pathways regulate cell migration by increasing adhesive strength.
Collapse
Affiliation(s)
- Brajendra K Tripathi
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
640
|
Optimization of formaldehyde cross-linking for protein interaction analysis of non-tagged integrin beta1. J Biomed Biotechnol 2010; 2010:927585. [PMID: 20634879 PMCID: PMC2896913 DOI: 10.1155/2010/927585] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Accepted: 03/20/2010] [Indexed: 11/25/2022] Open
Abstract
Formaldehyde cross-linking of protein complexes combined with immunoprecipitation and mass spectrometry analysis is a promising technique for analysing protein-protein interactions, including those of transient nature. Here we used integrin β1 as a model to describe the application of formaldehyde cross-linking in detail, particularly focusing on the optimal parameters for cross-linking, the detection of formaldehyde cross-linked complexes, the utility of antibodies, and the identification of binding partners. Integrin β1 was found in a high molecular weight complex after formaldehyde cross-linking. Eight different anti-integrin β1 antibodies were used for pull-down experiments and no loss in precipitation efficiency after cross-linking was observed. However, two of the antibodies could not precipitate the complex, probably due to hidden epitopes. Formaldehyde cross-linked complexes, precipitated from Jurkat cells or human platelets and analyzed by mass spectrometry, were found to be composed of integrin β1, α4 and α6 or β1, α6, α2, and α5, respectively.
Collapse
|
641
|
Walker AJ, Lacchini AH, Sealey KL, Mackintosh D, Davies AJ. Spreading by snail (Lymnaea stagnalis) defence cells is regulated through integrated PKC, FAK and Src signalling. Cell Tissue Res 2010; 341:131-45. [PMID: 20512591 DOI: 10.1007/s00441-010-0986-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 04/21/2010] [Indexed: 12/25/2022]
Abstract
Cell adhesion and spreading are vital to immune function. In molluscs, haemocytes (circulating phagocytes) are sentinels and effectors of the internal defence system; however, molecular mechanisms that regulate integrin-mediated spreading by haemocytes have not been characterised in detail. Visualisation of Lymnaea stagnalis haemocytes by scanning electron microscopy revealed membrane ruffling, formation of lamellipodia and extensive filopodia during early stages of cell adhesion and spreading. These events correlated with increased phosphorylation (activation) of protein kinase C (PKC) and focal adhesion kinase (FAK), sustained for 60 min. Treatment of haemocytes with the PKC inhibitors GF109203X or Gö 6976, or the Src/tyrosine kinase inhibitors SrcI or herbimycin A, attenuated haemocyte spread by 64, 46, 32 and 35%, respectively (P <or= 0.001); PKC or Src inhibition also prevented focal adhesion formation. Western blotting demonstrated that during spreading and adhesion these inhibitors also impaired PKC and FAK activation, with Gö 6976 or SrcI inhibiting FAK phosphorylation by at least 70% (P <or= 0.001), and herbimycin A or SrcI inhibiting PKC phosphorylation by at least 46% (P <or= 0.01). Confocal microscopy revealed phosphorylated PKC colocalised with focal adhesion sites, particularly during early phases of adhesion and spreading. Finally, fibronectin promoted PKC and FAK phosphorylation in suspended haemocytes demonstrating that activation can occur independent of cell adhesion. These novel data are consistent with PKC and FAK/Src playing an integrated role in integrin activation and integrin-mediated spreading by L. stagnalis haemocytes. We propose a model in which integrin engagement mediates association of PKC with FAK/Src complexes to promote focal adhesion assembly during immune recognition by these cells.
Collapse
Affiliation(s)
- Anthony J Walker
- School of Life Sciences, Kingston University, Kingston upon Thames, Surrey, UK.
| | | | | | | | | |
Collapse
|
642
|
Marano F, Hussain S, Rodrigues-Lima F, Baeza-Squiban A, Boland S. Nanoparticles: molecular targets and cell signalling. Arch Toxicol 2010; 85:733-41. [PMID: 20502881 DOI: 10.1007/s00204-010-0546-4] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 04/19/2010] [Indexed: 12/15/2022]
Abstract
Increasing evidence linking nanoparticles (NPs) with different cellular outcomes necessitate an urgent need for the better understanding of cellular signalling pathways triggered by NPs. Oxidative stress has largely been reported to be implicated in NP-induced toxicity. It could activate a wide variety of cellular events such as cell cycle arrest, apoptosis, inflammation and induction of antioxidant enzymes. These responses occur after the activation of different cellular pathways. In this context, three groups of MAP kinase cascades [ERK (extracellular signal-regulated kinases), p38 mitogen-activated protein kinase and JNK (c-Jun N-terminal kinases)] as well as redox-sensitive transcription factors such as NFκB and Nrf-2 were specially investigated. The ability of NPs to interact with these signalling pathways could partially explain their cytotoxicity. The induction of apoptosis is also closely related to the modulation of signalling pathways induced by NPs. Newly emerged scientific areas of research are the studies on interactions between NPs and biological molecules in body fluids, cellular microenvironment, intracellular components or secreted cellular proteins such as cytokines, growth factors and enzymes and use of engineered NPs to target various signal transduction pathways in cancer therapy. Recently published data present the ability of NPs to interact with membrane receptors leading to a possible aggregation of these receptors. These interactions could lead to a sustained modulation of specific signalling in the target cells or paracrine and even "by-stander" effects of the neighbouring cells or tissues. However, oxidative stress is not sufficient to explain specific mechanisms which could be induced by NPs, and these new findings emphasize the need to revise the paradigm of oxidative stress to explain the effects of NPs.
Collapse
Affiliation(s)
- Francelyne Marano
- Unit of Functional and Adaptive Biology CNRS EAC, Laboratory of Molecular and Cellular Responses to Xenobiotics, Université Paris Diderot, Paris, France.
| | | | | | | | | |
Collapse
|
643
|
Ancient origin of the integrin-mediated adhesion and signaling machinery. Proc Natl Acad Sci U S A 2010; 107:10142-7. [PMID: 20479219 DOI: 10.1073/pnas.1002257107] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The evolution of animals (metazoans) from their unicellular ancestors required the emergence of novel mechanisms for cell adhesion and cell-cell communication. One of the most important cell adhesion mechanisms for metazoan development is integrin-mediated adhesion and signaling. The integrin adhesion complex mediates critical interactions between cells and the extracellular matrix, modulating several aspects of cell physiology. To date this machinery has been considered strictly metazoan specific. Here we report the results of a comparative genomic analysis of the integrin adhesion machinery, using genomic data from several unicellular relatives of Metazoa and Fungi. Unexpectedly, we found that core components of the integrin adhesion complex are encoded in the genome of the apusozoan protist Amastigomonas sp., and therefore their origins predate the divergence of Opisthokonta, the clade that includes metazoans and fungi. Furthermore, our analyses suggest that key components of this apparatus have been lost independently in fungi and choanoflagellates. Our data highlight the fact that many of the key genes that had formerly been cited as crucial for metazoan origins have a much earlier origin. This underscores the importance of gene cooption in the unicellular-to-multicellular transition that led to the emergence of the Metazoa.
Collapse
|
644
|
Crosstalk between T cells and bronchial fibroblasts obtained from asthmatic subjects involves CD40L/alpha 5 beta 1 interaction. Mol Immunol 2010; 47:2112-8. [PMID: 20471683 DOI: 10.1016/j.molimm.2010.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/15/2010] [Accepted: 03/18/2010] [Indexed: 11/23/2022]
Abstract
BACKGROUND Allergic asthma is characterized by infiltration of inflammatory cells into the airways. T cell-derived cytokines regulate both airway inflammation and remodelling. In the human airways, T cell-fibroblast interactions may have a role in regulating inflammation and remodelling. OBJECTIVES To evaluate the effect of bronchial fibroblast-T cell interaction on profibrogenic cytokine release and determine the nature of the molecules involved in this interaction. METHODS Human bronchial fibroblasts obtained from healthy and asthmatic donors were co-cultured with purified T cells derived from peripheral blood of the same subjects. IL-6 mRNA and protein levels were measured by real time PCR and ELISA. CD40, CD40L and alpha 5 beta 1 were evaluated by flow cytometry. Bronchial fibroblasts were stimulated with rsCD40L. Neutralisation was performed using neutralizing antibodies anti-CD40L and anti-alpha 5. RESULTS Contact of T cells with bronchial fibroblasts up-regulated IL-6 at both gene and protein levels. This effect was significantly higher in fibroblasts from asthmatics than those from controls. Blocking CD40L and alpha 5 beta 1 integrin showed a significant inhibition of IL-6 expression in asthmatics but not in healthy controls. Stimulation of fibroblasts with recombinant soluble CD40L up-regulated IL-6 production in asthmatics but not in controls. Adhesion to fibronectin, a alpha 5 beta 1 integrin ligand, is increased in fibroblasts from asthmatics compared to fibroblasts from controls. CONCLUSION These results showed that interaction of bronchial fibroblasts with T cells increases the production of profibrogenic cytokine IL-6. In asthmatic condition this interaction involves CD40L/alpha 5 beta 1. These results suggest that T cells and structural cells crosstalk in asthma may maintain local mucosal inflammation.
Collapse
|
645
|
|
646
|
A Transmembrane Polar Interaction Is Involved in the Functional Regulation of Integrin αLβ2. J Mol Biol 2010; 398:569-83. [DOI: 10.1016/j.jmb.2010.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 03/11/2010] [Accepted: 03/15/2010] [Indexed: 01/30/2023]
|
647
|
Ulmer TS. Structural basis of transmembrane domain interactions in integrin signaling. Cell Adh Migr 2010; 4:243-8. [PMID: 20168080 DOI: 10.4161/cam.4.2.10592] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell surface receptors of the integrin family are pivotal to cell adhesion and migration. The activation state of heterodimeric alphabeta integrins is correlated to the association state of the single-pass alpha and beta transmembrane domains. The association of integrin alphaIIbbeta3 transmembrane domains, resulting in an inactive receptor, is characterized by the asymmetric arrangement of a straight (alphaIIb) and tilted (beta3) helix relative to the membrane in congruence to the dissociated structures. This allows for a continuous association interface centered on helix-helix glycine-packing and an unusual alphaIIb(GFF) structural motif that packs the conserved Phe-Phe residues against the beta3 transmembrane helix, enabling alphaIIb(D723)beta3(R995) electrostatic interactions. The transmembrane complex is further stabilized by the inactive ectodomain, thereby coupling its association state to the ectodomain conformation. In combination with recently determined structures of an inactive integrin ectodomain and an activating talin/beta complex that overlap with the alphabeta transmembrane complex, a comprehensive picture of integrin bi-directional transmembrane signaling has emerged.
Collapse
Affiliation(s)
- Tobias S Ulmer
- Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
648
|
Gupta SK, Vlahakis NE. Integrin alpha9beta1: Unique signaling pathways reveal diverse biological roles. Cell Adh Migr 2010; 4:194-8. [PMID: 20179422 DOI: 10.4161/cam.4.2.10900] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Integrins are transmembrane heterodimeric receptors responsible for transducing and modulating signals between the extracellular matrix and cytoskeleton, ultimately influencing cell functions such as adhesion and migration. Integrin alpha9beta1 is classified within a two member sub-family of integrins highlighted in part by its specialized role in cell migration. The importance of this role is demonstrated by its regulation of numerous biological functions including lymphatic valve morphogenesis, lymphangiogenesis, angiogenesis and hematopoietic homeostasis. Compared to other integrins the signaling mechanisms that transduce alpha9beta1-induced cell migration are not well described. We have recently shown that Src tyrosine kinase plays a key proximal role to control alpha9beta1 signaling. Specifically it activates inducible nitric oxide synthase (iNOS) and in turn nitric oxide (NO) production as a means to transduce cell migration. Furthermore, we have also described a role for FAK, Erk and Rac1 in alpha9beta1 signal transduction. Here we provide an over view of known integrin alpha9beta1 signaling pathways and highlight its roles in diverse biological conditions.
Collapse
Affiliation(s)
- Shiv K Gupta
- Thoracic Disease Research Unit, Division of Pulmonary & Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
649
|
Gawden-Bone C, Zhou Z, King E, Prescott A, Watts C, Lucocq J. Dendritic cell podosomes are protrusive and invade the extracellular matrix using metalloproteinase MMP-14. J Cell Sci 2010; 123:1427-37. [PMID: 20356925 DOI: 10.1242/jcs.056515] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Podosomes are spot-like actin-rich structures formed at the ventral surface of monocytic and haematopoietic cells. Podosomes degrade extracellular matrix and are proposed to be involved in cell migration. A key question is whether podosomes form protrusions similar to the invadopodia of cancer cells. We characterised podosomes of immature dendritic cells using electron microscopy combined with both conventional and novel high-resolution structured illumination light microscopy. Dendritic cell podosomes are composed of actin foci surrounded by a specialised ring region that is rich in material containing paxillin. We found that podosomes were preferential sites for protrusion into polycarbonate filters impregnated with crosslinked gelatin, degrading up to 2 micrometers of matrix in 24 hours. Podosome-associated uptake of colloidal gold-labelled gelatin matrix appeared to occur via large phagosome-like structures or narrow tubular invaginations. The motor protein myosin-II was excluded from ring or core regions but was concentrated around them and the myosin-II inhibitor Blebbistatin reduced the length of podosome protrusions. Finally, we found that degradation, protrusion and endocytosis in this system are dependent on the matrix metalloproteinase MMP-14. We propose that podosomes mediate migration of dendritic cells through tissues by means of myosin-II-dependent protrusion coupled to MMP-14-dependent degradation and endocytosis.
Collapse
Affiliation(s)
- Christian Gawden-Bone
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
650
|
Wang G, Zaman MH. Communications: Hamiltonian regulated cell signaling network. J Chem Phys 2010; 132:121103. [PMID: 20370106 DOI: 10.1063/1.3357980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cell signaling is fundamental to cell survival and disease progression. Traditional approaches to study these networks have focused largely on probabilistic approaches, with a large number of ad hoc assumptions. In this paper, we develop a linear Hamiltonian model to study the integrin signaling network. The integrin signaling network is central to cell adhesion, migration, and differentiation, but has not been studied in the same detail as other cell cycle networks. In this study, the integrin signaling network with 16 nodes in thermal fluctuations is analyzed through ensemble averages on the linear Hamiltonian model. This new and analytically rigorous approach offers a quick method to find out the dominant nodes in the complex network, which operate in the thermal noise regime. The robust on/off transitions due to the different initial inputs also reflect the inherent structure in the network, providing new insights into structure and function of the network.
Collapse
Affiliation(s)
- Ge Wang
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|