651
|
|
652
|
Wei J, Shi Y, Zheng L, Zhou B, Inose H, Wang J, Guo XE, Grosschedl R, Karsenty G. miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. ACTA ACUST UNITED AC 2012; 197:509-21. [PMID: 22564414 PMCID: PMC3352956 DOI: 10.1083/jcb.201201057] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
miR-34b and -c inhibit osteoblast proliferation and differentiation by decreasing the levels of cell cycle proteins and of the nuclear matrix protein SATB2. A screen of microRNAs preferentially expressed in osteoblasts identified members of the miR-34 family as regulators of osteoblast proliferation and/or differentiation. Osteoblast-specific gain- and loss-of-function experiments performed in vivo revealed that miR-34b and -c affected skeletogenesis during embryonic development, as well as bone mass accrual after birth, through two complementary cellular and molecular mechanisms. First, they inhibited osteoblast proliferation by suppressing Cyclin D1, CDK4, and CDK6 accumulation. Second, they inhibited terminal differentiation of osteoblasts, at least in part through the inhibition of SATB2, a nuclear matrix protein that is a critical determinant of osteoblast differentiation. Genetic evidence obtained in the mouse confirmed the importance of SATB2 regulation by miR-34b/c. These results are the first to identify a family of microRNAs involved in bone formation in vivo and to identify a specific genetic pathway by which these microRNAs regulate osteoblast differentiation.
Collapse
Affiliation(s)
- Jianwen Wei
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
653
|
Abstract
Disease is often the result of an aberrant or inadequate response to physiologic and pathophysiologic stress. Studies over the last 10 years have uncovered a recurring paradigm in which microRNAs (miRNAs) regulate cellular behavior under these conditions, suggesting an especially significant role for these small RNAs in pathologic settings. Here, we review emerging principles of miRNA regulation of stress signaling pathways and apply these concepts to our understanding of the roles of miRNAs in disease. These discussions further highlight the unique challenges and opportunities associated with the mechanistic dissection of miRNA functions and the development of miRNA-based therapeutics.
Collapse
Affiliation(s)
- Joshua T Mendell
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| | | |
Collapse
|
654
|
Abstract
This review reflects and expands on the contents of my presentation at the Thomas W. Smith Memorial Lecture at American Heart Association Scientific Sessions, 2011. "Decoding the cardiac message" refers to accumulating results from ongoing microRNA research that is altering longstanding concepts of the mechanisms for, and consequences of, messenger RNA (mRNA) regulation in the heart. First, I provide a brief historical perspective of the field of molecular genetics, touching on seminal research that paved the way for modern molecular cardiovascular research and helped establish the foundation for current concepts of mRNA regulation in the heart. I follow with some interesting details about the specific research that led to the discovery and appreciation of microRNAs as highly conserved pivotal regulators of RNA expression and translation. Finally, I provide a personal viewpoint as to how agnostic genome-wide techniques for measuring microRNAs, their mRNA targets, and their protein products can be applied in an integrated multisystems approach to uncover direct and indirect effects of microRNAs. Experimental designs integrating next-generation sequencing and global proteomics have the potential to address unanswered questions regarding microRNA-mRNA interactions in cardiac disease, how disease alters mRNA targeting by specific microRNAs, and how mutational and polymorphic nucleotide variation in microRNAs can affect end-organ function and stress response.
Collapse
Affiliation(s)
- Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
655
|
Warkman AS, Whitman SA, Miller MK, Garriock RJ, Schwach CM, Gregorio CC, Krieg PA. Developmental expression and cardiac transcriptional regulation of Myh7b, a third myosin heavy chain in the vertebrate heart. Cytoskeleton (Hoboken) 2012; 69:324-35. [PMID: 22422726 DOI: 10.1002/cm.21029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 02/23/2012] [Accepted: 03/09/2012] [Indexed: 11/08/2022]
Abstract
The mammalian heart expresses two myosin heavy chain (MYH) genes (Myh6 and Myh7), which are major components of the thick filaments of the sarcomere. We have determined that a third MYH, MYH7B, is also expressed in the myocardium. Developmental analysis shows Myh7b expression in cardiac and skeletal muscle of Xenopus, chick and mouse embryos, and in smooth muscle tissues during later stages of mouse embryogenesis. Myh7b is also expressed in the adult human heart. The promoter region of the Myh7b gene shows remarkable similarity between diverse species, suggesting that transcriptional control mechanisms have been conserved. Using luciferase reporter analysis in rat cardiomyocytes, it can be shown that MEF2, GATA, and E-box regulatory elements are essential for efficient expression of the Myh7b gene. In addition two conserved elements that do not correspond to consensus binding sites for known transcription factors are also essential for full transcriptional activity of the Myh7b reporter. Finally, the Myh7b gene shows a transcriptional response similar to Myh6 in response to cardiac hypertrophy.
Collapse
Affiliation(s)
- Andrew S Warkman
- Department of Cellular and Molecular Medicine, University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | |
Collapse
|
656
|
Zhang J, Ying ZZ, Tang ZL, Long LQ, Li K. MicroRNA-148a promotes myogenic differentiation by targeting the ROCK1 gene. J Biol Chem 2012; 287:21093-101. [PMID: 22547064 DOI: 10.1074/jbc.m111.330381] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
MicroRNAs are evolutionarily conserved small RNAs that post-transcriptionally regulate gene expression and have emerged as critical regulators of skeletal muscle development. Here, we identified miR-148a as a novel myogenic microRNA that mediated myogenic differentiation. The expression levels of miR-148a increased during C2C12 myoblast differentiation. Overexpression of miR-148a significantly promoted myogenic differentiation of both C2C12 myoblast and primary muscle cells. Blocking the function of miR-148a with a 2'-O-methylated antisense oligonucleotide inhibitor repressed C2C12 myoblast differentiation. Using a bioinformatics approach, we identified Rho-associated coiled-coil containing protein kinase 1 (ROCK1), a known inhibitor of myogenesis, as a target of miR-148a. A dual-luciferase reporter assay was used to demonstrate that miR-148a directly targeted the 3'-UTR of ROCK1. In addition, the overexpression of miR-148a decreased the protein expression of ROCK1 in C2C12 myoblast and primary muscle cells. Furthermore, ROCK1 inhibition with specific siRNA leaded to accelerated myogenic differentiation progression, underscoring a negative regulatory function of ROCK1 in myogenesis. Therefore, our results revealed a novel mechanism in which miR-148a positively regulates myogenic differentiation via ROCK1 down-regulation.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory for Animal Nutrition, The Key Laboratory for Domestic Animal Genetic Resources and Breeding of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | | | | | | | | |
Collapse
|
657
|
Abstract
Disturbances in gene expression as a result of perturbed transcription or posttranscriptional regulation is one of the main causes of cellular dysfunction that underlies different disease states. Approximately a decade ago, the discovery of microRNAs in mammalian cells has renewed our focus on posttranscriptional regulatory mechanisms during pathogenesis. These tiny posttranscriptional regulators are differentially expressed in almost every disease that has been studied to date and can modulate expression of a gene via specifically binding to its messenger RNA. Because of their capacity to simultaneously target multiple functionally related, genes, they are proving to be potentially powerful therapeutic agents/targets. In this review, we focus on the microRNAs that are differentially regulated in the more common cardiovascular pathologies, their targets, and potential function.
Collapse
Affiliation(s)
- Maha Abdellatif
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
658
|
Abstract
The discovery of the regulatory role of noncoding RNAs, and micro (mi)RNAs in particular, has added a new layer of complexity to our understanding of cardiovascular development. miRNAs regulate and modulate various steps of cardiovascular morphogenesis, cell proliferation, differentiation, and phenotype modulation. miRNAs simultaneously regulate multiple targets, and many miRNAs can bind to the same target, allowing for a complex pattern of regulation of gene expression. miRNA families are continuously added during evolution paralleling the increased complexity of the cardiovascular system in vertebrates compared with invertebrates. Several lines of evidence suggest that the appearance of miRNAs is at least in part responsible for the formation of complex organ systems and stable regulatory mechanisms in vertebrates. We review the current understanding of miRNAs during cardiovascular development. Further progress in this area will help to decipher quantitative changes in gene expression that provide robustness to cellular phenotypes and regulatory options to diseases processes. miRNAs might also provide clues to better understand congenital heart defects, which are the most common birth defects in human newborns.
Collapse
Affiliation(s)
- Thomas Boettger
- From the Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Thomas Braun
- From the Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| |
Collapse
|
659
|
Zhang LL, Liu JJ, Liu F, Liu WH, Wang YS, Zhu B, Yu B. MiR-499 induces cardiac differentiation of rat mesenchymal stem cells through wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 2012; 420:875-81. [PMID: 22465011 DOI: 10.1016/j.bbrc.2012.03.092] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 03/16/2012] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To test the hypothesis that over-expressing miR-499 in rat bone marrow-derived mesenchymal stem cells (BM-MSCs) induces them to differentiate into cardiomyocyte-like cells through the wnt/β-catenin signaling pathway. METHODS Rat BM-MSCs were infected with lentiviral vectors bearing miR-499. The expression of cardiac-specific markers, NKx2.5, GATA4, MEF2C, and cTnI in these cells were examined by rtPCR or Western blot analysis and the activity of the wnt/β-catenin signaling pathway was evaluated by measuring the phosphorylation status of β-catenin. RESULTS Over-expression of miR-499 in rat BM-MSCs increased the expression of cardiac-specific genes, such as NKx2.5, GATA4, MEF2C, and cTnI and decreased the ratio of phosphorylated/dephosphorylated β-catenin in the wnt/β-catenin signaling pathway, thus activating the pathway. Knocking down the expression of Dvl, an adaptor molecule in the wnt/β-catenin signaling, partially blocked the role of the miR-499 and decreased those cardiac-specific genes. CONCLUSION Over-expression of miR-499 in rat BM-MSCs induces them toward cardiac differentiation through the activating the wnt/β-catenin signal pathway.
Collapse
Affiliation(s)
- Lu-lu Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Myocardial Ischemia Mechanism and Treatment (Harbin Medical University), Ministry of Education, Baojian Road, Harbin, Heilongjiang Province 150081, PR China
| | | | | | | | | | | | | |
Collapse
|
660
|
Mitochondrial dynamics in heart disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:233-41. [PMID: 22450031 DOI: 10.1016/j.bbamcr.2012.03.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 02/28/2012] [Accepted: 03/08/2012] [Indexed: 11/21/2022]
Abstract
Mitochondrial fission and fusion have been observed, and their importance revealed, in almost every tissue and cell type except adult cardiac myocytes. As each human heart is uniquely dependent upon mitochondria to generate massive amounts of ATP that fuel its approximately 38 million contractions per year, it seems odd that cardiac myocytes are the sole exception to the general rule that mitochondrial dynamism is important to function. Here, I briefly review the mechanisms for mitochondrial fusion and fission and examine current data that dispel the previous notion that mitochondrial fusion is dispensable in the heart. Rare and generally overlooked examples of cardiomyopathies linked either to naturally-occurring mutations or to experimentally-induced mutagenesis of mitochondrial fusion/fission genes are described. New findings from genetically targeted Drosophila and mouse models wherein mitochondrial fusion deficiency has specifically been induced in cardiac myocytes are discussed. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology.
Collapse
|
661
|
Gagan J, Dey BK, Dutta A. MicroRNAs regulate and provide robustness to the myogenic transcriptional network. Curr Opin Pharmacol 2012; 12:383-8. [PMID: 22386695 DOI: 10.1016/j.coph.2012.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 11/19/2022]
Abstract
The genetics of skeletal muscle lineage commitment are deceptively complicated. MyoD overexpression is sufficient to convert fibroblasts into skeletal muscle myotubes. In vivo, there are a number of different steps of differentiation that require a large network of transcription factors that control differentiation and homeostasis of skeletal muscle progenitors. Each transcription factor has been shown to have the ability to promote the next factor in the cascade, but the mechanisms regulating the transitions remain incomplete. Recently, microRNAs have been shown to be important for a large number of developmental and oncogenic processes. In this review, we will discuss recent advances in the understanding of how microRNA is critical for skeletal muscle development by interacting with protein-coding genes that had previously been shown to be important for myogenesis.
Collapse
Affiliation(s)
- Jeffrey Gagan
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1300 Jefferson Park Ave, Jordan Hall 1240, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | | | | |
Collapse
|
662
|
Dorn GW, Matkovich SJ, Eschenbacher WH, Zhang Y. A human 3' miR-499 mutation alters cardiac mRNA targeting and function. Circ Res 2012; 110:958-67. [PMID: 22374132 DOI: 10.1161/circresaha.111.260752] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RATIONALE MyomiRs miR-499, miR-208a and miR-208b direct cardiac myosin gene expression. Sequence complementarity between miRs and their mRNA targets determines miR effects, but the functional consequences of human myomiR sequence variants are unknown. OBJECTIVE To identify and investigate mutations in human myomiRs in order to better understand how and to what extent naturally-occurring sequence variation can impact miR-mRNA targeting and end-organ function. METHODS AND RESULTS Screening of ≈2,600 individual DNAs for myomiR sequence variants identified a rare mutation of miR-499, u17c in the 3' end, well outside the seed region thought to determine target recognition. In vitro luciferase reporter analysis showed that the 3' miR-499 mutation altered suppression of a subset of artificial and natural mRNA targets. Cardiac-specific transgenic expression was used to compare consequences of wild-type and mutant miR-499. Both wild-type and mutant miR-499 induced heart failure in mice, but miR-499 c17 misdirected recruitment of a subset of miR-499 target mRNAs to cardiomyocyte RNA-induced silencing complexes, altering steady-state cardiac mRNA and protein make-up and favorably impacting cardiac function. In vitro analysis of miR-499 target site mutations and modeling of binding energies revealed abnormal miR-mRNA duplex configurations induced by the c17 mutation. CONCLUSIONS A naturally occurring miR-499 mutation outside the critical seed sequence modifies mRNA targeting and end-organ function. This first description of in vivo effects from a natural human miR mutation outside the seed sequence supports comprehensive studies of individual phenotypes or disease-modification conferred by miR mutations.
Collapse
Affiliation(s)
- Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine and Center for Pharmacogenomics, 660 S. Euclid Ave., Campus Box 8220, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
663
|
Abstract
MicroRNAs (miRs) regulate protein expression by inhibiting translation of expressed mRNAs. Targeting by one or more miRs of multiple mRNA transcripts encoding proteins with common functions confers nodal control over cardiac development and stress response. Dynamic coregulation of miRs and their mRNA targets has complicated understanding their biology but also provides opportunities for clinical diagnostics and therapeutics. Here, the biology of miRs is reviewed as it relates to the cardiac system, recent findings are described that illuminate miR control of cardiac development and myofiber identity, and the clinical ramifications of miR expression profiling are illustrated.
Collapse
|
664
|
Complexity of murine cardiomyocyte miRNA biogenesis, sequence variant expression and function. PLoS One 2012; 7:e30933. [PMID: 22319597 PMCID: PMC3272019 DOI: 10.1371/journal.pone.0030933] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/24/2011] [Indexed: 12/21/2022] Open
Abstract
microRNAs (miRNAs) are critical to heart development and disease. Emerging research indicates that regulated precursor processing can give rise to an unexpected diversity of miRNA variants. We subjected small RNA from murine HL-1 cardiomyocyte cells to next generation sequencing to investigate the relevance of such diversity to cardiac biology. ∼40 million tags were mapped to known miRNA hairpin sequences as deposited in miRBase version 16, calling 403 generic miRNAs as appreciably expressed. Hairpin arm bias broadly agreed with miRBase annotation, although 44 miR* were unexpectedly abundant (>20% of tags); conversely, 33 -5p/-3p annotated hairpins were asymmetrically expressed. Overall, variability was infrequent at the 5′ start but common at the 3′ end of miRNAs (5.2% and 52.3% of tags, respectively). Nevertheless, 105 miRNAs showed marked 5′ isomiR expression (>20% of tags). Among these was miR-133a, a miRNA with important cardiac functions, and we demonstrated differential mRNA targeting by two of its prevalent 5′ isomiRs. Analyses of miRNA termini and base-pairing patterns around Drosha and Dicer cleavage regions confirmed the known bias towards uridine at the 5′ most position of miRNAs, as well as supporting the thermodynamic asymmetry rule for miRNA strand selection and a role for local structural distortions in fine tuning miRNA processing. We further recorded appreciable expression of 5 novel miR*, 38 extreme variants and 8 antisense miRNAs. Analysis of genome-mapped tags revealed 147 novel candidate miRNAs. In summary, we revealed pronounced sequence diversity among cardiomyocyte miRNAs, knowledge of which will underpin future research into the mechanisms involved in miRNA biogenesis and, importantly, cardiac function, disease and therapy.
Collapse
|
665
|
Abstract
In the past few years, the crucial role of different micro-RNAs (miRNAs) in the cardiovascular system has been widely recognized. Recently, it was discovered that extracellular miRNAs circulate in the bloodstream and that such circulating miRNAs are remarkably stable. This has raised the possibility that miRNAs may be probed in the circulation and can serve as novel diagnostic markers. Although the precise cellular release mechanisms of miRNAs remain largely unknown, the first studies revealed that these circulating miRNAs may be delivered to recipient cells, where they can regulate translation of target genes. In this review, we will discuss the nature of the stability of miRNAs that circulate in the bloodstream and discuss the available evidence regarding the possible function of these circulating miRNAs in distant cell-to-cell communication. Furthermore, we summarize and discuss the usefulness of circulating miRNAs as biomarkers for a wide range of cardiovascular diseases such as myocardial infarction, heart failure, atherosclerosis, hypertension, and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Esther E. Creemers
- From the Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Anke J. Tijsen
- From the Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Yigal M. Pinto
- From the Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
666
|
microRNAs in cardiovascular development. J Mol Cell Cardiol 2012; 52:949-57. [PMID: 22300733 DOI: 10.1016/j.yjmcc.2012.01.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 12/18/2022]
Abstract
Heart development requires precise temporal-spatial regulation of gene expression, in which the highly conserved modulation networks of transcription factors accurately control the signaling pathways required for normal cardiovascular development. Even slight perturbation of such programming during cardiogenesis can cause congenital heart defects and late neonatal or adult heart disease. microRNAs (miRNAs), a class of "small" non-coding RNAs, have recently drawn a lot of attention for their "big" impact on cardiovascular development and diseases. miRNAs negatively regulate the expression of their target genes in most biological organisms through post-transcriptional processes. Here, we review the roles of miRNAs in cardiovascular development and function, looking inside the molecular mechanisms by which miRNAs act as "fine tuners" and/or "safeguards" to maintain the homeostasis of cardiovascular system. We also propose new directions for therapeutic potential of these tiny molecules.
Collapse
|
667
|
Abstract
MicroRNAs refer to a subfamily of small non-coding RNA species that are designed to influence gene expression in nearly all cell types studied to date. Studies from the past decade have demonstrated that microRNAs are atypically expressed in the cardiovascular system under specific pathological conditions. Gain- and loss-of-function studies using in vitro and in vivo models have revealed distinct roles for specific microRNAs in cardiovascular development, physiological functions, and cardiac pathological conditions. In this review, the current relevant findings on the role of microRNAs in cardiac hypertrophic growth are updated, the target genes of these microRNAs are summarized, and the future of microRNAs as potential therapeutic targets is discussed.
Collapse
Affiliation(s)
- Paula A Da Costa Martins
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
668
|
Devaux Y, Vausort M, Goretti E, Nazarov PV, Azuaje F, Gilson G, Corsten MF, Schroen B, Lair ML, Heymans S, Wagner DR. Use of circulating microRNAs to diagnose acute myocardial infarction. Clin Chem 2012; 58:559-67. [PMID: 22252325 DOI: 10.1373/clinchem.2011.173823] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Rapid and correct diagnosis of acute myocardial infarction (MI) has an important impact on patient treatment and prognosis. We compared the diagnostic performance of high-sensitivity cardiac troponin T (hs-cTnT) and cardiac enriched microRNAs (miRNAs) in patients with MI. METHODS Circulating concentrations of cardiac-enriched miR-208b and miR-499 were measured by quantitative PCR in a case-control study of 510 MI patients referred for primary mechanical reperfusion and 87 healthy controls. RESULTS miRNA-208b and miR-499 were highly increased in MI patients (>10(5)-fold, P < 0.001) and nearly undetectable in healthy controls. Patients with ST-elevation MI (n= 397) had higher miRNA concentrations than patients with non-ST-elevation MI (n = 113) (P < 0.001). Both miRNAs correlated with peak concentrations of creatine kinase and cTnT (P < 10(-9)). miRNAs and hs-cTnT were already detectable in the plasma 1 h after onset of chest pain. In patients who presented <3 h after onset of pain, miR-499 was positive in 93% of patients and hs-cTnT in 88% of patients (P= 0.78). Overall, miR-499 and hs-cTnT provided comparable diagnostic value with areas under the ROC curves of 0.97. The reclassification index of miR-499 to a clinical model including several risk factors and hs-cTnT was not significant (P = 0.15). CONCLUSION Circulating miRNAs are powerful markers of acute MI. Their usefulness in the establishment of a rapid and accurate diagnosis of acute MI remains to be determined in unselected populations of patients with acute chest pain.
Collapse
Affiliation(s)
- Yvan Devaux
- Laboratory of Cardiovascular Research, Centre de Recherche Public, Santé, Luxembourg
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
669
|
Baurhoo B, Ferket P, Ashwell CM, de Oliviera J, Zhao X. Cell walls of Saccharomyces cerevisiae differentially modulated innate immunity and glucose metabolism during late systemic inflammation. PLoS One 2012; 7:e30323. [PMID: 22272335 PMCID: PMC3260269 DOI: 10.1371/journal.pone.0030323] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 11/27/2011] [Indexed: 12/21/2022] Open
Abstract
Background Salmonella causes acute systemic inflammation by using its virulence factors to invade the intestinal epithelium. But, prolonged inflammation may provoke severe body catabolism and immunological diseases. Salmonella has become more life-threatening due to emergence of multiple-antibiotic resistant strains. Mannose-rich oligosaccharides (MOS) from cells walls of Saccharomyces cerevisiae have shown to bind mannose-specific lectin of Gram-negative bacteria including Salmonella, and prevent their adherence to intestinal epithelial cells. However, whether MOS may potentially mitigate systemic inflammation is not investigated yet. Moreover, molecular events underlying innate immune responses and metabolic activities during late inflammation, in presence or absence of MOS, are unknown. Methods and Principal Findings Using a Salmonella LPS-induced systemic inflammation chicken model and microarray analysis, we investigated the effects of MOS and virginiamycin (VIRG, a sub-therapeutic antibiotic) on innate immunity and glucose metabolism during late inflammation. Here, we demonstrate that MOS and VIRG modulated innate immunity and metabolic genes differently. Innate immune responses were principally mediated by intestinal IL-3, but not TNF-α, IL-1 or IL-6, whereas glucose mobilization occurred through intestinal gluconeogenesis only. MOS inherently induced IL-3 expression in control hosts. Consequent to LPS challenge, IL-3 induction in VIRG hosts but not differentially expressed in MOS hosts revealed that MOS counteracted LPS's detrimental inflammatory effects. Metabolic pathways are built to elucidate the mechanisms by which VIRG host's higher energy requirements were met: including gene up-regulations for intestinal gluconeogenesis (PEPCK) and liver glycolysis (ENO2), and intriguingly liver fatty acid synthesis through ATP citrate synthase (CS) down-regulation and ATP citrate lyase (ACLY) and malic enzyme (ME) up-regulations. However, MOS host's lower energy demands were sufficiently met through TCA citrate-derived energy, as indicated by CS up-regulation. Conclusions MOS terminated inflammation earlier than VIRG and reduced glucose mobilization, thus representing a novel biological strategy to alleviate Salmonella-induced systemic inflammation in human and animal hosts.
Collapse
Affiliation(s)
- Bushansingh Baurhoo
- Department of Animal Science, McGill University, Quebec, Canada
- * E-mail: (BB); (XZ)
| | - Peter Ferket
- Department of Poultry Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Chris M. Ashwell
- Department of Poultry Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jean de Oliviera
- Department of Poultry Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Xin Zhao
- Department of Animal Science, McGill University, Quebec, Canada
- * E-mail: (BB); (XZ)
| |
Collapse
|
670
|
Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S. Inhibition of microRNA function by antimiR oligonucleotides. SILENCE 2012; 3:1. [PMID: 22230293 PMCID: PMC3306207 DOI: 10.1186/1758-907x-3-1] [Citation(s) in RCA: 418] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 01/09/2012] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of gene expression in many developmental and cellular processes. Moreover, there is now ample evidence that perturbations in the levels of individual or entire families of miRNAs are strongly associated with the pathogenesis of a wide range of human diseases. Indeed, disease-associated miRNAs represent a new class of targets for the development of miRNA-based therapeutic modalities, which may yield patient benefits unobtainable by other therapeutic approaches. The recent explosion in miRNA research has accelerated the development of several computational and experimental approaches for probing miRNA functions in cell culture and in vivo. In this review, we focus on the use of antisense oligonucleotides (antimiRs) in miRNA inhibition for loss-of-function studies. We provide an overview of the currently employed antisense chemistries and their utility in designing antimiR oligonucleotides. Furthermore, we describe the most commonly used in vivo delivery strategies and discuss different approaches for assessment of miRNA inhibition and potential off-target effects. Finally, we summarize recent progress in antimiR mediated pharmacological inhibition of disease-associated miRNAs, which shows great promise in the development of novel miRNA-based therapeutics.
Collapse
Affiliation(s)
- Jan Stenvang
- Santaris Pharma, Kogle Allé 6, DK-2970 Hørsholm, Denmark.
| | | | | | | | | |
Collapse
|
671
|
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs of ~22nt in length which are involved in the regulation of gene expression at the posttranscriptional level by degrading their target mRNAs and/or inhibiting their translation. Expressed ubiquitously or in a tissue-specific manner, miRNAs are involved in the regulation of many biological processes such as cell proliferation, differentiation, apoptosis, and the maintenance of normal cellular physiology. Many miRNAs are expressed in embryonic, postnatal, and adult hearts. Aberrant expression or genetic deletion of miRNAs is associated with abnormal cardiac cell differentiation, disruption of heart development, and cardiac dysfunction. This chapter will summarize the history, biogenesis, and processing of miRNAs as well as their function in heart development, remodeling, and disease.
Collapse
Affiliation(s)
- Ramón A Espinoza-Lewis
- Cardiovascular Research Division, Department of Cardiology, Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
672
|
Small changes can make a big difference — MicroRNA regulation of cardiac hypertrophy. J Mol Cell Cardiol 2012; 52:74-82. [DOI: 10.1016/j.yjmcc.2011.09.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 11/23/2022]
|
673
|
Abstract
MicroRNAs play essential roles during animal development, including in developing muscle. Many microRNAs are expressed during muscle development and some, like miR-1 and miR-133, are muscle specific. Muscle microRNAs are integrated into myogenic regulatory networks: their expression is under the transcriptional and posttranscriptional control of myogenic factors, and they in turn have widespread control of muscle gene expression. This review summarizes recent work characterizing the function of microRNAs in muscle biology and specifically focuses on the genetic analysis of muscle microRNAs in a variety of model organisms including worms, flies, zebrafish, and mice.
Collapse
Affiliation(s)
- Nicholas S Sokol
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
674
|
Li Y, Taketo T, Lau YFC. Isolation of fetal gonads from embryos of timed-pregnant mice for morphological and molecular studies. Methods Mol Biol 2012; 825:3-16. [PMID: 22144232 DOI: 10.1007/978-1-61779-436-0_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gonadal sex differentiation is an important developmental process, in which a bipotential primordial gonad undergoes two distinct pathways, i.e., testicular and ovarian differentiation, dependent on its genetic sex. Techniques of isolating fetal gonads at various developmental stages are valuable for studies on the molecular events involved in cell-fate determination, sex-specific somatic and germ-cell differentiation and structural organization. Here we describe various procedures for isolation of embryonic gonads at different developmental stages from embryos of timed-pregnant mice. The isolated fetal gonads can be used for a variety of studies, such as organ culture, gene and protein expression. As examples of applications, we describe the immunofluorescence detection of SOX9 expression in gonadal tissue sections and microRNAs profiling/expression in fetal gonads at a critical stage for sex determination.
Collapse
Affiliation(s)
- Yunmin Li
- Department of Medicine, VA Medical Center, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
675
|
Taubenschmid J, Weitzer G. Mechanisms of cardiogenesis in cardiovascular progenitor cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:195-267. [PMID: 22251563 PMCID: PMC7615846 DOI: 10.1016/b978-0-12-394304-0.00012-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Self-renewing cells of the vertebrate heart have become a major subject of interest in the past decade. However, many researchers had a hard time to argue against the orthodox textbook view that defines the heart as a postmitotic organ. Once the scientific community agreed on the existence of self-renewing cells in the vertebrate heart, their origin was again put on trial when transdifferentiation, dedifferentiation, and reprogramming could no longer be excluded as potential sources of self-renewal in the adult organ. Additionally, the presence of self-renewing pluripotent cells in the peripheral blood challenges the concept of tissue-specific stem and progenitor cells. Leaving these unsolved problems aside, it seems very desirable to learn about the basic biology of this unique cell type. Thus, we shall here paint a picture of cardiovascular progenitor cells including the current knowledge about their origin, basic nature, and the molecular mechanisms guiding proliferation and differentiation into somatic cells of the heart.
Collapse
Affiliation(s)
- Jasmin Taubenschmid
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
676
|
Nakazato K, Tsutaki A. Regulatory mechanisms of muscle fiber types and their possible interactions with external nutritional stimuli. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2012. [DOI: 10.7600/jpfsm.1.655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
677
|
Zhu Y, Lu Y, Zhang Q, Liu JJ, Li TJ, Yang JR, Zeng C, Zhuang SM. MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein. Nucleic Acids Res 2011; 40:4615-25. [PMID: 22210897 PMCID: PMC3378857 DOI: 10.1093/nar/gkr1278] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The functional association between intronic miRNAs and their host genes is still largely unknown. We found that three gene loci, which produced miR-26a and miR-26b, were embedded within introns of genes coding for the proteins of carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase (CTDSP) family, including CTDSPL, CTDSP2 and CTDSP1. We conducted serum starvation-stimulation assays in primary fibroblasts and two-thirds partial-hepatectomies in mice, which revealed that miR-26a/b and CTDSP1/2/L were expressed concomitantly during the cell cycle process. Specifically, they were increased in quiescent cells and decreased during cell proliferation. Furthermore, both miR-26 and CTDSP family members were frequently downregulated in hepatocellular carcinoma (HCC) tissues. Gain- and loss-of-function studies showed that miR-26a/b and CTDSP1/2/L synergistically decreased the phosphorylated form of pRb (ppRb), and blocked G1/S-phase progression. Further investigation disclosed that miR-26a/b directly suppressed the expression of CDK6 and cyclin E1, which resulted in reduced phosphorylation of pRb. Moreover, c-Myc, which is often upregulated in cancer cells, diminished the expression of both miR-26 and CTDSP family members, enhanced the ppRb level and promoted the G1/S-phase transition. Our findings highlight the functional association of miR-26a/b and their host genes and provide new insight into the regulatory network of the G1/S-phase transition.
Collapse
Affiliation(s)
- Ying Zhu
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510275, PR China
| | | | | | | | | | | | | | | |
Collapse
|
678
|
Fu JD, Rushing SN, Lieu DK, Chan CW, Kong CW, Geng L, Wilson KD, Chiamvimonvat N, Boheler KR, Wu JC, Keller G, Hajjar RJ, Li RA. Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes. PLoS One 2011; 6:e27417. [PMID: 22110643 PMCID: PMC3217986 DOI: 10.1371/journal.pone.0027417] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 10/16/2011] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND MicroRNAs (miRs) negatively regulate transcription and are important determinants of normal heart development and heart failure pathogenesis. Despite the significant knowledge gained in mouse studies, their functional roles in human (h) heart remain elusive. METHODS AND RESULTS We hypothesized that miRs that figure prominently in cardiac differentiation are differentially expressed in differentiating, developing, and terminally mature human cardiomyocytes (CMs). As a first step, we mapped the miR profiles of human (h) embryonic stem cells (ESCs), hESC-derived (hE), fetal (hF) and adult (hA) ventricular (V) CMs. 63 miRs were differentially expressed between hESCs and hE-VCMs. Of these, 29, including the miR-302 and -371/372/373 clusters, were associated with pluripotency and uniquely expressed in hESCs. Of the remaining miRs differentially expressed in hE-VCMs, 23 continued to express highly in hF- and hA-VCMs, with miR-1, -133, and -499 displaying the largest fold differences; others such as miR-let-7a, -let-7b, -26b, -125a and -143 were non-cardiac specific. Functionally, LV-miR-499 transduction of hESC-derived cardiovascular progenitors significantly increased the yield of hE-VCMs (to 72% from 48% of control; p<0.05) and contractile protein expression without affecting their electrophysiological properties (p>0.05). By contrast, LV-miR-1 transduction did not bias the yield (p>0.05) but decreased APD and hyperpolarized RMP/MDP in hE-VCMs due to increased I(to), I(Ks) and I(Kr), and decreased I(f) (p<0.05) as signs of functional maturation. Also, LV-miR-1 but not -499 augmented the immature Ca(2+) transient amplitude and kinetics. Molecular pathway analyses were performed for further insights. CONCLUSION We conclude that miR-1 and -499 play differential roles in cardiac differentiation of hESCs in a context-dependent fashion. While miR-499 promotes ventricular specification of hESCs, miR-1 serves to facilitate electrophysiological maturation.
Collapse
Affiliation(s)
- Ji-Dong Fu
- University of California School of Medicine, Davis, California, United States of America
| | - Stephanie N. Rushing
- University of California School of Medicine, Davis, California, United States of America
- Center of Cardiovascular Research, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Deborah K. Lieu
- University of California School of Medicine, Davis, California, United States of America
- Center of Cardiovascular Research, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Camie W. Chan
- University of California School of Medicine, Davis, California, United States of America
- Department of Medicine, The University of Hong Kong, Hong Kong
- Department of Anatomy, The University of Hong Kong, Hong Kong
| | - Chi-Wing Kong
- Department of Medicine, The University of Hong Kong, Hong Kong
- Stem Cell and Regenerative Medicine Consortium, The University of Hong Kong, Hong Kong
- Heart, Brain, Hormone and Healthy Aging Research Center, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Lin Geng
- Stem Cell and Regenerative Medicine Consortium, The University of Hong Kong, Hong Kong
| | - Kitchener D. Wilson
- Departments of Medicine and Radiology, Stanford University, Palo Alto, California, United States of America
| | - Nipavan Chiamvimonvat
- University of California School of Medicine, Davis, California, United States of America
| | - Kenneth R. Boheler
- Stem Cell and Regenerative Medicine Consortium, The University of Hong Kong, Hong Kong
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Joseph C. Wu
- Departments of Medicine and Radiology, Stanford University, Palo Alto, California, United States of America
| | - Gordon Keller
- McEwen Central for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
| | - Roger J. Hajjar
- Center of Cardiovascular Research, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Ronald A. Li
- University of California School of Medicine, Davis, California, United States of America
- Center of Cardiovascular Research, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Medicine, The University of Hong Kong, Hong Kong
- Department of Physiology, The University of Hong Kong, Hong Kong
- Stem Cell and Regenerative Medicine Consortium, The University of Hong Kong, Hong Kong
- Heart, Brain, Hormone and Healthy Aging Research Center, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
679
|
Richard AF, Demignon J, Sakakibara I, Pujol J, Favier M, Strochlic L, Le Grand F, Sgarioto N, Guernec A, Schmitt A, Cagnard N, Huang R, Legay C, Guillet-Deniau I, Maire P. Genesis of muscle fiber-type diversity during mouse embryogenesis relies on Six1 and Six4 gene expression. Dev Biol 2011; 359:303-20. [DOI: 10.1016/j.ydbio.2011.08.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/22/2011] [Accepted: 08/15/2011] [Indexed: 01/28/2023]
|
680
|
Abstract
MicroRNA (miRNA) are a class of noncoding RNA involved in regulating gene expression by a posttranscriptional mechanism. Based on work from our laboratory, this review explores the hypothesis that a recently described muscle-specific miRNA, myomiR, network has a central role in the regulation of skeletal muscle plasticity by coordinating changes in fiber type and muscle mass in response to altered contractile activity.
Collapse
|
681
|
Lewis A, Riddoch-Contreras J, Natanek SA, Donaldson A, Man WDC, Moxham J, Hopkinson NS, Polkey MI, Kemp PR. Downregulation of the serum response factor/miR-1 axis in the quadriceps of patients with COPD. Thorax 2011; 67:26-34. [PMID: 21998125 PMCID: PMC3240776 DOI: 10.1136/thoraxjnl-2011-200309] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Muscle atrophy confers a poor prognosis in patients with chronic obstructive pulmonary disease (COPD), yet the molecular pathways responsible are poorly characterised. Muscle-specific microRNAs and serum response factor (SRF) are important regulators of muscle phenotype that contribute to a feedback system to regulate muscle gene expression. The role of these factors in the skeletal muscle dysfunction that accompanies COPD is unknown. METHODS 31 patients with COPD and 14 healthy age-matched controls underwent lung and quadriceps function assessments, measurement of daily activity and a percutaneous quadriceps muscle biopsy. The expression of muscle-specific microRNAs, myosin heavy chains and components of the serum response factor signalling pathway were determined by qPCR. RESULTS A reduction in expression of miR-1 (2.5-fold, p=0.01) and the myocardin-related transcription factors (MRTFs) A and B was observed in patients compared with controls (MRTF-A mRNA: twofold, p=0.028; MRTF-B mRNA: fourfold, p=0.011). miR-1 expression was associated with smoking history, lung function, fat-free mass index, 6 min walk distance and percentage of type 1 fibres. miR-133 and miR-206 were negatively correlated with daily physical activity. Insulin-like growth factor 1 mRNA was increased in the patients and miR-1 was negatively correlated with phosphorylation of the kinase Akt. Furthermore, the protein levels of histone deacetylase 4, another miR-1 target, were increased in the patients. CONCLUSIONS Downregulation of the activity of the MRTF-SRF axis and the expression of muscle-specific microRNAs, particularly miR-1, may contribute to COPD-associated skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Amy Lewis
- Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, SAF Building South Kensington Campus, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
682
|
An CI, Dong Y, Hagiwara N. Genome-wide mapping of Sox6 binding sites in skeletal muscle reveals both direct and indirect regulation of muscle terminal differentiation by Sox6. BMC DEVELOPMENTAL BIOLOGY 2011; 11:59. [PMID: 21985497 PMCID: PMC3239296 DOI: 10.1186/1471-213x-11-59] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 10/10/2011] [Indexed: 01/06/2023]
Abstract
Background Sox6 is a multi-faceted transcription factor involved in the terminal differentiation of many different cell types in vertebrates. It has been suggested that in mice as well as in zebrafish Sox6 plays a role in the terminal differentiation of skeletal muscle by suppressing transcription of slow fiber specific genes. In order to understand how Sox6 coordinately regulates the transcription of multiple fiber type specific genes during muscle development, we have performed ChIP-seq analyses to identify Sox6 target genes in mouse fetal myotubes and generated muscle-specific Sox6 knockout (KO) mice to determine the Sox6 null muscle phenotype in adult mice. Results We have identified 1,066 Sox6 binding sites using mouse fetal myotubes. The Sox6 binding sites were found to be associated with slow fiber-specific, cardiac, and embryonic isoform genes that are expressed in the sarcomere as well as transcription factor genes known to play roles in muscle development. The concurrently performed RNA polymerase II (Pol II) ChIP-seq analysis revealed that 84% of the Sox6 peak-associated genes exhibited little to no binding of Pol II, suggesting that the majority of the Sox6 target genes are transcriptionally inactive. These results indicate that Sox6 directly regulates terminal differentiation of muscle by affecting the expression of sarcomere protein genes as well as indirectly through influencing the expression of transcription factors relevant to muscle development. Gene expression profiling of Sox6 KO skeletal and cardiac muscle revealed a significant increase in the expression of the genes associated with Sox6 binding. In the absence of the Sox6 gene, there was dramatic upregulation of slow fiber-specific, cardiac, and embryonic isoform gene expression in Sox6 KO skeletal muscle and fetal isoform gene expression in Sox6 KO cardiac muscle, thus confirming the role Sox6 plays as a transcriptional suppressor in muscle development. Conclusions Our present data indicate that during development, Sox6 functions as a transcriptional suppressor of fiber type-specific and developmental isoform genes to promote functional specification of muscle which is critical for optimum muscle performance and health.
Collapse
Affiliation(s)
- Chung-Il An
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | | | | |
Collapse
|
683
|
Abstract
Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors. The relative proportion of the different fiber types varies strikingly between species, and in humans shows significant variability between individuals. Myosin heavy chain isoforms, whose complete inventory and expression pattern are now available, provide a useful marker for fiber types, both for the four major forms present in trunk and limb muscles and the minor forms present in head and neck muscles. However, muscle fiber diversity involves all functional muscle cell compartments, including membrane excitation, excitation-contraction coupling, contractile machinery, cytoskeleton scaffold, and energy supply systems. Variations within each compartment are limited by the need of matching fiber type properties between different compartments. Nerve activity is a major control mechanism of the fiber type profile, and multiple signaling pathways are implicated in activity-dependent changes of muscle fibers. The characterization of these pathways is raising increasing interest in clinical medicine, given the potentially beneficial effects of muscle fiber type switching in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Stefano Schiaffino
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| | - Carlo Reggiani
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| |
Collapse
|
684
|
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression and fundamentally impact on cardiovascular function in health and disease. A tight control of miRNA expression is crucial for the maintenance of tissue homeostasis. However, a comprehensive understanding of the various levels of miRNA regulation is in its infancy. We here summarize the current knowledge about regulation of cardiovascular miRNAs at the transcriptional level by transcription factors, during processing by the Drosha and Dicer complexes and the importance of miRNA modification, editing, and decay mechanisms. As an example, miRNA regulation in diabetic and hypoxic cardiovascular disease conditions is discussed. Better knowledge about regulatory mechanisms of miRNAs in cardiovascular disease will probably lead to improved and novel miRNA-based therapeutic therapies.
Collapse
Affiliation(s)
- Johann Bauersachs
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Carl-Neuberg-Strasse 1, Hannover, Germany.
| | | |
Collapse
|
685
|
Wada S, Kato Y, Okutsu M, Miyaki S, Suzuki K, Yan Z, Schiaffino S, Asahara H, Ushida T, Akimoto T. Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy. J Biol Chem 2011; 286:38456-38465. [PMID: 21926429 DOI: 10.1074/jbc.m111.271270] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Muscle atrophy is caused by accelerated protein degradation and occurs in many pathological states. Two muscle-specific ubiquitin ligases, MAFbx/atrogin-1 and muscle RING-finger 1 (MuRF1), are prominently induced during muscle atrophy and mediate atrophy-associated protein degradation. Blocking the expression of these two ubiquitin ligases provides protection against muscle atrophy. Here we report that miR-23a suppresses the translation of both MAFbx/atrogin-1 and MuRF1 in a 3'-UTR-dependent manner. Ectopic expression of miR-23a is sufficient to protect muscles from atrophy in vitro and in vivo. Furthermore, miR-23a transgenic mice showed resistance against glucocorticoid-induced skeletal muscle atrophy. These data suggest that suppression of multiple regulators by a single miRNA can have significant consequences in adult tissues.
Collapse
Affiliation(s)
- Shogo Wada
- Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Yoshio Kato
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562, Japan
| | - Mitsuharu Okutsu
- Institute for Biomedical Engineering Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku, Tokyo 162-0041, Japan; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Shigeru Miyaki
- Department of Regenerative Biology and Medicine, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Katsuhiko Suzuki
- Institute for Biomedical Engineering Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku, Tokyo 162-0041, Japan; Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Zhen Yan
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | | | - Hiroshi Asahara
- Department of Regenerative Biology and Medicine, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Takashi Ushida
- Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Takayuki Akimoto
- Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan; Institute for Biomedical Engineering Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku, Tokyo 162-0041, Japan; Venetian Institute of Molecular Medicine, 35129 Padova, Italy.
| |
Collapse
|
686
|
Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, Stack C, Latimer PA, Olson EN, van Rooij E. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 2011; 124:1537-47. [PMID: 21900086 DOI: 10.1161/circulationaha.111.030932] [Citation(s) in RCA: 458] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Diastolic dysfunction in response to hypertrophy is a major clinical syndrome with few therapeutic options. MicroRNAs act as negative regulators of gene expression by inhibiting translation or promoting degradation of target mRNAs. Previously, we reported that genetic deletion of the cardiac-specific miR-208a prevents pathological cardiac remodeling and upregulation of Myh7 in response to pressure overload. Whether this miRNA might contribute to diastolic dysfunction or other forms of heart disease is currently unknown. METHODS AND RESULTS Here, we show that systemic delivery of an antisense oligonucleotide induces potent and sustained silencing of miR-208a in the heart. Therapeutic inhibition of miR-208a by subcutaneous delivery of antimiR-208a during hypertension-induced heart failure in Dahl hypertensive rats dose-dependently prevents pathological myosin switching and cardiac remodeling while improving cardiac function, overall health, and survival. Transcriptional profiling indicates that antimiR-208a evokes prominent effects on cardiac gene expression; plasma analysis indicates significant changes in circulating levels of miRNAs on antimiR-208a treatment. CONCLUSIONS These studies indicate the potential of oligonucleotide-based therapies for modulating cardiac miRNAs and validate miR-208 as a potent therapeutic target for the modulation of cardiac function and remodeling during heart disease progression.
Collapse
|
687
|
Crippa S, Cassano M, Messina G, Galli D, Galvez BG, Curk T, Altomare C, Ronzoni F, Toelen J, Gijsbers R, Debyser Z, Janssens S, Zupan B, Zaza A, Cossu G, Sampaolesi M. miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors. ACTA ACUST UNITED AC 2011; 193:1197-212. [PMID: 21708977 PMCID: PMC3216340 DOI: 10.1083/jcb.201011099] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Postnatal heart stem and progenitor cells are a potential therapeutic tool for cardiomyopathies, but little is known about the mechanisms that control cardiac differentiation. Recent work has highlighted an important role for microribonucleic acids (miRNAs) as regulators of cardiac and skeletal myogenesis. In this paper, we isolated cardiac progenitors from neonatal β-sarcoglycan (Sgcb)-null mouse hearts affected by dilated cardiomyopathy. Unexpectedly, Sgcb-null cardiac progenitors spontaneously differentiated into skeletal muscle fibers both in vitro and when transplanted into regenerating muscles or infarcted hearts. Differentiation potential correlated with the absence of expression of a novel miRNA, miR669q, and with down-regulation of miR669a. Other miRNAs are known to promote myogenesis, but only miR669a and miR669q act upstream of myogenic regulatory factors to prevent myogenesis by directly targeting the MyoD 3' untranslated region. This finding reveals an added level of complexity in the mechanism of the fate choice of mesoderm progenitors and suggests that using endogenous cardiac stem cells therapeutically will require specially tailored procedures for certain genetic diseases.
Collapse
Affiliation(s)
- Stefania Crippa
- Translational Cardiomyology Laboratory, Interdepartmental Stem Cell Institute, Catholic University of Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
688
|
Fernandes T, Soci U, Oliveira E. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants. Braz J Med Biol Res 2011; 44:836-47. [DOI: 10.1590/s0100-879x2011007500112] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 07/25/2011] [Indexed: 12/25/2022] Open
|
689
|
Wang X, Ono Y, Tan SC, Chai RJ, Parkin C, Ingham PW. Prdm1a and miR-499 act sequentially to restrict Sox6 activity to the fast-twitch muscle lineage in the zebrafish embryo. Development 2011; 138:4399-404. [PMID: 21880783 DOI: 10.1242/dev.070516] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sox6 has been proposed to play a conserved role in vertebrate skeletal muscle fibre type specification. In zebrafish, sox6 transcription is repressed in slow-twitch progenitors by the Prdm1a transcription factor. Here we identify sox6 cis-regulatory sequences that drive fast-twitch-specific expression in a Prdm1a-dependent manner. We show that sox6 transcription subsequently becomes derepressed in slow-twitch fibres, whereas Sox6 protein remains restricted to fast-twitch fibres. We find that translational repression of sox6 is mediated by miR-499, the slow-twitch-specific expression of which is in turn controlled by Prdm1a, forming a regulatory loop that initiates and maintains the slow-twitch muscle lineage.
Collapse
Affiliation(s)
- XinGang Wang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | | | | | | | | | | |
Collapse
|
690
|
McCord RP, Zhou VW, Yuh T, Bulyk ML. Distant cis-regulatory elements in human skeletal muscle differentiation. Genomics 2011; 98:401-11. [PMID: 21907276 DOI: 10.1016/j.ygeno.2011.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 08/17/2011] [Indexed: 10/17/2022]
Abstract
Identifying gene regulatory elements and their target genes in human cells remains a significant challenge. Despite increasing evidence of physical interactions between distant regulatory elements and gene promoters in mammalian cells, many studies consider only promoter-proximal regulatory regions. We identify putative cis-regulatory modules (CRMs) in human skeletal muscle differentiation by combining myogenic TF binding data before and after differentiation with histone modification data in myoblasts. CRMs that are distant (>20 kb) from muscle gene promoters are common and are more likely than proximal promoter regions to show differentiation-specific changes in myogenic TF binding. We find that two of these distant CRMs, known to activate transcription in differentiating myoblasts, interact physically with gene promoters (PDLIM3 and ACTA1) during differentiation. Our results highlight the importance of considering distal CRMs in investigations of mammalian gene regulation and support the hypothesis that distant CRM-promoter looping contacts are a general mechanism of gene regulation.
Collapse
Affiliation(s)
- Rachel Patton McCord
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
691
|
Alexander MS, Casar JC, Motohashi N, Myers JA, Eisenberg I, Gonzalez RT, Estrella EA, Kang PB, Kawahara G, Kunkel LM. Regulation of DMD pathology by an ankyrin-encoded miRNA. Skelet Muscle 2011; 1:27. [PMID: 21824387 PMCID: PMC3188430 DOI: 10.1186/2044-5040-1-27] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/08/2011] [Indexed: 11/17/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is an X-linked myopathy resulting from the production of a nonfunctional dystrophin protein. MicroRNA (miRNA) are small 21- to 24-nucleotide RNA that can regulate both individual genes and entire cell signaling pathways. Previously, we identified several mRNA, both muscle-enriched and inflammation-induced, that are dysregulated in the skeletal muscles of DMD patients. One particularly muscle-enriched miRNA, miR-486, is significantly downregulated in dystrophin-deficient mouse and human skeletal muscles. miR-486 is embedded within the ANKYRIN1(ANK1) gene locus, which is transcribed as either a long (erythroid-enriched) or a short (heart muscle- and skeletal muscle-enriched) isoform, depending on the cell and tissue types. Results Inhibition of miR-486 in normal muscle myoblasts results in inhibited migration and failure to repair a wound in primary myoblast cell cultures. Conversely, overexpression of miR-486 in primary myoblast cell cultures results in increased proliferation with no changes in cellular apoptosis. Using bioinformatics and miRNA reporter assays, we have identified platelet-derived growth factor receptor β, along with several other downstream targets of the phosphatase and tensin homolog deleted on chromosome 10/AKT (PTEN/AKT) pathway, as being modulated by miR-486. The generation of muscle-specific transgenic mice that overexpress miR-486 revealed that miR-486 alters the cell cycle kinetics of regenerated myofibers in vivo, as these mice had impaired muscle regeneration. Conclusions These studies demonstrate a link for miR-486 as a regulator of the PTEN/AKT pathway in dystrophin-deficient muscle and an important factor in the regulation of DMD muscle pathology.
Collapse
Affiliation(s)
- Matthew S Alexander
- Program in Genomics and Division of Genetics, Children's Hospital Boston, 3 Blackfan Circle, CLS15024, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
692
|
Abstract
PURPOSE OF REVIEW Reprogramming of gene expression underlies the mechanisms involved in cardiac pathogenesis. MicroRNAs (miRNAs) are unique posttranscriptional regulators of gene expression whose function in cardiac development and disease has recently begun to unravel. In addition, they are potentially highly effective therapeutic tools. In this review, we will summarize the recent advancements in the field. RECENT FINDINGS The cardiac-enriched miRNAs, including miR-1, miR-133, and miR-208, as well as the ubiquitous miR-23a and miR-199b, play major roles in the development of cardiac hypertrophy. On the other hand, miR-21, miR-199a, miR-210, and miR-494 have been proven critical for the myocytes' adaptation and survival during hypoxia/ischemia. Using depletion or replacement strategies against some of these miRNAs has proven very effective in preventing or even reversing some disorders. These findings and more will be detailed in this review. SUMMARY In general, the discovery of miRNAs has uncovered a new dimension of gene regulation that provides us with unique mechanistic insights into cardiac diseases, in addition to which they can be utilized for new diagnostics and therapeutic strategies.
Collapse
|
693
|
Cardiac insulin resistance and microRNA modulators. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:654904. [PMID: 21977024 PMCID: PMC3184440 DOI: 10.1155/2012/654904] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 07/22/2011] [Indexed: 12/18/2022]
Abstract
Cardiac insulin resistance is a metabolic and functional disorder that is often associated with obesity and/or the cardiorenal metabolic syndrome (CRS), and this disorder may be accentuated by chronic alcohol consumption. In conditions of over-nutrition, increased insulin (INS) and angiotensin II (Ang II) activate mammalian target for rapamycin (mTOR)/p70 S6 kinase (S6K1) signaling, whereas chronic alcohol consumption inhibits mTOR/S6K1 activation in cardiac tissue. Although excessive activation of mTOR/S6K1 induces cardiac INS resistance via serine phosphorylation of INS receptor substrates (IRS-1/2), it also renders cardioprotection via increased Ang II receptor 2 (AT2R) upregulation and adaptive hypertrophy. In the INS-resistant and hyperinsulinemic Zucker obese (ZO) rat, a rodent model for CRS, activation of mTOR/S6K1signaling in cardiac tissue is regulated by protective feed-back mechanisms involving mTOR↔AT2R signaling loop and profile changes of microRNA that target S6K1. Such regulation may play a role in attenuating progressive heart failure. Conversely, alcohol-mediated inhibition of mTOR/S6K1, down-regulation of INS receptor and growth-inhibitory mir-200 family, and upregulation of mir-212 that promotes fetal gene program may exacerbate CRS-related cardiomyopathy.
Collapse
|
694
|
Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol 2011; 51:872-5. [PMID: 21806992 DOI: 10.1016/j.yjmcc.2011.07.011] [Citation(s) in RCA: 291] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/08/2011] [Accepted: 07/13/2011] [Indexed: 01/13/2023]
Abstract
Circulating microRNAs may have diagnostic potential in acute coronary syndrome (ACS). Previous studies, however, were based on low patient numbers and could not assess the relation of microRNAs to clinical characteristics and their potential prognostic value. We thus assessed the diagnostic and prognostic value of cardiomyocyte-enriched microRNAs in the context of clinical variables and a sensitive myonecrosis biomarker in a larger ACS cohort. MiR-1, miR-133a, miR-133b, miR-208a, miR-208b, and miR-499 concentrations were measured by quantitative reverse transcription PCR in plasma samples obtained on admission from 444 patients with ACS. High-sensitivity troponin T (hsTnT) was measured by immunoassay. Patients were followed for 6 months regarding all-cause mortality. In a multiple linear regression analysis that included clinical variables and hsTnT, miR-1, miR-133a, miR-133b, and miR-208b were independently associated with hsTnT levels (all P<0.001). Patients with myocardial infarction presented with higher levels of miR-1, miR-133a, and miR-208b compared with patients with unstable angina. However, all six investigated microRNAs showed a large overlap between patients with unstable angina or myocardial infarction. MiR-133a and miR-208b levels were significantly associated with the risk of death in univariate and age- and gender-adjusted analyses. Both microRNAs lost their independent association with outcome upon further adjustment for hsTnT. The present study tempers speculations about the potential usefulness of cardiomyocyte-enriched microRNAs as diagnostic or prognostic markers in ACS.
Collapse
|
695
|
Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam YJ, Matkovich SJ, Dorn GW, van Rooij E, Olson EN. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res 2011; 109:670-9. [PMID: 21778430 DOI: 10.1161/circresaha.111.248880] [Citation(s) in RCA: 352] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RATIONALE Mammalian cardiomyocytes withdraw from the cell cycle during early postnatal development, which significantly limits the capacity of the adult mammalian heart to regenerate after injury. The regulatory mechanisms that govern cardiomyocyte cell cycle withdrawal and binucleation are poorly understood. OBJECTIVE Given the potential of microRNAs (miRNAs) to influence large gene networks and modify complex developmental and disease phenotypes, we searched for miRNAs that were regulated during the postnatal switch to terminal differentiation. METHODS AND RESULTS Microarray analysis revealed subsets of miRNAs that were upregulated or downregulated in cardiac ventricles from mice at 1 and 10 days of age (P1 and P10). Interestingly, miR-195 (a member of the miR-15 family) was the most highly upregulated miRNA during this period, with expression levels almost 6-fold higher in P10 ventricles relative to P1. Precocious overexpression of miR-195 in the embryonic heart was associated with ventricular hypoplasia and ventricular septal defects in β-myosin heavy chain-miR-195 transgenic mice. Using global gene profiling and argonaute-2 immunoprecipitation approaches, we showed that miR-195 regulates the expression of a number of cell cycle genes, including checkpoint kinase 1 (Chek1), which we identified as a highly conserved direct target of miR-195. Finally, we demonstrated that knockdown of the miR-15 family in neonatal mice with locked nucleic acid-modified anti-miRNAs was associated with an increased number of mitotic cardiomyocytes and derepression of Chek1. CONCLUSIONS These findings suggest that upregulation of the miR-15 family during the neonatal period may be an important regulatory mechanism governing cardiomyocyte cell cycle withdrawal and binucleation.
Collapse
Affiliation(s)
- Enzo R Porrello
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
696
|
Port JD, Walker LA, Polk J, Nunley K, Buttrick PM, Sucharov CC. Temporal expression of miRNAs and mRNAs in a mouse model of myocardial infarction. Physiol Genomics 2011; 43:1087-95. [PMID: 21771878 DOI: 10.1152/physiolgenomics.00074.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Analysis of changes in gene expression is an important means to define molecular differences associated with the phenotypic changes observed in response to myocardial infarction (MI). Several studies in humans or animal models have reported differential miRNA expression in response to MI acutely (animal) or chronically (human). To determine the relative contribution of microRNA (miRNA) and mRNAs to acute and chronic temporal changes in response to MI, mRNA and miRNA expression profiles were performed in three time points post-MI. Changes in mRNA and miRNA expression was analyzed by arrays and confirmed by RT-PCR. Bioinformatic analysis demonstrated that several genes and miRNAs in various pathways are regulated in a temporal or phenotype-specific manner. Furthermore miRNA analyses indicated that miRNAs can target expression of several genes involved in multiple cardiomyopathy-related pathways. Our results suggest that: 1) Differentially regulated miRNAs are predicted to target expression of several genes in multiple biological processes involved in the response to MI; 2) antithetical and compensatory changes in miRNA expression are observed at later disease stages, including antithetical regulation of miR-29, which correlates with the expression of collagen genes, and upregulation of apoptosis-related miRNAs at early stages and antiapoptotic/growth promoting miRNAs at later stages; 3) temporally dependent changes in miRNA and mRNA expression post-MI are generally characterized by dramatic changes acutely postinjury and are normalized as disease progresses; 4) A combinatorial analysis of mRNA and miRNA expression may aid in determining factors involved in compensatory and decompensated responses to cardiac injury.
Collapse
Affiliation(s)
- J David Port
- Division of Cardiology, Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
697
|
Abstract
MicroRNAs (miRNAs) are a class of posttranscriptional regulators that have recently introduced an additional level of intricacy to our understanding of gene regulation. There are currently over 10,000 miRNAs that have been identified in a range of species including metazoa, mycetozoa, viridiplantae, and viruses, of which 940, to date, are found in humans. It is estimated that more than 60% of human protein-coding genes harbor miRNA target sites in their 3′ untranslated region and, thus, are potentially regulated by these molecules in health and disease. This review will first briefly describe the discovery, structure, and mode of function of miRNAs in mammalian cells, before elaborating on their roles and significance during development and pathogenesis in the various mammalian organs, while attempting to reconcile their functions with our existing knowledge of their targets. Finally, we will summarize some of the advances made in utilizing miRNAs in therapeutics.
Collapse
Affiliation(s)
- Danish Sayed
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Maha Abdellatif
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| |
Collapse
|
698
|
Gidlöf O, Andersson P, van der Pals J, Götberg M, Erlinge D. Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples. Cardiology 2011; 118:217-26. [PMID: 21701171 DOI: 10.1159/000328869] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 04/27/2011] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Circulating microRNAs (miRNAs) are promising as biomarkers for various diseases. We examined the release patterns of cardiospecific miRNAs in a closed-chest, large animal ischemia-reperfusion model and in patients with ST elevation myocardial infarction (STEMI). METHODS Six anesthetized pigs were subjected to coronary occlusion-reperfusion. Plasma, urine, and clinical parameters were collected from 25 STEMI patients undergoing primary percutaneous coronary intervention. miRNA was extracted and measured with qPCR. RESULTS In the pig reperfusion model miR-1, miR-133a, and miR-208b increased rapidly in plasma with a peak at 120 min, while miR-499-5p remained elevated longer. In patients with STEMI all 4 miRNAs increased abruptly from 70-fold to 3,000-fold in plasma, with a peak within 12 h (p < 0.01). miR-1 and miR-133a both correlated strongly with the glomerular filtration rate (GFR), indicating renal elimination. This was confirmed by detection of miR-1 and miR-133a, but not miR-208b or miR-499-5p, in urine. Peak values of miR-208b correlated with peak troponin and the ejection fraction. CONCLUSION We demonstrate a distinct and rapid increase in levels of cardiospecific miRNA in the circulation after myocardial infarction. Release of miRNAs correlated with cardiomyocyte necrosis markers, the ejection fraction, and the GFR, indicating a possible role for these molecules as biomarkers for the diagnosis of STEMI as well as the prediction of long-term complications.
Collapse
Affiliation(s)
- Olof Gidlöf
- Department of Cardiology, Skåne University Hospital, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
699
|
Quiat D, Voelker KA, Pei J, Grishin NV, Grange RW, Bassel-Duby R, Olson EN. Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6. Proc Natl Acad Sci U S A 2011; 108:10196-201. [PMID: 21633012 PMCID: PMC3121857 DOI: 10.1073/pnas.1107413108] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In response to physiological stimuli, skeletal muscle alters its myofiber composition to significantly affect muscle performance and metabolism. This process requires concerted regulation of myofiber-specific isoforms of sarcomeric and calcium regulatory proteins that couple action potentials to the generation of contractile force. Here, we identify Sox6 as a fast myofiber-enriched repressor of slow muscle gene expression in vivo. Mice lacking Sox6 specifically in skeletal muscle have an increased number of slow myofibers, elevated mitochondrial activity, and exhibit down-regulation of the fast myofiber gene program, resulting in enhanced muscular endurance. In addition, microarray profiling of Sox6 knockout muscle revealed extensive muscle fiber-type remodeling, and identified numerous genes that display distinctive fiber-type enrichment. Sox6 directly represses the transcription of slow myofiber-enriched genes by binding to conserved cis-regulatory elements. These results identify Sox6 as a robust regulator of muscle contractile phenotype and metabolism, and elucidate a mechanism by which functionally related muscle fiber-type specific gene isoforms are collectively controlled.
Collapse
Affiliation(s)
| | - Kevin A. Voelker
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech University, Blacksburg, VA 24061
| | - Jimin Pei
- Department of Biochemistry, and
- The Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Nick V. Grishin
- Department of Biochemistry, and
- The Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Robert W. Grange
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech University, Blacksburg, VA 24061
| | | | | |
Collapse
|
700
|
Konopka AR, Trappe TA, Jemiolo B, Trappe SW, Harber MP. Myosin heavy chain plasticity in aging skeletal muscle with aerobic exercise training. J Gerontol A Biol Sci Med Sci 2011; 66:835-41. [PMID: 21659340 DOI: 10.1093/gerona/glr088] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To assess myosin heavy chain (MHC) plasticity in aging skeletal muscle with aerobic exercise training, MHC composition was measured at the messenger RNA (mRNA) level and protein level in mixed-muscle homogenates and single myofibers. Muscle samples were obtained from eight nonexercising women (70 ± 2 years) before and after 12 weeks of training (20-45 minutes of cycle exercise per session at 60%-80% heart rate reserve, three to four sessions per week). Training elevated MHC I mRNA (p < .10) and protein (p < .05) in mixed-muscle (54% ± 4% to 61% ± 2%) and single myofibers (42% ± 4% to 52% ± 3%). The increase in MHC I protein was positively correlated (p < .05) with improvements in whole muscle power. Training resulted in a general downregulation of MHC IIa and IIx at the mRNA and protein levels. The training-induced increase in MHC I protein and mRNA demonstrates the maintenance of skeletal muscle plasticity with aging. Furthermore, these data suggest that a shift toward an oxidative MHC phenotype may be beneficial for metabolic and functional health in older individuals.
Collapse
Affiliation(s)
- Adam R Konopka
- Human Performance Laboratory, Ball State University, Muncie, IN 47306, USA
| | | | | | | | | |
Collapse
|