651
|
Abstract
Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.
Collapse
Affiliation(s)
- Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom WC1E 6BT; .,Institute for the Physics of Living Systems, University College London, London, United Kingdom, WC1E 6BT
| | - Irene M Aspalter
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom WC1E 6BT; .,Institute for the Physics of Living Systems, University College London, London, United Kingdom, WC1E 6BT
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| |
Collapse
|
652
|
Schmitt M, Stark H. Active Brownian motion of emulsion droplets: Coarsening dynamics at the interface and rotational diffusion. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:80. [PMID: 27562831 DOI: 10.1140/epje/i2016-16080-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/13/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
A micron-sized droplet of bromine water immersed in a surfactant-laden oil phase can swim (S. Thutupalli, R. Seemann, S. Herminghaus, New J. Phys. 13 073021 (2011). The bromine reacts with the surfactant at the droplet interface and generates a surfactant mixture. It can spontaneously phase-separate due to solutocapillary Marangoni flow, which propels the droplet. We model the system by a diffusion-advection-reaction equation for the mixture order parameter at the interface including thermal noise and couple it to fluid flow. Going beyond previous work, we illustrate the coarsening dynamics of the surfactant mixture towards phase separation in the axisymmetric swimming state. Coarsening proceeds in two steps: an initially slow growth of domain size followed by a nearly ballistic regime. On larger time scales thermal fluctuations in the local surfactant composition initiates random changes in the swimming direction and the droplet performs a persistent random walk, as observed in experiments. Numerical solutions show that the rotational correlation time scales with the square of the inverse noise strength. We confirm this scaling by a perturbation theory for the fluctuations in the mixture order parameter and thereby identify the active emulsion droplet as an active Brownian particle.
Collapse
Affiliation(s)
- M Schmitt
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany.
| | - H Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany
| |
Collapse
|
653
|
Preisler Z, Dijkstra M. Configurational entropy and effective temperature in systems of active Brownian particles. SOFT MATTER 2016; 12:6043-6048. [PMID: 27328434 DOI: 10.1039/c6sm00889e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We propose a method to determine the effective density of states and configurational entropy in systems of active Brownian particles by measuring the probability distribution function of potential energy at varying temperatures. Assuming that the entropy is a continuous and monotonically increasing function of energy, we provide support that two-dimensional systems of purely repulsive active Brownian spheres can be mapped onto an equilibrium system with a Boltzmann-like distribution and an effective temperature. We find that the effective temperature depends even for a large number of particles on system size, suggesting that active systems are non-extensive. In addition, the effective Helmholtz free energy can be derived from the configurational entropy. We verify our results regarding the configurational entropy by using thermodynamic integration of the effective Helmholtz free energy with respect to temperature.
Collapse
Affiliation(s)
- Zdeněk Preisler
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| |
Collapse
|
654
|
Huang MJ, Schofield J, Kapral R. A microscopic model for chemically-powered Janus motors. SOFT MATTER 2016; 12:5581-9. [PMID: 27241052 DOI: 10.1039/c6sm00830e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Very small synthetic motors that make use of chemical reactions to propel themselves in solution hold promise for new applications in the development of new materials, science and medicine. The prospect of such potential applications, along with the fact that systems with many motors or active elements display interesting cooperative phenomena of fundamental interest, has made the study of synthetic motors an active research area. Janus motors, comprising catalytic and noncatalytic hemispheres, figure prominently in experimental and theoretical studies of these systems. While continuum models of Janus motor systems are often used to describe motor dynamics, microscopic models that are able to account for intermolecular interactions, many-body concentration gradients, fluid flows and thermal fluctuations provide a way to explore the dynamical behavior of these complex out-of-equilibrium systems that does not rely on approximations that are often made in continuum theories. The analysis of microscopic models from first principles provides a foundation from which the range of validity and limitations of approximate theories of the dynamics may be assessed. In this paper, a microscopic model for the diffusiophoretic propulsion of Janus motors, where motor interactions with the environment occur only through hard collisions, is constructed, analyzed and compared to theoretical predictions. Microscopic simulations of both single-motor and many-motor systems are carried out to illustrate the results.
Collapse
Affiliation(s)
- Mu-Jie Huang
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
| | | | | |
Collapse
|
655
|
Geiseler A, Hänggi P, Marchesoni F, Mulhern C, Savel'ev S. Chemotaxis of artificial microswimmers in active density waves. Phys Rev E 2016; 94:012613. [PMID: 27575185 DOI: 10.1103/physreve.94.012613] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 06/06/2023]
Abstract
Living microorganisms are capable of a tactic response to external stimuli by swimming toward or away from the stimulus source; they do so by adapting their tactic signal transduction pathways to the environment. Their self-motility thus allows them to swim against a traveling tactic wave, whereas a simple fore-rear asymmetry argument would suggest the opposite. Their biomimetic counterpart, the artificial microswimmers, also propel themselves by harvesting kinetic energy from an active medium, but, in contrast, lack the adaptive capacity. Here we investigate the transport of artificial swimmers subject to traveling active waves and show, by means of analytical and numerical methods, that self-propelled particles can actually diffuse in either direction with respect to the wave, depending on its speed and waveform. Moreover, chiral swimmers, which move along spiraling trajectories, may diffuse preferably in a direction perpendicular to the active wave. Such a variety of tactic responses is explained by the modulation of the swimmer's diffusion inside traveling active pulses.
Collapse
Affiliation(s)
| | - Peter Hänggi
- Institut für Physik, University of Augsburg, D-86159, Germany
- Nanosystems Initiative Munich, Schellingstraße 4, D-80799 München, Germany
- Department of Physics, National University of Singapore, 117551 Singapore, Republic of Singapore
| | - Fabio Marchesoni
- Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
- Dipartimento di Fisica, Università di Camerino, I-62032 Camerino, Italy
| | - Colm Mulhern
- Institut für Physik, University of Augsburg, D-86159, Germany
| | - Sergey Savel'ev
- Department of Physics, Loughborough University, Loughborough, LE11 3TU, United Kingdom
| |
Collapse
|
656
|
Wittmann R, Marechal M, Mecke K. Fundamental measure theory for non-spherical hard particles: predicting liquid crystal properties from the particle shape. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:244003. [PMID: 27115987 DOI: 10.1088/0953-8984/28/24/244003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Density functional theory (DFT) for hard bodies provides a theoretical description of the effect of particle shape on inhomogeneous fluids. We present improvements of the DFT framework fundamental measure theory (FMT) for hard bodies and validate these improvements for hard spherocylinders. To keep the paper self-contained, we first discuss the recent advances in FMT for hard bodies that lead to the introduction of fundamental mixed measure theory (FMMT) in our previous paper (2015 Europhys. Lett. 109 26003). Subsequently, we provide an efficient semi-empirical alternative to FMMT and show that the phase diagram for spherocylinders is described with similar accuracy in both versions of the theory. Finally, we present a semi-empirical modification of FMMT whose predictions for the phase diagram for spherocylinders are in excellent quantitative agreement with computer simulation results.
Collapse
Affiliation(s)
- René Wittmann
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland. Institut für Theoretische Physik, Universität Erlangen-Nürnberg, Staudtstr 7, 91058 Erlangen, Germany
| | | | | |
Collapse
|
657
|
Bartnick J, Kaiser A, Löwen H, Ivlev AV. Emerging activity in bilayered dispersions with wake-mediated interactions. J Chem Phys 2016; 144:224901. [DOI: 10.1063/1.4953225] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jörg Bartnick
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Andreas Kaiser
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Alexei V. Ivlev
- Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching, Germany
| |
Collapse
|
658
|
Toner J, Löwen H, Wensink HH. Following fluctuating signs: Anomalous active superdiffusion of swimmers in anisotropic media. Phys Rev E 2016; 93:062610. [PMID: 27415323 DOI: 10.1103/physreve.93.062610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Indexed: 06/06/2023]
Abstract
Active (i.e., self-propelled or swimming) particles moving through an isotropic fluid exhibit conventional diffusive behavior. We report anomalous diffusion of an active particle moving in an anisotropic nematic background. While the translational motion parallel to the nematic director shows ballistic behavior, the long-time transverse motion is superdiffusive, with an anomalous scaling proportional to tlnt of the mean-square displacement with time t. This behavior is predicted by an analytical theory that we present here and is corroborated by numerical simulation of active particle diffusion in a simple lattice model for a nematic liquid crystal. It is universal for any collection of self-propelled elements (e.g., bacteria or active rods) moving in a nematic background, provided only that the swimmers are sufficiently dilute that their interactions with each other can be neglected and that they do not perform hairpin turns.
Collapse
Affiliation(s)
- John Toner
- Department of Physics and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403, USA
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Henricus H Wensink
- Laboratoire de Physique des Solides, UMR 8502, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| |
Collapse
|
659
|
Winkler RG. Dynamics of flexible active Brownian dumbbells in the absence and the presence of shear flow. SOFT MATTER 2016; 12:3737-3749. [PMID: 26980630 DOI: 10.1039/c5sm02965a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The dynamical properties of a flexible dumbbell composed of active Brownian particles are analytically analyzed. The dumbbell is considered as a simplified description of a linear active polymer. The two beads are independently propelled in directions which change in a diffusive manner. The relaxation behavior of the internal degree of freedom is tightly coupled to the dumbbell activity. The latter dominates the dynamics for strong propulsion. As is shown, limitations in bond stretching strongly influence the relaxation behavior. Similarly, under shear flow, activity determines the relaxation and tumbling behavior at strong propulsion. Moreover, shear leads to a preferred alignment and consequently to shear thinning. Thereby, a different power-law dependence on the shear rate compared to passive dumbbells under flow is found.
Collapse
Affiliation(s)
- Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| |
Collapse
|
660
|
Cencini M, Franchino M, Santamaria F, Boffetta G. Centripetal focusing of gyrotactic phytoplankton. J Theor Biol 2016; 399:62-70. [PMID: 27060672 DOI: 10.1016/j.jtbi.2016.03.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/14/2016] [Accepted: 03/25/2016] [Indexed: 11/27/2022]
Abstract
A suspension of gyrotactic microalgae Chlamydomonas augustae swimming in a cylindrical water vessel in solid-body rotation is studied. Our experiments show that swimming algae form an aggregate around the axis of rotation, whose intensity increases with the rotation speed. We explain this phenomenon by the centripetal orientation of the swimming direction towards the axis of rotation. This centripetal focusing is contrasted by diffusive fluxes due to stochastic reorientation of the cells. The competition of the two effects lead to a stationary distribution, which we analytically derive from a refined mathematical model of gyrotactic swimmers. The temporal evolution of the cell distribution, obtained via numerical simulations of the stochastic model, is in quantitative agreement with the experimental measurements in the range of parameters explored.
Collapse
Affiliation(s)
- M Cencini
- Institute of Complex Systems-CNR, via dei Taurini 19, 00185 Rome, Italy
| | - M Franchino
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy
| | - F Santamaria
- Department of Physics and INFN, University of Torino, via P.Giuria 1, 10125 Torino, Italy
| | - G Boffetta
- Department of Physics and INFN, University of Torino, via P.Giuria 1, 10125 Torino, Italy.
| |
Collapse
|
661
|
Gomez-Solano JR, Blokhuis A, Bechinger C. Dynamics of Self-Propelled Janus Particles in Viscoelastic Fluids. PHYSICAL REVIEW LETTERS 2016; 116:138301. [PMID: 27082004 DOI: 10.1103/physrevlett.116.138301] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Indexed: 06/05/2023]
Abstract
We experimentally investigate active motion of spherical Janus colloidal particles in a viscoelastic fluid. Self-propulsion is achieved by a local concentration gradient of a critical polymer mixture which is imposed by laser illumination. Even in the regime where the fluid's viscosity is independent of the deformation rate induced by the particle, we find a remarkable increase of up to 2 orders of magnitude of the rotational diffusion with increasing particle velocity, which can be phenomenologically described by an effective rotational diffusion coefficient dependent on the Weissenberg number. We show that this effect gives rise to a highly anisotropic response of microswimmers in viscoelastic media to external forces, depending on its orientation.
Collapse
Affiliation(s)
- Juan Ruben Gomez-Solano
- 2. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Alex Blokhuis
- 2. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Clemens Bechinger
- 2. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max-Planck-Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| |
Collapse
|
662
|
Wu JC, Ai BQ. Forced transport of self-propelled particles in a two-dimensional separate channel. Sci Rep 2016; 6:24001. [PMID: 27035860 PMCID: PMC4817505 DOI: 10.1038/srep24001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/18/2016] [Indexed: 11/29/2022] Open
Abstract
Transport of self-propelled particles in a two-dimensional (2D) separate channel is investigated in the presence of the combined forces. By applying an ac force, the particles will be trapped by the separate walls. A dc force produces the asymmetry of the system and induces the longitudinal directed transport. Due to the competition between self-propulsion and the combined external forces, the transport is sensitive to the self-propelled speed and the particle radius, thus one can separate the particles based on these properties.
Collapse
Affiliation(s)
- Jian-chun Wu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Bao-quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
663
|
Nasouri B, Elfring GJ. Hydrodynamic interactions of cilia on a spherical body. Phys Rev E 2016; 93:033111. [PMID: 27078451 DOI: 10.1103/physreve.93.033111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 12/15/2022]
Abstract
Microorganisms develop coordinated beating patterns on surfaces lined with cilia known as metachronal waves. For a chain of cilia attached to a flat ciliate, it has been shown that hydrodynamic interactions alone can lead the system to synchronize. However, several microorganisms possess a curve-shaped ciliate body and so to understand the effect of this geometry on the formation of metachronal waves, we evaluate the hydrodynamic interactions of cilia near a large spherical body. Using a minimal model, we show that for a chain of cilia around the sphere, the natural periodicity in the geometry leads the system to synchronize. We also report an emergent wavelike behavior when an asymmetry is introduced to the system.
Collapse
Affiliation(s)
- Babak Nasouri
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Gwynn J Elfring
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
664
|
Pinçe E, Velu SKP, Callegari A, Elahi P, Gigan S, Volpe G, Volpe G. Disorder-mediated crowd control in an active matter system. Nat Commun 2016; 7:10907. [PMID: 26956085 PMCID: PMC4786875 DOI: 10.1038/ncomms10907] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/01/2016] [Indexed: 11/09/2022] Open
Abstract
Living active matter systems such as bacterial colonies, schools of fish and human
crowds, display a wealth of emerging collective and dynamic behaviours as a result
of far-from-equilibrium interactions. The dynamics of these systems are better
understood and controlled considering their interaction with the environment, which
for realistic systems is often highly heterogeneous and disordered. Here, we
demonstrate that the presence of spatial disorder can alter the long-term dynamics
in a colloidal active matter system, making it switch between gathering and
dispersal of individuals. At equilibrium, colloidal particles always gather at the
bottom of any attractive potential; however, under non-equilibrium driving forces in
a bacterial bath, the colloids disperse if disorder is added to the potential. The
depth of the local roughness in the environment regulates the transition between
gathering and dispersal of individuals in the active matter system, thus inspiring
novel routes for controlling emerging behaviours far from equilibrium. Many living systems, such as bacterial colonies, exhibit collective
and dynamic behaviours that are sensitive to the change in environmental conditions.
Here, the authors show that a colloidal active matter system switches between gathering
and dispersal of individuals in response to a disordered potential.
Collapse
Affiliation(s)
- Erçağ Pinçe
- Department of Physics, Bilkent University, Çankaya, 06800 Ankara, Turkey
| | - Sabareesh K P Velu
- Department of Physics, Bilkent University, Çankaya, 06800 Ankara, Turkey
| | - Agnese Callegari
- Department of Physics, Bilkent University, Çankaya, 06800 Ankara, Turkey
| | - Parviz Elahi
- Department of Physics, Bilkent University, Çankaya, 06800 Ankara, Turkey
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, Université Pierre et Marie Curie, École Normale Supérieure, CNRS, College de France, 24 rue Lhomond, 75005 Paris, France
| | - Giovanni Volpe
- Department of Physics, Bilkent University, Çankaya, 06800 Ankara, Turkey.,UNAM-National Nanotechnology Research Center, Bilkent University, Çankaya, 06800 Ankara, Turkey
| | - Giorgio Volpe
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| |
Collapse
|
665
|
Huang MJ, Kapral R. Collective dynamics of diffusiophoretic motors on a filament. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:36. [PMID: 27021653 DOI: 10.1140/epje/i2016-16036-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
A variety of uses has been proposed for synthetic chemically powered nanomotors that exploit their autonomous directed motion. The collective dynamics of these and other active particles display features that differ from their equilibrium analogs. We investigate the collective dynamics of chemically powered diffusiophoretic motors attached to a filament. Rotational Brownian motion is reduced substantially when a motor is attached to a filament and this improves motor performance. When many motors are attached to the filament, structural and dynamical correlations that may extend over long distances arise. While some features of these correlations are due to packing on the filament, there are nonequilibrium effects that are due to the local concentration gradients of reactive species produced by all motors. As the motor density on the filament increases beyond a critical value, the average motor velocity projected along motor internuclear axis switches from forward to backward directions. Knowledge of the collective dynamics of motors on filaments should prove useful when designing ensembles of synthetic motors to perform tasks such as cargo transport involving delivery of material to specific regions in complex media.
Collapse
Affiliation(s)
- Mu-Jie Huang
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, M5S 3H6, Toronto, Ontario, Canada.
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, M5S 3H6, Toronto, Ontario, Canada
| |
Collapse
|
666
|
Live from under the lens: exploring microbial motility with dynamic imaging and microfluidics. Nat Rev Microbiol 2016; 13:761-75. [PMID: 26568072 DOI: 10.1038/nrmicro3567] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Motility is one of the most dynamic features of the microbial world. The ability to swim or crawl frequently governs how microorganisms interact with their physical and chemical environments, and underpins a myriad of microbial processes. The ability to resolve temporal dynamics through time-lapse video microscopy and the precise control of the physicochemical microenvironment afforded by microfluidics offer powerful new opportunities to study the many motility adaptations of microorganisms and thereby further our understanding of their ecology. In this Review, we outline recent insights into the motility strategies of microorganisms brought about by these techniques, including the hydrodynamic signature of microorganisms, their locomotion mechanics, chemotaxis, their motility near and on surfaces, swimming in moving fluids and motility in dense microbial suspensions.
Collapse
|
667
|
Debnath D, Ghosh PK, Li Y, Marchesoni F, Li B. Diffusion of eccentric microswimmers. SOFT MATTER 2016; 12:2017-2024. [PMID: 26760136 DOI: 10.1039/c5sm02811f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We model the two-dimensional diffusive dynamics of an eccentric artificial microswimmer in a highly viscous medium. We assume that the swimmer's propulsion results from an effective force applied to a center distinct from its center of mass, both centers resting on a body's axis parallel to its average self-propulsion velocity. Moreover, we allow for angular fluctuations of the velocity about the body's axis. We prove, both analytically and numerically, that the ensuing active diffusion of the swimmer is suppressed to an extent that strongly depends on the model parameters. In particular, the active diffusion constant undergoes a transition from a quadratic to a linear dependence on the self-propulsion speed, with practical consequences on the interpretation of the experimental data. Finally, we extend our model to describe the diffusion of chiral eccentric swimmers.
Collapse
Affiliation(s)
- Debajyoti Debnath
- Department of Chemistry, Presidency University, Kolkata 700073, India
| | | | | | | | | |
Collapse
|
668
|
Nikolov SV, Shum H, Balazs AC, Alexeev A. Computational design of microscopic swimmers and capsules: From directed motion to collective behavior. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2015.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
669
|
Active colloids: Progress and challenges towards realising autonomous applications. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2015.10.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
670
|
Küchler N, Löwen H, Menzel AM. Getting drowned in a swirl: Deformable bead-spring model microswimmers in external flow fields. Phys Rev E 2016; 93:022610. [PMID: 26986380 DOI: 10.1103/physreve.93.022610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Deformability is a central feature of many types of microswimmers, e.g., for artificially generated self-propelled droplets. Here, we analyze deformable bead-spring microswimmers in an externally imposed solvent flow field as simple theoretical model systems. We focus on their behavior in a circular swirl flow in two spatial dimensions. Linear (straight) two-bead swimmers are found to circle around the swirl with a slight drift to the outside with increasing activity. In contrast to that, we observe for triangular three-bead or squarelike four-bead swimmers a tendency of being drawn into the swirl and finally getting drowned, although a radial inward component is absent in the flow field. During one cycle around the swirl, the self-propulsion direction of an active triangular or squarelike swimmer remains almost constant, while their orbits become deformed exhibiting an "egglike" shape. Over time, the swirl flow induces slight net rotations of these swimmer types, which leads to net rotations of the egg-shaped orbits. Interestingly, in certain cases, the orbital rotation changes sense when the swimmer approaches the flow singularity. Our predictions can be verified in real-space experiments on artificial microswimmers.
Collapse
Affiliation(s)
- Niklas Küchler
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Andreas M Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
671
|
Ai BQ. Ratchet transport powered by chiral active particles. Sci Rep 2016; 6:18740. [PMID: 26795952 PMCID: PMC4726254 DOI: 10.1038/srep18740] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/25/2015] [Indexed: 11/17/2022] Open
Abstract
We numerically investigate the ratchet transport of mixtures of active and passive particles in a transversal asymmetric channel. A big passive particle is immersed in a ‘sea’ of active particles. Due to the chirality of active particles, the longitudinal directed transport is induced by the transversal asymmetry. For the active particles, the chirality completely determines the direction of the ratchet transport, the counterclockwise and clockwise particles move to the opposite directions and can be separated. However, for the passive particle, the transport behavior becomes complicated, the direction is determined by competitions among the chirality, the self-propulsion speed, and the packing fraction. Interestingly, within certain parameters, the passive particle moves to the left, while active particles move to the right. In addition, there exist optimal parameters (the chirality, the height of the barrier, the self-propulsion speed and the packing fraction) at which the rectified efficiency takes its maximal value. Our findings could be used for the experimental pursuit of the ratchet transport powered by chiral active particles.
Collapse
Affiliation(s)
- Bao-quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
672
|
Menzel AM, Saha A, Hoell C, Löwen H. Dynamical density functional theory for microswimmers. J Chem Phys 2016; 144:024115. [DOI: 10.1063/1.4939630] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andreas M. Menzel
- Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Arnab Saha
- Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Christian Hoell
- Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
673
|
|
674
|
|
675
|
Myung JS, Winkler RG, Gompper G. Self-organization in suspensions of end-functionalized semiflexible polymers under shear flow. J Chem Phys 2015; 143:243117. [PMID: 26723602 DOI: 10.1063/1.4933368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nonequilibrium dynamical behavior and structure formation of end-functionalized semiflexible polymer suspensions under flow are investigated by mesoscale hydrodynamic simulations. The hybrid simulation approach combines the multiparticle collision dynamics method for the fluid, which accounts for hydrodynamic interactions, with molecular dynamics simulations for the semiflexible polymers. In equilibrium, various kinds of scaffold-like network structures are observed, depending on polymer flexibility and end-attraction strength. We investigate the flow behavior of the polymer networks under shear and analyze their nonequilibrium structural and rheological properties. The scaffold structure breaks up and densified aggregates are formed at low shear rates, while the structural integrity is completely lost at high shear rates. We provide a detailed analysis of the shear- rate-dependent flow-induced structures. The studies provide a deeper understanding of the formation and deformation of network structures in complex materials.
Collapse
Affiliation(s)
- Jin Suk Myung
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
676
|
Hay RF, Gibson GM, Simpson SH, Padgett MJ, Phillips DB. 'Lissajous-like' trajectories in optical tweezers. OPTICS EXPRESS 2015; 23:31716-31727. [PMID: 26698964 DOI: 10.1364/oe.23.031716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
When a microscopic particle moves through a low Reynolds number fluid, it creates a flow-field which exerts hydrodynamic forces on surrounding particles. In this work we study the 'Lissajous-like' trajectories of an optically trapped 'probe' microsphere as it is subjected to time-varying oscillatory hydrodynamic flow-fields created by a nearby moving particle (the 'actuator'). We show a breaking of time-reversal symmetry in the motion of the probe when the driving motion of the actuator is itself time-reversal symmetric. This symmetry breaking results in a fluid-pumping effect, which arises due to the action of both a time-dependent hydrodynamic flow and a position-dependent optical restoring force, which together determine the trajectory of the probe particle. We study this situation experimentally, and show that the form of the trajectories observed is in good agreement with Stokesian dynamics simulations. Our results are related to the techniques of active micro-rheology and flow measurement, and also highlight how the mere presence of an optical trap can perturb the environment it is in place to measure.
Collapse
|
677
|
Bimodal rheotactic behavior reflects flagellar beat asymmetry in human sperm cells. Proc Natl Acad Sci U S A 2015; 112:15904-9. [PMID: 26655343 DOI: 10.1073/pnas.1515159112] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rheotaxis, the directed response to fluid velocity gradients, has been shown to facilitate stable upstream swimming of mammalian sperm cells along solid surfaces, suggesting a robust physical mechanism for long-distance navigation during fertilization. However, the dynamics by which a human sperm orients itself relative to an ambient flow is poorly understood. Here, we combine microfluidic experiments with mathematical modeling and 3D flagellar beat reconstruction to quantify the response of individual sperm cells in time-varying flow fields. Single-cell tracking reveals two kinematically distinct swimming states that entail opposite turning behaviors under flow reversal. We constrain an effective 2D model for the turning dynamics through systematic large-scale parameter scans, and find good quantitative agreement with experiments at different shear rates and viscosities. Using a 3D reconstruction algorithm to identify the flagellar beat patterns causing left or right turning, we present comprehensive 3D data demonstrating the rolling dynamics of freely swimming sperm cells around their longitudinal axis. Contrary to current beliefs, this 3D analysis uncovers ambidextrous flagellar waveforms and shows that the cell's turning direction is not defined by the rolling direction. Instead, the different rheotactic turning behaviors are linked to a broken mirror symmetry in the midpiece section, likely arising from a buckling instability. These results challenge current theoretical models of sperm locomotion.
Collapse
|
678
|
Ghosh PK, Li Y, Marchegiani G, Marchesoni F. Communication: Memory effects and active Brownian diffusion. J Chem Phys 2015; 143:211101. [DOI: 10.1063/1.4936624] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
679
|
Marini Bettolo Marconi U, Maggi C. Towards a statistical mechanical theory of active fluids. SOFT MATTER 2015; 11:8768-8781. [PMID: 26387914 DOI: 10.1039/c5sm01718a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a stochastic description of a model of N mutually interacting active particles in the presence of external fields and characterize its steady state behavior in the absence of currents. To reproduce the effects of the experimentally observed persistence of the trajectories of the active particles we consider a Gaussian force having a non-vanishing correlation time τ, whose finiteness is a measure of the activity of the system. With these ingredients we show that it is possible to develop a statistical mechanical approach similar to the one employed in the study of equilibrium liquids and to obtain the explicit form of the many-particle distribution function by means of the multidimensional unified colored noise approximation. Such a distribution plays a role analogous to the Gibbs distribution in equilibrium statistical mechanics and provides complete information about the microscopic state of the system. From here we develop a method to determine the one- and two-particle distribution functions in the spirit of the Born-Green-Yvon (BGY) equations of equilibrium statistical mechanics. The resulting equations which contain extra-correlations induced by the activity allow us to determine the stationary density profiles in the presence of external fields, the pair correlations and the pressure of active fluids. In the low density regime we obtained the effective pair potential ϕ(r) acting between two isolated particles separated by a distance, r, showing the existence of an effective attraction between them induced by activity. Based on these results, in the second half of the paper we propose a mean field theory as an approach simpler than the BGY hierarchy and use it to derive a van der Waals expression of the equation of state.
Collapse
Affiliation(s)
- Umberto Marini Bettolo Marconi
- Scuola di Scienze e Tecnologie, Università di Camerino, Via Madonna delle Carceri, 62032, Camerino, INFN Perugia, Italy.
| | - Claudio Maggi
- Dipartimento di Fisica, Università di Roma Sapienza, I-00185, Rome, Italy
| |
Collapse
|
680
|
Felderhof BU. Swimming of a deformable slab in a viscous incompressible fluid with inertia. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:063014. [PMID: 26764811 DOI: 10.1103/physreve.92.063014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Indexed: 06/05/2023]
Abstract
The swimming of a deformable planar slab in a viscous incompressible fluid is studied on the basis of the Navier-Stokes equations. A continuum of plane wave displacements, symmetric on both sides of the slab and characterized by a polarization angle, allows optimization of the swimming efficiency with respect to polarization. The mean swimming velocity and mean rate of dissipation are calculated to second order in the amplitude of the stroke. The optimum efficiency depends on the ratio of viscosity and mass density of the fluid. For high viscosity a stroke is found with significantly higher efficiency than Taylor's solution for a waving sheet. For low viscosity the efficiency is optimal for a nearly irrotational flow pattern.
Collapse
Affiliation(s)
- B U Felderhof
- Institut für Theorie der Statistischen Physik, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany
| |
Collapse
|
681
|
Klindt GS, Friedrich BM. Flagellar swimmers oscillate between pusher- and puller-type swimming. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:063019. [PMID: 26764816 DOI: 10.1103/physreve.92.063019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 06/05/2023]
Abstract
Self-propulsion of cellular microswimmers generates flow signatures, commonly classified as pusher and puller type, which characterize hydrodynamic interactions with other cells or boundaries. Using experimentally measured beat patterns, we compute that the flagellated green alga Chlamydomonas oscillates between pusher and puller, rendering it an approximately neutral swimmer, when averaging over its full beat cycle. Beyond a typical distance of 100μm from the cell, inertia attenuates oscillatory microflows. We show that hydrodynamic interactions between cells oscillate in time and are of similar magnitude as stochastic swimming fluctuations. From our analysis, we also find that the rate of hydrodynamic dissipation varies in time, which implies that flagellar beat patterns are not optimized with respect to this measure.
Collapse
Affiliation(s)
- Gary S Klindt
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | | |
Collapse
|
682
|
Marchegiani G, Marchesoni F. Driven microswimmers on a 2D substrate: A stochastic towed sled model. J Chem Phys 2015; 143:184901. [DOI: 10.1063/1.4935167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
683
|
Hu J, Yang M, Gompper G, Winkler RG. Modelling the mechanics and hydrodynamics of swimming E. coli. SOFT MATTER 2015; 11:7867-7876. [PMID: 26256240 DOI: 10.1039/c5sm01678a] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The swimming properties of an E. coli-type model bacterium are investigated by mesoscale hydrodynamic simulations, combining molecular dynamics simulations of the bacterium with the multiparticle particle collision dynamics method for the embedding fluid. The bacterium is composed of a spherocylindrical body with attached helical flagella, built up from discrete particles for an efficient coupling with the fluid. We measure the hydrodynamic friction coefficients of the bacterium and find quantitative agreement with experimental results of swimming E. coli. The flow field of the bacterium shows a force-dipole-like pattern in the swimming plane and two vortices perpendicular to its swimming direction arising from counterrotation of the cell body and the flagella. By comparison with the flow field of a force dipole and rotlet dipole, we extract the force-dipole and rotlet-dipole strengths for the bacterium and find that counterrotation of the cell body and the flagella is essential for describing the near-field hydrodynamics of the bacterium.
Collapse
Affiliation(s)
- Jinglei Hu
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | | | | | |
Collapse
|
684
|
Krüger T, Engstler M. Flagellar motility in eukaryotic human parasites. Semin Cell Dev Biol 2015; 46:113-27. [DOI: 10.1016/j.semcdb.2015.10.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022]
|
685
|
Schwarz US. Physical constraints for pathogen movement. Semin Cell Dev Biol 2015; 46:82-90. [DOI: 10.1016/j.semcdb.2015.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 10/22/2022]
|
686
|
Isele-Holder RE, Elgeti J, Gompper G. Self-propelled worm-like filaments: spontaneous spiral formation, structure, and dynamics. SOFT MATTER 2015; 11:7181-7190. [PMID: 26256415 DOI: 10.1039/c5sm01683e] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Worm-like filaments that are propelled homogeneously along their tangent vector are studied by Brownian dynamics simulations. Systems in two dimensions are investigated, corresponding to filaments adsorbed to interfaces or surfaces. A large parameter space covering weak and strong propulsion, as well as flexible and stiff filaments is explored. For strongly propelled and flexible filaments, the free-swimming filaments spontaneously form stable spirals. The propulsion force has a strong impact on dynamic properties, such as the rotational and translational mean square displacement and the rate of conformational sampling. In particular, when the active self-propulsion dominates thermal diffusion, but is too weak for spiral formation, the rotational diffusion coefficient has an activity-induced contribution given by v(c)/ξ(P), where v(c) is the contour velocity and ξ(P) the persistence length. In contrast, structural properties are hardly affected by the activity of the system, as long as no spirals form. The model mimics common features of biological systems, such as microtubules and actin filaments on motility assays or slender bacteria, and artificially designed microswimmers.
Collapse
Affiliation(s)
- Rolf E Isele-Holder
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | | | | |
Collapse
|
687
|
Chen Q, Ai BQ. Sorting of chiral active particles driven by rotary obstacles. J Chem Phys 2015; 143:104113. [DOI: 10.1063/1.4930282] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Qun Chen
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006 Guangzhou, China
| | - Bao-quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006 Guangzhou, China
| |
Collapse
|
688
|
Fedosov DA, Sengupta A, Gompper G. Effect of fluid-colloid interactions on the mobility of a thermophoretic microswimmer in non-ideal fluids. SOFT MATTER 2015. [PMID: 26223678 DOI: 10.1039/c5sm01364j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Janus colloids propelled by light, e.g., thermophoretic particles, offer promising prospects as artificial microswimmers. However, their swimming behavior and its dependence on fluid properties and fluid-colloid interactions remain poorly understood. Here, we investigate the behavior of a thermophoretic Janus colloid in its own temperature gradient using numerical simulations. The dissipative particle dynamics method with energy conservation is used to investigate the behavior in non-ideal and ideal-gas like fluids for different fluid-colloid interactions, boundary conditions, and temperature-controlling strategies. The fluid-colloid interactions appear to have a strong effect on the colloid behavior, since they directly affect heat exchange between the colloid surface and the fluid. The simulation results show that a reduction of the heat exchange at the fluid-colloid interface leads to an enhancement of colloid's thermophoretic mobility. The colloid behavior is found to be different in non-ideal and ideal fluids, suggesting that fluid compressibility plays a significant role. The flow field around the colloid surface is found to be dominated by a source-dipole, in agreement with the recent theoretical and simulation predictions. Finally, different temperature-control strategies do not appear to have a strong effect on the colloid's swimming velocity.
Collapse
Affiliation(s)
- Dmitry A Fedosov
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | |
Collapse
|
689
|
Smallenburg F, Löwen H. Swim pressure on walls with curves and corners. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032304. [PMID: 26465470 DOI: 10.1103/physreve.92.032304] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 06/05/2023]
Abstract
The concept of swim pressure quantifies the average force exerted by microswimmers on confining walls in nonequilibrium. Here we explore how the swim pressure depends on the wall curvature and on the presence of sharp corners in the wall. For active Brownian particles at high dilution, we present a coherent framework which describes the force and torque on passive particles of arbitrary shape, in the limit of large particles compared to the persistence length of the swimmer trajectories. The resulting forces can be used to derive, for example, the activity-induced depletion interaction between two disks, as well as to optimize the shape of a tracer particle for high swimming velocity. Our predictions are verifiable in experiments on passive obstacles exposed to a bath of bacteria or artificial microswimmers.
Collapse
Affiliation(s)
- Frank Smallenburg
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
690
|
Bialké J, Siebert JT, Löwen H, Speck T. Negative Interfacial Tension in Phase-Separated Active Brownian Particles. PHYSICAL REVIEW LETTERS 2015; 115:098301. [PMID: 26371685 DOI: 10.1103/physrevlett.115.098301] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 05/18/2023]
Abstract
We study numerically a model for active suspensions of self-propelled repulsive particles, for which a stable phase separation into a dilute and a dense phase is observed. We exploit the fact that for nonsquare boxes a stable "slab" configuration is reached, in which interfaces align with the shorter box edge. Evaluating a recent proposal for an intensive active swimming pressure, we demonstrate that the excess stress within the interface separating both phases is negative. The occurrence of a negative tension together with stable phase separation is a genuine nonequilibrium effect that is rationalized in terms of a positive stiffness, the estimate of which agrees excellently with the numerical data. Our results challenge effective thermodynamic descriptions and mappings of active Brownian particles onto passive pair potentials with attractions.
Collapse
Affiliation(s)
- Julian Bialké
- Institut für Theoretische Physik II, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | - Jonathan T Siebert
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | - Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
691
|
Harshey RM, Partridge JD. Shelter in a Swarm. J Mol Biol 2015; 427:3683-94. [PMID: 26277623 DOI: 10.1016/j.jmb.2015.07.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 01/04/2023]
Abstract
Flagella propel bacteria during both swimming and swarming, dispersing them widely. However, while swimming bacteria use chemotaxis to find nutrients and avoid toxic environments, swarming bacteria appear to suppress chemotaxis and to use the dynamics of their collective motion to continuously expand and acquire new territory, barrel through lethal chemicals in their path, carry along bacterial and fungal cargo that assists in exploration of new niches, and engage in group warfare for niche dominance. Here, we focus on two aspects of swarming, which, if understood, hold the promise of revealing new insights into microbial signaling and behavior, with ramifications beyond bacterial swarming. These are as follows: how bacteria sense they are on a surface and turn on programs that promote movement and how they override scarcity and adversity as dense packs.
Collapse
Affiliation(s)
- Rasika M Harshey
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| | - Jonathan D Partridge
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
692
|
Speck T, Menzel AM, Bialké J, Löwen H. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles. J Chem Phys 2015; 142:224109. [DOI: 10.1063/1.4922324] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Andreas M. Menzel
- Institut für Theoretische Physik II, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | - Julian Bialké
- Institut für Theoretische Physik II, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| |
Collapse
|
693
|
Physical Sensing of Surface Properties by Microswimmers--Directing Bacterial Motion via Wall Slip. Sci Rep 2015; 5:9586. [PMID: 25993019 PMCID: PMC4438609 DOI: 10.1038/srep09586] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/10/2015] [Indexed: 11/09/2022] Open
Abstract
Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width.
Collapse
|
694
|
Wysocki A, Elgeti J, Gompper G. Giant adsorption of microswimmers: Duality of shape asymmetry and wall curvature. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:050302. [PMID: 26066105 DOI: 10.1103/physreve.91.050302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 06/04/2023]
Abstract
The effect of shape asymmetry of microswimmers on their adsorption capacity at confining channel walls is studied by a simple dumbbell model. For a shape polarity of a forward-swimming cone, like the stroke-averaged shape of a sperm, extremely long wall retention times are found, caused by a nonvanishing component of the propulsion force pointing steadily into the wall, which grows exponentially with the self-propulsion velocity and the shape asymmetry. A direct duality relation between shape asymmetry and wall curvature is proposed and verified. Our results are relevant for the design microswimmer with controlled wall-adhesion properties. In addition, we confirm that pressure in active systems is strongly sensitive to the details of the particle-wall interactions.
Collapse
Affiliation(s)
- Adam Wysocki
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jens Elgeti
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|