651
|
Aazami MA, Mehrabani LV, Hashemi T, Hassanpouraghdam MB, Rasouli F. Soil-based nano-graphene oxide and foliar selenium and nano-Fe influence physiological responses of 'Sultana' grape under salinity. Sci Rep 2022; 12:4234. [PMID: 35273327 PMCID: PMC8913625 DOI: 10.1038/s41598-022-08251-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Salinity is a worldwide stressor that influences the growth and productivity of plants. Some novel compounds like; graphene oxide and nutrients such as Se and Fe especially as nano form may improve plant responses to the environmental stress factors. The soil-based graphene oxide (0, 50, and 100 g kg−1) and the foliar applications of Se and nano-Fe (control and 3 mg L−1) were assayed on grapevine cv. Sultana under salinity (0, 50, and 100 mM NaCl). The top flavonoids, chlorophyll b, and plant dry weight belonged to graphene oxide and nano-Fe applications. CAT activity was improved in response to Se, nano-Fe, and graphene oxide (50 g kg−1). The least Fe, K, Se, N, Mg, Mn, and Zn content was recorded for 100 mM NaCl. In contrast, the higher data for K, Se, Ca, Mg, Zn and Mn were acquired with graphene oxide × foliar treatments. In general, graphene oxide treatment (50 g kg−1) × nano-Fe and Se foliar use ameliorated the adverse salinity effects with the improved biochemical and physiological responses of Sultana grape.
Collapse
Affiliation(s)
- Mohammad Ali Aazami
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Lamia Vojodi Mehrabani
- Department of Agronomy and Plant Breeding, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Tahereh Hashemi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | | | - Farzad Rasouli
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| |
Collapse
|
652
|
Kumar P, Choudhary M, Halder T, Prakash NR, Singh V, V. VT, Sheoran S, T. RK, Longmei N, Rakshit S, Siddique KHM. Salinity stress tolerance and omics approaches: revisiting the progress and achievements in major cereal crops. Heredity (Edinb) 2022; 128:497-518. [DOI: 10.1038/s41437-022-00516-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
|
653
|
Lin X, Zhou M, Yao J, Li QQ, Zhang YY. Phenotypic and Methylome Responses to Salt Stress in Arabidopsis thaliana Natural Accessions. FRONTIERS IN PLANT SCIENCE 2022; 13:841154. [PMID: 35310665 PMCID: PMC8931716 DOI: 10.3389/fpls.2022.841154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Salt stress threatens plant growth, development and crop yields, and has become a critical global environmental issue. Increasing evidence has suggested that the epigenetic mechanism such as DNA methylation can mediate plant response to salt stress through transcriptional regulation and transposable element (TE) silencing. However, studies exploring genome-wide methylation dynamics under salt stress remain limited, in particular, for studies on multiple genotypes. Here, we adopted four natural accessions of the model species Arabidopsis thaliana and investigated the phenotypic and genome-wide methylation responses to salt stress through whole-genome bisulfite sequencing (WGBS). We found that salt stress significantly changed plant phenotypes, including plant height, rosette diameter, fruit number, and aboveground biomass, and the change in biomass tended to depend on accessions. Methylation analysis revealed that genome-wide methylation patterns depended primarily on accessions, and salt stress caused significant methylation changes in ∼ 0.1% cytosines over the genomes. About 33.5% of these salt-induced differential methylated cytosines (DMCs) were located to transposable elements (TEs). These salt-induced DMCs were mainly hypermethylated and accession-specific. TEs annotated to have DMCs (DMC-TEs) across accessions were found mostly belonged to the superfamily of Gypsy, a type II transposon, indicating a convergent DMC dynamic on TEs across different genetic backgrounds. Moreover, 8.0% of salt-induced DMCs were located in gene bodies and their proximal regulatory regions. These DMCs were also accession-specific, and genes annotated to have DMCs (DMC-genes) appeared to be more accession-specific than DMC-TEs. Intriguingly, both accession-specific DMC-genes and DMC-genes shared by multiple accessions were enriched in similar functions, including methylation, gene silencing, chemical homeostasis, polysaccharide catabolic process, and pathways relating to shifts between vegetative growth and reproduction. These results indicate that, across different genetic backgrounds, methylation changes may have convergent functions in post-transcriptional, physiological, and phenotypic modulation under salt stress. These convergent methylation dynamics across accession may be autonomous from genetic variation or due to convergent genetic changes, which requires further exploration. Our study provides a more comprehensive picture of genome-wide methylation dynamics under salt stress, and highlights the importance of exploring stress response mechanisms from diverse genetic backgrounds.
Collapse
Affiliation(s)
- Xiaohe Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ming Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jing Yao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qingshun Q. Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
654
|
Lung SC, Lai SH, Wang H, Zhang X, Liu A, Guo ZH, Lam HM, Chye ML. Oxylipin signaling in salt-stressed soybean is modulated by ligand-dependent interaction of Class II acyl-CoA-binding proteins with lipoxygenase. THE PLANT CELL 2022; 34:1117-1143. [PMID: 34919703 PMCID: PMC8894927 DOI: 10.1093/plcell/koab306] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/11/2021] [Indexed: 05/24/2023]
Abstract
Plant lipoxygenases (LOXs) oxygenate linoleic and linolenic acids, creating hydroperoxy derivatives, and from these, jasmonates and other oxylipins are derived. Despite the importance of oxylipin signaling, its activation mechanism remains largely unknown. Here, we show that soybean ACYL-COA-BINDING PROTEIN3 (ACBP3) and ACBP4, two Class II acyl-CoA-binding proteins, suppressed activity of the vegetative LOX homolog VLXB by sequestering it at the endoplasmic reticulum. The ACBP4-VLXB interaction was facilitated by linoleoyl-CoA and linolenoyl-CoA, which competed with phosphatidic acid (PA) for ACBP4 binding. In salt-stressed roots, alternative splicing produced ACBP variants incapable of VLXB interaction. Overexpression of the variants enhanced LOX activity and salt tolerance in Arabidopsis and soybean hairy roots, whereas overexpressors of the native forms exhibited reciprocal phenotypes. Consistently, the differential alternative splicing pattern in two soybean genotypes coincided with their difference in salt-induced lipid peroxidation. Salt-treated soybean roots were enriched in C32:0-PA species that showed high affinity to Class II ACBPs. We conclude that PA signaling and alternative splicing suppress ligand-dependent interaction of Class II ACBPs with VLXB, thereby triggering lipid peroxidation during salt stress. Hence, our findings unveil a dual mechanism that initiates the onset of oxylipin signaling in the salinity response.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sze Han Lai
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Haiyang Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiuying Zhang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ailin Liu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ze-Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
655
|
Yung WS, Wang Q, Huang M, Wong FL, Liu A, Ng MS, Li KP, Sze CC, Li MW, Lam HM. Priming-induced alterations in histone modifications modulate transcriptional responses in soybean under salt stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1575-1590. [PMID: 34961994 DOI: 10.1111/tpj.15652] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/01/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Plants that have experienced certain abiotic stress may gain tolerance to a similar stress in subsequent exposure. This phenomenon, called priming, was observed here in soybean (Glycine max) seedlings exposed to salt stress. Time-course transcriptomic profiles revealed distinctively different transcriptional responses in the primed seedlings from those in the non-primed seedlings under high salinity stress, indicating a stress response strategy of repressing unhelpful biotic stress responses and focusing on the promotion of those responses important for salt tolerance. To identify histone marks altered by the priming salinity treatment, a genome-wide profiling of histone 3 lysine 4 dimethylation (H3K4me2), H3K4me3, and histone 3 lysine 9 acetylation (H3K9ac) was performed. Our integrative analyses revealed that priming induced drastic alterations in these histone marks, which coordinately modified the stress response, ion homeostasis, and cell wall modification. Furthermore, transcriptional network analyses unveiled epigenetically modified networks which mediate the strategic downregulation of defense responses. Altering the histone acetylation status using a chemical inhibitor could elicit the priming-like transcriptional responses in non-primed seedlings, confirming the importance of histone marks in forming the priming response.
Collapse
Affiliation(s)
- Wai-Shing Yung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qianwen Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Mingkun Huang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China
| | - Fuk-Ling Wong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ailin Liu
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ming-Sin Ng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kwan-Pok Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ching-Ching Sze
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
656
|
Xie YH, Zhang FJ, Sun P, Li ZY, Zheng PF, Gu KD, Hao YJ, Zhang Z, You CX. Apple receptor-like kinase FERONIA regulates salt tolerance and ABA sensitivity in Malus domestica. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153616. [PMID: 35051690 DOI: 10.1016/j.jplph.2022.153616] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
FERONIA (FER) is a membrane-localized receptor-like kinase that plays pivotal roles in male and female gametophyte recognition, hormone signaling crosstalk, and biotic and abiotic responses. Most reports focus on the functions of FER in model plant Arabidopsis thaliana. However, the functions of FER homologs have not been deeply investigated in apple (Malus domestica), an important economic fruit crop distributed worldwide, especially in China. In this study, we identified an apple homolog of Arabidopsis FER, named MdFER (MDP0000390677). The two proteins encoded by AtFER and MdFER share similar domains: an extracellular malectin-like domain, a transmembrane domain, and an intracellular kinase domain. MdFER was further proven to localize to the plasma membrane in the epidermal cells of Nicotiana benthamiana. MdFER was widely expressed in different apple tissues, but the highest expression was found in roots. In addition, expression of MdFER was significantly induced by treatment with abscisic acid (ABA) and salt (NaCl). Overexpressing MdFER dramatically improved the resistance to salt stress and reduced the sensitivity to ABA in apple callus, while suppressing MdFER expression showed contrary effects. Furthermore, ectopic expression of MdFER in Arabidopsis significantly increased the salt tolerance and reduced the sensitivity to ABA. In addition, under salt stress and ABA treatment, Arabidopsis with highly expressed MdFER accumulated less reactive oxygen species (ROS), and the enzymatic activity of two ROS scavengers, superoxide dismutase and catalase, was higher compared with that of wild type (WT). Our work proves that MdFER positively regulates salt tolerance and negatively regulates ABA sensitivity in apple, which enriched the functions of FER in different plant species.
Collapse
Affiliation(s)
- Yin-Huan Xie
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Fu-Jun Zhang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003, PR China.
| | - Ping Sun
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Zhao-Yang Li
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Peng-Fei Zheng
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Kai-Di Gu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Zhenlu Zhang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
657
|
Zhao H, Li Z, Wang Y, Wang J, Xiao M, Liu H, Quan R, Zhang H, Huang R, Zhu L, Zhang Z. Cellulose synthase-like protein OsCSLD4 plays an important role in the response of rice to salt stress by mediating abscisic acid biosynthesis to regulate osmotic stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:468-484. [PMID: 34664356 PMCID: PMC8882776 DOI: 10.1111/pbi.13729] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 05/09/2023]
Abstract
Cell wall polysaccharide biosynthesis enzymes play important roles in plant growth, development and stress responses. The functions of cell wall polysaccharide synthesis enzymes in plant growth and development have been well studied. In contrast, their roles in plant responses to environmental stress are poorly understood. Previous studies have demonstrated that the rice cell wall cellulose synthase-like D4 protein (OsCSLD4) is involved in cell wall polysaccharide synthesis and is important for rice growth and development. This study demonstrated that the OsCSLD4 function-disrupted mutant nd1 was sensitive to salt stress, but insensitive to abscisic acid (ABA). The expression of some ABA synthesis and response genes was repressed in nd1 under both normal and salt stress conditions. Exogenous ABA can restore nd1-impaired salt stress tolerance. Moreover, overexpression of OsCSLD4 can enhance rice ABA synthesis gene expression, increase ABA content and improve rice salt tolerance, thus implying that OsCSLD4-regulated rice salt stress tolerance is mediated by ABA synthesis. Additionally, nd1 decreased rice tolerance to osmotic stress, but not ion toxic tolerance. The results from the transcriptome analysis showed that more osmotic stress-responsive genes were impaired in nd1 than salt stress-responsive genes, thus indicating that OsCSLD4 is involved in rice salt stress response through an ABA-induced osmotic response pathway. Intriguingly, the disruption of OsCSLD4 function decreased grain width and weight, while overexpression of OsCSLD4 increased grain width and weight. Taken together, this study demonstrates a novel plant salt stress adaptation mechanism by which crops can coordinate salt stress tolerance and yield.
Collapse
Affiliation(s)
- Hui Zhao
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Zixuan Li
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Yayun Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Jiayi Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Minggang Xiao
- Biotechnology Research InstituteHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Hai Liu
- Department of BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Ruidang Quan
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Haiwen Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Rongfeng Huang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Li Zhu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Zhijin Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| |
Collapse
|
658
|
Attia H, Alamer K, Algethami B, Zorrig W, Hessini K, Gupta K, Gupta B. Gibberellic acid interacts with salt stress on germination, growth and polyamine gene expression in fennel ( Foeniculum vulgare Mill.) seedlings. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:607-622. [PMID: 35465200 PMCID: PMC8986931 DOI: 10.1007/s12298-022-01140-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to rigorously investigate and integrate the underlying hypothesis that an enhancing effect of gibberellic acid (GA3, 3 µM) with increased growth actually leads to a modification of the physiological role of polyamines during salinity stress (NaCl, 100 mM) in fennel. These analyses concern both reserve tissues (cotyledons) and embryonic axes in growth. Physiological results indicate a restriction of germination, growth, mineral nutrition and damages to membranes of salt-treated seedlings. This was partially attenuated in seedlings treated with an interaction effect of GA3 and NaCl. Peroxidase and catalase activities showed a reduction or an augmentation according to the treatments and organs. The three main polyamines (PA): putrescine, spermidine and spermine were elevated in the salt-treated seedlings. Meanwhile, GA3 seed priming was extremely efficient in reducing PA levels in salt-stressed seedlings compared to the control. Response of PA genes to salinity was variable. Up-regulation was noted for SPMS1, ODC1, and ADC1 in hypocotyls and cotyledons (H + C) and down-regulation for SAMDC1 in the radicle. Interaction of salt/GA3 treatment showed different responses, only ODC1 in (H + C) and ADC1 in both radicle and (H + C) were overexpressed. Concerning other genes, no change in mRNA abundance was observed in both organs compared to the salt-treated seedlings. From these results, it could be inferred that the fennel seedlings were NaCl sensitive. This sensitivity was mitigated when GA3 applied for seed priming and applied in combination with NaCl, which resulted in a reduction of the PA content. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01140-4.
Collapse
Affiliation(s)
- Houneida Attia
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Khalid Alamer
- Department of Biology, Science and Arts College-Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Badreyah Algethami
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Walid Zorrig
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, P. O. Box 901, Hammam-Lif 2050, Tunisia
| | - Kamel Hessini
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Kamala Gupta
- Government General Degree College, Singur, West Bengal, India
| | - Bhaskar Gupta
- Government General Degree College, Singur, West Bengal, India
| |
Collapse
|
659
|
Miryeganeh M, Marlétaz F, Gavriouchkina D, Saze H. De novo genome assembly and in natura epigenomics reveal salinity-induced DNA methylation in the mangrove tree Bruguiera gymnorhiza. THE NEW PHYTOLOGIST 2022; 233:2094-2110. [PMID: 34532854 PMCID: PMC9293310 DOI: 10.1111/nph.17738] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/02/2021] [Indexed: 05/27/2023]
Abstract
Mangroves are adapted to harsh environments, such as high ultraviolet (UV) light, low nutrition, and fluctuating salinity in coastal zones. However, little is known about the transcriptomic and epigenomic basis of the resilience of mangroves due to limited available genome resources. We performed a de novo genome assembly and in natura epigenome analyses of the mangrove Bruguiera gymnorhiza, one of the dominant mangrove species. We also performed the first genome-guided transcriptome assembly for mangrove species. The 309 Mb of the genome is predicted to encode 34 403 genes and has a repeat content of 48%. Depending on its growing environment, the natural B. gymnorhiza population showed drastic morphological changes associated with expression changes in thousands of genes. Moreover, high-salinity environments induced genome-wide DNA hypermethylation of transposable elements (TEs) in the B. gymnorhiza. DNA hypermethylation was concurrent with the transcriptional regulation of chromatin modifier genes, suggesting robust epigenome regulation of TEs in the B. gymnorhiza genome under high-salinity environments. The genome and epigenome data in this study provide novel insights into the epigenome regulation of mangroves and a better understanding of the adaptation of plants to fluctuating, harsh natural environments.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Plant Epigenetics UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawa904‐0495Japan
| | - Ferdinand Marlétaz
- Department of Genetics, Evolution and Environment (GEE)University College LondonDarwin Building, Gower StreetLondonWC1E 6BTUK
| | - Daria Gavriouchkina
- Molecular Genetics UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawa904‐0495Japan
| | - Hidetoshi Saze
- Plant Epigenetics UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawa904‐0495Japan
| |
Collapse
|
660
|
Hessini K. Nitrogen form differently modulates growth, metabolite profile, and antioxidant and nitrogen metabolism activities in roots of Spartina alterniflora in response to increasing salinity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 174:35-42. [PMID: 35121483 DOI: 10.1016/j.plaphy.2022.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Sodium tolerance and nitrogen-source preferences are two of the most fascinating and ecologically important areas in plant physiology. Spartina alterniflora is a highly salt-tolerant species and appears to prefer ammonium (NH4+) over nitrate (NO3-) as an inorganic N source, presenting a suite of aboveground physiological and biochemical mechanisms that allows growth in saline environments. Here, we tested the interactive effects of salinity (0, 200, 500 mM NaCl) and nitrogen source (NO3-, NH4+, NH4NO3) on some physiological and biochemical parameters of S. alterniflora at the root level. After three months of treatments, plants were harvested to determine root growth parameters and total amino acids, proline, total soluble sugars, sucrose, and root enzyme activity. The control (0 mM NaCl) had the highest root growth rate in the medium containing only ammonium and the lowest in the medium containing only nitrate. Except for NO3--fed plants, the 200 mM NaCl treatment generally had less root growth than the control. Under high salinity, NH4+-fed plants had better root growth than NO3--fed plants. In the absence of salinity, NH4+-fed plants had higher superoxide dismutase, ascorbate peroxidase, glutathione reductase, and guaiacol peroxidase activities than NO3--fed plants. Salinity generally promoted the activity of the principal antioxidant enzymes, more so in NH4+-fed plants. Nitrogen metabolism was characterized by higher constitutive levels of glutamate dehydrogenase (GDH) activity under ammonia nutrition, accompanied by elevated total amino acids levels in roots. The advantage of ammonium nutrition for S. alterniflora under salinity was connected to high amino acid accumulation and antioxidant enzyme activities, together with low H2O2 concentration and increased GDH activity. Ammonium improved root performance of S. alterniflora, especially under saline conditions, and may improve root antioxidant capacity and N-assimilating enzyme activities, and adjust osmotically to salinity by accumulating amino acids.
Collapse
Affiliation(s)
- Kamel Hessini
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
661
|
Li C, Shi L, Li X, Wang Y, Bi Y, Li W, Ma H, Chen B, Zhu L, Fu Y. ECAP is a key negative regulator mediating different pathways to modulate salt stress-induced anthocyanin biosynthesis in Arabidopsis. THE NEW PHYTOLOGIST 2022; 233:2216-2231. [PMID: 34942029 DOI: 10.1111/nph.17937] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 05/24/2023]
Abstract
Anthocyanins are a subgroup of plant flavonoids with antioxidant activities and are often induced by various biotic and abiotic stresses in plants, probably to efficiently scavenge free radicals and reactive oxygen species. However, the regulatory mechanisms of salt stress-induced anthocyanin biosynthesis remain unclear. Using molecular and genetic techniques we demonstrated key roles of ECAP in differential salt-responsive anthocyanin biosynthesis pathways in Arabidopsis thaliana. ECAP, JAZ6/8 and TPR2 are known to form a transcriptional repressor complex, and negatively regulate jasmonate (JA)-responsive anthocyanin accumulation. In this study, we demonstrated that under moderate salt stress, the accumulation of anthocyanins is partially dependent on JA signaling, which degrades JAZ proteins but not ECAP. More interestingly, we found that high salinity rather than moderate salinity induces the degradation of ECAP through the 26S proteasome pathway, and this process is independent of JA signaling. Further analysis revealed that ECAP interacts with MYB75 (a transcription factor activating anthocyanin biosynthetic genes) and represses its transcriptional activity in the absence of high salinity. Our results indicated that plants adopt different strategies for fine-tuning anthocyanin accumulation under different levels of salt stress, and further elucidated the complex regulation of anthocyanin biosynthesis during plant development and responses to environmental stresses.
Collapse
Affiliation(s)
- Changjiang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lei Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xing Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yujing Bi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Huifang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Binqing Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
662
|
Ghosh UK, Islam MN, Siddiqui MN, Cao X, Khan MAR. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:227-239. [PMID: 34796604 DOI: 10.1111/plb.13363] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/21/2021] [Accepted: 10/15/2021] [Indexed: 05/22/2023]
Abstract
Abiotic stresses have a detrimental impact on plant growth and productivity and are a major threat to sustainable crop production in rapidly changing environments. Proline, an important amino acid, plays an important role in maintaining the metabolism and growth of plants under abiotic stress conditions. Many insights indicate a positive relationship between proline accumulation and tolerance of plants to various abiotic stresses. Because of its metal chelator properties, it acts as a molecular chaperone, an antioxidative defence molecule that scavenges reactive oxygen species (ROS), as well as having signalling behaviour to activate specific gene functions that are crucial for plant recovery from stresses. It also acts as an osmoprotectant, a potential source to acquire nitrogen as well as carbon, and plays a significant role in the flowering and development of plants. Overproduction of proline in plant cells contributes to maintaining cellular homeostasis, water uptake, osmotic adjustment and redox balance to restore the cell structures and mitigate oxidative damage. Many reports reveal that transgenic plants, particularly those overexpressing genes tailored for proline accumulation, exhibit better adaptation to abiotic stresses. Therefore, this review aims to provide a comprehensive update on proline biosynthesis and accumulation in plants and its putative regulatory roles in mediating plant defence against abiotic stresses. Additionally, the current and future directions in research concerning manipulation of proline to induce gene functions that appear promising in genetics and genomics approaches to improve plant adaptive responses under changing climate conditions are also highlighted.
Collapse
Affiliation(s)
- U K Ghosh
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M N Islam
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M N Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - X Cao
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
| | - M A R Khan
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
663
|
Yin YL, Xu YN, Li XN, Fan SG, Wang GY, Fu JM. Physiological integration between Bermudagrass ramets improves overall salt resistance under heterogeneous salt stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13655. [PMID: 35243634 DOI: 10.1111/ppl.13655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Connected ramets of colonal plants often suffer from different environmental conditions such as light, nutrient, and stress. Colonal Bermudagrass (Cynodon dactylon [L.] Pers.) can form interconnected ramets and this connection facilitates the tolerance to abiotic stress, which is a kind of physiological integration. However, how bermudagrass responds to heterogeneously distributed salt stress needs to be further elucidated. Here, we demonstrated that severance of stolons aggravated the damage of salt-stressed ramets, displaying higher relative electrolytic leakage (EL), lower content of chlorophyll, higher accumulation of Na+ , and serious oxidative damages. This finding implied the positive effects of the physiological integration of bermudagrass on salt tolerance. The unstressed ramets connected with the stressed one were mildly injured, implying the supporting and sacrifice function of the unstressed ramets. Physiological integration did not mediate the translocation of Na+ among ramets, but induced a higher expression of salt overly sensitive (SOS) genes in the stressed ramets, consequently reducing the accumulation of Na+ in leaves and roots. In addition, physiological integration upregulated the genes expression and enzymes activity of catalase (CAT) and peroxidase (POD) in both stressed and unstressed ramets. This granted a stronger antioxidant ability of the whole clonal plants under salt stress. Enhanced Na+ transfer and increased reactive oxygen species (ROS) scavenging are mechanisms that likely contribute to the physiological integration leading to the salt tolerance of bermudagrass.
Collapse
Affiliation(s)
- Yan-Ling Yin
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Ya-Nan Xu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Xiao-Ning Li
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Shu-Gao Fan
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Guang-Yang Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Jin-Min Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| |
Collapse
|
664
|
Zou Y, Zhang Y, Testerink C. Root dynamic growth strategies in response to salinity. PLANT, CELL & ENVIRONMENT 2022; 45:695-704. [PMID: 34716934 PMCID: PMC9298695 DOI: 10.1111/pce.14205] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 05/25/2023]
Abstract
Increasing soil salinization largely impacts crop yield worldwide. To deal with salinity stress, plants exhibit an array of responses, including root system architecture remodelling. Here, we review recent progress in physiological, developmental and cellular mechanisms of root growth responses to salinity. Most recent research in modulation of root branching, root tropisms, as well as in root cell wall modifications under salinity stress, is discussed in the context of the contribution of these responses to overall plant performance. We highlight the power of natural variation approaches revealing novel potential pathways responsible for differences in root salt stress responses. Together, these new findings promote our understanding of how salt shapes the root phenotype, which may provide potential avenues for engineering crops with better yield and survival in saline soils.
Collapse
Affiliation(s)
- Yutao Zou
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| |
Collapse
|
665
|
Shahzad B, Yun P, Shabala L, Zhou M, Sellamuthu G, Venkataraman G, Chen ZH, Shabala S. Unravelling the physiological basis of salinity stress tolerance in cultivated and wild rice species. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:351-364. [PMID: 35189073 DOI: 10.1071/fp21336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Wild rice species provide a rich source of genetic diversity for possible introgression of salinity stress tolerance in cultivated rice. We investigated the physiological basis of salinity stress tolerance in Oryza species by using six rice genotypes (Oryza sativa L.) and four wild rice species. Three weeks of salinity treatment significantly (P <0.05) reduced physiological and growth indices of all cultivated and wild rice lines. However, the impact of salinity-induced growth reduction differed substantially among accessions. Salt tolerant accessions showed better control over gas exchange properties, exhibited higher tissue tolerance, and retained higher potassium ion content despite higher sodium ion accumulation in leaves. Wild rice species showed relatively lower and steadier xylem sap sodium ion content over the period of 3weeks analysed, suggesting better control over ionic sodium xylem loading and its delivery to shoots with efficient vacuolar sodium ion sequestration. Contrary to this, saline sensitive genotypes managed to avoid initial Na+ loading but failed to accomplish this in the long term and showed higher sap sodium ion content. Conclusively, our results suggest that wild rice genotypes have more efficient control over xylem sodium ion loading, rely on tissue tolerance mechanisms and allow for a rapid osmotic adjustment by using sodium ions as cheap osmoticum for osmoregulation.
Collapse
Affiliation(s)
- Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Ping Yun
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Gothandapani Sellamuthu
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India; and Forest Molecular Entomology Laboratory, Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague 16500, Czech Republic
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia; and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| |
Collapse
|
666
|
Carvalho da Silva TL, Belo Silva VN, Braga ÍDO, Rodrigues Neto JC, Leão AP, Ribeiro JADA, Valadares LF, Abdelnur PV, de Sousa CAF, Souza MT. Integration of metabolomics and transcriptomics data to further characterize Gliricidia sepium (Jacq.) Kunth under high salinity stress. THE PLANT GENOME 2022; 15:e20182. [PMID: 34964552 DOI: 10.1002/tpg2.20182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Soil salinity is one abiotic stress that threatens agriculture in more than 100 countries. Gliricidia [Gliricidia sepium (Jacq.) Kunth] is a multipurpose tree known for its ability to adapt to a wide range of soils; however, its tolerance limits and responses to salt stress are not yet well understood. In this study, after characterizing the morphophysiological responses of young gliricidia plants to salinity stress, leaf metabolic and transcription profiles were generated and submitted to single and integrated analyses. RNA from leaf samples were subjected to RNA sequencing using an Illumina HiSeq platform and the paired-end strategy. Polar and lipidic fractions from leaf samples were extracted and analyzed on an ultra-high-performance liquid chromatography (UHPLC) coupled with electrospray ionization quadrupole time-of-flight high-resolution mass spectrometry (MS) system. Acquired data were analyzed using the OmicsBox, XCMS Online, MetaboAnalyst, and Omics Fusion platforms. The substrate salinization protocol used allowed the identification of two distinct responses to salt stress: tolerance and adaptation. Single analysis on transcriptome and metabolome data sets led to a group of 5,672 transcripts and 107 metabolites differentially expressed in gliricidia leaves under salt stress. The phenylpropanoid biosynthesis was the most affected pathway, with 15 metabolites and three genes differentially expressed. Results showed that the differentially expressed metabolites and genes from this pathway affect mainly short-term salt stress (STS). The single analysis of the transcriptome identified 12 genes coding for proteins that might play a role in gliricidia response at both STS and long-term salt stress (LTS). Further studies are needed to reveal the mechanisms behind the adaptation response.
Collapse
Affiliation(s)
| | - Vivianny Nayse Belo Silva
- Graduate Program of Plant Biotechnology, Federal Univ. of Lavras, 37200-000, Lavras, MG, CP 3037, Brazil
| | - Ítalo de Oliveira Braga
- Graduate Program of Plant Biotechnology, Federal Univ. of Lavras, 37200-000, Lavras, MG, CP 3037, Brazil
| | | | - André Pereira Leão
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF, 70770-901, Brazil
| | | | | | - Patrícia Verardi Abdelnur
- Institute of Chemistry, Federal Univ. of Goiás, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF, 70770-901, Brazil
| | | | - Manoel Teixeira Souza
- Graduate Program of Plant Biotechnology, Federal Univ. of Lavras, 37200-000, Lavras, MG, CP 3037, Brazil
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF, 70770-901, Brazil
| |
Collapse
|
667
|
Xie H, Zhao W, Li W, Zhang Y, Hajný J, Han H. Small signaling peptides mediate plant adaptions to abiotic environmental stress. PLANTA 2022; 255:72. [PMID: 35218440 DOI: 10.1007/s00425-022-03859-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/14/2022] [Indexed: 05/27/2023]
Abstract
Peptide-receptor complexes activate distinct downstream regulatory networks to mediate plant adaptions to abiotic environmental stress. Plants are constantly exposed to various adverse environmental factors; thus they must adjust their growth accordingly. Plants recruit small secretory peptides to adapt to these detrimental environments. These small peptides, which are perceived by their corresponding receptors and/or co-receptors, act as local- or long-distance mobile signaling molecules to establish cell-to-cell regulatory networks, resulting in optimal cellular and physiological outputs. In this review, we highlight recent advances on the regulatory role of small peptides in plant abiotic responses and nutrients signaling.
Collapse
Affiliation(s)
- Heping Xie
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| | - Wen Zhao
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| | - Weilin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| | - Yuzhou Zhang
- College of Life Science, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Jakub Hajný
- Laboratory of Growth Regulators, Institute of Experimental Botany and Palacký University, The Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China.
| |
Collapse
|
668
|
Biological and Agronomic Traits of the Main Halophytes Widespread in the Mediterranean Region as Potential New Vegetable Crops. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salinity is one of the oldest and most serious environmental problems in the world. The increasingly widespread salinization of soils and water resources represents a growing threat to agriculture around the world. A strategy to cope with this problem is to cultivate salt-tolerant crops and, therefore, it is necessary to identify plant species that are naturally adapted to high-salinity conditions. In this review, we focus our attention on some plant species that can be considered among the most representative halophytes of the Mediterranean region; they can be potential resources, such as new or relatively new vegetable crops, to produce raw or minimally processed (or ready-to-eat) products, considering their nutritional properties and nutraceuticals. The main biological and agronomic characteristics of these species and the potential health risks due to mycotoxigenic fungi have been analyzed and summarized in a dedicated section. The objective of this review is to illustrate the main biological and agronomical characteristics of the most common halophytic species in the Mediterranean area, which could expand the range of leafy vegetables on the market.
Collapse
|
669
|
Miransari M, Adham S, Miransari M, Miransari A. The physicochemical approaches of altering growth and biochemical properties of medicinal plants in saline soils. Appl Microbiol Biotechnol 2022; 106:1895-1904. [PMID: 35190845 DOI: 10.1007/s00253-022-11838-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 11/28/2022]
Abstract
Medicinal plants are important sources of biochemical compounds affecting human health. However, because large areas of the world are subjected to different stresses including salinity, it is important to find methods, which may control the growth and biochemical properties of medicinal plants in such conditions. Another aspect of cropping medicinal plants in saline soils is the alteration of their biochemical properties by stress. Due to the significance of planting medicinal plants in saline soils, the objective of the present review article is to investigate and analyze the physicochemical approaches including soil leaching, organic fertilization, mineral nutrition, ozonated water, magnetism, superabsorbent polymers, and zeolite, which may control the effects of salinity stress on the growth and biochemical properties (production of secondary metabolites) of medicinal plants. In our just-published review article, we investigated the biological approaches, which may affect the growth and biochemical properties of medicinal properties in saline soils. Although salinity stress may induce the production of biochemical products in medicinal plants, the use of physicochemical approaches is also recommendable for the improved growth and biochemical properties of medicinal plants in saline soils. More has yet to be indicated on the use of the physicochemical approaches, which may affect the growth and biochemical properties of medicinal plants in salt stress conditions. KEY POINTS: • Growth and physiological alteration of medicinal plants in salt stress conditions. • The physicochemical approaches of such alteration have been reviewed. • More has yet to be indicated on the approaches, which may affect such properties.
Collapse
Affiliation(s)
- Mohammad Miransari
- Department of Book&Article, AbtinBerkeh Scientific Ltd. Company, Isfahan, Iran.
| | - Shirin Adham
- Department of Book&Article, AbtinBerkeh Scientific Ltd. Company, Isfahan, Iran
| | - Mahdiar Miransari
- Department of Book&Article, AbtinBerkeh Scientific Ltd. Company, Isfahan, Iran
| | - Arshia Miransari
- Department of Book&Article, AbtinBerkeh Scientific Ltd. Company, Isfahan, Iran
| |
Collapse
|
670
|
Dias MC, Santos C, Araújo M, Barros PM, Oliveira M, de Oliveira JMPF. Quercus suber Roots Activate Antioxidant and Membrane Protective Processes in Response to High Salinity. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040557. [PMID: 35214887 PMCID: PMC8875824 DOI: 10.3390/plants11040557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 05/27/2023]
Abstract
Cork oak (Quercus suber) is a species native to Mediterranean areas and its adaptation to the increasingly prevalent abiotic stresses, such as soil salinization, remain unknown. In sequence with recent studies on salt stress response in the leaf, it is fundamental to uncover the plasticity of roots directly exposed to high salinity to better understand how Q. suber copes with salt stress. In the present study we aimed to unveil the antioxidants and key-genes involved in the stress-responses (early vs. later responses) of Q. suber roots exposed to high salinity. Two-month-old Q. suber plants were watered with 300 mM NaCl solution and enzymatic and non-enzymatic antioxidants, lipid peroxidation and the relative expression of genes related to stress response were analysed 8 h and 6 days after salt treatment. After an 8 h of exposure, roots activated the expression of QsLTI30 and QsFAD7 genes involved in stress membrane protection, and QsRAV1 and QsCZF1 genes involved in tolerance and adaptation. As a result of the continued salinity stress (6 days), lipid peroxidation increased, which was associated with an upregulation of QsLTI30 gene. Moreover, other protective mechanisms were activated, such as the upregulation of genes related to antioxidant status, QsCSD1 and QsAPX2, and the increase of the antioxidant enzyme activities of superoxide dismutase, catalase, and ascorbate peroxidase, concomitantly with total antioxidant activity and phenols. These data suggest a response dependent on the time of salinity exposure, leading Q. suber roots to adopt protective complementary strategies to deal with salt stress.
Collapse
Affiliation(s)
- Maria Celeste Dias
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (M.C.D.); (M.A.)
| | - Conceição Santos
- LAQV, REQUIMTE, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
- IB2 Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Márcia Araújo
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (M.C.D.); (M.A.)
- IB2 Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Pedro M. Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress, Av. da República, 2780-157 Oeiras, Portugal; (P.M.B.); (M.O.)
| | - Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress, Av. da República, 2780-157 Oeiras, Portugal; (P.M.B.); (M.O.)
| | - José Miguel P. Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
671
|
Wang S, Lv X, Zhang J, Chen D, Chen S, Fan G, Ma C, Wang Y. Roles of E3 Ubiquitin Ligases in Plant Responses to Abiotic Stresses. Int J Mol Sci 2022; 23:ijms23042308. [PMID: 35216424 PMCID: PMC8878164 DOI: 10.3390/ijms23042308] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 01/09/2023] Open
Abstract
Plants are frequently exposed to a variety of abiotic stresses, such as those caused by salt, drought, cold, and heat. All of these stressors can induce changes in the proteoforms, which make up the proteome of an organism. Of the many different proteoforms, protein ubiquitination has attracted a lot of attention because it is widely involved in the process of protein degradation; thus regulates many plants molecular processes, such as hormone signal transduction, to resist external stresses. Ubiquitin ligases are crucial in substrate recognition during this ubiquitin modification process. In this review, the molecular mechanisms of plant responses to abiotic stresses from the perspective of ubiquitin ligases have been described. This information is critical for a better understanding of plant molecular responses to abiotic stresses.
Collapse
Affiliation(s)
- Shuang Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (S.W.); (J.Z.)
| | - Xiaoyan Lv
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China;
| | - Jialin Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (S.W.); (J.Z.)
| | - Daniel Chen
- Judy Genshaft Honors College and College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA;
| | - Sixue Chen
- Plant Molecular and Cellular Biology Program, Department of Biology, Genetics Institude, University of Florida, Gainesville, FL 32610, USA;
| | - Guoquan Fan
- Industrial Crops Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (S.W.); (J.Z.)
- Correspondence: (C.M.); (Y.W.)
| | - Yuguang Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (S.W.); (J.Z.)
- Correspondence: (C.M.); (Y.W.)
| |
Collapse
|
672
|
Chen C, Shang X, Sun M, Tang S, Khan A, Zhang D, Yan H, Jiang Y, Yu F, Wu Y, Xie Q. Comparative Transcriptome Analysis of Two Sweet Sorghum Genotypes with Different Salt Tolerance Abilities to Reveal the Mechanism of Salt Tolerance. Int J Mol Sci 2022; 23:2272. [PMID: 35216389 PMCID: PMC8877675 DOI: 10.3390/ijms23042272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022] Open
Abstract
Sweet sorghum is a C4 crop that can be grown for silage forage, fiber, syrup and fuel production. It is generally considered a salt-tolerant plant. However, the salt tolerance ability varies among genotypes, and the mechanism is not well known. To further uncover the salt tolerance mechanism, we performed comparative transcriptome analysis with RNA samples in two sweet sorghum genotypes showing different salt tolerance abilities (salt-tolerant line RIO and salt-sensitive line SN005) upon salt treatment. These response processes mainly focused on secondary metabolism, hormone signaling and stress response. The expression pattern cluster analysis showed that RIO-specific response genes were significantly enriched in the categories related to secondary metabolic pathways. GO enrichment analysis indicated that RIO responded earlier than SN005 in the 2 h after treatment. In addition, we identified more transcription factors (TFs) in RIO than SN005 that were specifically expressed differently in the first 2 h of salt treatment, and the pattern of TF change was obviously different. These results indicate that an early response in secondary metabolism might be essential for salt tolerance in sweet sorghum. In conclusion, we found that an early response, especially in secondary metabolism and hormone signaling, might be essential for salt tolerance in sweet sorghum.
Collapse
Affiliation(s)
- Chengxuan Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Shang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
| | - Meiyu Sun
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
| | - Sanyuan Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
| | - Aimal Khan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongdong Yan
- Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150080, China; (H.Y.); (Y.J.)
| | - Yanxi Jiang
- Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150080, China; (H.Y.); (Y.J.)
| | - Feifei Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (C.C.); (X.S.); (M.S.); (S.T.); (A.K.); (D.Z.); (F.Y.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
673
|
Cackett L, Cannistraci CV, Meier S, Ferrandi P, Pěnčík A, Gehring C, Novák O, Ingle RA, Donaldson L. Salt-Specific Gene Expression Reveals Elevated Auxin Levels in Arabidopsis thaliana Plants Grown Under Saline Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:804716. [PMID: 35222469 PMCID: PMC8866861 DOI: 10.3389/fpls.2022.804716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Soil salinization is increasing globally, driving a reduction in crop yields that threatens food security. Salinity stress reduces plant growth by exerting two stresses on plants: rapid shoot ion-independent effects which are largely osmotic and delayed ionic effects that are specific to salinity stress. In this study we set out to delineate the osmotic from the ionic effects of salinity stress. Arabidopsis thaliana plants were germinated and grown for two weeks in media supplemented with 50, 75, 100, or 125 mM NaCl (that imposes both an ionic and osmotic stress) or iso-osmolar concentrations (100, 150, 200, or 250 mM) of sorbitol, that imposes only an osmotic stress. A subsequent transcriptional analysis was performed to identify sets of genes that are differentially expressed in plants grown in (1) NaCl or (2) sorbitol compared to controls. A comparison of the gene sets identified genes that are differentially expressed under both challenge conditions (osmotic genes) and genes that are only differentially expressed in plants grown on NaCl (ionic genes, hereafter referred to as salt-specific genes). A pathway analysis of the osmotic and salt-specific gene lists revealed that distinct biological processes are modulated during growth under the two conditions. The list of salt-specific genes was enriched in the gene ontology (GO) term "response to auxin." Quantification of the predominant auxin, indole-3-acetic acid (IAA) and IAA biosynthetic intermediates revealed that IAA levels are elevated in a salt-specific manner through increased IAA biosynthesis. Furthermore, the expression of NITRILASE 2 (NIT2), which hydrolyses indole-3-acetonitile (IAN) into IAA, increased in a salt-specific manner. Overexpression of NIT2 resulted in increased IAA levels, improved Na:K ratios and enhanced survival and growth of Arabidopsis under saline conditions. Overall, our data suggest that auxin is involved in maintaining growth during the ionic stress imposed by saline conditions.
Collapse
Affiliation(s)
- Lee Cackett
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Carlo Vittorio Cannistraci
- Center for Complex Network Intelligence, Tsinghua Laboratory of Brain and Intelligence, Department of Computer Science, Tsinghua University, Beijing, China
- Center for Complex Network Intelligence, Tsinghua Laboratory of Brain and Intelligence, Department of Biomedical Engineering, Tsinghua University, Beijing, China
- Center for Systems Biology Dresden (CSBD), Dresden, Germany
| | - Stuart Meier
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Paul Ferrandi
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, Olomouc, Czechia
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, Olomouc, Czechia
| | - Robert A. Ingle
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Lara Donaldson
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| |
Collapse
|
674
|
Chen G, Hu K, Zhao J, Guo F, Shan W, Jiang Q, Zhang J, Guo Z, Feng Z, Chen Z, Wu X, Zhang S, Zuo S. Genome-Wide Association Analysis for Salt-Induced Phenotypic and Physiologic Responses in Rice at Seedling and Reproductive Stages. FRONTIERS IN PLANT SCIENCE 2022; 13:822618. [PMID: 35222481 PMCID: PMC8863738 DOI: 10.3389/fpls.2022.822618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Salinity is one of the main adverse environmental factors severely inhibiting rice growth and decreasing grain productivity. Developing rice varieties with salt tolerance (ST) is one of the most economical approaches to cope with salinity stress. In this study, the salt tolerance of 220 rice accessions from rice diversity panel l (RDP1), representing five subpopulations, were evaluated based on 16 ST indices at both seedling and reproductive stages under salt stress. An apparent inconsistency was found for ST between the two stages. Through a gene-based/tightly linked genome-wide association study with 201,332 single nucleotide polymorphisms (SNPs) located within genes and their flanking regions were used, a total of 214 SNPs related to 251 genes, significantly associated with 16 ST-related indices, were detected at both stages. Eighty-two SNPs with low frequency favorable (LFF) alleles in the population were proposed to hold high breeding potential in improving rice ST. Fifty-four rice accessions collectively containing all these LFF alleles were identified as donors of these alleles. Through the integration of meta-quantitative trait locus (QTL) for ST and the response patterns of differential expression genes to salt stress, thirty-eight candidate genes were suggested to be involved in the regulation of rice ST. In total, the present study provides valuable information for further characterizing ST-related genes and for breeding ST varieties across whole developmental stages through marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Gang Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Keming Hu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Jianhua Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Feifei Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Wenfeng Shan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Qiuqing Jiang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Jinqiao Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Zilong Guo
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiming Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Zongxiang Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Xiaoxia Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Shengwei Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, Yangzhou University, The Ministry of Education of China, Yangzhou, China
| |
Collapse
|
675
|
Wang DR, Yang K, Wang X, Lin XL, Rui L, Liu HF, Liu DD, You CX. Overexpression of MdZAT5, an C2H2-Type Zinc Finger Protein, Regulates Anthocyanin Accumulation and Salt Stress Response in Apple Calli and Arabidopsis. Int J Mol Sci 2022; 23:ijms23031897. [PMID: 35163816 PMCID: PMC8836528 DOI: 10.3390/ijms23031897] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Abstract
Zinc finger proteins are widely involved and play an important role in plant growth and abiotic stress. In this research, MdZAT5, a gene encoding C2H2-type zinc finger protein, was cloned and investigated. The MdZAT5 was highly expressed in flower tissues by qRT-PCR analyses and GUS staining. Promoter analysis showed that MdZAT5 contained multiple response elements, and the expression levels of MdZAT5 were induced by various abiotic stress treatments. Overexpression of MdZAT5 in apple calli positively regulated anthocyanin accumulation by activating the expressions of anthocyanin biosynthesis-related genes. Overexpression of MdZAT5 in Arabidopsis also enhanced the accumulation of anthocyanin. In addition, MdZAT5 increased the sensitivity to salt stress in apple calli. Ectopic expression of MdZAT5 in Arabidopsis reduced the expression of salt-stress-related genes (AtNHX1 and AtABI1) and improved the sensitivity to salt stress. In conclusion, these results suggest that MdZAT5 plays a positive regulatory role in anthocyanin accumulation and negatively regulates salt resistance.
Collapse
Affiliation(s)
- Da-Ru Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; (D.-R.W.); (K.Y.); (X.W.); (L.R.); (H.-F.L.)
| | - Kuo Yang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; (D.-R.W.); (K.Y.); (X.W.); (L.R.); (H.-F.L.)
| | - Xun Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; (D.-R.W.); (K.Y.); (X.W.); (L.R.); (H.-F.L.)
| | - Xiao-Lu Lin
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Lin Rui
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; (D.-R.W.); (K.Y.); (X.W.); (L.R.); (H.-F.L.)
| | - Hao-Feng Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; (D.-R.W.); (K.Y.); (X.W.); (L.R.); (H.-F.L.)
| | - Dan-Dan Liu
- College of Agriculture, Yunnan University, Kunming 650091, China
- Correspondence: (D.-D.L.); (C.-X.Y.)
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; (D.-R.W.); (K.Y.); (X.W.); (L.R.); (H.-F.L.)
- Correspondence: (D.-D.L.); (C.-X.Y.)
| |
Collapse
|
676
|
He F, Shi YJ, Li JL, Lin TT, Zhao KJ, Chen LH, Mi JX, Zhang F, Zhong Y, Lu MM, Niu MX, Feng CH, Ding SS, Peng MY, Huang JL, Yang HB, Wan XQ. Genome-wide analysis and expression profiling of Cation/H + exchanger (CAX) family genes reveal likely functions in cadmium stress responses in poplar. Int J Biol Macromol 2022; 204:76-88. [PMID: 35124018 DOI: 10.1016/j.ijbiomac.2022.01.202] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 12/19/2022]
Abstract
Cadmium, a toxic heavy metal, seriously affects human health and ecological security. The cation/H+ exchanger (CAX) family is a unique metal transporter that plays a crucial role in Cd acquisition, transfer, and remission in plants. Although there are many studies related to the genome-wide analysis of Populus trichocarpa, little research has been done on the CAX family genes, especially concerning Cd stress. In this study, genome-wide analysis of the Populus CAX family identified seven stress-related CAX genes. The evolutionary tree indicated that the CaCA family genes were grouped into four clusters. Moreover, seven pairs of genes were derived by segmental duplication in poplars. Cis-acting element analysis identified numerous stress-related elements in the promoters of diverse PtrCAXs. Furthermore, some PtrCAXs were up-regulated by drought, beetle, and mechanical damage, indicating their possible function in regulating stress response. Under cadmium stress, all CAX genes in the roots were up-regulated. Our findings suggest that plants may regulate their response to Cd stress through the TF-CAXs module. Comprehensively investigating the CAX family provides a scientific basis for the phytoremediation of heavy metal pollution by Populus.
Collapse
Affiliation(s)
- Fang He
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu-Jie Shi
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun-Lin Li
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Tian-Tian Lin
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Kuang-Ji Zhao
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang-Hua Chen
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia-Xuan Mi
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Fan Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Zhong
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Meng-Meng Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Meng-Xue Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Cong-Hua Feng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shan-Shan Ding
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Min-Yue Peng
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin-Liang Huang
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Han-Bo Yang
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue-Qin Wan
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
677
|
The Absence of the AtSYT1 Function Elevates the Adverse Effect of Salt Stress on Photosynthesis in Arabidopsis. Int J Mol Sci 2022; 23:ijms23031751. [PMID: 35163669 PMCID: PMC8836111 DOI: 10.3390/ijms23031751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Arabidopsis thaliana SYNAPTOTAGMIN 1 (AtSYT1) was shown to be involved in responses to different environmental and biotic stresses. We investigated gas exchange and chlorophyll a fluorescence in Arabidopsis wild-type (WT, ecotype Col-0) and atsyt1 mutant plants irrigated for 48 h with 150 mM NaCl. We found that salt stress significantly decreases net photosynthetic assimilation, effective photochemical quantum yield of photosystem II (ΦPSII), stomatal conductance and transpiration rate in both genotypes. Salt stress has a more severe impact on atsyt1 plants with increasing effect at higher illumination. Dark respiration, photochemical quenching (qP), non-photochemical quenching and ΦPSII measured at 750 µmol m−2 s−1 photosynthetic photon flux density were significantly affected by salt in both genotypes. However, differences between mutant and WT plants were recorded only for qP and ΦPSII. Decreased photosynthetic efficiency in atsyt1 under salt stress was accompanied by reduced chlorophyll and carotenoid and increased flavonol content in atsyt1 leaves. No differences in the abundance of key proteins participating in photosynthesis (except PsaC and PsbQ) and chlorophyll biosynthesis were found regardless of genotype or salt treatment. Microscopic analysis showed that irrigating plants with salt caused a partial closure of the stomata, and this effect was more pronounced in the mutant than in WT plants. The localization pattern of AtSYT1 was also altered by salt stress.
Collapse
|
678
|
Zhou H, Xiao F, Zheng Y, Liu G, Zhuang Y, Wang Z, Zhang Y, He J, Fu C, Lin H. PAMP-INDUCED SECRETED PEPTIDE 3 modulates salt tolerance through RECEPTOR-LIKE KINASE 7 in plants. THE PLANT CELL 2022; 34:927-944. [PMID: 34865139 PMCID: PMC8824610 DOI: 10.1093/plcell/koab292] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/25/2021] [Indexed: 05/27/2023]
Abstract
High soil salinity negatively affects plant growth and development, leading to a severe decrease in crop production worldwide. Here, we report that a secreted peptide, PAMP-INDUCED SECRETED PEPTIDE 3 (PIP3), plays an essential role in plant salt tolerance through RECEPTOR-LIKE KINASE 7 (RLK7) in Arabidopsis (Arabidopsis thaliana). The gene encoding the PIP3 precursor, prePIP3, was significantly induced by salt stress. Plants overexpressing prePIP3 exhibited enhanced salt tolerance, whereas a prePIP3 knockout mutant had a salt-sensitive phenotype. PIP3 physically interacted with RLK7, a leucine-rich repeat RLK, and salt stress enhanced PIP3-RLK7 complex formation. Functional analyses revealed that PIP3-mediated salt tolerance is dependent on RLK7. Exogenous application of synthetic PIP3 peptide activated RLK7, and salt treatment significantly induced RLK7 phosphorylation in a PIP3-dependent manner. Notably, MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3) and MPK6 were downstream of the PIP3-RLK7 module in salt response signaling. Activation of MPK3/6 was attenuated in pip3 or rlk7 mutants under saline conditions. Therefore, MPK3/6 might amplify salt stress response signaling in plants for salt tolerance. Collectively, our work characterized a novel ligand-receptor signaling cascade that modulates plant salt tolerance in Arabidopsis. This study contributes to our understanding of how plants respond to salt stress.
Collapse
Affiliation(s)
- Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Fei Xiao
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yuan Zheng
- Department of Biology, Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Guoyong Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yufen Zhuang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Zhiyue Wang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yiyi Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Jiaxian He
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Chunxiang Fu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Honghui Lin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
679
|
Mansour MMF, Hassan FAS. How salt stress-responsive proteins regulate plant adaptation to saline conditions. PLANT MOLECULAR BIOLOGY 2022; 108:175-224. [PMID: 34964081 DOI: 10.1007/s11103-021-01232-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/06/2021] [Indexed: 05/20/2023]
Abstract
An overview is presented of recent advances in our knowledge of candidate proteins that regulate various physiological and biochemical processes underpinning plant adaptation to saline conditions. Salt stress is one of the environmental constraints that restrict plant distribution, growth and yield in many parts of the world. Increased world population surely elevates food demands all over the globe, which anticipates to add a great challenge to humanity. These concerns have necessitated the scientists to understand and unmask the puzzle of plant salt tolerance mechanisms in order to utilize various strategies to develop salt tolerant crop plants. Salt tolerance is a complex trait involving alterations in physiological, biochemical, and molecular processes. These alterations are a result of genomic and proteomic complement readjustments that lead to tolerance mechanisms. Proteomics is a crucial molecular tool that indicates proteins expressed by the genome, and also identifies the functions of proteins accumulated in response to salt stress. Recently, proteomic studies have shed more light on a range of promising candidate proteins that regulate various processes rendering salt tolerance to plants. These proteins have been shown to be involved in photosynthesis and energy metabolism, ion homeostasis, gene transcription and protein biosynthesis, compatible solute production, hormone modulation, cell wall structure modification, cellular detoxification, membrane stabilization, and signal transduction. These candidate salt responsive proteins can be therefore used in biotechnological approaches to improve tolerance of crop plants to salt conditions. In this review, we provided comprehensive updated information on the proteomic data of plants/genotypes contrasting in salt tolerance in response to salt stress. The roles of salt responsive proteins that are potential determinants for plant salt adaptation are discussed. The relationship between changes in proteome composition and abundance, and alterations observed in physiological and biochemical features associated with salt tolerance are also addressed.
Collapse
Affiliation(s)
| | - Fahmy A S Hassan
- Department of Horticulture, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
680
|
A Comprehensive Evaluation of Salt Tolerance in Tomato (Var. Ailsa Craig): Responses of Physiological and Transcriptional Changes in RBOH's and ABA Biosynthesis and Signalling Genes. Int J Mol Sci 2022; 23:ijms23031603. [PMID: 35163525 PMCID: PMC8836042 DOI: 10.3390/ijms23031603] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/24/2023] Open
Abstract
Salinity is a ubiquitous stressor, depleting osmotic potential and affecting the tomato seedlings’ development and productivity. Considering this critical concern, we explored the salinity response in tomato seedlings by evaluating them under progressive salt stress duration (0, 3, 6, and 12 days). Intriguingly, besides the adverse effect of salt stress on tomato growth the findings exhibited a significant role of tomato antioxidative system, RBOH genes, ABA biosynthesis, and signaling transcription factor for establishing tolerance to salinity stress. For instance, the activities of enzymatic and non-enzymatic antioxidants continued to incline positively with the increased levels of reactive oxygen species (O2•−, H2O2), MDA, and cellular damage, suggesting the scavenging capacity of tomato seedlings against salt stress. Notably, the RBOH transcription factors activated the hydrogen peroxide-mediated signalling pathway that induced the detoxification mechanisms in tomato seedlings. Consequently, the increased gene expression of antioxidant enzymes and the corresponding ratio of non-enzymatic antioxidants AsA-GSH suggested the modulation of antioxidants to survive the salt-induced oxidative stress. In addition, the endogenous ABA level was enhanced under salinity stress, indicating higher ABA biosynthesis and signalling gene expression. Subsequently, the upregulated transcript abundance of ABA biosynthesis and signalling-related genes suggested the ABA-mediated capacity of tomato seedlings to regulate homeostasis under salt stress. The current findings have revealed fascinating responses of the tomato to survive the salt stress periods, in order to improve the abiotic stress tolerance in tomato.
Collapse
|
681
|
Effects of Phytohormone-Producing Rhizobacteria on Casparian Band Formation, Ion Homeostasis and Salt Tolerance of Durum Wheat. Biomolecules 2022; 12:biom12020230. [PMID: 35204731 PMCID: PMC8961637 DOI: 10.3390/biom12020230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/05/2022] Open
Abstract
Inoculation with plant growth-promoting rhizobacteria can increase plant salt resistance. We aimed to reveal bacterial effects on the formation of apoplastic barriers and hormone concentration in relation to maintaining ion homeostasis and growth of salt-stressed plants. The rhizosphere of a durum wheat variety was inoculated with cytokinin-producing Bacillus subtilis and auxin-producing Pseudomonas mandelii strains. Plant growth, deposition of lignin and suberin and concentrations of sodium, potassium, phosphorus and hormones were studied in the plants exposed to salinity. Accumulation of sodium inhibited plant growth accompanied by a decline in potassium in roots and phosphorus in shoots of the salt-stressed plants. Inoculation with both bacterial strains resulted in faster appearance of Casparian bands in root endodermis and an increased growth of salt-stressed plants. B. subtilis prevented the decline in both potassium and phosphorus concentrations and increased concentration of cytokinins in salt-stressed plants. P. mandelii decreased the level of sodium accumulation and increased the concentration of auxin. Growth promotion was greater in plants inoculated with B. subtilis. Increased ion homeostasis may be related to the capacity of bacteria to accelerate the formation of Casparian bands preventing uncontrolled diffusion of solutes through the apoplast. We discuss the relative impacts of the decline in Na accumulation and maintenance of K and P content for growth improvement of salt-stressed plants and their possible relation to the changes in hormone concentration in plants.
Collapse
|
682
|
Chen Q, Xie H, Wei G, Guo X, Zhang J, Lu X, Tang Z. Metabolic differences of two constructive species in saline-alkali grassland in China. BMC PLANT BIOLOGY 2022; 22:53. [PMID: 35081916 PMCID: PMC8790901 DOI: 10.1186/s12870-021-03401-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/14/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Salinization of soil is an urgent problem that restricts agroforestry production and environmental protection. Substantial accumulation of metal ions or highly alkaline soil alters plant metabolites and may even cause plant death. To explore the differences in the response strategies between Suaeda salsa (S. salsa) and Puccinellia tenuiflora (P. tenuiflora), two main constructive species that survive in saline-alkali soil, their metabolic differences were characterized. RESULT Metabolomics was conducted to study the role of metabolic differences between S. salsa and P. tenuiflora under saline-alkali stress. A total of 68 significantly different metabolites were identified by GC-MS, including 9 sugars, 13 amino acids, 8 alcohols, and 34 acids. A more detailed analysis indicated that P. tenuiflora utilizes sugars more effectively and may be saline-alkali tolerant via sugar consumption, while S. salsa utilizes mainly amino acids, alcohols, and acids to resist saline-alkali stress. Measurement of phenolic compounds showed that more C6C3C6-compounds accumulated in P. tenuiflora, while more C6C1-compounds, phenolic compounds that can be used as signalling molecules to defend against stress, accumulated in S. salsa. CONCLUSIONS Our observations suggest that S. salsa resists the toxicity of saline-alkali stress using aboveground organs and that P. tenuiflora eliminates this toxicity via roots. S. salsa has a stronger habitat transformation ability and can provide better habitat for other plants.
Collapse
Affiliation(s)
- Qi Chen
- School of Life Sciences Nantong University, Nantong, China
| | - Huansong Xie
- School of Life Sciences Nantong University, Nantong, China
| | - Guanyun Wei
- School of Life Sciences Nantong University, Nantong, China
| | - Xiaorui Guo
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, China
| | - Jian Zhang
- School of Life Sciences Nantong University, Nantong, China
| | - Xueyan Lu
- Northeast Agricultural University, Harbin, China.
| | - Zhonghua Tang
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, China.
| |
Collapse
|
683
|
Acharya BR, Sandhu D, Dueñas C, Dueñas M, Pudussery M, Kaundal A, Ferreira JFS, Suarez DL, Skaggs TH. Morphological, physiological, biochemical, and transcriptome studies reveal the importance of transporters and stress signaling pathways during salinity stress in Prunus. Sci Rep 2022; 12:1274. [PMID: 35075204 DOI: 10.21203/rs.3.rs-659140/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/15/2021] [Indexed: 05/24/2023] Open
Abstract
The almond crop has high economic importance on a global scale, but its sensitivity to salinity stress can cause severe yield losses. Salt-tolerant rootstocks are vital for crop economic feasibility under saline conditions. Two commercial rootstocks submitted to salinity, and evaluated through different parameters, had contrasting results with the survival rates of 90.6% for 'Rootpac 40' (tolerant) and 38.9% for 'Nemaguard' (sensitive) under salinity (Electrical conductivity of water = 3 dS m-1). Under salinity, 'Rootpac 40' accumulated less Na and Cl and more K in leaves than 'Nemaguard'. Increased proline accumulation in 'Nemaguard' indicated that it was highly stressed by salinity compared to 'Rootpac 40'. RNA-Seq analysis revealed that a higher degree of differential gene expression was controlled by genotype rather than by treatment. Differentially expressed genes (DEGs) provided insight into the regulation of salinity tolerance in Prunus. DEGs associated with stress signaling pathways and transporters may play essential roles in the salinity tolerance of Prunus. Some additional vital players involved in salinity stress in Prunus include CBL10, AKT1, KUP8, Prupe.3G053200 (chloride channel), and Prupe.7G202700 (mechanosensitive ion channel). Genetic components of salinity stress identified in this study may be explored to develop new rootstocks suitable for salinity-affected regions.
Collapse
Affiliation(s)
- Biswa R Acharya
- USDA-ARS, U.S. Salinity Lab, 450 W Big Springs Road, Riverside, CA, 92507, USA
- College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Devinder Sandhu
- USDA-ARS, U.S. Salinity Lab, 450 W Big Springs Road, Riverside, CA, 92507, USA.
| | - Christian Dueñas
- USDA-ARS, U.S. Salinity Lab, 450 W Big Springs Road, Riverside, CA, 92507, USA
- College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Marco Dueñas
- USDA-ARS, U.S. Salinity Lab, 450 W Big Springs Road, Riverside, CA, 92507, USA
- College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Manju Pudussery
- USDA-ARS, U.S. Salinity Lab, 450 W Big Springs Road, Riverside, CA, 92507, USA
| | - Amita Kaundal
- USDA-ARS, U.S. Salinity Lab, 450 W Big Springs Road, Riverside, CA, 92507, USA
- College of Agriculture and Applied Sciences (CAAS), Utah State University (USU), Logan, UT, 8432, USA
| | - Jorge F S Ferreira
- USDA-ARS, U.S. Salinity Lab, 450 W Big Springs Road, Riverside, CA, 92507, USA
| | - Donald L Suarez
- USDA-ARS, U.S. Salinity Lab, 450 W Big Springs Road, Riverside, CA, 92507, USA
| | - Todd H Skaggs
- USDA-ARS, U.S. Salinity Lab, 450 W Big Springs Road, Riverside, CA, 92507, USA
| |
Collapse
|
684
|
Morphological, physiological, biochemical, and transcriptome studies reveal the importance of transporters and stress signaling pathways during salinity stress in Prunus. Sci Rep 2022; 12:1274. [PMID: 35075204 PMCID: PMC8786923 DOI: 10.1038/s41598-022-05202-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/15/2021] [Indexed: 01/31/2023] Open
Abstract
The almond crop has high economic importance on a global scale, but its sensitivity to salinity stress can cause severe yield losses. Salt-tolerant rootstocks are vital for crop economic feasibility under saline conditions. Two commercial rootstocks submitted to salinity, and evaluated through different parameters, had contrasting results with the survival rates of 90.6% for ‘Rootpac 40’ (tolerant) and 38.9% for ‘Nemaguard’ (sensitive) under salinity (Electrical conductivity of water = 3 dS m−1). Under salinity, ‘Rootpac 40’ accumulated less Na and Cl and more K in leaves than ‘Nemaguard’. Increased proline accumulation in ‘Nemaguard’ indicated that it was highly stressed by salinity compared to ‘Rootpac 40’. RNA-Seq analysis revealed that a higher degree of differential gene expression was controlled by genotype rather than by treatment. Differentially expressed genes (DEGs) provided insight into the regulation of salinity tolerance in Prunus. DEGs associated with stress signaling pathways and transporters may play essential roles in the salinity tolerance of Prunus. Some additional vital players involved in salinity stress in Prunus include CBL10, AKT1, KUP8, Prupe.3G053200 (chloride channel), and Prupe.7G202700 (mechanosensitive ion channel). Genetic components of salinity stress identified in this study may be explored to develop new rootstocks suitable for salinity-affected regions.
Collapse
|
685
|
Acharya BR, Sandhu D, Dueñas C, Ferreira JFS, Grover KK. Deciphering Molecular Mechanisms Involved in Salinity Tolerance in Guar ( Cyamopsis tetragonoloba (L.) Taub.) Using Transcriptome Analyses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030291. [PMID: 35161272 PMCID: PMC8838131 DOI: 10.3390/plants11030291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 05/09/2023]
Abstract
Guar is a commercially important legume crop known for guar gum. Guar is tolerant to various abiotic stresses, but the mechanisms involved in its salinity tolerance are not well established. This study aimed to understand molecular mechanisms of salinity tolerance in guar. RNA sequencing (RNA-Seq) was employed to study the leaf and root transcriptomes of salt-tolerant (Matador) and salt-sensitive (PI 340261) guar genotypes under control and salinity. Our analyses identified a total of 296,114 unigenes assembled from 527 million clean reads. Transcriptome analysis revealed that the gene expression differences were more pronounced between salinity treatments than between genotypes. Differentially expressed genes associated with stress-signaling pathways, transporters, chromatin remodeling, microRNA biogenesis, and translational machinery play critical roles in guar salinity tolerance. Genes associated with several transporter families that were differentially expressed during salinity included ABC, MFS, GPH, and P-ATPase. Furthermore, genes encoding transcription factors/regulators belonging to several families, including SNF2, C2H2, bHLH, C3H, and MYB were differentially expressed in response to salinity. This study revealed the importance of various biological pathways during salinity stress and identified several candidate genes that may be used to develop salt-tolerant guar genotypes that might be suitable for cultivation in marginal soils with moderate to high salinity or using degraded water.
Collapse
Affiliation(s)
- Biswa R. Acharya
- U.S. Salinity Lab (USDA-ARS), 450 W Big Springs Road, Riverside, CA 92507, USA; (B.R.A.); (J.F.S.F.)
- College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA;
| | - Devinder Sandhu
- U.S. Salinity Lab (USDA-ARS), 450 W Big Springs Road, Riverside, CA 92507, USA; (B.R.A.); (J.F.S.F.)
- Correspondence: (D.S.); (K.K.G.)
| | - Christian Dueñas
- College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA;
| | - Jorge F. S. Ferreira
- U.S. Salinity Lab (USDA-ARS), 450 W Big Springs Road, Riverside, CA 92507, USA; (B.R.A.); (J.F.S.F.)
| | - Kulbhushan K. Grover
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
- Correspondence: (D.S.); (K.K.G.)
| |
Collapse
|
686
|
Bundó M, Martín-Cardoso H, Pesenti M, Gómez-Ariza J, Castillo L, Frouin J, Serrat X, Nogués S, Courtois B, Grenier C, Sacchi GA, San Segundo B. Integrative Approach for Precise Genotyping and Transcriptomics of Salt Tolerant Introgression Rice Lines. FRONTIERS IN PLANT SCIENCE 2022; 12:797141. [PMID: 35126422 PMCID: PMC8813771 DOI: 10.3389/fpls.2021.797141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 05/24/2023]
Abstract
Rice is the most salt sensitive cereal crop and its cultivation is particularly threatened by salt stress, which is currently worsened due to climate change. This study reports the development of salt tolerant introgression lines (ILs) derived from crosses between the salt tolerant indica rice variety FL478, which harbors the Saltol quantitative trait loci (QTL), and the salt-sensitive japonica elite cultivar OLESA. Genotyping-by-sequencing (GBS) and Kompetitive allele specific PCR (KASPar) genotyping, in combination with step-wise phenotypic selection in hydroponic culture, were used for the identification of salt-tolerant ILs. Transcriptome-based genotyping allowed the fine mapping of indica genetic introgressions in the best performing IL (IL22). A total of 1,595 genes were identified in indica regions of IL22, which mainly located in large introgressions at Chromosomes 1 and 3. In addition to OsHKT1;5, an important number of genes were identified in the introgressed indica segments of IL22 whose expression was confirmed [e.g., genes involved in ion transport, callose synthesis, transcriptional regulation of gene expression, hormone signaling and reactive oxygen species (ROS) accumulation]. These genes might well contribute to salt stress tolerance in IL22 plants. Furthermore, comparative transcript profiling revealed that indica introgressions caused important alterations in the background gene expression of IL22 plants (japonica cultivar) compared with its salt-sensitive parent, both under non-stress and salt-stress conditions. In response to salt treatment, only 8.6% of the salt-responsive genes were found to be commonly up- or down-regulated in IL22 and OLESA plants, supporting massive transcriptional reprogramming of gene expression caused by indica introgressions into the recipient genome. Interactions among indica and japonica genes might provide novel regulatory networks contributing to salt stress tolerance in introgression rice lines. Collectively, this study illustrates the usefulness of transcriptomics in the characterization of new rice lines obtained in breeding programs in rice.
Collapse
Affiliation(s)
- Mireia Bundó
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | | | - Michele Pesenti
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy – DiSAA, University of Milan, Milan, Italy
| | - Jorge Gómez-Ariza
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Laia Castillo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Julien Frouin
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Xavier Serrat
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, Barcelona, Spain
| | - Salvador Nogués
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, Barcelona, Spain
| | - Brigitte Courtois
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Cécile Grenier
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Gian Attilio Sacchi
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy – DiSAA, University of Milan, Milan, Italy
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
687
|
Xu Z, Zhang N, Fu H, Wang F, Wen M, Chang H, Wu J, Abdelaala WB, Luo Q, Li Y, Li C, Wang Q, Wang ZY. Salt Stress Modulates the Landscape of Transcriptome and Alternative Splicing in Date Palm ( Phoenix dactylifera L.). FRONTIERS IN PLANT SCIENCE 2022; 12:807739. [PMID: 35126432 PMCID: PMC8810534 DOI: 10.3389/fpls.2021.807739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 05/14/2023]
Abstract
Date palm regards as a valuable genomic resource for exploring the tolerance genes due to its ability to survive under the sever condition. Although a large number of differentiated genes were identified in date palm responding to salt stress, the genome-wide study of alternative splicing (AS) landscape under salt stress conditions remains unknown. In the current study, we identified the stress-related genes through transcriptomic analysis to characterize their function under salt. A total of 17,169 genes were differentially expressed under salt stress conditions. Gene expression analysis confirmed that the salt overly sensitive (SOS) pathway genes, such as PdSOS2;1, PdSOS2;2, PdSOS4, PdSOS5, and PdCIPK11 were involved in the regulation of salt response in date palm, which is consistent with the physiological analysis that high salinity affected the Na+/K+ homeostasis and amino acid profile of date palm resulted in the inhibition of plant growth. Interestingly, the pathway of "spliceosome" was enriched in the category of upregulation, indicating their potential role of AS in date palm response to salt stress. Expectedly, many differentially alternative splicing (DAS) events were found under salt stress conditions, and some splicing factors, such as PdRS40, PdRSZ21, PdSR45a, and PdU2Af genes were abnormally spliced under salt, suggesting that AS-related proteins might participated in regulating the salt stress pathway. Moreover, the number of differentially DAS-specific genes was gradually decreased, while the number of differentially expressed gene (DEG)-specific genes was increased with prolonged salt stress treatment, suggesting that AS and gene expression could be distinctively regulated in response to salt stress. Therefore, our study highlighted the pivotal role of AS in the regulation of salt stress and provided novel insights for enhancing the resistance to salt in date palm.
Collapse
Affiliation(s)
- Zhongliang Xu
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Ning Zhang
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Haiquan Fu
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Fuyou Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Mingfu Wen
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
- Zhanjiang Sugarcane Research Center, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Hailong Chang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
| | - Jiantao Wu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
| | - Walid Badawy Abdelaala
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Central Laboratory for Date Palm Research and Development of Agriculture Research Center, Giza, Egypt
| | - Qingwen Luo
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
- Zhanjiang Sugarcane Research Center, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Yang Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
- Zhanjiang Sugarcane Research Center, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Cong Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
- Zhanjiang Sugarcane Research Center, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Qinnan Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
| | - Zhen-Yu Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
- Zhanjiang Sugarcane Research Center, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| |
Collapse
|
688
|
Liao Q, Gu S, Kang S, Du T, Tong L, Wood JD, Ding R. Mild water and salt stress improve water use efficiency by decreasing stomatal conductance via osmotic adjustment in field maize. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150364. [PMID: 34818800 DOI: 10.1016/j.scitotenv.2021.150364] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Water and salt stress often occur simultaneously in heavily irrigated arid agricultural areas, yet they are usually studied in isolation. To understand the physiological bases of water use efficiency (WUE) of field-grown maize (Zea mays) at multi-scales under combined water and salt stress, we investigated the joint effects of water and salt stress on physiology, growth, yield, and WUE of two genotypes (XY335 and ZD958). We measured leaf stomatal conductance (gs), net photosynthesis rate (A) and hydraulic traits, whole-plant growth and water use (ET), and final biomass and grain yield. Leaf osmotic adjustment was a key trait of the physiological differences between XY335 and ZD958 under water and salt stress. Although the responses of the two genotypes were different, mild water and salt stress improved intrinsic water use efficiency (iWUE = A/gs) by (i) decreasing gsvia increasing osmotic adjustment and hydraulic resistance, and (ii) declining A via increasing stomatal limitations rather than reducing photosynthetic capacity. Joint water and salt stress had a synergistic effect on reproductive growth and grain formation of maize. Mild water and salt stress reduced ET, stabilized grain yield, and improved grain WUE via declining gs, maintaining photosynthetic capacity, and improving harvest index. Collectively, our study provides a novel insight into the physiological mechanisms of WUE and demonstrates an approach for the efficient management of water and salt by using a growth stage-based deficit irrigation strategy or/and selecting genotypes with strong osmotic adjustment capacity and high harvest index.
Collapse
Affiliation(s)
- Qi Liao
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Ministry of Education and Gansu Government, Wuwei, Gansu Province 733009, China
| | - Shujie Gu
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Ministry of Education and Gansu Government, Wuwei, Gansu Province 733009, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Ministry of Education and Gansu Government, Wuwei, Gansu Province 733009, China
| | - Taisheng Du
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Ministry of Education and Gansu Government, Wuwei, Gansu Province 733009, China
| | - Ling Tong
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Ministry of Education and Gansu Government, Wuwei, Gansu Province 733009, China
| | - Jeffrey D Wood
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Risheng Ding
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Ministry of Education and Gansu Government, Wuwei, Gansu Province 733009, China.
| |
Collapse
|
689
|
FLS2–RBOHD–PIF4 Module Regulates Plant Response to Drought and Salt Stress. Int J Mol Sci 2022; 23:ijms23031080. [PMID: 35163000 PMCID: PMC8835674 DOI: 10.3390/ijms23031080] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
As sessile organisms, plants are constantly challenged by several environmental stresses. Different kinds of stress often occur simultaneously, leading to the accumulation of reactive oxygen species (ROS) produced by respiratory burst oxidase homolog (RBOHD) and calcium fluctuation in cells. Extensive studies have revealed that flagellin sensitive 2 (FLS2) can sense the infection by pathogenic microorganisms and activate cellular immune response by regulating intracellular ROS and calcium signals, which can also be activated during plant response to abiotic stress. However, little is known about the roles of FLS2 and RBOHD in regulating abiotic stress. In this study, we found that although the fls2 mutant showed tolerance, the double mutant rbohd rbohf displayed hypersensitivity to abiotic stress, similar to its performance in response to immune stress. An analysis of the transcriptome of the fls2 mutant and rbohd rbohf double mutant revealed that phytochrome interacting factor 4 (PIF4) acted downstream of FLS2 and RBOHD to respond to the abiotic stress. Further analysis showed that both FLS2 and RBOHD regulated the response of plants to drought and salt stress by regulating the expression of PIF4. These findings revealed an FLS2–RBOHD–PIF4 module in regulating plant response to biotic and abiotic stresses.
Collapse
|
690
|
Cai Z, Wang C, Chen C, Zou L, Yin S, Liu S, Yuan J, Wu N, Liu X. Comparative transcriptome analysis reveals variations of bioactive constituents in Lonicera japonica flowers under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:87-96. [PMID: 35114506 DOI: 10.1016/j.plaphy.2022.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 05/25/2023]
Abstract
Lonicera japonica flowers (LJF) is a traditional Chinese medicine packed with phenols constituents and widely used in the treatments of various diseases throughout the world. However, there is still very little known on how LJF identifies and resists salt stress. Here in, we systematically investigated the effect of salt on the phenotypic, metabolite, and transcriptomic in LJF. During long term stress (35 days), 1055 differential expression genes (DEGs) involved in the biosynthesis of secondary metabolites were screened through transcriptome analysis, among which the candidate genes and pathways involved in phenols biosynthesis were highlighted; and performed by phylogenetic tree analysis and multiple nucleotide sequence alignment. Ninety compounds were identified and their relative levels were compared between the control and stressed groups based on the LC-MS analysis, Putative biosynthesis networks of phenolic acid and flavonoid were con-structed with structural DEGs. Strikingly, the expression patterns of structural DEGs were mostly consistent with the variations of phenols under salt stress. Notably, the upregulation of UDP-glycosyl transferases under salt stress indicated post-modification of glycosyl transferases may participate in downstream flavonoids synthesis. This study reveals the relationships of the gene regulation and the phenols biosynthesis in LJF under salt stress, paving the way for the use of gene-specific expression to improve the yield of biocomponent.
Collapse
Affiliation(s)
- Zhichen Cai
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chengcheng Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cuihua Chen
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lisi Zou
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shengxin Yin
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shengjin Liu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jiahuan Yuan
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nan Wu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xunhong Liu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
691
|
Xu L, Song JQ, Wang YL, Liu XH, Li XL, Zhang B, Li AJ, Ye XF, Wang J, Wang P. Thymol improves salinity tolerance of tobacco by increasing the sodium ion efflux and enhancing the content of nitric oxide and glutathione. BMC PLANT BIOLOGY 2022; 22:31. [PMID: 35027009 PMCID: PMC8756686 DOI: 10.1186/s12870-021-03395-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Salt stress is one of the most important abiotic stresses affecting the yield and quality of tobacco (Nicotiana tabacum). Thymol (a natural medicine) has been widely used in medical research because of its antibacterial and anti-inflammatory activities. However, the influence of thymol on the root growth of tobacco is not fully elucidated. In this study, the regulatory effects of different concentrations of thymol were investigated. METHODOLOGY Here, histochemical staining and biochemical methods, non-invasive micro-test technology (NMT), and qPCR assay were performed to investigate the effect of thymol and mechanism of it improving salinity tolerance in tobacco seedlings. RESULTS In this study, our results showed that thymol rescued root growth from salt stress by ameliorating ROS accumulation, lipid peroxidation, and cell death. Furthermore, thymol enhanced contents of NO and GSH to repress ROS accumulation, further protecting the stability of the cell membrane. And, thymol improved Na+ efflux and the expression of SOS1, HKT1, and NHX1, thus protecting the stability of Na+ and K+. CONCLUSION Our study confirmed the protecting effect of thymol in tobacco under salt stress, and we also identified the mechanism of it, involving dynamic regulation of antioxidant system and the maintenance of Na+ homeostasis. It can be a new method to improve salinity tolerance in plants.
Collapse
Affiliation(s)
- Liang Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jia-Qian Song
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yue-Lin Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiao-Han Liu
- Guangdong Shaoguan Tobacco Recuring Co., LTD., Shaoguan, 512000, China
| | - Xue-Li Li
- China Tobacco Corporation Staff Training College, Zhengzhou, 450008, China
| | - Bo Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ai-Jie Li
- Joint Center for Biomedical Innovation, Henan University, Kaifeng, 475000, China
| | - Xie-Feng Ye
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jing Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Peng Wang
- Wuhan Cigarette Factory of Hubei China Tobacco Industry Limited Liability Company, Wuhan, 430051, China.
| |
Collapse
|
692
|
Jiménez-Mejía R, Medina-Estrada RI, Carballar-Hernández S, Orozco-Mosqueda MDC, Santoyo G, Loeza-Lara PD. Teamwork to Survive in Hostile Soils: Use of Plant Growth-Promoting Bacteria to Ameliorate Soil Salinity Stress in Crops. Microorganisms 2022; 10:150. [PMID: 35056599 PMCID: PMC8781547 DOI: 10.3390/microorganisms10010150] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/30/2022] Open
Abstract
Plants and their microbiomes, including plant growth-promoting bacteria (PGPB), can work as a team to reduce the adverse effects of different types of stress, including drought, heat, cold, and heavy metals stresses, as well as salinity in soils. These abiotic stresses are reviewed here, with an emphasis on salinity and its negative consequences on crops, due to their wide presence in cultivable soils around the world. Likewise, the factors that stimulate the salinity of soils and their impact on microbial diversity and plant physiology were also analyzed. In addition, the saline soils that exist in Mexico were analyzed as a case study. We also made some proposals for a more extensive use of bacterial bioinoculants in agriculture, particularly in developing countries. Finally, PGPB are highly relevant and extremely helpful in counteracting the toxic effects of soil salinity and improving crop growth and production; therefore, their use should be intensively promoted.
Collapse
Affiliation(s)
- Rafael Jiménez-Mejía
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Sahuayo 59103, Mexico; (R.J.-M.); (R.I.M.-E.); (S.C.-H.)
| | - Ricardo I. Medina-Estrada
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Sahuayo 59103, Mexico; (R.J.-M.); (R.I.M.-E.); (S.C.-H.)
| | - Santos Carballar-Hernández
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Sahuayo 59103, Mexico; (R.J.-M.); (R.I.M.-E.); (S.C.-H.)
| | - Ma. del Carmen Orozco-Mosqueda
- Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Uruapan 60170, Mexico;
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58030, Mexico;
| | - Pedro D. Loeza-Lara
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Sahuayo 59103, Mexico; (R.J.-M.); (R.I.M.-E.); (S.C.-H.)
| |
Collapse
|
693
|
Identification and Functional Characterization of Apple MdCKX5.2 in Root Development and Abiotic Stress Tolerance. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytokinin oxidase/dehydrogenases (CKXs) are the key enzymes in cytokinin degradation and have been widely studied in model plants. Little is known about apple’s (Malus×domestica) CKX genes. Here, using genome-wide analysis, we identified 10 MdCKX genes in apple. The phylogenetics, chromosome locations, and genome structures were then tested. Expression analysis showed that MdCKX genes had different expression profiles in apple, pointing to the different roles. Meanwhile, relative expression analysis showed that these genes have different expression patterns in response to several exogenous cytokinin factors, including trans-zeatin (ZT), thidiazuron (TDZ), and N6-furfuryladenine (KT). Finally, we introduced the MdCKX5.2 gene into Arabidopsis to evaluate its functions, and the results suggested the transgenic Arabidopsis displayed phenotypes related to promoting primary root and lateral root development, response to exogenous ZT, and conferring to drought and salt tolerant. Taken together, our results provide insights on the possible application of the MdCKX5.2 gene for molecular breeding in apples.
Collapse
|
694
|
Rouina H, Tseng YH, Nataraja KN, Uma Shaanker R, Krüger T, Kniemeyer O, Brakhage A, Oelmüller R. Comparative Secretome Analyses of Trichoderma/Arabidopsis Co-cultures Identify Proteins for Salt Stress, Plant Growth Promotion, and Root Colonization. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.808430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Numerous Trichoderma strains are beneficial for plants, promote their growth, and confer stress tolerance. A recently described novel Trichoderma strain strongly promotes the growth of Arabidopsis thaliana seedlings on media with 50 mM NaCl, while 150 mM NaCl strongly stimulated root colonization and induced salt-stress tolerance in the host without growth promotion. To understand the dynamics of plant-fungus interaction, we examined the secretome from both sides and revealed a substantial change under different salt regimes, and during co-cultivation. Stress-related proteins, such as a fungal cysteine-rich Kp4 domain-containing protein which inhibits plant cell growth, fungal WSC- and CFEM-domain-containing proteins, the plant calreticulin, and cell-wall modifying enzymes, disappear when the two symbionts are co-cultured under high salt concentrations. In contrast, the number of lytic polysaccharide monooxygenases increases, which indicates that the fungus degrades more plant lignocellulose under salt stress and its lifestyle becomes more saprophytic. Several plant proteins involved in plant and fungal cell wall modifications and root colonization are only found in the co-cultures under salt stress, while the number of plant antioxidant proteins decreased. We identified symbiosis- and salt concentration-specific proteins for both partners. The Arabidopsis PYK10 and a fungal prenylcysteine lyase are only found in the co-culture which promoted plant growth. The comparative analysis of the secretomes supports antioxidant enzyme assays and suggests that both partners profit from the interaction under salt stress but have to invest more in balancing the symbiosis. We discuss the role of the identified stage- and symbiosis-specific fungal and plant proteins for salt stress, and conditions promoting root colonization and plant growth.
Collapse
|
695
|
Ma X, Liu JN, Yan L, Liang Q, Fang H, Wang C, Dong Y, Chai Z, Zhou R, Bao Y, Hou W, Yang KQ, Wu D. Comparative Transcriptome Analysis Unravels Defense Pathways of Fraxinus velutina Torr Against Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:842726. [PMID: 35310642 PMCID: PMC8931533 DOI: 10.3389/fpls.2022.842726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 05/03/2023]
Abstract
Fraxinus velutina Torr with high salt tolerance has been widely grown in saline lands in the Yellow River Delta, China. However, the salt-tolerant mechanisms of F. velutina remain largely elusive. Here, we identified two contrasting cutting clones of F. velutina, R7 (salt-tolerant), and S4 (salt-sensitive) by measuring chlorophyll fluorescence characteristics (Fv/Fm ratio) in the excised leaves and physiological indexes in roots or leaves under salt treatment. To further explore the salt resistance mechanisms, we compared the transcriptomes of R7 and S4 from leaf and root tissues exposed to salt stress. The results showed that when the excised leaves of S4 and R7 were, respectively, exposed to 250 mM NaCl for 48 h, Fv/Fm ratio decreased significantly in S4 compared with R7, confirming that R7 is more tolerant to salt stress. Comparative transcriptome analysis showed that salt stress induced the significant upregulation of stress-responsive genes in R7, making important contributions to the high salt tolerance. Specifically, in the R7 leaves, salt stress markedly upregulated key genes involved in plant hormone signaling and mitogen-activated protein kinase signaling pathways; in the R7 roots, salt stress induced the upregulation of main genes involved in proline biosynthesis and starch and sucrose metabolism. In addition, 12 genes encoding antioxidant enzyme peroxidase were all significantly upregulated in both leaves and roots. Collectively, our findings revealed the crucial defense pathways underlying high salt tolerance of R7 through significant upregulation of some key genes involving metabolism and hub signaling pathways, thus providing novel insights into salt-tolerant F. velutina breeding.
Collapse
Affiliation(s)
- Xinmei Ma
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Jian Ning Liu
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Liping Yan
- Shandong Provincial Academy of Forestry, Jinan, China
| | - Qiang Liang
- College of Forestry, Shandong Agricultural University, Tai’an, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai’an, China
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Tai’an, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai’an, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Tai’an, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai’an, China
| | - Zejia Chai
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Rui Zhou
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Yan Bao
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Wenrui Hou
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Tai’an, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai’an, China
- *Correspondence: Ke Qiang Yang,
| | - Dejun Wu
- Shandong Provincial Academy of Forestry, Jinan, China
- Dejun Wu,
| |
Collapse
|
696
|
Li Q, You J, Qiao T, Zhong DB, Yu X. Sodium chloride stimulates the biomass and astaxanthin production by Haematococcus pluvialis via a two-stage cultivation strategy. BIORESOURCE TECHNOLOGY 2022; 344:126214. [PMID: 34715336 DOI: 10.1016/j.biortech.2021.126214] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
A major challenge facing by astaxanthin industrialization is the low productivity and high production costs. This study established a two-stage cultivation strategy based on the application of NaCl to improve the production of biomass and astaxanthin by Haematococcus pluvialis. During the first growth stage, 12.5 mg L-1 NaCl led to a remarkable enhancement in biomass, which was 1.28 times compared with the control. Moreover, 2 g L-1 NaCl stimulated the astaxanthin content from 12.18 mg g-1 to 25.92 mg g-1 during the second induction stage. Simultaneously, salinity stress application increased the lipids and GABA contents, as well as the levels of Ca2+ and carotenogenic genes' expression, but suppressed the contents of carbohydrate and protein and high-light induced-ROS. This study proposed a simple and convenient strategy for efficient coproduction of biomass and astaxanthin and provides insights into the underlying mechanism of astaxanthin biosynthesis in H. pluvialis induced by salinity stress.
Collapse
Affiliation(s)
- Qingqing Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinkun You
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming 650032, China
| | - Tengsheng Qiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Du-Bo Zhong
- Yunnan Yunce Quality Testing Co., Ltd, Kunming 650217, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
697
|
Zhang X, Han C, Liang Y, Yang Y, Liu Y, Cao Y. Combined full-length transcriptomic and metabolomic analysis reveals the regulatory mechanisms of adaptation to salt stress in asparagus. FRONTIERS IN PLANT SCIENCE 2022; 13:1050840. [PMID: 36388563 PMCID: PMC9648818 DOI: 10.3389/fpls.2022.1050840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 05/10/2023]
Abstract
Soil salinity is a very serious abiotic stressor that affects plant growth and threatens crop yield. Thus, it is important to explore the mechanisms of salt tolerance of plant and then to stabilize and improve crop yield. Asparagus is an important cash crop, but its salt tolerance mechanisms are largely unknown. Full-length transcriptomic and metabolomic analyses were performed on two asparagus genotypes: 'jx1502' (a salt-tolerant genotype) and 'gold crown' (a salt-sensitive genotype). Compared with the distilled water treatment (control), 877 and 1610 differentially expressed genes (DEGs) were identified in 'jx1502' and 'gold crown' under salt stress treatment, respectively, and 135 and 73 differentially accumulated metabolites (DAMs) were identified in 'jx1502' and 'gold crown' under salt stress treatment, respectively. DEGs related to ion transport, plant hormone response, and cell division and growth presented differential expression profiles between 'jx1502' and 'gold crown.' In 'jx1502,' 11 ion transport-related DEGs, 8 plant hormone response-related DEGs, and 12 cell division and growth-related DEGs were upregulated, while 7 ion transport-related DEGs, 4 plant hormone response-related DEGs, and 2 cell division and growth-related DEGs were downregulated. Interestingly, in 'gold crown,' 14 ion transport-related DEGs, 2 plant hormone response-related DEGs, and 6 cell division and growth-related DEGs were upregulated, while 45 ion transport-related DEGs, 13 plant hormone response-related DEGs, and 16 cell division and growth-related DEGs were downregulated. Genotype 'jx1502' can modulate K+/Na+ and water homeostasis and maintain a more constant transport system for nutrient uptake and distribution than 'gold crown' under salt stress. Genotype 'jx1502' strengthened the response to auxin (IAA), as well as cell division and growth for root remodeling and thus salt tolerance. Therefore, the integration analysis of transcriptomic and metabolomic indicated that 'jx1502' enhanced sugar and amino acid metabolism for energy supply and osmotic regulatory substance accumulation to meet the demands of protective mechanisms against salt stress. This work contributed to reveal the underlying salt tolerance mechanism of asparagus at transcription and metabolism level and proposed new directions for asparagus variety improvement.
Collapse
Affiliation(s)
- Xuhong Zhang
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- Landscape Management and Protection Center, Shijiazhuang Bureau of Landscape Architecture, Shijiazhuang, China
| | - Changzhi Han
- College of Biodiversity Conservation, Southwest Forestry University, Kunming, China
| | - Yuqin Liang
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yang Yang
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yun Liu
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yanpo Cao
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- *Correspondence: Yanpo Cao,
| |
Collapse
|
698
|
Shi LN, Lu LX, Ye JR, Shi HM. The Endophytic Strain ZS-3 Enhances Salt Tolerance in Arabidopsis thaliana by Regulating Photosynthesis, Osmotic Stress, and Ion Homeostasis and Inducing Systemic Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:820837. [PMID: 35386673 PMCID: PMC8977589 DOI: 10.3389/fpls.2022.820837] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/28/2022] [Indexed: 05/07/2023]
Abstract
Soil salinity is one of the main factors limiting agricultural development worldwide and has an adverse effect on plant growth and yield. To date, plant growth-promoting rhizobacteria (PGPR) are considered to be one of the most promising eco-friendly strategies for improving saline soils. The bacterium Bacillus megaterium ZS-3 is an excellent PGPR strain that induces growth promotion as well as biotic stress resistance and tolerance to abiotic stress in a broad range of host plants. In this study, the potential mechanisms of protection against salinity stress by B. megaterium ZS-3 in Arabidopsis thaliana were explored. Regulation by ZS-3 improved growth in A. thaliana under severe saline conditions. The results showed that ZS-3 treatment significantly increased the biomass, chlorophyll content and carotenoid content of A. thaliana. Compared to the control, the leaf area and total fresh weight of plants inoculated with ZS-3 increased by 245% and 271%, respectively; the chlorophyll a, chlorophyll b, and carotenoid contents increased by 335%, 146%, and 372%, respectively, under salt stress. Physiological and biochemical tests showed that ZS-3 regulated the content of osmotic substances in plants under salt stress. Compared to the control, the soluble sugar content of the ZS-3-treated group was significantly increased by 288%, while the proline content was significantly reduced by 41.43%. Quantification of Na+ and K+ contents showed that ZS-3 treatment significantly reduced Na+ accumulation and increased the K+/Na+ ratio in plants. ZS-3 also isolated Na+ in vesicles by upregulating NHX1 and AVP1 expression while limiting Na+ uptake by downregulating HKT1, which protected against Na+ toxicity. Higher levels of peroxidase and catalase activity and reduced glutathione were detected in plants inoculated with ZS-3 compared to those in uninoculated plants. In addition, it was revealed that ZS-3 activates salicylic acid (NPR1 and PR1) and jasmonic acid/ethylene (AOS, LOX2, PDF1.2, and ERF1) signaling pathways to induce systemic tolerance, thereby inducing salt tolerance in plants. In conclusion, the results of this study indicate that ZS-3 has the potential to act as an environmentally friendly salt tolerance inducer that can promote plant growth in salt-stressed environments.
Collapse
Affiliation(s)
- Li-Na Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Lan-Xiang Lu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
- *Correspondence: Jian-Ren Ye,
| | - Hui-Min Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
699
|
Cheng X, Yao H, Cheng Z, Tian B, Gao C, Gao W, Yan S, Cao J, Pan X, Lu J, Ma C, Chang C, Zhang H. The Wheat Gene TaVQ14 Confers Salt and Drought Tolerance in Transgenic Arabidopsis thaliana Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:870586. [PMID: 35620700 PMCID: PMC9127792 DOI: 10.3389/fpls.2022.870586] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/04/2022] [Indexed: 05/13/2023]
Abstract
Wheat is one of the most widely cultivated food crops worldwide, and the safe production of wheat is essential to ensure food security. Soil salinization and drought have severely affected the yield and quality of wheat. Valine-glutamine genes play important roles in abiotic stress response. This study assessed the effect of the gene TaVQ14 on drought and salt stresses resistance. Sequence analysis showed that TaVQ14 encoded a basic unstable hydrophobic protein with 262 amino acids. Subcellular localization showed that TaVQ14 was localized in the nucleus. TaVQ14 was upregulated in wheat seeds under drought and salt stress. Under NaCl and mannitol treatments, the percentage of seed germination was higher in Arabidopsis lines overexpressing TaVQ14 than in wild-type lines, whereas the germination rate was significantly lower in plants with a mutation in the atvq15 gene (a TaVQ14 homolog) than in WT controls, suggesting that TaVQ14 increases resistance to salt and drought stress in Arabidopsis seeds. Moreover, under salt and drought stress, Arabidopsis lines overexpressing TaVQ14 had higher catalase, superoxide dismutase, and proline levels and lower malondialdehyde concentrations than WT controls, suggesting that TaVQ14 improves salt and drought resistance in Arabidopsis by scavenging reactive oxygen species. Expression analysis showed that several genes responsive to salt and drought stress were upregulated in Arabidopsis plants overexpressing TaVQ14. Particularly, salt treatment increased the expression of AtCDPK2 in these plants. Moreover, salt treatment increased Ca2+ concentrations in plants overexpressing TaVQ14, suggesting that TaVQ14 enhances salt resistance in Arabidopsis seeds through calcium signaling. In summary, this study demonstrated that the heterologous expression of TaVQ14 increases the resistance of Arabidopsis seeds to salt and drought stress.
Collapse
Affiliation(s)
- Xinran Cheng
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Hui Yao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Zuming Cheng
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Bingbing Tian
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Chang Gao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Wei Gao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Shengnan Yan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Jiajia Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Xu Pan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Cheng Chang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
- *Correspondence: Cheng Chang,
| | - Haiping Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
- Haiping Zhang,
| |
Collapse
|
700
|
Li Z, Geng W, Tan M, Ling Y, Zhang Y, Zhang L, Peng Y. Differential Responses to Salt Stress in Four White Clover Genotypes Associated With Root Growth, Endogenous Polyamines Metabolism, and Sodium/Potassium Accumulation and Transport. FRONTIERS IN PLANT SCIENCE 2022; 13:896436. [PMID: 35720567 PMCID: PMC9201400 DOI: 10.3389/fpls.2022.896436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/09/2022] [Indexed: 05/04/2023]
Abstract
Selection and utilization of salt-tolerant crops are essential strategies for mitigating salinity damage to crop productivity with increasing soil salinization worldwide. This study was conducted to identify salt-tolerant white clover (Trifolium repens) genotypes among 37 materials based on a comprehensive evaluation of five physiological parameters, namely, chlorophyll (Chl) content, photochemical efficiency of PS II (Fv/Fm), performance index on an absorption basis (PIABS), and leaf relative water content (RWC), and to further analyze the potential mechanism of salt tolerance associated with changes in growth, photosynthetic performance, endogenous polyamine metabolism, and Na+/K+ uptake and transport. The results showed that significant variations in salt tolerance were identified among 37 genotypes, as PI237292 and Tr005 were the top two genotypes with the highest salt tolerance, and PI251432 and Korla were the most salt-sensitive genotypes compared to other materials. The salt-tolerant PI237292 and Tr005 not only maintained significantly lower EL but also showed significantly better photosynthetic performance, higher leaf RWC, underground dry weight, and the root to shoot ratio than the salt-sensitive PI251432 and Korla under salt stress. Increases in endogenous PAs, putrescine (Put), and spermidine (Spd) contents could be key adaptive responses to salt stress in the PI237292 and the Tr005 through upregulating genes encoding Put and Spd biosynthesis (NCA, ADC, SAMDC, and SPDS2). For Na+ and K+ accumulation and transport, higher salt tolerance of the PI237292 could be associated with the maintenance of Na+ and Ca+ homeostasis associated with upregulations of NCLX and BTB/POZ. The K+ homeostasis-related genes (KEA2, HAK25, SKOR, POT2/8/11, TPK3/5, and AKT1/5) are differentially expressed among four genotypes under salt stress. However, the K+ level and K+/Na+ ratio were not completely consistent with the salt tolerance of the four genotypes. The regulatory function of these differentially expressed genes (DEGs) on salt tolerance in the white clover and other leguminous plants needs to be investigated further. The current findings also provide basic genotypes for molecular-based breeding for salt tolerance in white clover species.
Collapse
Affiliation(s)
- Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wan Geng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Meng Tan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yao Ling
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liquan Zhang
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, China
- *Correspondence: Liquan Zhang,
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
- Yan Peng,
| |
Collapse
|