701
|
Lyons MR, West AE. Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol 2011; 94:259-95. [PMID: 21620929 PMCID: PMC3134613 DOI: 10.1016/j.pneurobio.2011.05.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 02/06/2023]
Abstract
The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain.
Collapse
Affiliation(s)
- Michelle R Lyons
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
702
|
Schroeder DI, Lott P, Korf I, LaSalle JM. Large-scale methylation domains mark a functional subset of neuronally expressed genes. Genome Res 2011; 21:1583-91. [PMID: 21784875 DOI: 10.1101/gr.119131.110] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA methylation is essential for embryonic and neuronal differentiation, but the function of most genomic DNA methylation marks is poorly understood. Generally the human genome is highly methylated (>70%) except for CpG islands and gene promoters. However, it was recently shown that the IMR90 human fetal lung fibroblast cells have large regions of the genome with partially methylated domains (PMDs, <70% average methylation), in contrast to the rest of the genome which is in highly methylated domains (HMDs, >70% average methylation). Using bisulfite conversion followed by high-throughput sequencing (MethylC-seq), we discovered that human SH-SY5Y neuronal cells also contain PMDs. We developed a novel hidden Markov model (HMM) to computationally map the genomic locations of PMDs in both cell types and found that autosomal PMDs can be >9 Mb in length and cover 41% of the IMR90 genome and 19% of the SH-SY5Y genome. Genomic regions marked by cell line specific PMDs contain genes that are expressed in a tissue-specific manner, with PMDs being a mark of repressed transcription. Genes contained within N-HMDs (neuronal HMDs, defined as a PMD in IMR90 but HMD in SH-SY5Y) were significantly enriched for calcium signaling, synaptic transmission, and neuron differentiation functions. Autism candidate genes were enriched within PMDs and the largest PMD observed in SH-SY5Y cells marked a 10 Mb cluster of cadherin genes with strong genetic association to autism. Our results suggest that these large-scale methylation domain maps could be relevant to interpreting and directing future investigations into the elusive etiology of autism.
Collapse
Affiliation(s)
- Diane I Schroeder
- School of Medicine, Medical Microbiology and Immunology, University of California Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
703
|
Li H, Zhong X, Chau KF, Williams EC, Chang Q. Loss of activity-induced phosphorylation of MeCP2 enhances synaptogenesis, LTP and spatial memory. Nat Neurosci 2011; 14:1001-8. [PMID: 21765426 PMCID: PMC3273496 DOI: 10.1038/nn.2866] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 05/31/2011] [Indexed: 11/25/2022]
Abstract
DNA methylation-dependent epigenetic mechanisms underlie the development and function of the mammalian brain. MeCP2 expresses highly in neurons, and functions as a molecular linker between DNA methylation, chromatin remodeling and transcription regulation. Previous in vitro studies showed neuronal activity-induced phosphorylation (NAIP) of MeCP2 precedes its release from the Bdnf promoter and the ensuing Bdnf transcription. However, the in vivo function of this phosphorylation event remains elusive. We generated knockin mice that lack NAIP of MeCP2, and show here the Mecp2 phospho-mutant mice perform better in hippocampus-dependent memory tests, present enhanced LTP at two synapses in the hippocampus, and show increased excitatory synaptogenesis. At the molecular level, the phospho-mutant MeCP2 protein binds more tightly to several MeCP2 target gene promoters and alters the expression of these genes. Our results supply the first genetic evidence that NAIP of MeCP2 is required in modulating dynamic functions of the adult mouse brain.
Collapse
Affiliation(s)
- Hongda Li
- Genetics Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | | | |
Collapse
|
704
|
Jessen HM, Auger AP. Sex differences in epigenetic mechanisms may underlie risk and resilience for mental health disorders. Epigenetics 2011; 6:857-61. [PMID: 21617370 DOI: 10.4161/epi.6.7.16517] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Alterations in the epigenetic programming of sex differences in the brain may underlie sexually dimorphic neurodevelopmental disorders. Sex differences have been found in DNA methyltransferases 3a, DNA methylation patterns, MeCP2, and nuclear corepressor within the developing brain. Natural variations in these epigenetic mechanisms have profound consequences on gene expression and brain function. Exogenous or endogenous perturbations during development may impact these epigenetic processes and alter the trajectory of the developing brain and confer sexually dimorphic risk and resilience for developing a neurological or mental health disorder.
Collapse
Affiliation(s)
- Heather M Jessen
- Department of Psychology, University of Wisconsin, Madison, Madison, WI, USA
| | | |
Collapse
|
705
|
LaSalle JM. A genomic point-of-view on environmental factors influencing the human brain methylome. Epigenetics 2011; 6:862-9. [PMID: 21617367 DOI: 10.4161/epi.6.7.16353] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The etiologic paradigm of complex human disorders such as autism is that genetic and environmental risk factors are independent and additive, but the interactive effects at the epigenetic interface are largely ignored. Genomic technologies have radically changed perspective on the human genome and how the epigenetic interface may impact complex human disorders. Here, I review recent genomic, environmental, and epigenetic findings that suggest a new paradigm of "integrative genomics" in which genetic variation in genomic size may be impacted by dietary and environmental factors that influence the genomic saturation of DNA methylation. Human genomes are highly repetitive, but the interface of large-scale genomic differences with environmental factors that alter the DNA methylome such as dietary folate is under-explored. In addition to obvious direct effects of some environmental toxins on the genome by causing chromosomal breaks, non-mutagenic toxin exposures correlate with DNA hypomethylation that can lead to rearrangements between repeats or increased retrotransposition. Since human neurodevelopment appears to be particularly sensitive to alterations in epigenetic pathways, a further focus will be on how developing neurons may be particularly impacted by even subtle alterations to DNA methylation and proposing new directions towards understanding the quixotic etiology of autism by integrative genomic approaches.
Collapse
Affiliation(s)
- Janine M LaSalle
- Medical Microbiology and Immunology, UC Davis School of Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
706
|
Day JJ, Sweatt JD. Cognitive neuroepigenetics: a role for epigenetic mechanisms in learning and memory. Neurobiol Learn Mem 2011; 96:2-12. [PMID: 21195202 PMCID: PMC3111867 DOI: 10.1016/j.nlm.2010.12.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/13/2010] [Accepted: 12/20/2010] [Indexed: 01/09/2023]
Abstract
Although long-lasting behavioral memories have long been thought to require equally persistent molecular changes, little is known about the biochemical underpinnings of memory storage and maintenance. Increasing evidence now suggests that long-term behavioral change may be associated with epigenetic regulation of transcription in the central nervous system. In this review, we present evidence that changes in DNA methylation contribute to memory formation and maintenance, consider how DNA methylation affects readout of memory-related genes, and discuss how these changes may be important in the large-scale context of memory circuits. Finally, we discuss potential challenges involved in examining epigenetic changes in the brain and highlight how epigenetic mechanisms may be relevant for other cognitive processes.
Collapse
Affiliation(s)
- Jeremy J Day
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, United States
| | | |
Collapse
|
707
|
Abstract
Sexual differentiation of the neonatal rat brain is regulated by dynamic processes occurring at the level of DNA, resulting in sexually dimorphic gene expression. Steroid hormone receptors act partly in the developing brain by recruiting co-activators, thereby increasing the acetylation of histones and gene expression. Recent data indicate that sexual differentiation of the brain may also result, in part, from differences in promoter methylation patterns of some steroid responsive genes. Methylation of DNA is an epigenetic process that can decrease gene expression without altering the original DNA sequence. DNA cytosine-5-methyltransferases (DNMTs) 1 and 3a are two factors that induce methylation. We investigated whether sex differences in the expression of DNMT1 and DNMT3a were apparent in the amygdala, preoptic area and medial basal hypothalamus at different time points during development. We found that females express significantly more DNMT3a mRNA and protein in the amygdala but not within the preoptic area or the medial basal hypothalamus at postnatal day 1. There were no sex differences in DNMT3a mRNA or protein at postnatal day 10. Furthermore, no sex differences were observed in the expression of DNMT1 at either time point. Because most sex differences in the brain are a result of a higher level of gonadal steroid hormone exposure in males at birth, we examined whether dihydrotestosterone or oestradiol exposure would reduce DNMT3a expression in neonatal female rats. We found that both oestradiol and dihydrotestosterone treatment significantly reduced DNMT3a, but not DNMT1, mRNA expression within the developing amygdala. Our results indicate that sex differences in DNMT3a within the developing amygdala are partly a result of steroid exposure. This suggests that steroid hormone exposures may programme lasting differences in amygdala function by altering the expression of the epigenetic factor, DNMT3a.
Collapse
Affiliation(s)
- M H Kolodkin
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | |
Collapse
|
708
|
Gräff J, Kim D, Dobbin MM, Tsai LH. Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol Rev 2011; 91:603-49. [PMID: 21527733 DOI: 10.1152/physrev.00012.2010] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Over the past decade, it has become increasingly obvious that epigenetic mechanisms are an integral part of a multitude of brain functions that range from the development of the nervous system over basic neuronal functions to higher order cognitive processes. At the same time, a substantial body of evidence has surfaced indicating that several neurodevelopmental, neurodegenerative, and neuropsychiatric disorders are in part caused by aberrant epigenetic modifications. Because of their inherent plasticity, such pathological epigenetic modifications are readily amenable to pharmacological interventions and have thus raised justified hopes that the epigenetic machinery provides a powerful new platform for therapeutic approaches against these diseases. In this review, we give a detailed overview of the implication of epigenetic mechanisms in both physiological and pathological brain processes and summarize the state-of-the-art of "epigenetic medicine" where applicable. Despite, or because of, these new and exciting findings, it is becoming apparent that the epigenetic machinery in the brain is highly complex and intertwined, which underscores the need for more refined studies to disentangle brain-region and cell-type specific epigenetic codes in a given environmental condition. Clearly, the brain contains an epigenetic "hotspot" with a unique potential to not only better understand its most complex functions, but also to treat its most vicious diseases.
Collapse
Affiliation(s)
- Johannes Gräff
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
709
|
Münzel M, Globisch D, Carell T. 5-Hydroxymethylcytosine, the sixth base of the genome. Angew Chem Int Ed Engl 2011; 50:6460-8. [PMID: 21688365 DOI: 10.1002/anie.201101547] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Indexed: 01/17/2023]
Abstract
5-Hydroxymethylcytosine (hmC) was recently discovered as a new constituent of mammalian DNA. Besides 5-methylcytosine (mC), it is the only other modified base in higher organisms. The discovery is of enormous importance because it shows that the methylation of cytosines to imprint epigenetic information is not a final chemical step that leads to gene silencing but that further chemistry occurs at the methyl group that might have regulatory function. Recent progress in hmC detection--most notably LC-MS and glucosyltransferase assays--helped to decipher the precise distribution of hmC in the body. This led to the surprising finding that, in contrast to constant mC levels, the hmC levels are strongly tissue-specific. The highest values of hmC are found in the central nervous system. It was furthermore discovered that hmC is involved in regulating the pluripotency of stem cells and that it is connected to the processes of cellular development and carcinogenesis. Evidence is currently accumulating that hmC may not exclusively be an intermediate of an active demethylation process, but that it functions instead as an important epigenetic marker.
Collapse
Affiliation(s)
- Martin Münzel
- Center for Integrated Protein Science, Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 Munich, Germany
| | | | | |
Collapse
|
710
|
Münzel M, Globisch D, Carell T. 5-Hydroxymethylcytosin, die sechste Base des Genoms. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101547] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
711
|
Abstract
In this issue of Developmental Cell, Dhawan et al. (2011) show that deletion of the Dnmt1 DNA methyltransferase gene in pancreatic insulin-producing cells makes these cells convert into glucagon-producing cells. This suggests that manipulation of a general epigenetic mechanism may be used to redirect cell fates.
Collapse
Affiliation(s)
- Ildem Akerman
- Genomic Programming of Beta Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona 08036, Spain
| | | | | |
Collapse
|
712
|
Liu L, van Groen T, Kadish I, Li Y, Wang D, James SR, Karpf AR, Tollefsbol TO. Insufficient DNA methylation affects healthy aging and promotes age-related health problems. Clin Epigenetics 2011; 2:349-60. [PMID: 22704347 PMCID: PMC3365396 DOI: 10.1007/s13148-011-0042-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 05/29/2011] [Indexed: 01/16/2023] Open
Abstract
DNA methylation plays an integral role in development and aging through epigenetic regulation of genome function. DNA methyltransferase 1 (Dnmt1) is the most prevalent DNA methyltransferase that maintains genomic methylation stability. To further elucidate the function of Dnmt1 in aging and age-related diseases, we exploited the Dnmt1+/− mouse model to investigate how Dnmt1 haploinsufficiency impacts the aging process by assessing the changes of several major aging phenotypes. We confirmed that Dnmt1 haploinsufficiency indeed decreases DNA methylation as a result of reduced Dnmt1 expression. To assess the effect of Dnmt1 haploinsufficiency on general body composition, we performed dual-energy X-ray absorptiometry analysis and showed that reduced Dnmt1 activity decreased bone mineral density and body weight, but with no significant impact on mortality or body fat content. Using behavioral tests, we demonstrated that Dnmt1 haploinsufficiency impairs learning and memory functions in an age-dependent manner. Taken together, our findings point to the interesting likelihood that reduced genomic methylation activity adversely affects the healthy aging process without altering survival and mortality. Our studies demonstrated that cognitive functions of the central nervous system are modulated by Dnmt1 activity and genomic methylation, highlighting the significance of the original epigenetic hypothesis underlying memory coding and function.
Collapse
Affiliation(s)
- Liang Liu
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Center for Aging, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Department of Dermatology, Columbia University Medical Center, 1150 St. Nicholas Ave., RM 307, New York, NY 10032 USA
| | - Thomas van Groen
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Inga Kadish
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Yuanyuan Li
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Deli Wang
- Children’s Memorial Research Center, Northwestern University’s Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Smitha R. James
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263 USA
| | - Adam R. Karpf
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263 USA
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Center for Aging, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Clinical Nutrition Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
713
|
Abstract
Dynamic chromatin remodeling is at the heart of most biological processes including gene transcription, DNA replication and repair, cell differentiation and apoptosis. Chromatin remodeling as a result of covalent histone modifications, including histone acetylation, methylation or SUMOylation, play important roles in these processes. Similarly, direct chemical modification of DNA, most notably DNA methylation, also plays a key role in controlling gene expression and basic aspects of cell biology. Memory, one of the most fundamental of all brain functions, is a complex process involving diverse cellular signaling cascades and coordinated regulation of entire networks of genes. Synaptic plasticity, which is defined as activity-dependent changes in synaptic strength between neurons, provides the cellular basis of memory. The role for covalent histone modifications in synaptic plasticity and in learning and memory has been now been firmly established. In contrast, much less had been known concerning DNA methylation in memory formation and storage. Emerging evidence now suggests that DNA methylation plays a central role in these processes, likely by directly influencing the expression of genes involved in synaptic plasticity.
Collapse
Affiliation(s)
- Purva Bali
- Laboratory of Behavioral and Molecular Neuroscience, Department of Molecular Therapeutics, The Scripps Research Institute-Florida, Jupiter, FL, USA
| | | | | |
Collapse
|
714
|
Mansuy IM, Mohanna S. Epigenetics and the human brain: where nurture meets nature. CEREBRUM : THE DANA FORUM ON BRAIN SCIENCE 2011; 2011:8. [PMID: 23447777 PMCID: PMC3574773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
While our genetic code determines a great deal of who and what we are, it does not act alone. It depends heavily on the epigenome, an elaborate marking of the DNA that controls the genome's functions. Because it is sensitive to the environment, the epigenome is a powerful link and relay between our genes and our surroundings. Epigenetic marks drive biological functions and features as diverse as memory, development, and disease susceptibility; thus, the nurture aspect of the nature/nurture interaction makes essential contributions to our body and behaviors. As scientists have learned more about how the epigenome works, they have begun to develop therapies that may lead to new approaches to treating common human conditions.
Collapse
|
715
|
Abstract
Epigenomic settings control gene regulation in both developing and postmitotic tissue, whereas abnormal regulation of epigenomic settings has been implicated in many developmental and neurological disorders. Evidence is emerging for the roles of epigenetic mechanisms in the mature nervous system, in the dynamic processes of learning and memory. The discovery of the involvement of DNA methylation and histone acetylation and methylation in neuronal processing provides a possible answer to the long-standing riddle of how memories persist in a biological system whose cellular composition is in a constant state of flux and renewal. This mini review focuses on present research in DNA methylation and histone posttranslational modifications in learning and memory, age-related cognitive decline, and related pathological disorders.
Collapse
|
716
|
Rengaraj D, Lee BR, Lee SI, Seo HW, Han JY. Expression patterns and miRNA regulation of DNA methyltransferases in chicken primordial germ cells. PLoS One 2011; 6:e19524. [PMID: 21559294 PMCID: PMC3086922 DOI: 10.1371/journal.pone.0019524] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 04/06/2011] [Indexed: 12/21/2022] Open
Abstract
DNA methylation is widespread in most species, from bacteria to mammals, and is crucial for genomic imprinting, gene expression, and embryogenesis. DNA methylation occurs via two major classes of enzymatic reactions: maintenance-type methylation catalyzed by DNA (cytosine-5-)-methyltransferase (DNMT) 1, and de novo methylation catalyzed by DNMT 3 alpha (DNMT3A) and -beta (DNMT3B). The expression pattern and regulation of DNMT genes in primordial germ cells (PGCs) and germ line cells has not been sufficiently established in birds. Therefore, we employed bioinformatics, RT-PCR, real-time PCR, and in situ hybridization analyses to examine the structural conservation and conserved expression patterns of chicken DNMT family genes. We further examined the regulation of a candidate de novo DNA methyltransferase gene, cDNMT3B by cotransfection of cDNMT3B 3'UTR- and cDNMT3B 3'UTR-specific miRNAs through a dual fluorescence reporter assay. All cDNMT family members were differentially detected during early embryonic development. Of interest, cDNMT3B expression was highly detected in early embryos and in PGCs. During germ line development and sexual maturation, cDNMT3B expression was reestablished in a female germ cell-specific manner. In the dual fluorescence reporter assay, cDNMT3B expression was significantly downregulated by four miRNAs: gga-miR-15c (25.82%), gga-miR-29b (30.01%), gga-miR-383 (30.0%), and gga-miR-222 (31.28%). Our data highlight the structural conservation and conserved expression patterns of chicken DNMTs. The miRNAs investigated in this study may induce downregulation of gene expression in chicken PGCs and germ cells.
Collapse
Affiliation(s)
- Deivendran Rengaraj
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Bo Ram Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Sang In Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Hee Won Seo
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jae Yong Han
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
717
|
Mikaelsson MA, Miller CA. DNA methylation: a transcriptional mechanism co-opted by the developed mammalian brain? Epigenetics 2011; 6:548-51. [PMID: 21527830 DOI: 10.4161/epi.6.5.15679] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Forming and maintaining behavioral memories is a complex process that involves, among other requirements, transcriptional regulation and systems communication. Here we review recent studies exploring the role of DNA methylation in these critical processes. Further, we suggest that, perhaps, the adult brain controls and utilizes the mechanism of DNA methylation in non-traditional ways that are waiting to be explored.
Collapse
Affiliation(s)
- Mikael A Mikaelsson
- Department of Metabolism & Aging, The Scripps Research Institute, Jupiter, FL, USA
| | | |
Collapse
|
718
|
Chouliaras L, van den Hove DLA, Kenis G, Dela Cruz J, Lemmens MAM, van Os J, Steinbusch HWM, Schmitz C, Rutten BPF. Caloric restriction attenuates age-related changes of DNA methyltransferase 3a in mouse hippocampus. Brain Behav Immun 2011; 25:616-23. [PMID: 21172419 DOI: 10.1016/j.bbi.2010.11.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/08/2010] [Accepted: 11/28/2010] [Indexed: 01/06/2023] Open
Abstract
Recent studies have suggested that DNA methylation is implicated in age-related changes in gene expression as well as in cognition. DNA methyltransferase 3a (Dnmt3a), which catalyzes DNA methylation, is essential for memory formation and underlying changes in neuronal and synaptic plasticity. Because caloric restriction (CR) and upregulation of antioxidants have been suggested as strategies to attenuate age-related alterations in the brain, we hypothesized that both a diet restricted in calories and transgenic overexpression of normal human Cu/Zn superoxide dismutase 1 (SOD) attenuate age-related changes in Dnmt3a in the aging mouse hippocampus. For this purpose, we performed qualitative and quantitative analyses of Dnmt3a-immunoreactivity (IR) for the hippocampal dentate gyrus (DG), CA3 and CA1-2 regions in 12- and 24-month-old mice from 4 groups, i.e. (1) wild-type (WT) mice on a control diet (WT-CD), (2) SOD-CD mice, (3) WT mice on CR (WT-CR), and (4) SOD-CR. Qualitative analyses revealed two types of Dnmt3a immunoreactive cells: type I cells--present throughout all hippocampal cell layers showing moderate levels of nuclear Dnmt3a-IR, and type II cells--a subpopulation of hippocampal cells showing very intense nuclear Dnmt3a-IR, and colocalization with Bromodeoxyuridine. Quantitative analyses indicated that the age-related increase in Dnmt3a-IR within the CA3 and CA1-2 in type I cells was attenuated by CR, but not by SOD overexpression. In contrast, the density of type II Dnmt3a immunoreactive cells showed an age-related reduction, without significant effects of both CR and SOD. These changes in Dnmt3a levels in the mouse hippocampus may have a significant impact on gene expression and associated cognitive functioning.
Collapse
Affiliation(s)
- L Chouliaras
- School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
719
|
Rajavelu A, Tulyasheva Z, Jaiswal R, Jeltsch A, Kuhnert N. The inhibition of the mammalian DNA methyltransferase 3a (Dnmt3a) by dietary black tea and coffee polyphenols. BMC BIOCHEMISTRY 2011; 12:16. [PMID: 21510884 PMCID: PMC3102611 DOI: 10.1186/1471-2091-12-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/21/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Black tea is, second only to water, the most consumed beverage globally. Previously, the inhibition of DNA methyltransferase 1 was shown by dietary polyphenols and epi-gallocatechin gallate (EGCG), the main polyphenolic constituent of green tea, and 5-caffeoyl quinic acid, the main phenolic constituent of the green coffee bean. RESULTS We studied the inhibition of DNA methyltransferase 3a by a series of dietary polyphenols from black tea such as theaflavins and thearubigins and chlorogenic acid derivatives from coffee. For theaflavin 3,3 digallate and thearubigins IC50 values in the lower micro molar range were observed, which when compared to pharmacokinetic data available, suggest an effect of physiological relevance. CONCLUSIONS Since Dnnmt3a has been associated with development, cancer and brain function, these data suggest a biochemical mechanism for the beneficial health effect of black tea and coffee and a possible molecular mechanism for the improvement of brain performance and mental health by dietary polyphenols.
Collapse
Affiliation(s)
- Arumugam Rajavelu
- Biochemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Zumrad Tulyasheva
- MoLife program, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Rakesh Jaiswal
- Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Albert Jeltsch
- Biochemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Nikolai Kuhnert
- Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
720
|
Guo JU, Su Y, Zhong C, Ming GL, Song H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 2011; 145:423-34. [PMID: 21496894 DOI: 10.1016/j.cell.2011.03.022] [Citation(s) in RCA: 1032] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 01/23/2011] [Accepted: 03/11/2011] [Indexed: 12/31/2022]
Abstract
Cytosine methylation is the major covalent modification of mammalian genomic DNA and plays important roles in transcriptional regulation. The molecular mechanism underlying the enzymatic removal of this epigenetic mark, however, remains elusive. Here, we show that 5-methylcytosine (5mC) hydroxylase TET1, by converting 5mCs to 5-hydroxymethylcytosines (5hmCs), promotes DNA demethylation in mammalian cells through a process that requires the base excision repair pathway. Though expression of the 12 known human DNA glycosylases individually did not enhance removal of 5hmCs in mammalian cells, demethylation of both exogenously introduced and endogenous 5hmCs is promoted by the AID (activation-induced deaminase)/APOBEC (apolipoprotein B mRNA-editing enzyme complex) family of cytidine deaminases. Furthermore, Tet1 and Apobec1 are involved in neuronal activity-induced, region-specific, active DNA demethylation and subsequent gene expression in the dentate gyrus of the adult mouse brain in vivo. Our study suggests a TET1-induced oxidation-deamination mechanism for active DNA demethylation in mammals.
Collapse
Affiliation(s)
- Junjie U Guo
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
721
|
Iwamoto K, Bundo M, Ueda J, Oldham MC, Ukai W, Hashimoto E, Saito T, Geschwind DH, Kato T. Neurons show distinctive DNA methylation profile and higher interindividual variations compared with non-neurons. Genome Res 2011; 21:688-96. [PMID: 21467265 DOI: 10.1101/gr.112755.110] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Epigenome information in mammalian brain cells reflects their developmental history, neuronal activity, and environmental exposures. Studying the epigenetic modifications present in neuronal cells is critical to a more complete understanding of the role of the genome in brain functions. We performed comprehensive DNA methylation analysis in neuronal and non-neuronal nuclei obtained from the human prefrontal cortex. Neuronal nuclei manifest qualitatively and quantitatively distinctive DNA methylation patterns, including relative global hypomethylation, differential enrichment of transcription-factor binding sites, and higher methylation of genes expressed in astrocytes. Non-neuronal nuclei showed indistinguishable DNA methylation patterns from bulk cortex and higher methylation of synaptic transmission-related genes compared with neuronal nuclei. We also found higher variation in DNA methylation in neuronal nuclei, suggesting that neuronal cells have more potential ability to change their epigenetic status in response to developmental and environmental conditions compared with non-neuronal cells in the central nervous system.
Collapse
Affiliation(s)
- Kazuya Iwamoto
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
722
|
Abstract
Recent advances in chromatin biology have identified a role for epigenetic mechanisms in the regulation of neuronal gene expression changes, a necessary process for proper synaptic plasticity and memory formation. Experimental evidence for dynamic chromatin remodeling influencing gene transcription in postmitotic neurons grew from initial reports describing posttranslational modifications of histones, including phosphorylation and acetylation occurring in various brain regions during memory consolidation. An accumulation of recent studies, however, has also highlighted the importance of other epigenetic modifications, such as DNA methylation and histone methylation, as playing a role in memory formation. This present review examines learning-induced gene transcription by chromatin remodeling underlying long-lasting changes in neurons, with direct implications for the study of epigenetic mechanisms in long-term memory formation and behavior. Furthermore, the study of epigenetic gene regulation, in conjunction with transcription factor activation, can provide complementary lines of evidence to further understanding transcriptional mechanisms subserving memory storage.
Collapse
Affiliation(s)
- Farah D. Lubin
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Swati Gupta
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R. Ryley Parrish
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicola M. Grissom
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robin L. Davis
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
723
|
Abstract
Ongoing synaptic function and rapid, bidirectional plasticity are both controlled by regulatory mechanisms within dendritic spines. Spine actin dynamics maintain synapse structure and function, and cytoskeletal rearrangements in these structures trigger structural and functional plasticity. Therefore, proteins that interact with actin filaments are attractive candidates to regulate synaptic actin dynamics and, thus, synapse structure and function. Here, we have cloned the rat isoform of class II myosin heavy chain MyH7B in brain. Unexpectedly, this isoform resembles muscle-type myosin II rather than the ubiquitously expressed nonmuscle myosin II isoforms, suggesting that a rich functional diversity of myosin II motors may exist in neurons. Indeed, reducing the expression of MyH7B in mature neurons caused profound alterations to dendritic spine structure and excitatory synaptic strength. Structurally, dendritic spines had large, irregularly shaped heads that contained many filopodia-like protrusions. Neurons with reduced MyH7B expression also had impaired miniature EPSC amplitudes accompanied by a decrease in synaptic AMPA receptors, which was linked to alterations of the actin cytoskeleton. MyH7B-mediated control over spine morphology and synaptic strength was distinct from that of a nonmuscle myosin, myosin IIb. Interestingly, when myosin IIb expression and MyH7B expression were simultaneously knocked-down in neurons, a third, more pronounced phenotype emerged. Together, our data provide evidence that distinct myosin II isoforms work together to regulate synapse structure and function in cultured hippocampal neurons. Thus, myosin II motor activity is emerging as a broad regulatory mechanism for control over complex actin networks within dendritic spines.
Collapse
|
724
|
Epigenetic gene regulation in the adult mammalian brain: multiple roles in memory formation. Neurobiol Learn Mem 2011; 96:68-78. [PMID: 21419233 DOI: 10.1016/j.nlm.2011.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/25/2011] [Accepted: 03/04/2011] [Indexed: 12/24/2022]
Abstract
Brain-derived neurotrophic factor (bdnf) is one of numerous gene products necessary for long-term memory formation and dysregulation of bdnf has been implicated in the pathogenesis of cognitive and mental disorders. Recent work indicates that epigenetic-regulatory mechanisms including the markings of histone proteins and associated DNA remain labile throughout the life-span and represent an attractive molecular process contributing to gene regulation in the brain. In this review, important information will be discussed on epigenetics as a set of newly identified dynamic transcriptional mechanisms serving to regulate gene expression changes in the adult brain with particular emphasis on bdnf transcriptional readout in learning and memory formation. This review will also highlight evidence for the role of epigenetics in aberrant bdnf gene regulation in the pathogenesis of cognitive dysfunction associated with seizure disorders, Rett syndrome, Schizophrenia, and Alzheimer's disease. Such research offers novel concepts for understanding epigenetic transcriptional mechanisms subserving adult cognition and mental health, and furthermore promises novel avenues for therapeutic approach in the clinic.
Collapse
|
725
|
Szyf M. DNA methylation, the early-life social environment and behavioral disorders. J Neurodev Disord 2011; 3:238-49. [PMID: 21484196 PMCID: PMC3261271 DOI: 10.1007/s11689-011-9079-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/14/2011] [Indexed: 01/12/2023] Open
Abstract
One of the outstanding questions in behavioral disorders is untangling the complex relationship between nurture and nature. Although epidemiological data provide evidence that there is an interaction between genetics (nature) and the social and physical environments (nurture) in a spectrum of behavioral disorders, the main open question remains the mechanism. Emerging data support the hypothesis that DNA methylation, a covalent modification of the DNA molecule that is a component of its chemical structure, serves as an interface between the dynamic environment and the fixed genome. We propose that modulation of DNA methylation in response to environmental cues early in life serves as a mechanism of life-long genome adaptation. Under certain contexts, this adaptation can turn maladaptive resulting in behavioral disorders. This hypothesis has important implications on understanding, predicting, preventing, and treating behavioral disorders including autism that will be discussed.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada,
| |
Collapse
|
726
|
Nelson ED, Monteggia LM. Epigenetics in the mature mammalian brain: effects on behavior and synaptic transmission. Neurobiol Learn Mem 2011; 96:53-60. [PMID: 21396474 DOI: 10.1016/j.nlm.2011.02.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 02/14/2011] [Accepted: 02/22/2011] [Indexed: 12/14/2022]
Abstract
The role of epigenetic mechanisms in control of gene expression during mammalian development is well established. Associations between specific DNA or histone modifications and numerous neurodevelopmental and neurodegenerative disorders implies significant consequences of epigenetic dysregulation in both the developing and mature brain, the latter of which is the general focus of this review. Accumulating evidence suggests that epigenetic changes are involved in normal cognitive processes in addition to neurological and psychiatric disorders. Recent investigations into the regulation of epigenetic modifications in the adult brain have revealed novel and surprisingly dynamic mechanisms for controlling learning and memory-related behaviors as well as long-term synaptic plasticity. DNA methylation and histone acetylation have also been implicated in the modulation of basal synaptic transmission and the balance between excitation and inhibition in various brain regions. Studies have begun to uncover some of the alterations in gene expression that appear to mediate many of these effects, but an understanding of the precise mechanisms involved is still lacking. Nevertheless, the fundamental importance of epigenetic processes in influencing neuronal activity is becoming increasingly evident.
Collapse
Affiliation(s)
- Erika D Nelson
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9070, United States
| | | |
Collapse
|
727
|
Szwagierczak A, Brachmann A, Schmidt CS, Bultmann S, Leonhardt H, Spada F. Characterization of PvuRts1I endonuclease as a tool to investigate genomic 5-hydroxymethylcytosine. Nucleic Acids Res 2011; 39:5149-56. [PMID: 21378122 PMCID: PMC3130283 DOI: 10.1093/nar/gkr118] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In mammalian genomes a sixth base, 5-hydroxymethylcytosine ((hm)C), is generated by enzymatic oxidation of 5-methylcytosine ((m)C). This discovery has raised fundamental questions about the functional relevance of (hm)C in mammalian genomes. Due to their very similar chemical structure, discrimination of the rare (hm)C against the far more abundant (m)C is technically challenging and to date no methods for direct sequencing of (hm)C have been reported. Here, we report on a purified recombinant endonuclease, PvuRts1I, which selectively cleaves (hm)C-containing sequences. We determined the consensus cleavage site of PvuRts1I as (hm)CN(11-12)/N(9-10)G and show first data on its potential to interrogate (hm)C patterns in mammalian genomes.
Collapse
Affiliation(s)
- Aleksandra Szwagierczak
- Ludwig Maximilians University Munich, Department of Biology and Center for Integrated Protein Science Munich, 82152 Planegg-Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
728
|
Abstract
DNA methylation, an important and evolutionarily conserved epigenetic mechanism, is implicated in learning and memory processes in vertebrates, but its role in behaviour in invertebrates is unknown. We examined the role of DNA methylation in memory in the honey bee using an appetitive Pavlovian olfactory discrimination task, and by assessing the expression of DNA methyltransferase3, a key driver of epigenetic reprogramming. Here we report that DNA methyltransferase inhibition reduces acquisition retention and alters the extinction depending on treatment time, and DNA methyltransferase3 is upregulated after training. Our findings add to the understanding of epigenetic mechanisms in learning and memory, extending known roles of DNA methylation to appetitive and extinction memory, and for the first time implicate DNA methylation in memory in invertebrates.
Collapse
|
729
|
Mikaelsson MA, Miller CA. The path to epigenetic treatment of memory disorders. Neurobiol Learn Mem 2011; 96:13-8. [PMID: 21320618 DOI: 10.1016/j.nlm.2011.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/27/2011] [Accepted: 02/02/2011] [Indexed: 12/16/2022]
Abstract
A new line of neuroscience research suggests that epigenetics may be the site of nature and nurture integration by providing the environment with a mechanism to directly influence the read-out of our genome. Epigenetic mechanisms in the brain are a series of post-translational chromatin and DNA modifications driven by external input. Given the critical hub that epigenetics appears to be, neuroscientists have come to suspect its fundamental influence on how our minds change in response to our unique environment and, in turn, how these changes can then impact our future interactions with the environment. The field of learning and memory is becoming particularly interested in understanding the cognitive influence of epigenetics. With the majority of us working with an eye toward therapeutics, the question naturally arises: "Has neuroepigenetics gotten us closer to treating memory disorders and if so, where do we go from here?" This review will begin with a brief exploration of recent advances in our understanding of how epigenetic mechanisms contribute to learning and memory processes that are susceptible to failure. Next the implications for disorders of cognition, such as Alzheimer's disease, will be discussed. Finally, we will use parallels from the field of cancer to speculate on where we should consider heading from here in the pursuit of therapeutics.
Collapse
Affiliation(s)
- Mikael A Mikaelsson
- Departments of Metabolism & Aging and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States
| | | |
Collapse
|
730
|
Szyf M. The implications of DNA methylation for toxicology: toward toxicomethylomics, the toxicology of DNA methylation. Toxicol Sci 2011; 120:235-55. [PMID: 21297083 DOI: 10.1093/toxsci/kfr024] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Identifying agents that have long-term deleterious impact on health but exhibit no immediate toxicity is of prime importance. It is well established that long-term toxicity of chemicals could be caused by their ability to generate changes in the DNA sequence through the process of mutagenesis. Several assays including the Ames test and its different modifications were developed to assess the mutagenic potential of chemicals (Ames, B. N., Durston, W. E., Yamasaki, E., and Lee, F. D. (1973a). Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc. Natl. Acad. Sci. U.S.A. 70, 2281-2285; Ames, B. N., Lee, F. D., and Durston, W. E. (1973b). An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc. Natl. Acad. Sci. U.S.A. 70, 782-786). These tests have also been employed for assessing the carcinogenic potential of compounds. However, the DNA molecule contains within its chemical structure two layers of information. The DNA sequence that bears the ancestral genetic information and the pattern of distribution of covalently bound methyl groups on cytosines in DNA. DNA methylation patterns are generated by an innate program during gestation but are attuned to the environment in utero and throughout life including physical and social exposures. DNA function and health could be stably altered by exposure to environmental agents without changing the sequence, just by changing the state of DNA methylation. Our current screening tests do not detect agents that have long-range impact on the phenotype without altering the genotype. The realization that long-range damage could be caused without changing the DNA sequence has important implications on the way we assess the safety of chemicals, drugs, and food and broadens the scope of definition of toxic agents.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
731
|
Le T, Kim KP, Fan G, Faull KF. A sensitive mass spectrometry method for simultaneous quantification of DNA methylation and hydroxymethylation levels in biological samples. Anal Biochem 2011; 412:203-9. [PMID: 21272560 DOI: 10.1016/j.ab.2011.01.026] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/13/2011] [Accepted: 01/19/2011] [Indexed: 01/30/2023]
Abstract
The recent discovery of 5-hydroxymethyl-cytosine (5 hmC) in embryonic stem cells and postmitotic neurons has triggered the need for quantitative measurements of both 5-methyl-cytosine (5 mC) and 5 hmC in the same sample. We have developed a method using liquid chromatography electrospray ionization tandem mass spectrometry with multiple reaction monitoring (LC-ESI-MS/MS-MRM) to simultaneously measure levels of 5 mC and 5 hmC in digested genomic DNA. This method is fast, robust, and accurate, and it is more sensitive than the current 5 hmC quantitation methods such as end labeling with thin layer chromatography and radiolabeling by glycosylation. Only 50 ng of digested genomic DNA is required to measure the presence of 0.1% 5 hmC in DNA from mouse embryonic stem cells. Using this procedure, we show that human induced pluripotent stem cells exhibit a dramatic increase in 5 mC and 5 hmC levels compared with parental fibroblast cells, suggesting a dynamic regulation of DNA methylation and hydroxymethylation during cellular reprogramming.
Collapse
Affiliation(s)
- Thuc Le
- Department of Human Genetics, Broad Stem Cell Research Center, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
732
|
Yu NK, Baek SH, Kaang BK. DNA methylation-mediated control of learning and memory. Mol Brain 2011; 4:5. [PMID: 21247469 PMCID: PMC3033800 DOI: 10.1186/1756-6606-4-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 01/19/2011] [Indexed: 12/20/2022] Open
Abstract
Animals constantly receive and respond to external or internal stimuli, and these experiences are learned and memorized in their brains. In animals, this is a crucial feature for survival, by making it possible for them to adapt their behavioral patterns to the ever-changing environment. For this learning and memory process, nerve cells in the brain undergo enormous molecular and cellular changes, not only in the input-output-related local subcellular compartments but also in the central nucleus. Interestingly, the DNA methylation pattern, which is normally stable in a terminally differentiated cell and defines the cell type identity, is emerging as an important regulatory mechanism of behavioral plasticity. The elucidation of how this covalent modification of DNA, which is known to be the most stable epigenetic mark, contributes to the complex orchestration of animal behavior is a fascinating new research area. We will overview the current understanding of the mechanism of modifying the methyl code on DNA and its impact on learning and memory.
Collapse
Affiliation(s)
- Nam-Kyung Yu
- National Creative Research Initiative Center for Memory, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
733
|
Learning and memory consolidation: linking molecular and behavioral data. Neuroscience 2011; 176:12-9. [PMID: 21215299 DOI: 10.1016/j.neuroscience.2010.12.056] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/23/2010] [Accepted: 12/28/2010] [Indexed: 12/21/2022]
Abstract
This paper puts together and links some classic and recent molecular data and hypothesis from different authors and laboratories related to learning and memory consolidation. Mainly addressed to non-specialists, it describes how the glutamatergic activation of plastic synapses in the hippocampus can give rise to new or enlarged dendritic spines which may constitute the main structural basis of some kind of memories. To establish learning and memory, the nervous system can use part of the same mechanisms which make the basic structure of neurons during the ontogenetic development of the brain. Through different families of kinases, phosphatases and other proteins, the activated N-methyl-d-aspartate (NMDA) receptors and different intracellular signals originated in the post-synaptic membranes can promote the synthesis of new proteins and the dynamic of actin. The consecutive morphological changes in the cytoskeleton of the neuron, later stabilized by new receptors inserted in the post-synaptic membranes, make possible memory consolidation. Short and long-term, as well as persistence, of memory mechanisms are related to these molecular processes. Recent research on system consolidation and memory allocation in neural circuits is also explained.
Collapse
|
734
|
Kramer JM, Kochinke K, Oortveld MAW, Marks H, Kramer D, de Jong EK, Asztalos Z, Westwood JT, Stunnenberg HG, Sokolowski MB, Keleman K, Zhou H, van Bokhoven H, Schenck A. Epigenetic regulation of learning and memory by Drosophila EHMT/G9a. PLoS Biol 2011; 9:e1000569. [PMID: 21245904 PMCID: PMC3014924 DOI: 10.1371/journal.pbio.1000569] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 11/10/2010] [Indexed: 11/18/2022] Open
Abstract
The epigenetic modification of chromatin structure and its effect on complex neuronal processes like learning and memory is an emerging field in neuroscience. However, little is known about the "writers" of the neuronal epigenome and how they lay down the basis for proper cognition. Here, we have dissected the neuronal function of the Drosophila euchromatin histone methyltransferase (EHMT), a member of a conserved protein family that methylates histone 3 at lysine 9 (H3K9). EHMT is widely expressed in the nervous system and other tissues, yet EHMT mutant flies are viable. Neurodevelopmental and behavioral analyses identified EHMT as a regulator of peripheral dendrite development, larval locomotor behavior, non-associative learning, and courtship memory. The requirement for EHMT in memory was mapped to 7B-Gal4 positive cells, which are, in adult brains, predominantly mushroom body neurons. Moreover, memory was restored by EHMT re-expression during adulthood, indicating that cognitive defects are reversible in EHMT mutants. To uncover the underlying molecular mechanisms, we generated genome-wide H3K9 dimethylation profiles by ChIP-seq. Loss of H3K9 dimethylation in EHMT mutants occurs at 5% of the euchromatic genome and is enriched at the 5' and 3' ends of distinct classes of genes that control neuronal and behavioral processes that are corrupted in EHMT mutants. Our study identifies Drosophila EHMT as a key regulator of cognition that orchestrates an epigenetic program featuring classic learning and memory genes. Our findings are relevant to the pathophysiological mechanisms underlying Kleefstra Syndrome, a severe form of intellectual disability caused by mutations in human EHMT1, and have potential therapeutic implications. Our work thus provides novel insights into the epigenetic control of cognition in health and disease.
Collapse
Affiliation(s)
- Jamie M. Kramer
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Korinna Kochinke
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Merel A. W. Oortveld
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Hendrik Marks
- Radboud University Nijmegen, Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Faculty of Science, Nijmegen, The Netherlands
| | - Daniela Kramer
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Eiko K. de Jong
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Zoltan Asztalos
- Aktogen Ltd., Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Institute of Biochemistry, Biological Research Center of Hungarian Academy of Sciences, Szeged, Hungary
| | | | - Hendrik G. Stunnenberg
- Radboud University Nijmegen, Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Faculty of Science, Nijmegen, The Netherlands
| | | | | | - Huiqing Zhou
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Cognitive Neurosciences, Donders Institute for Brain, Cognition and Behavior; Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail: (AS); (HvB)
| | - Annette Schenck
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail: (AS); (HvB)
| |
Collapse
|
735
|
Chédin F. The DNMT3 family of mammalian de novo DNA methyltransferases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:255-85. [PMID: 21507354 DOI: 10.1016/b978-0-12-387685-0.00007-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The deposition of DNA methylation at promoters of transposons, X-linked genes, imprinted genes, and other lineage-specific genes is clearly associated with long-term transcriptional silencing. Thus, DNA methylation represents a key layer of epigenetic information in mammals that is required for embryonic development, germline differentiation, and, as shown more recently, for the function and maturation of neuronal tissues. The DNMT3A, DNMT3B, and DNMT3L proteins are primarily responsible for the establishment of genomic DNA methylation patterns and, as such, play an important role in human developmental, reproductive, and mental health. Progress in our understanding of this important protein family has been rapid in recent years and has been accompanied by stunning developments in the analysis of the human DNA methylome in multiple cell types. This review focuses on recent developments in the characterization of the DNMT3 family of DNA methyltransferases at the biochemical, structural, and functional levels. Interconnections between the DNA-based and histone-based layers of epigenetic information are particularly highlighted, as it is now clear that de novo methylation occurs chiefly in the context of nucleosomal templates.
Collapse
Affiliation(s)
- Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA
| |
Collapse
|
736
|
Gomez-Pinilla F, Zhuang Y, Feng J, Ying Z, Fan G. Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. Eur J Neurosci 2010; 33:383-90. [PMID: 21198979 DOI: 10.1111/j.1460-9568.2010.07508.x] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have evaluated the possibility that the action of voluntary exercise on the regulation of brain-derived neurotrophic factor (BDNF), a molecule important for rat hippocampal learning, could involve mechanisms of epigenetic regulation. We focused the studies on the Bdnf promoter IV, as this region is highly responsive to neuronal activity. We have found that exercise stimulates DNA demethylation in Bdnf promoter IV, and elevates levels of activated methyl-CpG-binding protein 2, as well as BDNF mRNA and protein in the rat hippocampus. Chromatin immunoprecipitation assay showed that exercise increases acetylation of histone H3, and protein assessment showed that exercise elevates the ratio of acetylated :total for histone H3 but had no effects on histone H4 levels. Exercise also reduces levels of the histone deacetylase 5 mRNA and protein implicated in the regulation of the Bdnf gene [N.M. Tsankova et al. (2006)Nat. Neurosci., 9, 519-525], but did not affect histone deacetylase 9. Exercise elevated the phosphorylated forms of calcium/calmodulin-dependent protein kinase II and cAMP response element binding protein, implicated in the pathways by which neural activity influences the epigenetic regulation of gene transcription, i.e. Bdnf. These results showing the influence of exercise on the remodeling of chromatin containing the Bdnf gene emphasize the importance of exercise on the control of gene transcription in the context of brain function and plasticity. Reported information about the impact of a behavior, inherently involved in the daily human routine, on the epigenome opens exciting new directions and therapeutic opportunities in the war against neurological and psychiatric disorders.
Collapse
Affiliation(s)
- F Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|
737
|
Abstract
Rapid advances in the field of epigenetics are revealing a new way to understand how we can form and store strong memories of significant events in our lives. Epigenetic modifications of chromatin, namely the post-translational modifications of nuclear proteins and covalent modification of DNA that regulate gene activity in the CNS (central nervous system), continue to be recognized for their pivotal role in synaptic plasticity and memory formation. At the same time, studies are correlating aberrant epigenetic regulation of gene activity with cognitive dysfunction prevalent in CNS disorders and disease. Epigenetic research, then, offers not only a novel approach to understanding the molecular transcriptional mechanisms underlying experience-induced changes in neural function and behaviour, but potential therapeutic treatments aimed at alleviating cognitive dysfunction. In this chapter, we discuss data regarding epigenetic marking of genes in adult learning and memory formation and impairment thereof, as well as data showcasing the promise for manipulating the epigenome in restoring memory capacity.
Collapse
|
738
|
Globisch D, Münzel M, Müller M, Michalakis S, Wagner M, Koch S, Brückl T, Biel M, Carell T. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 2010; 5:e15367. [PMID: 21203455 PMCID: PMC3009720 DOI: 10.1371/journal.pone.0015367] [Citation(s) in RCA: 662] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 11/11/2010] [Indexed: 01/04/2023] Open
Abstract
5-Hydroxymethylcytosine (hmC) was recently detected as the sixth base in mammalian tissue at so far controversial levels. The function of the modified base is currently unknown, but it is certain that the base is generated from 5-methylcytosine (mC). This fuels the hypothesis that it represents an intermediate of an active demethylation process, which could involve further oxidation of the hydroxymethyl group to a formyl or carboxyl group followed by either deformylation or decarboxylation. Here, we use an ultra-sensitive and accurate isotope based LC-MS method to precisely determine the levels of hmC in various mouse tissues and we searched for 5-formylcytosine (fC), 5-carboxylcytosine (caC), and 5-hydroxymethyluracil (hmU) as putative active demethylation intermediates. Our data suggest that an active oxidative mC demethylation pathway is unlikely to occur. Additionally, we show using HPLC-MS analysis and immunohistochemistry that hmC is present in all tissues and cell types with highest concentrations in neuronal cells of the CNS.
Collapse
Affiliation(s)
- Daniel Globisch
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Martin Münzel
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Markus Müller
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science (CiPSM) at the Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Mirko Wagner
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Susanne Koch
- Center for Integrated Protein Science (CiPSM) at the Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Tobias Brückl
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Martin Biel
- Center for Integrated Protein Science (CiPSM) at the Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Carell
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Munich, Germany
- * E-mail:
| |
Collapse
|
739
|
Tittle RK, Sze R, Ng A, Nuckels RJ, Swartz ME, Anderson RM, Bosch J, Stainier DYR, Eberhart JK, Gross JM. Uhrf1 and Dnmt1 are required for development and maintenance of the zebrafish lens. Dev Biol 2010; 350:50-63. [PMID: 21126517 DOI: 10.1016/j.ydbio.2010.11.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 10/14/2010] [Accepted: 11/04/2010] [Indexed: 10/18/2022]
Abstract
DNA methylation is one of the key mechanisms underlying the epigenetic regulation of gene expression. During DNA replication, the methylation pattern of the parent strand is maintained on the replicated strand through the action of Dnmt1 (DNA Methyltransferase 1). In mammals, Dnmt1 is recruited to hemimethylated replication foci by Uhrf1 (Ubiquitin-like, Containing PHD and RING Finger Domains 1). Here we show that Uhrf1 is required for DNA methylation in vivo during zebrafish embryogenesis. Due in part to the early embryonic lethality of Dnmt1 and Uhrf1 knockout mice, roles for these proteins during lens development have yet to be reported. We show that zebrafish mutants in uhrf1 and dnmt1 have defects in lens development and maintenance. uhrf1 and dnmt1 are expressed in the lens epithelium, and in the absence of Uhrf1 or of catalytically active Dnmt1, lens epithelial cells have altered gene expression and reduced proliferation in both mutant backgrounds. This is correlated with a wave of apoptosis in the epithelial layer, which is followed by apoptosis and unraveling of secondary lens fibers. Despite these disruptions in the lens fiber region, lens fibers express appropriate differentiation markers. The results of lens transplant experiments demonstrate that Uhrf1 and Dnmt1 functions are required lens-autonomously, but perhaps not cell-autonomously, during lens development in zebrafish. These data provide the first evidence that Uhrf1 and Dnmt1 function is required for vertebrate lens development and maintenance.
Collapse
Affiliation(s)
- Rachel K Tittle
- Section of Molecular, Cell and Developmental Biology, Institute of Cell and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
740
|
Huang K, Fan G. DNA methylation in cell differentiation and reprogramming: an emerging systematic view. Regen Med 2010; 5:531-44. [PMID: 20632857 DOI: 10.2217/rme.10.35] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Embryonic stem cells have the unique ability to indefinitely self-renew and differentiate into any cell type found in the adult body. Differentiated cells can, in turn, be reprogrammed to embryonic stem-like induced pluripotent stem cells, providing exciting opportunities for achieving patient-specific stem cell therapy while circumventing immunological obstacles and ethical controversies. Since both differentiation and reprogramming are governed by major changes in the epigenome, current directions in the field aim to uncover the epigenetic signals that give pluripotent cells their unique properties. DNA methylation is one of the major epigenetic factors that regulates gene expression in mammals and is essential for establishing cellular identity. Recent analyses of pluripotent and somatic cell methylomes have provided important insights into the extensive role of DNA methylation during cell-fate commitment and reprogramming. In this article, the recent progress of differentiation and reprogramming research illuminated by high-throughput studies is discussed in the context of DNA methylation.
Collapse
Affiliation(s)
- Kevin Huang
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-7088, USA
| | | |
Collapse
|
741
|
Arai JA, Feig LA. Long-lasting and transgenerational effects of an environmental enrichment on memory formation. Brain Res Bull 2010; 85:30-5. [PMID: 21078373 DOI: 10.1016/j.brainresbull.2010.11.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/02/2010] [Accepted: 11/03/2010] [Indexed: 11/28/2022]
Abstract
It has long been believed that genetically determined, but not environmentally acquired, phenotypes can be inherited. However, a large number of recent studies have reported that phenotypes acquired from an animal's environment can be transmitted to the next generation. Moreover, epidemiology studies have hinted that a similar phenomenon occurs in humans. This type of inheritance does not involve gene mutations that change DNA sequence. Instead, it is thought that epigenetic changes in chromatin, such as DNA methylation and histone modification, occur. In this review, we will focus on one exciting new example of this phenomenon, transfer across generations of enhanced synaptic plasticity and memory formation induced by exposure to an "enriched" environment.
Collapse
Affiliation(s)
- Junko A Arai
- Department of Biochemistry, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA, USA
| | | |
Collapse
|
742
|
Abstract
Memory formation and storage require long-lasting changes in memory-related neuronal circuits. Recent evidence indicates that DNA methylation may serve as a contributing mechanism in memory formation and storage. These emerging findings suggest a role for an epigenetic mechanism in learning and long-term memory maintenance and raise apparent conundrums and questions. For example, it is unclear how DNA methylation might be reversed during the formation of a memory, how changes in DNA methylation alter neuronal function to promote memory formation, and how DNA methylation patterns differ between neuronal structures to enable both consolidation and storage of memories. Here we evaluate the existing evidence supporting a role for DNA methylation in memory, discuss how DNA methylation may affect genetic and neuronal function to contribute to behavior, propose several future directions for the emerging subfield of neuroepigenetics, and begin to address some of the broader implications of this work.
Collapse
Affiliation(s)
- Jeremy J Day
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
743
|
Ma DK, Marchetto MC, Guo JU, Ming GL, Gage FH, Song H. Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 2010; 13:1338-44. [PMID: 20975758 DOI: 10.1038/nn.2672] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetic mechanisms regulate cell differentiation during embryonic development and also serve as important interfaces between genes and the environment in adulthood. Neurogenesis in adults, which generates functional neural cell types from adult neural stem cells, is dynamically regulated by both intrinsic state-specific cell differentiation cues and extrinsic neural niche signals. Epigenetic regulation by DNA and histone modifiers, non-coding RNAs and other self-sustained mechanisms can lead to relatively long-lasting biological effects and maintain functional neurogenesis throughout life in discrete regions of the mammalian brain. Here, we review recent evidence that epigenetic mechanisms carry out diverse roles in regulating specific aspects of adult neurogenesis and highlight the implications of such epigenetic regulation for neural plasticity and disorders.
Collapse
Affiliation(s)
- Dengke K Ma
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
744
|
Abstract
Characterization of the direct effects of DNA-damaging agents shows how DNA lesions lead to specific mutations. Yet, serum from Hiroshima survivors, Chernobyl liquidators and radiotherapy patients can induce a clastogenic effect on naive cells, showing indirect induction of genomic instability that persists years after exposure. Such indirect effects are not restricted to ionizing radiation, as chemical genotoxins also induce heritable and transmissible genomic instability phenotypes. Although such indirect induction of genomic instability is well described, the underlying mechanism has remained enigmatic. Here, we show that mouse embryonic stem cells exposed to γ-radiation bear the effects of the insult for weeks. Specifically, conditioned media from the progeny of exposed cells can induce DNA damage and homologous recombination in naive cells. Notably, cells exposed to conditioned media also elicit a genome-destabilizing effect on their neighbouring cells, thus demonstrating transmission of genomic instability. Moreover, we show that the underlying basis for the memory of an insult is completely dependent on two of the major DNA cytosine methyltransferases, Dnmt1 and Dnmt3a. Targeted disruption of these genes in exposed cells completely eliminates transmission of genomic instability. Furthermore, transient inactivation of Dnmt1, using a tet-suppressible allele, clears the memory of the insult, thus protecting neighbouring cells from indirect induction of genomic instability. We have thus demonstrated that a single exposure can lead to long-term, genome-destabilizing effects that spread from cell to cell, and we provide a specific molecular mechanism for these persistent bystander effects. Collectively, our results impact the current understanding of risks from toxin exposures and suggest modes of intervention for suppressing genomic instability in people exposed to carcinogenic genotoxins.
Collapse
|
745
|
Histone H1 poly[ADP]-ribosylation regulates the chromatin alterations required for learning consolidation. J Neurosci 2010; 30:13305-13. [PMID: 20926656 DOI: 10.1523/jneurosci.3010-10.2010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Memory formation requires changes in gene expression, which are regulated by the activation of transcription factors and by changes in epigenetic factors. Poly[ADP]-ribosylation of nuclear proteins has been postulated as a chromatin modification involved in memory consolidation, although the mechanisms involved are not well characterized. Here we demonstrate that poly[ADP]-ribose polymerase 1 (PARP-1) activity and the poly[ADP]-ribosylation of proteins over a specific time course is required for the changes in synaptic plasticity related to memory stabilization in mice. At the molecular level, histone H1 poly[ADP]-ribosylation was evident in the hippocampus after the acquisition period, and it was selectively released in a PARP-1-dependent manner at the promoters of cAMP response element-binding protein and nuclear factor-κB dependent genes associated with learning and memory. These findings suggest that histone H1 poly[ADP]-ribosylation, and its loss at specific loci, is an epigenetic mechanism involved in the reprogramming of neuronal gene expression required for memory consolidation.
Collapse
|
746
|
Banzon V, Ibanez V, Vaitkus K, Ruiz MA, Peterson K, DeSimone J, Lavelle D. siDNMT1 increases γ-globin expression in chemical inducer of dimerization (CID)-dependent mouse βYAC bone marrow cells and in baboon erythroid progenitor cell cultures. Exp Hematol 2010; 39:26-36.e1. [PMID: 20974210 DOI: 10.1016/j.exphem.2010.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/24/2010] [Accepted: 10/15/2010] [Indexed: 01/18/2023]
Abstract
OBJECTIVE These studies were performed to test the hypothesis that DNMT1 is required for maintenance of DNA methylation and repression of the γ-globin gene in adult-stage erythroid cells. MATERIALS AND METHODS DNMT1 levels were reduced by nucleofection of small interfering RNA targeting DNMT1 in chemical inducer of dimerization-dependent multipotential mouse bone marrow cells containing the human β-globin gene locus in the context of a yeast artificial chromosome and in primary cultures of erythroid progenitor cells derived from CD34(+) baboon bone marrow cells. The effect of reduced DNMT1 levels on globin gene expression was measured by real-time polymerase chain reaction and the effect on globin chain synthesis in primary erythroid progenitor cell cultures was determined by biosynthetic radiolabeling of globin chains followed by high-performance liquid chromatography analysis. The effect on DNA methylation was determined by bisulfite sequence analysis. RESULTS Reduced DNMT1 levels in cells treated with siDNMT1 were associated with increased expression of γ-globin messenger RNA, an increased γ/γ+β chain ratio in cultured erythroid progenitors, and decreased DNA methylation of the γ-globin promoter. Similar effects were observed in cells treated with decitabine, a pharmacological inhibitor of DNA methyltransferase inhibitor. CONCLUSIONS DNMT1 is required to maintain DNA methylation of the γ-globin gene promoter and repress γ-globin gene expression in adult-stage erythroid cells.
Collapse
Affiliation(s)
- Virryan Banzon
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
747
|
Zhao H, Xiao S, Kong X, Wang J, Cao X, Gencheng W, Loh HH, Law PY. Neuron-glial cell communication in the traumatic stress-induced immunomodulation. Synapse 2010; 65:433-40. [DOI: 10.1002/syn.20861] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 08/16/2010] [Indexed: 11/08/2022]
|
748
|
Szyf M. DNA methylation and demethylation probed by small molecules. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:750-9. [DOI: 10.1016/j.bbagrm.2010.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 09/05/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
|
749
|
Lagali PS, Corcoran CP, Picketts DJ. Hippocampus development and function: role of epigenetic factors and implications for cognitive disease. Clin Genet 2010; 78:321-33. [DOI: 10.1111/j.1399-0004.2010.01503.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
750
|
Abstract
The study of CpG methylation of genomic DNA in neurons has emerged from the shadow of cancer biology into a fundamental investigation of neuronal physiology. This advance began with the discovery that catalytic and receptor proteins related to the insertion and recognition of this chemical mark are robustly expressed in neurons. At the smallest scale of analysis is the methylation of a single cytosine base within a regulatory cognate sequence. This singular alteration in a nucleotide can profoundly modify transcription factor binding with a consequent effect on the primary 'transcript'. At the single promoter level, the methylation-demethylation of CpG islands and associated alterations in local chromatin assemblies creates a type of cellular 'memory' capable of long-term regulation of transcription particularly in stages of brain development, differentiation, and maturation. Finally, at the genome-wide scale, methylation studies from post-mortem brains suggest that CpG methylation may serve to cap the genome into active and inactive territories introducing a 'masking' function. This may facilitate rapid DNA-protein interactions by ambient transcriptional proteins onto actively networked gene promoters. Beyond this broad portrayal, there are vast gaps in our understanding of the pathway between neuronal activity and CpG methylation. These include the regulation in post-mitotic neurons of the executor proteins, such as the DNA methyltransferases, the elusive and putative demethylases, and the interactions with histone modifying enzymes.
Collapse
|