701
|
|
702
|
Patella F, Rainaldi G. MicroRNAs mediate metabolic stresses and angiogenesis. Cell Mol Life Sci 2012; 69:1049-65. [PMID: 21842412 PMCID: PMC11115142 DOI: 10.1007/s00018-011-0775-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/28/2011] [Accepted: 07/14/2011] [Indexed: 01/06/2023]
Abstract
MicroRNAs are short endogenous RNA molecules that are able to regulate (mainly inhibiting) gene expression at the post-transcriptional level. The MicroRNA expression profile is cell-specific, but it is sensitive to perturbations produced by stresses and diseases. Endothelial cells subjected to metabolic stresses, such as calorie restriction, nutrients excess (glucose, cholesterol, lipids) and hypoxia may alter their functionality. This is predictive for the development of pathologies like atherosclerosis, diabetes, and hypertension. Moreover, cancer cells can activate a resting endothelium by secreting pro-angiogenic factors, in order to promote neoangiogenesis, which is essential for tumor growth. Endothelial altered phenotype is mirrored by altered mRNA, microRNA, and protein expression, with a microRNA being able to control pathways by regulating the expression of multiple mRNAs. In this review we will consider the involvement of microRNAs in modulating the response of endothelial cells to metabolic stresses and their role in promoting or halting angiogenesis.
Collapse
|
703
|
Ohoka N, Okuhira K, Cui H, Wu W, Sato R, Naito M, Nishimaki-Mogami T. HNF4α Increases Liver-Specific Human ATP-Binding Cassette Transporter A1 Expression and Cholesterol Efflux to Apolipoprotein A-I in Response to Cholesterol Depletion. Arterioscler Thromb Vasc Biol 2012; 32:1005-14. [DOI: 10.1161/atvbaha.111.238360] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Hepatic ATP-binding cassette transporter A1 (ABCA1) plays the major role in maintaining plasma high-density lipoprotein levels by producing cholesterol-accepting nascent high-density lipoprotein, whereas peripheral ABCA1 is responsible for releasing cellular cholesterol. We previously reported that in rodents, cholesterol depletion reduces ABCA1 expression in peripheral but not hepatic cells by increasing a liver-specific
ABCA1
transcript via the sterol regulatory element-binding protein-2 system. However, the regulatory element is not conserved in humans. Here we investigated the mechanism of sterol-regulated human hepatic
ABCA1
gene expression.
Methods and Results—
ABCA1 mRNA
variant
type L3
is a novel and human-liver-specific transcript accounting for ≈25% of total
ABCA1
mRNA in the liver and is induced by cellular cholesterol depletion. Specific knockdown or forced expression revealed that
type L3
produces functional ABCA1 protein in cholesterol efflux. We identified a regulatory enhancer element for
L3
expression lying within intron 3 of the human
ABCA1
gene, to which hepatocyte nuclear factor (HNF) 4α binds in response to cholesterol depletion. HNF4α knockdown abolished induction of liver-specific
L3
and
L2b
transcripts (and consequently the liver-type response of ABCA1 expression to cellular cholesterol status) and diminished cholesterol efflux activity.
Conclusion—
These findings indicate that HNF4α regulates human hepatic ABCA1 expression in response to cholesterol depletion.
Collapse
Affiliation(s)
- Nobumichi Ohoka
- From the Division of Biochemistry and Molecular Biology, National Institute of Health Sciences, Tokyo, Japan (N.O., K.O., H.C., W.W., M.N., T.N.-M.); Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan (R.S.)
| | - Keiichiro Okuhira
- From the Division of Biochemistry and Molecular Biology, National Institute of Health Sciences, Tokyo, Japan (N.O., K.O., H.C., W.W., M.N., T.N.-M.); Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan (R.S.)
| | - Hongyan Cui
- From the Division of Biochemistry and Molecular Biology, National Institute of Health Sciences, Tokyo, Japan (N.O., K.O., H.C., W.W., M.N., T.N.-M.); Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan (R.S.)
| | - Weijia Wu
- From the Division of Biochemistry and Molecular Biology, National Institute of Health Sciences, Tokyo, Japan (N.O., K.O., H.C., W.W., M.N., T.N.-M.); Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan (R.S.)
| | - Ryuichiro Sato
- From the Division of Biochemistry and Molecular Biology, National Institute of Health Sciences, Tokyo, Japan (N.O., K.O., H.C., W.W., M.N., T.N.-M.); Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan (R.S.)
| | - Mikihiko Naito
- From the Division of Biochemistry and Molecular Biology, National Institute of Health Sciences, Tokyo, Japan (N.O., K.O., H.C., W.W., M.N., T.N.-M.); Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan (R.S.)
| | - Tomoko Nishimaki-Mogami
- From the Division of Biochemistry and Molecular Biology, National Institute of Health Sciences, Tokyo, Japan (N.O., K.O., H.C., W.W., M.N., T.N.-M.); Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan (R.S.)
| |
Collapse
|
704
|
Abstract
PURPOSE OF REVIEW Extracellular microRNAs (miRNAs) are uniquely stable in plasma, and the levels of specific circulating miRNAs can differ with disease. Extracellular miRNAs are associated with lipid-based carriers and lipid-free proteins. miRNAs can be transferred from cell-to-cell by lipid-based carriers and affect gene expression. This review summarizes recent studies that demonstrate the transfer of miRNA between cells and their potential role in intercellular communication. RECENT FINDINGS Microvesicles, exosomes, apoptotic bodies, lipoproteins, and large microparticles contain miRNAs. Recent studies have demonstrated that miRNAs are transferred between dendritic cells, hepatocellular carcinoma cells, and adipocytes in lipid-based carriers. miRNAs are also transferred from T cells to antigen-presenting cells, from stem cells to endothelial cells and fibroblasts, from macrophages to breast cancer cells, and from epithelial cells to hepatocytes in lipid-based carriers. The cellular export of miRNAs in lipid-based carriers is regulated by the ceramide pathway, and the delivery of lipid-associated miRNAs to recipient cells is achieved by various routes, including endocytotic uptake, membrane-fusion, and scavenger receptors. SUMMARY Cellular miRNAs are exported in and to lipid-based carriers (vesicles and lipoprotein particles) and transferred to recipient cells with gene expression changes as intercellular communication.
Collapse
Affiliation(s)
- Kasey C Vickers
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
705
|
Abstract
There are considerable interindividual variations in drug absorption, distribution, metabolism and excretion (ADME) in humans, which may lead to undesired drug effects in pharmacotherapy. Some of the mechanistic causes are known, e.g., genetic polymorphism, inhibition and induction of ADME enzymes and transporters, while others such as posttranscriptional regulation of ADME genes are under active study. MicroRNAs (miRNAs) are a large group of small, noncoding RNAs that control posttranscriptional expression of target genes. More than 1000 miRNAs have been identified in the human genome, which may regulate thousands of protein-coding genes. Some miRNAs directly or indirectly control the expression of xenobiotic-metabolizing cytochrome P450 enzymes, ATP-binding cassette or solute carrier transporters and/or nuclear receptors. Consequently, intervention of miRNA epigenetic signaling may alter ADME gene expression, change the capacity of drug metabolism and transport, and influence the sensitivity of cells to xenobiotics. In addition, the expression of some ADME regulatory miRNAs is significantly changed in cells following the exposure to a given drug, and the consequent changes in ADME gene expression might result in distinct ADME properties and drug response. In this review, we summarized recent findings on the role of noncoding miRNAs in epigenetic regulation of ADME genes and discussed the potential impact on pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260-1200, USA
| | - Yu-Zhuo Pan
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260-1200, USA
| |
Collapse
|
706
|
Regulation of reverse cholesterol transport - a comprehensive appraisal of available animal studies. Nutr Metab (Lond) 2012; 9:25. [PMID: 22458435 PMCID: PMC3366910 DOI: 10.1186/1743-7075-9-25] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/29/2012] [Indexed: 12/31/2022] Open
Abstract
Plasma levels of high density lipoprotein (HDL) cholesterol are strongly inversely correlated to the risk of atherosclerotic cardiovascular disease. A major recognized functional property of HDL particles is to elicit cholesterol efflux and consequently mediate reverse cholesterol transport (RCT). The recent introduction of a surrogate method aiming at determining specifically RCT from the macrophage compartment has facilitated research on the different components and pathways relevant for RCT. The current review provides a comprehensive overview of studies carried out on macrophage-specific RCT including a quick reference guide of available data. Knowledge and insights gained on the regulation of the RCT pathway are summarized. A discussion of methodological issues as well as of the respective relevance of specific pathways for RCT is also included.
Collapse
|
707
|
Abstract
MicroRNAs (miRNAs) have recently emerged as key regulators of metabolism. For example, miR-33a and miR-33b have a crucial role in controlling cholesterol and lipid metabolism in concert with their host genes, the sterol-regulatory element-binding protein (SREBP) transcription factors. Other metabolic miRNAs, such as miR-103 and miR-107, regulate insulin and glucose homeostasis, whereas miRNAs such as miR-34a are emerging as key regulators of hepatic lipid homeostasis. The discovery of circulating miRNAs has highlighted their potential as both endocrine signalling molecules and disease markers. Dysregulation of miRNAs may contribute to metabolic abnormalities, suggesting that miRNAs may potentially serve as therapeutic targets for ameliorating cardiometabolic disorders.
Collapse
Affiliation(s)
- Veerle Rottiers
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
708
|
Abstract
MicroRNAs (miRNAs) have recently emerged as key regulators of metabolism. For example, miR-33a and miR-33b have a crucial role in controlling cholesterol and lipid metabolism in concert with their host genes, the sterol-regulatory element-binding protein (SREBP) transcription factors. Other metabolic miRNAs, such as miR-103 and miR-107, regulate insulin and glucose homeostasis, whereas miRNAs such as miR-34a are emerging as key regulators of hepatic lipid homeostasis. The discovery of circulating miRNAs has highlighted their potential as both endocrine signalling molecules and disease markers. Dysregulation of miRNAs may contribute to metabolic abnormalities, suggesting that miRNAs may potentially serve as therapeutic targets for ameliorating cardiometabolic disorders.
Collapse
|
709
|
Inukai S, Slack FJ. MiR-33 connects cholesterol to the cell cycle. Cell Cycle 2012; 11:1060-1. [PMID: 22391211 PMCID: PMC3679221 DOI: 10.4161/cc.11.6.19786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 02/20/2012] [Indexed: 01/20/2023] Open
Abstract
Comment on: Cirera-Salinas D, et al. Cell Cycle 2012; 11:922–33
Collapse
Affiliation(s)
- Sachi Inukai
- Department of Molecular, Cellular and Developmental Biology, Yale University; New Haven, CT, USA.
| | | |
Collapse
|
710
|
Wijesekara N, Zhang LH, Kang MH, Abraham T, Bhattacharjee A, Warnock GL, Verchere CB, Hayden MR. miR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes 2012; 61:653-8. [PMID: 22315319 PMCID: PMC3282802 DOI: 10.2337/db11-0944] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Changes in cellular cholesterol affect insulin secretion, and β-cell-specific deletion or loss-of-function mutations in the cholesterol efflux transporter ATP-binding cassette transporter A1 (ABCA1) result in impaired glucose tolerance and β-cell dysfunction. Upregulation of ABCA1 expression may therefore be beneficial for the maintenance of normal islet function in diabetes. Studies suggest that microRNA-33a (miR-33a) expression inversely correlates with ABCA1 expression in hepatocytes and macrophages. We examined whether miR-33a regulates ABCA1 expression in pancreatic islets, thereby affecting cholesterol accumulation and insulin secretion. Adenoviral miR-33a overexpression in human or mouse islets reduced ABCA1 expression, decreased glucose-stimulated insulin secretion, and increased cholesterol levels. The miR-33a-induced reduction in insulin secretion was rescued by cholesterol depletion by methyl-β-cyclodextrin or mevastatin. Inhibition of miR-33a expression in apolipoprotein E knockout islets and ABCA1 overexpression in β-cell-specific ABCA1 knockout islets rescued normal insulin secretion and reduced islet cholesterol. These findings confirm the critical role of β-cell ABCA1 in islet cholesterol homeostasis and β-cell function and highlight modulation of β-cell miR-33a expression as a means to influence insulin secretion.
Collapse
Affiliation(s)
- Nadeeja Wijesekara
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lin-hua Zhang
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin H. Kang
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas Abraham
- Institute for Heart and Lung Health, St. Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Alpana Bhattacharjee
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Garth L. Warnock
- Department of Surgery, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - C. Bruce Verchere
- Department of Surgery, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael R. Hayden
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Corresponding author: Michael R. Hayden,
| |
Collapse
|
711
|
Goedeke L, Fernández-Hernando C. Regulation of cholesterol homeostasis. Cell Mol Life Sci 2012; 69:915-30. [PMID: 22009455 PMCID: PMC11114919 DOI: 10.1007/s00018-011-0857-5] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 01/24/2023]
Abstract
Cholesterol homeostasis is among the most intensely regulated processes in biology. Since its isolation from gallstones at the time of the French Revolution, cholesterol has been extensively studied. Insufficient or excessive cellular cholesterol results in pathological processes including atherosclerosis and metabolic syndrome. Mammalian cells obtain cholesterol from the circulation in the form of plasma lipoproteins or intracellularly, through the synthesis of cholesterol from acetyl coenzyme A (acetyl-CoA). This process is tightly regulated at multiple levels. In this review, we provide an overview of the multiple mechanisms by which cellular cholesterol metabolism is regulated. We also discuss the recent advances in the post-transcriptional regulation of cholesterol homeostasis, including the role of small non-coding RNAs (microRNAs). These novel findings may open new avenues for the treatment of dyslipidemias and cardiovascular diseases.
Collapse
Affiliation(s)
- Leigh Goedeke
- Departments of Medicine and Cell Biology, Leon H. Charney Division of Cardiology, New York University School of Medicine, 522 First Avenue, Smilow 703, New York, NY 10016 USA
| | - Carlos Fernández-Hernando
- Departments of Medicine and Cell Biology, Leon H. Charney Division of Cardiology, New York University School of Medicine, 522 First Avenue, Smilow 703, New York, NY 10016 USA
| |
Collapse
|
712
|
Cirera-Salinas D, Pauta M, Allen RM, Salerno AG, Ramírez CM, Chamorro-Jorganes A, Wanschel AC, Lasuncion MA, Morales-Ruiz M, Suarez Y, Baldan Á, Esplugues E, Fernández-Hernando C. Mir-33 regulates cell proliferation and cell cycle progression. Cell Cycle 2012; 11:922-33. [PMID: 22333591 DOI: 10.4161/cc.11.5.19421] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cholesterol metabolism is tightly regulated at the cellular level and is essential for cellular growth. microRNAs (miRNAs), a class of noncoding RNAs, have emerged as critical regulators of gene expression, acting predominantly at posttranscriptional level. Recent work from our group and others has shown that hsa-miR-33a and hsa-miR-33b, miRNAs located within intronic sequences of the Srebp genes, regulate cholesterol and fatty acid metabolism in concert with their host genes. Here, we show that hsa-miR-33 family members modulate the expression of genes involved in cell cycle regulation and cell proliferation. MiR-33 inhibits the expression of the cyclin-dependent kinase 6 (CDK6) and cyclin D1 (CCND1), thereby reducing cell proliferation and cell cycle progression. Overexpression of miR-33 induces a significant G 1 cell cycle arrest in Huh7 and A549 cell lines. Most importantly, inhibition of miR-33 expression using 2'fluoro/methoxyethyl-modified (2'F/MOE-modified) phosphorothioate backbone antisense oligonucleotides improves liver regeneration after partial hepatectomy (PH) in mice, suggesting an important role for miR-33 in regulating hepatocyte proliferation during liver regeneration. Altogether, these results suggest that Srebp/miR-33 locus may cooperate to regulate cell proliferation, cell cycle progression and may also be relevant to human liver regeneration.
Collapse
Affiliation(s)
- Daniel Cirera-Salinas
- Department of Medicine, Leon H. Charney Division of Cardiology and Cell Biology and Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
713
|
Jeon TI, Osborne TF. SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol Metab 2012; 23:65-72. [PMID: 22154484 PMCID: PMC3273665 DOI: 10.1016/j.tem.2011.10.004] [Citation(s) in RCA: 395] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/26/2011] [Accepted: 10/31/2011] [Indexed: 12/16/2022]
Abstract
Recent advances have significantly increased our understanding of how sterol regulatory element binding proteins (SREBPs) are regulated at the transcriptional and post-transcriptional levels in response to cellular signaling. The phosphatidyl inositol-3-kinase (PI3K) and SREBP pathways intersect at multiple points, and recent insights demonstrate the importance of tight regulation of the PI3K pathway for regulating SREBPs in the adaptation to fluctuating dietary calorie load in the mammalian liver. In addition, genetic and genome-wide approaches highlight new functions for SREBPs in connecting lipid metabolism with other cellular processes where lipid pathway flux affects physiologic or pathophysiologic adaptation, such as cancer, steatosis, and innate immunity. This review focuses on recent advances and new roles for mammalian SREBPs in physiology and metabolism.
Collapse
Affiliation(s)
- Tae-Il Jeon
- Korea Food Research Institute, Seongnam, Republic of Korea 463–746
| | - Timothy F. Osborne
- Metabolic Signaling and Disease Program, Diabetes and Obesity Center, Sanford-Burnham Medical Research Institute, Orlando, Florida 32827
- Corresponding author : Osborne, T. F. ()
| |
Collapse
|
714
|
Walker AK, Näär AM. SREBPs: regulators of cholesterol/lipids as therapeutic targets in metabolic disorders, cancers and viral diseases. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/clp.11.67] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
715
|
Rayner KJ, Fernandez-Hernando C, Moore KJ. MicroRNAs regulating lipid metabolism in atherogenesis. Thromb Haemost 2012; 107:642-7. [PMID: 22274626 DOI: 10.1160/th11-10-0694] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 11/24/2011] [Indexed: 12/19/2022]
Abstract
MicroRNAs have emerged as important post-transcriptional regulators of lipid metabolism, and represent a new class of targets for therapeutic intervention. Recently, microRNA-33a and b (miR-33a/b) were discovered as key regulators of metabolic programs including cholesterol and fatty acid homeostasis. These intronic microRNAs are embedded in the sterol response element binding protein genes, SREBF2 and SREBF1, which code for transcription factors that coordinate cholesterol and fatty acid synthesis. By repressing a variety of genes involved in cholesterol export and fatty acid oxidation, including ABCA1, CROT, CPT1, HADHB and PRKAA1, miR-33a/b act in concert with their host genes to boost cellular sterol levels. Recent work in animal models has shown that inhibition of these small non-coding RNAs has potent effects on lipoprotein metabolism, including increasing plasma high-density lipoprotein (HDL) and reducing very low density lipoprotein (VLDL) triglycerides. Furthermore, other microRNAs are being discovered that also target the ABCA1 pathway, including miR-758, suggesting that miRNAs may work cooperatively to regulate this pathway. These exciting findings support the development of microRNA antagonists as potential therapeutics for the treatment of dyslipidaemia, atherosclerosis and related metabolic diseases.
Collapse
Affiliation(s)
- K J Rayner
- Department of Medicine and Cell Biology, New York University School of Medicine, New York, New York, USA
| | | | | |
Collapse
|
716
|
Loss of Niemann Pick type C proteins 1 and 2 greatly enhances HIV infectivity and is associated with accumulation of HIV Gag and cholesterol in late endosomes/lysosomes. Virol J 2012; 9:31. [PMID: 22273177 PMCID: PMC3299633 DOI: 10.1186/1743-422x-9-31] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/24/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Cholesterol pathways play an important role at multiple stages during the HIV-1 infection cycle. Here, we investigated the role of cholesterol trafficking in HIV-1 replication utilizing Niemann-Pick Type C disease (NPCD) cells as a model system. RESULTS We used a unique NPC2-deficient cell line (NPCD55) that exhibited Gag accumulation as well as decreased NPC1 expression after HIV infection. Virus release efficiency from NPCD55 cells was similar to that from control cells. However, we observed a 3 to 4-fold enhancement in the infectivity of virus released from these cells. Fluorescence microscopy revealed accumulation and co-localization of Gag proteins with cholesterol in late endosomal/lysosomal (LE/L) compartments of these cells. Virion-associated cholesterol was 4-fold higher in virions produced in NPCD55 cells relative to virus produced in control cells. Treatment of infected NPCD55 cells with the cholesterol efflux-inducing drug TO-9013171 reduced virus infectivity to control levels. CONCLUSIONS These results suggest cholesterol trafficking and localization can profoundly affect HIV-1 infectivity by modulating the cholesterol content of the virions.
Collapse
|
717
|
Fernández-Hernando C, Moore KJ. MicroRNA modulation of cholesterol homeostasis. Arterioscler Thromb Vasc Biol 2012; 31:2378-82. [PMID: 22011750 DOI: 10.1161/atvbaha.111.226688] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although the roles of the sterol response element binding protein-1 (SREBP1) and SREBP2 transcription factors in regulating fatty acid and cholesterol synthesis and uptake have been known for some time, it was recently discovered that 2 related microRNAs (miRs), miR-33a and miR-33b, are embedded in these genes. Studies indicate that miR-33a and miR-33b act with their host genes, Srebp2 and Srebp1, respectively, to reciprocally regulate cholesterol homeostasis and fatty acid metabolism in a negative feedback loop. miR-33 has been shown to posttranscriptionally repress key genes involved in cellular cholesterol export and high-density lipoprotein metabolism (Abca1, Abcg1, Npc1), fatty acid oxidation (Crot, Cpt1a, Hadhb, Ampk), and glucose metabolism (Sirt6, Irs2). Delivery of inhibitors of miR-33 in vitro and in vivo relieves repression of these genes, resulting in upregulation of the associated metabolic pathways. In mouse models, miR-33 antagonism has proven to be an effective strategy for increasing plasma high-density lipoprotein cholesterol and fatty acid oxidation and protecting from atherosclerosis. These exciting findings have opened up promising new avenues for the development of therapeutics to treat dyslipidemia and other metabolic disorders.
Collapse
Affiliation(s)
- Carlos Fernández-Hernando
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, USA.
| | | |
Collapse
|
718
|
Ramirez CM, Dávalos A, Goedeke L, Salerno AG, Warrier N, Cirera-Salinas D, Suárez Y, Fernández-Hernando C. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol 2012; 31:2707-14. [PMID: 21885853 DOI: 10.1161/atvbaha.111.232066] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The ATP-binding cassette transporter A1 (ABCA1) is a major regulator of macrophage cholesterol efflux and protects cells from excess intracellular cholesterol accumulation; however, the mechanism involved in posttranscriptional regulation of ABCA1 is poorly understood. We previously showed that microRNA-33 (miR-33) is 1 regulator. Here, we investigated the potential contribution of other microRNAs (miRNAs) to posttranscriptional regulation of ABCA1 and macrophage cholesterol efflux. METHODS AND RESULTS We performed a bioinformatic analysis for identifying miRNA target prediction sites in ABCA1 gene and an unbiased genome-wide screen to identify miRNAs modulated by cholesterol excess in mouse peritoneal macrophages. Quantitative real-time reverse transcription-polymerase chain reaction confirmed that miR-758 is repressed in cholesterol-loaded macrophages. Under physiological conditions, high dietary fat excess in mice repressed miR-758 both in peritoneal macrophages and, to a lesser extent, in the liver. In mouse and human cells in vitro, miR-758 repressed the expression of ABCA1, and conversely, the inhibition of this miRNA by using anti-miR-758 increased ABCA1 expression. In mouse cells, miR-758 reduced cellular cholesterol efflux to apolipoprotein A1 (apoA1), and anti-miR-758 increased it. miR-758 directly targets the 3'-untranslated region of Abca1 as assessed by 3'-untranslated region luciferase reporter assays. Interestingly, miR-758 is highly expressed in the brain, where it also targets several genes involved in neurological functions, including Slc38a1, Ntm, Epha7, and Mytl1. CONCLUSION We identified miR-758 as a novel miRNA that posttranscriptionally controls ABCA1 levels in different cells and regulates macrophage cellular cholesterol efflux to apoA1, opening new avenues to increase apoA1 and raise high-density lipoprotein levels.
Collapse
Affiliation(s)
- Cristina M Ramirez
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
719
|
Bratkovič T, Glavan G, Strukelj B, Zivin M, Rogelj B. Exploiting microRNAs for cell engineering and therapy. Biotechnol Adv 2012; 30:753-65. [PMID: 22286072 DOI: 10.1016/j.biotechadv.2012.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/05/2012] [Accepted: 01/11/2012] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) form a large class of non-coding RNAs that function in repression of gene expression in eukaryotes. By recognizing short stretches of nucleotides within the untranslated regions of mRNAs, miRNAs recruit partner proteins to individual transcripts, leading to mRNA cleavage or hindering of translation. Bioinformatic predictions and a wealth of data from wet laboratory studies indicate that miRNAs control expression of a large proportion of protein-coding genes, implying involvement of miRNAs in regulation of most biologic processes. In this review we discuss the biology of miRNAs and present examples of how manipulation of miRNA expression or activity can be exploited to attain the desired phenotypic traits in cell engineering as well as achieve therapeutic outcomes in treatment of a diverse set of diseases.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Biology, Aškerčeva 7, Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
720
|
Dvornyk V, Waqar-ul-Haq. Genetics of age at menarche: a systematic review. Hum Reprod Update 2012; 18:198-210. [PMID: 22258758 DOI: 10.1093/humupd/dmr050] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Menarche is the first menstrual period of a girl at puberty. The timing of menarche is important for health in later life. Age at menarche is a complex trait and has a strong genetic component. This review summarizes the results of the genetic studies of age at menarche conducted to date, highlights existing problems in this area and outlines prospects of future studies on genetic factors for the trait. METHODS PubMed and Google Scholar were searched until May 2011 using the keywords: 'menarche', 'puberty' and 'age at menarche' in combination with the keywords 'polymorphism', 'candidate gene', 'genome-wide association study' and 'linkage'. RESULTS Our search yielded 170 papers, 35 of which were selected for further analysis. Several large-scale genome-wide association studies along with a powerful meta-analysis of their aggregated data identified about 50 candidate genes for the trait. Some genes were replicated in different studies of Caucasians (e.g. LIN28B, TMEM38B) or in different ethnicities (e.g. SPOCK, RANK and RANKL). However, despite the large volume of results obtained, there is a huge gap in relevant data on ethnic groups other than Caucasians. CONCLUSIONS The reviewed studies laid a solid basis for future research on genetics of age at menarche. However, as yet specific genes for this trait have not been identified consistently in all ethnicities and types of studies. We suggest expanding the research to different ethnicities and propose several methodologies to increase the efficiency of studies in this area, including a systems approach, which combines existing high-throughput methods in a single pipeline.
Collapse
Affiliation(s)
- Volodymyr Dvornyk
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR, PR China.
| | | |
Collapse
|
721
|
Chen WJ, Yin K, Zhao GJ, Fu YC, Tang CK. The magic and mystery of microRNA-27 in atherosclerosis. Atherosclerosis 2012; 222:314-23. [PMID: 22307089 DOI: 10.1016/j.atherosclerosis.2012.01.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 12/19/2022]
Abstract
Atherosclerosis (As) is now widely appreciated to represent a chronic inflammatory reaction of the vascular wall in response to dyslipidemia and endothelial distress involving the inflammatory recruitment of leukocytes and the activation of resident vascular cells. MicroRNAs (miRNAs) are a group of endogenous, small (~22 nucleotides in length) non-coding RNA molecules, which function specifically by base pairing with mRNA of genes, thereby induce translation repressions of the genes within metazoan cells. Recently, the function of miR-27, one of the miRNAs, in the initiation and progression of atherosclerosis has been identified. In vivo and in vitro studies suggest that miR-27 may serve as a diagnostic and prognostic marker for atherosclerosis. More recently, studies have identified important roles for miR-27 in angiogenesis, adipogenesis, inflammation, lipid metabolism, oxidative stress, insulin resistance and type 2 diabetes, etc. In this review, we focus on the role of miR-27 in the development of vulnerable atherosclerotic plaques, potential as a disease biomarker and novel therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Wu-Jun Chen
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China
| | | | | | | | | |
Collapse
|
722
|
Abstract
miRNAs play an important role in the regulation of a wide assortment of cellular processes by sequestering target mRNAs and inhibiting translation of the proteins that they encode. Multiple miRNAs can regulate single mRNA molecules and, alternatively, a single miRNA can act on a number of mRNA targets. Dysfunctional miRNAs are commonly found in a variety of solid cancers and are attractive candidates for next-generation therapeutics. This article highlights miRNA signatures proposed for lung cancer classification and diagnosis, chemo- and radio-therapy resistance, metastasis and prediction of treatment outcome and survival.
Collapse
Affiliation(s)
- Irene Cherni
- The Translational Genomics Research Institute, Phoenix, AZ, USA
| | | |
Collapse
|
723
|
Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S. Inhibition of microRNA function by antimiR oligonucleotides. SILENCE 2012; 3:1. [PMID: 22230293 PMCID: PMC3306207 DOI: 10.1186/1758-907x-3-1] [Citation(s) in RCA: 418] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 01/09/2012] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of gene expression in many developmental and cellular processes. Moreover, there is now ample evidence that perturbations in the levels of individual or entire families of miRNAs are strongly associated with the pathogenesis of a wide range of human diseases. Indeed, disease-associated miRNAs represent a new class of targets for the development of miRNA-based therapeutic modalities, which may yield patient benefits unobtainable by other therapeutic approaches. The recent explosion in miRNA research has accelerated the development of several computational and experimental approaches for probing miRNA functions in cell culture and in vivo. In this review, we focus on the use of antisense oligonucleotides (antimiRs) in miRNA inhibition for loss-of-function studies. We provide an overview of the currently employed antisense chemistries and their utility in designing antimiR oligonucleotides. Furthermore, we describe the most commonly used in vivo delivery strategies and discuss different approaches for assessment of miRNA inhibition and potential off-target effects. Finally, we summarize recent progress in antimiR mediated pharmacological inhibition of disease-associated miRNAs, which shows great promise in the development of novel miRNA-based therapeutics.
Collapse
Affiliation(s)
- Jan Stenvang
- Santaris Pharma, Kogle Allé 6, DK-2970 Hørsholm, Denmark.
| | | | | | | | | |
Collapse
|
724
|
Parnell LD. Advances in Technologies and Study Design. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 108:17-50. [DOI: 10.1016/b978-0-12-398397-8.00002-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
725
|
Zhu Y, Lu Y, Zhang Q, Liu JJ, Li TJ, Yang JR, Zeng C, Zhuang SM. MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein. Nucleic Acids Res 2011; 40:4615-25. [PMID: 22210897 PMCID: PMC3378857 DOI: 10.1093/nar/gkr1278] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The functional association between intronic miRNAs and their host genes is still largely unknown. We found that three gene loci, which produced miR-26a and miR-26b, were embedded within introns of genes coding for the proteins of carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase (CTDSP) family, including CTDSPL, CTDSP2 and CTDSP1. We conducted serum starvation-stimulation assays in primary fibroblasts and two-thirds partial-hepatectomies in mice, which revealed that miR-26a/b and CTDSP1/2/L were expressed concomitantly during the cell cycle process. Specifically, they were increased in quiescent cells and decreased during cell proliferation. Furthermore, both miR-26 and CTDSP family members were frequently downregulated in hepatocellular carcinoma (HCC) tissues. Gain- and loss-of-function studies showed that miR-26a/b and CTDSP1/2/L synergistically decreased the phosphorylated form of pRb (ppRb), and blocked G1/S-phase progression. Further investigation disclosed that miR-26a/b directly suppressed the expression of CDK6 and cyclin E1, which resulted in reduced phosphorylation of pRb. Moreover, c-Myc, which is often upregulated in cancer cells, diminished the expression of both miR-26 and CTDSP family members, enhanced the ppRb level and promoted the G1/S-phase transition. Our findings highlight the functional association of miR-26a/b and their host genes and provide new insight into the regulatory network of the G1/S-phase transition.
Collapse
Affiliation(s)
- Ying Zhu
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510275, PR China
| | | | | | | | | | | | | | | |
Collapse
|
726
|
Rottiers V, Najafi-Shoushtari SH, Kristo F, Gurumurthy S, Zhong L, Li Y, Cohen DE, Gerszten RE, Bardeesy N, Mostoslavsky R, Näär AM. MicroRNAs in metabolism and metabolic diseases. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2011; 76:225-33. [PMID: 22156303 PMCID: PMC3880782 DOI: 10.1101/sqb.2011.76.011049] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Aberrant cholesterol/lipid homeostasis is linked to a number of diseases prevalent in the developed world, including metabolic syndrome, type II diabetes, and cardiovascular disease. We have previously uncovered gene regulatory mechanisms of the sterol regulatory element-binding protein (SREBP) family of transcription factors, which control the expression of genes involved in cholesterol and lipid biosynthesis and uptake. Intriguingly, we recently discovered conserved microRNAs (miR-33a/b) embedded within intronic sequences of the human SREBF genes that act in a concerted manner with their host gene products to regulate cholesterol/lipid homeostasis. Indeed, miR-33a/b control the levels of ATP-binding cassette (ABC) transporter ABCA1, a cholesterol efflux pump critical for high-density lipoprotein (HDL) synthesis and reverse cholesterol transport from peripheral tissues. Importantly, antisense inhibition of miR-33 in mice results in elevated HDL and decreased atherosclerosis. Interestingly, miR-33a/b also act in the fatty acid/lipid homeostasis pathway by controlling the fatty acid β-oxidation genes carnitine O-octanoyltransferase (CROT), hydroxyacyl-coenzyme A-dehydrogenase (HADHB), and carnitine palmitoyltransferase 1A (CPT1A), as well as the energy sensor AMP-activated protein kinase (AMPKα1), the NAD(+)-dependent sirtuin SIRT6, and the insulin signaling intermediate IRS2, key regulators of glucose and lipid metabolism. These results have revealed a highly integrated microRNA (miRNA)-host gene circuit governing cholesterol/lipid metabolism and energy homeostasis in mammals that may have important therapeutic implications for the treatment of cardiometabolic disorders.
Collapse
Affiliation(s)
- Veerle Rottiers
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - S. Hani Najafi-Shoushtari
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Fjoralba Kristo
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Sushma Gurumurthy
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Lei Zhong
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Yingxia Li
- Department of Medicine, Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David E Cohen
- Department of Medicine, Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Robert E. Gerszten
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
- Department of Medicine, Harvard Medical School, MA 02115, USA
| | - Raul Mostoslavsky
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
- Department of Medicine, Harvard Medical School, MA 02115, USA
| | - Anders M. Näär
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
727
|
Crooke RM, Graham MJ. Therapeutic potential of antisense oligonucleotides for the management of dyslipidemia. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/clp.11.59] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
728
|
Adeli K. Translational control mechanisms in metabolic regulation: critical role of RNA binding proteins, microRNAs, and cytoplasmic RNA granules. Am J Physiol Endocrinol Metab 2011; 301:E1051-64. [PMID: 21971522 DOI: 10.1152/ajpendo.00399.2011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regulated cell metabolism involves acute and chronic regulation of gene expression by various nutritional and endocrine stimuli. To respond effectively to endogenous and exogenous signals, cells require rapid response mechanisms to modulate transcript expression and protein synthesis and cannot, in most cases, rely on control of transcriptional initiation that requires hours to take effect. Thus, co- and posttranslational mechanisms have been increasingly recognized as key modulators of metabolic function. This review highlights the critical role of mRNA translational control in modulation of global protein synthesis as well as specific protein factors that regulate metabolic function. First, the complex lifecycle of eukaryotic mRNAs will be reviewed, including our current understanding of translational control mechanisms, regulation by RNA binding proteins and microRNAs, and the role of RNA granules, including processing bodies and stress granules. Second, the current evidence linking regulation of mRNA translation with normal physiological and metabolic pathways and the associated disease states are reviewed. A growing body of evidence supports a key role of translational control in metabolic regulation and implicates translational mechanisms in the pathogenesis of metabolic disorders such as type 2 diabetes. The review also highlights translational control of apolipoprotein B (apoB) mRNA by insulin as a clear example of endocrine modulation of mRNA translation to bring about changes in specific metabolic pathways. Recent findings made on the role of 5'-untranslated regions (5'-UTR), 3'-UTR, RNA binding proteins, and RNA granules in mediating insulin regulation of apoB mRNA translation, apoB protein synthesis, and hepatic lipoprotein production are discussed.
Collapse
Affiliation(s)
- Khosrow Adeli
- Program in Molecular Structure & Function, Research Institute, The Hospital for Sick Children, Atrium 3653, 555 University Ave., Toronto, ON, M5G 1X8 Canada.
| |
Collapse
|
729
|
Moore KJ, Rayner KJ, Suárez Y, Fernández-Hernando C. The role of microRNAs in cholesterol efflux and hepatic lipid metabolism. Annu Rev Nutr 2011; 31:49-63. [PMID: 21548778 DOI: 10.1146/annurev-nutr-081810-160756] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) represent an elegant mechanism of posttranscriptional control of gene expression that serves to fine-tune biological processes. These tiny noncoding RNAs (20-22 nucleotide) bind to the 3' untranslated region of mRNAs, thereby repressing gene expression. Recent advances in the understanding of lipid metabolism have revealed that miRNAs, particularly miR-122 and miR-33, play major roles in regulating cholesterol and fatty acid homeostasis. miR-122, the most abundant miRNA in the liver, appears to maintain the hepatic cell phenotype, and its inhibition decreases total serum cholesterol. miR-33, an intronic miRNA located with the sterol response element-binding protein (SREBP)-2 gene, regulates cholesterol efflux, fatty acid β oxidation, and high-density lipoprotein metabolism. These findings have highlighted the complexity of lipid homeostasis and the important role that miRNAs play in these processes, potentially opening new avenues for the treatment of dyslipidemias.
Collapse
Affiliation(s)
- Kathryn J Moore
- Departments of Medicine and Cell Biology, Leon H. Charney Division of Cardiology and the Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | |
Collapse
|
730
|
Abstract
Diabetes is the most common metabolic disorder and is recognized as one of the most important health threats of our time. MicroRNAs (miRNAs) are a novel group of non-coding small RNAs that have been implicated in a variety of physiological processes, including glucose homeostasis. Recent research has suggested that miRNAs play a critical role in the pathogenesis of diabetes and its related cardiovascular complications. This review focuses on the aberrant expression of miRNAs in diabetes and examines their role in the pathogenesis of endothelial dysfunction, cardiovascular disease, and diabetic retinopathy. Furthermore, we discuss the potential role of miRNAs as blood biomarkers and examine the potential of therapeutic interventions targeting miRNAs in diabetes.
Collapse
Affiliation(s)
- Saran Shantikumar
- Laboratory of Vascular Pathology and Regeneration, Bristol Heart Institute and School of Clinical Science-Regenerative Medicine Section, University of Bristol, Bristol Royal Infirmary, Marlborough Street, BS2 8HW Bristol, UK
| | | | | |
Collapse
|
731
|
Igf2-derived intronic miR-483 promotes mouse hepatocellular carcinoma cell proliferation. Mol Cell Biochem 2011; 361:337-43. [DOI: 10.1007/s11010-011-1121-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/12/2011] [Indexed: 10/15/2022]
|
732
|
Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011; 478:404-7. [PMID: 22012398 PMCID: PMC3235584 DOI: 10.1038/nature10486] [Citation(s) in RCA: 587] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/17/2011] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of mortality in westernized countries, despite optimum medical therapy to lower LDL cholesterol. The pursuit of novel therapies to target this residual risk has focused on raising levels of HDL cholesterol in order to exploit its atheroprotective effects1. MicroRNAs have emerged as important post-transcriptional regulators of lipid metabolism, and are thus a new class of targets for therapeutic intervention2. MicroRNA-33a and b (miR-33a/b) are intronic microRNAs embedded in the sterol response element binding protein genes SREBF2 and SREBF13–5, respectively, that repress expression of the cholesterol transporter ABCA1, a key regulator of HDL biogenesis. Recent studies in mice suggest that antagonizing miR-33a may be an effective strategy for raising plasma HDL3–5 and protecting from atherosclerosis6, however extrapolation of these findings to humans is complicated by the fact that mice lack miR-33b which is present only in the SREBF1 gene of higher mammals. Here we show in African green monkeys that systemic delivery of an anti-miR oligonucleotide that targets both miR-33a and miR-33b increases hepatic expression of ABCA1 and induces a sustained increase in plasma HDL over 12 weeks. Notably, miR-33 antagonism in this non-human primate model also increased the expression of miR-33 target genes involved in the oxidation of fatty acids (CROT, CPT1A, HADHB, PRKAA1) and reduced genes involved in fatty acid synthesis (SREBF1, FASN, ACLY, ACACA), resulting in a marked suppression of plasma VLDL triglyceride levels, a finding not previously observed in mice. These data establish, in a model highly relevant to humans, that pharmacological inhibition of miR-33a and b is a promising therapeutic strategy to raise plasma HDL and lower VLDL triglycerides for the treatment of dyslipidemias that increase cardiovascular disease risk.
Collapse
|
733
|
Wang H, Peng DQ. New insights into the mechanism of low high-density lipoprotein cholesterol in obesity. Lipids Health Dis 2011; 10:176. [PMID: 21988829 PMCID: PMC3207906 DOI: 10.1186/1476-511x-10-176] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 10/12/2011] [Indexed: 02/06/2023] Open
Abstract
Obesity, a significant risk factor for various chronic diseases, is universally related to dyslipidemia mainly represented by decreasing high-density lipoprotein cholesterol (HDL-C), which plays an indispensible role in development of cardiovascular disease (CVD). However, the mechanisms underlying obesity and low HDL-C have not been fully elucidated. Previous studies have focused on the alteration of HDL catabolism in circulation following elevated triglyceride (TG). But recent findings suggested that liver and fat tissue played pivotal role in obesity related low HDL-C. Some new molecular pathways like microRNA have also been proposed in the regulation of HDL metabolism in obesity. This article will review recent advances in understanding of the potential mechanism of low HDL-C in obesity.
Collapse
Affiliation(s)
- Hao Wang
- Departments of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, PR China
| | | |
Collapse
|
734
|
Miller WL, Bose HS. Early steps in steroidogenesis: intracellular cholesterol trafficking. J Lipid Res 2011; 52:2111-2135. [PMID: 21976778 DOI: 10.1194/jlr.r016675] [Citation(s) in RCA: 387] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Steroid hormones are made from cholesterol, primarily derived from lipoproteins that enter cells via receptor-mediated endocytosis. In endo-lysosomes, cholesterol is released from cholesterol esters by lysosomal acid lipase (LAL; disordered in Wolman disease) and exported via Niemann-Pick type C (NPC) proteins (disordered in NPC disease). These diseases are characterized by accumulated cholesterol and cholesterol esters in most cell types. Mechanisms for trans-cytoplasmic cholesterol transport, membrane insertion, and retrieval from membranes are less clear. Cholesterol esters and "free" cholesterol are enzymatically interconverted in lipid droplets. Cholesterol transport to the cholesterol-poor outer mitochondrial membrane (OMM) appears to involve cholesterol transport proteins. Cytochrome P450scc (CYP11A1) then initiates steroidogenesis by converting cholesterol to pregnenolone on the inner mitochondrial membrane (IMM). Acute steroidogenic responses are regulated by cholesterol delivery from OMM to IMM, triggered by the steroidogenic acute regulatory protein (StAR). Chronic steroidogenic capacity is determined by CYP11A1 gene transcription. StAR mutations cause congenital lipoid adrenal hyperplasia, with absent steroidogenesis, potentially lethal salt loss, and 46,XY sex reversal. StAR mutations initially destroy most, but not all steroidogenesis; low levels of StAR-independent steroidogenesis are lost later due to cellular damage, explaining the clinical findings. Rare P450scc mutations cause a similar syndrome. This review addresses these early steps in steroid biosynthesis.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, School of Medicine, University of California, San Francisco, CA 94143; UCSF Benioff Children's Hospital, San Francisco, CA 94143.
| | - Himangshu S Bose
- Department of Biochemistry, Mercer University School of Medicine, Savannah, GA 31404; and; Memorial University Medical Center, Savannah, GA 31404
| |
Collapse
|
735
|
Abstract
Metabolic diseases are characterized by the failure of regulatory genes or enzymes to effectively orchestrate specific pathways involved in the control of many biological processes. In addition to the classical regulators of metabolic homeostasis, recent discoveries have shown the remarkable role of small non-coding RNAs (microRNAs) in the post-transcriptional regulation of a number of genes, and their involvement in many pathological states, such as diabetes, atherosclerosis and cancer. Of note is microRNA-33 (miR-33), an intronic microRNA (miRNA) located within the sterol regulatory element-binding protein (SREBP) genes, one of the master regulators of cholesterol and fatty acid metabolism. We have recently shown that miR-33 regulates cholesterol efflux and high-density lipoprotein (HDL) formation, as well as fatty acid oxidation and insulin signaling. These results describe a model in which miR-33 works in concert with its host genes to ensure that the cell's metabolic state is balanced, thus highlighting the clinical potential of miRNAs as novel therapeutic targets for treating cardiometabolic diseases.
Collapse
Affiliation(s)
- Cristina M Ramírez
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
736
|
CHEN WJ, YIN K, ZHAO GJ, TANG CK. microRNAs:A New Mechanisms for Regulation of Lipid Metabolism*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2011.00072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
737
|
Abstract
Defects in homeostatic regulation of cholesterol and fatty acids are associated with major cardiometabolic risk factors that are prevalent in type 2 diabetes and atherosclerotic cardiovascular disease. Regulatory input is found at many levels; however, recent findings have revealed pivotal roles for small non-coding RNAs (microRNAs) of the endogenous RNA interference pathway in post-transcriptional control of major regulatory mechanisms underpinning cholesterol and energy homeostasis. In addition, aberrant expression of microRNAs has been implicated in marked pathophysiologic events contributing to the progression and development of atherosclerosis, including loss of endothelial integrity, vascular smooth muscle cell proliferation, neointimal hyperplasia, and foam cell formation. This review surveys the impact of microRNA-mediated regulation in biological processes governing the cholesterol/lipoprotein metabolism, fatty acid β-oxidation (eg by miR-122 and miR-33), and endothelial dysfunction related to atherosclerosis. Given the current advances in microRNA-based technologies, the clinical potential of microRNAs as novel therapeutic targets is highlighted as new alternative strategies to ameliorate cardiometabolic diseases.
Collapse
|
738
|
Kellner-Weibel G, de la Llera-Moya M. Update on HDL receptors and cellular cholesterol transport. Curr Atheroscler Rep 2011; 13:233-41. [PMID: 21302003 DOI: 10.1007/s11883-011-0169-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Efflux is central to maintenance of tissue and whole body cholesterol homeostasis. The discovery of cell surface receptors that bind high-density lipoprotein (HDL) with high specificity and affinity to promote cholesterol release has significantly advanced our understanding of cholesterol efflux. We now know that 1) cells have several mechanisms to promote cholesterol release, including a passive mechanism that depends on the physico-chemical properties of cholesterol molecules and their interactions with phospholipids; 2) a variety of HDL particles can interact with receptors to promote cholesterol transport from tissues to the liver for excretion; and 3) interactions between HDL and receptors show functional synergy. Therefore, efflux efficiency depends both on the arrays of receptors on tissue cells and HDL particles in serum.
Collapse
Affiliation(s)
- Ginny Kellner-Weibel
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., ARC1102G, Philadelphia, PA 19104-4318, USA.
| | | |
Collapse
|
739
|
Abstract
The CNS is rich in cholesterol, which is essential for neuronal development and survival, synapse maturation, and optimal synaptic activity. Alterations in brain cholesterol homeostasis are linked to neurodegeneration. Studies have demonstrated that Huntington disease (HD), a progressive and fatal neurodegenerative disorder resulting from polyglutamine expansion in the huntingtin protein, is associated with changes in cellular cholesterol metabolism. Emerging evidence from human and animal studies indicates that attenuated brain sterol synthesis and accumulation of cholesterol in neuronal membranes represent two distinct mechanisms occurring in the presence of mutant huntingtin that influence neuronal survival. Increased knowledge of how changes in intraneuronal cholesterol metabolism influence the pathogenesis of HD will provide insights into the potential application of brain cholesterol regulation as a therapeutic strategy for this devastating disease.
Collapse
|
740
|
Current World Literature. Curr Opin Nephrol Hypertens 2011; 20:561-7. [DOI: 10.1097/mnh.0b013e32834a3de5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
741
|
Truscott M, Islam ABMMK, López-Bigas N, Frolov MV. mir-11 limits the proapoptotic function of its host gene, dE2f1. Genes Dev 2011; 25:1820-34. [PMID: 21856777 DOI: 10.1101/gad.16947411] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The E2F family of transcription factors regulates the expression of both genes associated with cell proliferation and genes that regulate cell death. The net outcome is dependent on cellular context and tissue environment. The mir-11 gene is located in the last intron of the Drosophila E2F1 homolog gene dE2f1, and its expression parallels that of dE2f1. Here, we investigated the role of miR-11 and found that miR-11 specifically modulated the proapoptotic function of its host gene, dE2f1. A mir-11 mutant was highly sensitive to dE2F1-dependent, DNA damage-induced apoptosis. Consistently, coexpression of miR-11 in transgenic animals suppressed dE2F1-induced apoptosis in multiple tissues, while exerting no effect on dE2F1-driven cell proliferation. Importantly, miR-11 repressed the expression of the proapoptotic genes reaper (rpr) and head involution defective (hid), which are directly regulated by dE2F1 upon DNA damage. In addition to rpr and hid, we identified a novel set of cell death genes that was also directly regulated by dE2F1 and miR-11. Thus, our data support a model in which the coexpression of miR-11 limits the proapoptotic function of its host gene, dE2f1, upon DNA damage by directly modulating a dE2F1-dependent apoptotic transcriptional program.
Collapse
Affiliation(s)
- Mary Truscott
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
742
|
Murphy AJ, Westerterp M, Yvan-Charvet L, Tall AR. Anti-atherogenic mechanisms of high density lipoprotein: effects on myeloid cells. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:513-21. [PMID: 21864714 DOI: 10.1016/j.bbalip.2011.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/27/2011] [Accepted: 08/09/2011] [Indexed: 02/08/2023]
Abstract
In some settings increasing high density lipoprotein (HDL) levels has been associated with a reduction in experimental atherosclerosis. This has been most clearly seen in apolipoprotein A-I (apoA-I) transgenic mice or in animals infused with HDL or its apolipoproteins. A major mechanism by which these treatments are thought to delay progression or cause regression of atherosclerosis is by promoting efflux of cholesterol from macrophage foam cells. In addition, HDL has been described as having anti-inflammatory and other beneficial effects. Some recent research has linked anti-inflammatory effects to cholesterol efflux pathways but likely multiple mechanisms are involved. Macrophage cholesterol efflux may have a role in facilitating emigration of macrophages from lesions during regression. While macrophages can mediate cholesterol efflux by several pathways, studies in knockout mice or cells point to the importance of active efflux mediated by ATP binding cassette transporter (ABC) A1 and G1. In addition to traditional roles in macrophages, these transporters have been implicated in the control of hematopoietic stem cell proliferation, monocytosis and neutrophilia, as well as activation of monocytes and neutrophils. Thus, HDL and cholesterol efflux pathways may have important anti-atherogenic effects at all stages of the myeloid cell/monocyte/dendritic cell/macrophage lifecycle. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Andrew J Murphy
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
743
|
Joyce CE, Zhou X, Xia J, Ryan C, Thrash B, Menter A, Zhang W, Bowcock AM. Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome. Hum Mol Genet 2011; 20:4025-40. [PMID: 21807764 DOI: 10.1093/hmg/ddr331] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Psoriasis is a chronic and complex inflammatory skin disease with lesions displaying dramatically altered mRNA expression profiles. However, much less is known about the expression of small RNAs. Here, we describe a comprehensive analysis of the normal and psoriatic skin miRNAome with next-generation sequencing in a large patient cohort. We generated 6.7 × 10(8) small RNA reads representing 717 known and 284 putative novel microRNAs (miRNAs). We also observed widespread expression of isomiRs and miRNA*s derived from known and novel miRNA loci, and a low frequency of miRNA editing in normal and psoriatic skin. The expression and processing of selected novel miRNAs were confirmed with qRT-PCR in skin and other human tissues or cell lines. Eighty known and 18 novel miRNAs were 2-42-fold differentially expressed in psoriatic skin. Of particular significance was the 2.7-fold upregulation of a validated novel miRNA derived from the antisense strand of the miR-203 locus, which plays a role in epithelial differentiation. Other differentially expressed miRNAs included hematopoietic-specific miRNAs such as miR-142-3p and miR-223/223*, and angiogenic miRNAs such as miR-21, miR-378, miR-100 and miR-31, which was the most highly upregulated miRNA in psoriatic skin. The functions of these miRNAs are consistent with the inflammatory and hyperproliferative phenotype of psoriatic lesions. In situ hybridization of differentially expressed miRNAs revealed stratified epidermal expression of an uncharacterized keratinocyte-derived miRNA, miR-135b, as well as the epidermal infiltration of the hematopoietic-specific miRNA, miR-142-3p, in psoriatic lesions. This study lays a critical framework for functional characterization of miRNAs in healthy and diseased skin.
Collapse
Affiliation(s)
- Cailin E Joyce
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
744
|
Mizuno T, Hayashi H, Naoi S, Sugiyama Y. Ubiquitination is associated with lysosomal degradation of cell surface-resident ATP-binding cassette transporter A1 (ABCA1) through the endosomal sorting complex required for transport (ESCRT) pathway. Hepatology 2011; 54:631-643. [PMID: 21520210 DOI: 10.1002/hep.24387] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 04/14/2011] [Indexed: 12/31/2022]
Abstract
UNLABELLED ATP-binding cassette transporter A1 (ABCA1) plays an essential role in the biogenesis of high-density lipoprotein in liver and in the prevention of foam cell formation in macrophages by mediating the efflux of cellular cholesterol and phospholipids to apolipoprotein A-I (apoA-I). Our current study investigated the mechanism of degradation of cell surface-resident ABCA1, focusing on ubiquitination. A coimmunoprecipitation study indicated the presence of ubiquitinated ABCA1 in the plasma membrane of the human hepatoma cell line, HuH-7, of cells from mouse liver, and of macrophages differentiated from the human acute monocytic leukemia cell line, THP-1 (THP-1 macrophages). In HuH-7 cells, degradation of cell surface-resident ABCA1 was inhibited by the overexpression of a dominant-negative form of ubiquitin. Moreover, the disruption of the endosomal sorting complex required for transport (ESCRT) pathway, a dominant mechanism for ubiquitination-mediated lysosomal degradation, by the knockdown of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), significantly delayed the degradation of cell surface-resident ABCA1. This was accompanied by an increase in ABCA1 expression as well as in apoA-I-mediated [3H]-cholesterol efflux function. The effect of HRS knockdown was also observed after calpain inhibitor treatment, which is reported to retard ABCA1 degradation. The induction of ABCA1 by HRS knockdown was confirmed in THP-1 macrophages. CONCLUSION Together with the fact that lysosomal inhibitor treatments increased ABCA1 expression in HuH-7 and THP-1 macrophages, these results suggest that ubiquitination mediates the lysosomal degradation of cell surface-resident ABCA1 through the ESCRT pathway, and thereby controls the expression and cholesterol efflux function of ABCA1. This mechanism seems to mediate ABCA1 degradation independently of the calpain-involving pathway. The modulation of ABCA1 ubiquitination could thus be a potential new therapeutic target for antiatherogenic drugs.
Collapse
Affiliation(s)
- Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
745
|
Tarling EJ, Edwards PA. Dancing with the sterols: critical roles for ABCG1, ABCA1, miRNAs, and nuclear and cell surface receptors in controlling cellular sterol homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:386-95. [PMID: 21824529 DOI: 10.1016/j.bbalip.2011.07.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/13/2011] [Accepted: 07/15/2011] [Indexed: 12/29/2022]
Abstract
ATP binding cassette (ABC) transporters represent a large and diverse family of proteins that transport specific substrates across a membrane. The importance of these transporters is illustrated by the finding that inactivating mutations within 17 different family members are known to lead to specific human diseases. Clinical data from humans and/or studies with mice lacking functional transporters indicate that ABCA1, ABCG1, ABCG4, ABCG5 and ABCG8 are involved in cholesterol and/or phospholipid transport. This review discusses the multiple mechanisms that control cellular sterol homeostasis, including the roles of microRNAs, nuclear and cell surface receptors and ABC transporters, with particular emphasis on recent findings that have provided insights into the role(s) of ABCG1. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Elizabeth J Tarling
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | |
Collapse
|
746
|
Izumiya M, Tsuchiya N, Okamoto K, Nakagama H. Systematic exploration of cancer-associated microRNA through functional screening assays. Cancer Sci 2011; 102:1615-21. [PMID: 21668585 DOI: 10.1111/j.1349-7006.2011.02007.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNA (miRNA), non-coding RNA of approximately 22 nucleotides, post-transcriptionally represses expression of its target genes. miRNA regulates a variety of biological processes such as cell proliferation, cell death, development, stemness and genomic stability, not only in physiological conditions but also in various pathological conditions such as cancers. More than 1000 mature miRNA have been experimentally identified in humans and mice, yet the functions of a vast majority of miRNA remain to be elucidated. Identification of novel cancer-associated miRNA seems promising considering their possible application in the development of novel cancer therapies and biomarkers. Currently, there are two major approaches to identify miRNA that are associated with cancer: expression profiling study and functional screening assay. The former approach is widely used, and a large number of studies have shown aberrant miRNA expression profiles in cancer tissues compared with their non-cancer counterparts. Although aberrantly expressed miRNA are potentially good biomarkers, in most cases a majority of them do not play causal roles in cancers when functional assays are performed. In contrast, the latter approach allows screening of 'driver' miRNA with cancer-associated phenotypes, such as cell proliferation and cell invasion. Thus, this approach might be suitable in finding crucial targets of novel cancer therapy. The combination of both types of approaches will contribute to further elucidation of the cancer pathophysiology and to the development of a novel class of cancer therapies and biomarkers.
Collapse
Affiliation(s)
- Masashi Izumiya
- Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | |
Collapse
|
747
|
Thomas M, Lange-Grünweller K, Weirauch U, Gutsch D, Aigner A, Grünweller A, Hartmann RK. The proto-oncogene Pim-1 is a target of miR-33a. Oncogene 2011; 31:918-28. [PMID: 21743487 DOI: 10.1038/onc.2011.278] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The constitutively active serine/threonine kinase Pim-1 is upregulated in different cancer types, mainly based on the action of several interleukines and growth factors at the transcriptional level. So far, a regulation of oncogenic Pim-1 by microRNAs (miRNAs) has not been reported. Here, we newly establish miR-33a as a miRNA with potential tumor suppressor activity, acting through inhibition of Pim-1. A screen for miRNA expression in K562 lymphoma, LS174T colon carcinoma and several other cell lines revealed generally low endogenous miR-33a levels relative to other miRNAs. Transfection of K562 and LS174T cells with a miR-33a mimic reduced Pim-1 levels substantially. In contrast, the cell-cycle regulator cyclin-dependent kinase 6 predicted to be a conserved miR-33a target, was not downregulated by the miR-33a mimic. Seed mutagenesis of the Pim-1 3'-untranslated region in a luciferase reporter construct and in a Pim-1 cDNA expressed in Pim-1-deficient Skov-3 cells demonstrated specific and direct downregulation of Pim-1 by the miR-33a mimic. The persistence of this effect was comparable to that of a small interfering RNA-mediated knockdown of Pim-1, resulting in decelerated cell proliferation. In conclusion, we demonstrate the potential of miR-33a to act as a tumor suppressor miRNA, which suggests miR-33a replacement therapy through delivery of miR mimics as a novel therapeutic strategy.
Collapse
Affiliation(s)
- M Thomas
- Institute of Pharmaceutical Chemistry, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
748
|
Ibrahim AF, Weirauch U, Thomas M, Grünweller A, Hartmann RK, Aigner A. MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res 2011; 71:5214-24. [PMID: 21690566 DOI: 10.1158/0008-5472.can-10-4645] [Citation(s) in RCA: 310] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
MicroRNAs (miRNA) aberrantly expressed in tumors may offer novel therapeutic approaches to treatment. miR-145 is downregulated in various cancers including colon carcinoma in which in vitro studies have established proapoptotic and antiproliferative roles. miR-33a was connected recently to cancer through its capacity to downregulate the oncogenic kinase Pim-1. To date, miRNA replacement therapy has been hampered by the lack of robust nonviral delivery methods for in vivo administration. Here we report a method of miRNA delivery by using polyethylenimine (PEI)-mediated delivery of unmodified miRNAs, using miR-145 and miR-33a to preclinically validate the method in a mouse model of colon carcinoma. After systemic or local application of low molecular weight PEI/miRNA complexes, intact miRNA molecules were delivered into mouse xenograft tumors, where they caused profound antitumor effects. miR-145 delivery reduced tumor proliferation and increased apoptosis, with concomitant repression of c-Myc and ERK5 as novel regulatory target of miR-145. Similarly, systemic injection of PEI-complexed miR-33a was validated as a novel therapeutic targeting method for Pim-1, with antitumor effects comparable with PEI/siRNA-mediated direct in vivo knockdown of Pim-1 in the model. Our findings show that chemically unmodified miRNAs complexed with PEI can be used in an efficient and biocompatible strategy of miRNA replacement therapy, as illustrated by efficacious delivery of PEI/miR-145 and PEI/miR-33a complexes in colon carcinoma.
Collapse
|
749
|
Yan H, Choi AJ, Lee BH, Ting AH. Identification and functional analysis of epigenetically silenced microRNAs in colorectal cancer cells. PLoS One 2011; 6:e20628. [PMID: 21698188 PMCID: PMC3116843 DOI: 10.1371/journal.pone.0020628] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/06/2011] [Indexed: 12/23/2022] Open
Abstract
Abnormal microRNA (miRNA) expression has been linked to the development and progression of several human cancers, and such dysregulation can result from aberrant DNA methylation. While a small number of miRNAs is known to be regulated by DNA methylation, we postulated that such epigenetic regulation is more prevalent. By combining MBD-isolated Genome Sequencing (MiGS) to evaluate genome-wide DNA methylation patterns and microarray analysis to determine miRNA expression levels, we systematically searched for candidate miRNAs regulated by DNA methylation in colorectal cancer cell lines. We found 64 miRNAs to be robustly methylated in HCT116 cells; eighteen of them were located in imprinting regions or already reported to be regulated by DNA methylation. For the remaining 46 miRNAs, expression levels of 18 were consistent with their DNA methylation status. Finally, 8 miRNAs were up-regulated by 5-aza-2′-deoxycytidine treatment and identified to be novel miRNAs regulated by DNA methylation. Moreover, we demonstrated the functional relevance of these epigenetically silenced miRNAs by ectopically expressing select candidates, which resulted in inhibition of growth and migration of cancer cells. In addition to reporting these findings, our study also provides a reliable, systematic strategy to identify DNA methylation-regulated miRNAs by combining DNA methylation profiles and expression data.
Collapse
Affiliation(s)
- Hongli Yan
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Ae-jin Choi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Byron H. Lee
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Angela H. Ting
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
750
|
Nagao K, Tomioka M, Ueda K. Function and regulation of ABCA1 - membrane meso-domain organization and reorganization. FEBS J 2011; 278:3190-203. [DOI: 10.1111/j.1742-4658.2011.08170.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|