701
|
Karimi M, Ghazanfari F, Fadaei A, Ahmadi L, Shiran B, Rabei M, Fallahi H. The Small-RNA Profiles of Almond (Prunus dulcis Mill.) Reproductive Tissues in Response to Cold Stress. PLoS One 2016; 11:e0156519. [PMID: 27253370 PMCID: PMC4890778 DOI: 10.1371/journal.pone.0156519] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/16/2016] [Indexed: 11/20/2022] Open
Abstract
Spring frost is an important environmental stress that threatens the production of Prunus trees. However, little information is available regarding molecular response of these plants to the frost stress. Using high throughput sequencing, this study was conducted to identify differentially expressed miRNAs, both the conserved and the non-conserved ones, in the reproductive tissues of almond tolerant H genotype under cold stress. Analysis of 50 to 58 million raw reads led to identification of 174 unique conserved and 59 novel microRNAs (miRNAs). Differential expression pattern analysis showed that 50 miRNA families were expressed differentially in one or both of almond reproductive tissues (anther and ovary). Out of these 50 miRNA families, 12 and 15 displayed up-regulation and down-regulation, respectively. The distribution of conserved miRNA families indicated that miR482f harbor the highest number of members. Confirmation of miRNAs expression patterns by quantitative real- time PCR (qPCR) was performed in cold tolerant (H genotype) alongside a sensitive variety (Sh12 genotype). Our analysis revealed differential expression for 9 miRNAs in anther and 3 miRNAs in ovary between these two varieties. Target prediction of miRNAs followed by differential expression analysis resulted in identification of 83 target genes, mostly transcription factors. This study comprehensively catalogued expressed miRNAs under different temperatures in two reproductive tissues (anther and ovary). Results of current study and the previous RNA-seq study, which was conducted in the same tissues by our group, provide a unique opportunity to understand the molecular basis of responses of almond to cold stress. The results can also enhance the possibility for gene manipulation to develop cold tolerant plants.
Collapse
Affiliation(s)
- Marzieh Karimi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, P.O.Box 115, Iran
| | - Farahnaz Ghazanfari
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, P.O.Box 115, Iran
| | - Adeleh Fadaei
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, P.O.Box 115, Iran
| | - Laleh Ahmadi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, P.O.Box 115, Iran
| | - Behrouz Shiran
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, P.O.Box 115, Iran
- Institute of Biotechnology, Shahrekord University, Shahrekord, P.O.Box 115, Iran
| | - Mohammad Rabei
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, P.O.Box 115, Iran
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Bagh-e-Abrisham Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
702
|
Biswas S, Hazra S, Chattopadhyay S. Identification of conserved miRNAs and their putative target genes in Podophyllum hexandrum (Himalayan Mayapple). ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2016.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
703
|
Baldrich P, Campo S, Wu MT, Liu TT, Hsing YIC, San Segundo B. MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors. RNA Biol 2016; 12:847-63. [PMID: 26083154 DOI: 10.1080/15476286.2015.1050577] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that have important regulatory functions in plant growth, development, and response to abiotic stress. Increasing evidence also supports that plant miRNAs contribute to immune responses to pathogens. Here, we used deep sequencing of small RNA libraries for global identification of rice miRNAs that are regulated by fungal elicitors. We also describe 9 previously uncharacterized miRNAs in rice. Combined small RNA and degradome analyses revealed regulatory networks enriched in elicitor-regulated miRNAs supported by the identification of their corresponding target genes. Specifically, we identified an important number of miRNA/target gene pairs involved in small RNA pathways, including miRNA, heterochromatic and trans-acting siRNA pathways. We present evidence for miRNA/target gene pairs implicated in hormone signaling and cross-talk among hormone pathways having great potential in regulating rice immunity. Furthermore, we describe miRNA-mediated regulation of Conserved-Peptide upstream Open Reading Frame (CPuORF)-containing genes in rice, which suggests the existence of a novel regulatory network that integrates miRNA and CPuORF functions in plants. The knowledge gained in this study will help in understanding the underlying regulatory mechanisms of miRNAs in rice immunity and develop appropriate strategies for rice protection.
Collapse
Affiliation(s)
- Patricia Baldrich
- a Centre for Research in Agricultural Genomics (CRAG) ; Edifici CRAG ; Barcelona , Spain
| | | | | | | | | | | |
Collapse
|
704
|
Xu S, Liu N, Mao W, Hu Q, Wang G, Gong Y. Identification of chilling-responsive microRNAs and their targets in vegetable soybean (Glycine max L.). Sci Rep 2016; 6:26619. [PMID: 27216963 PMCID: PMC4877674 DOI: 10.1038/srep26619] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 05/04/2016] [Indexed: 11/09/2022] Open
Abstract
Chilling stress is a major factor limiting the yield and quality of vegetable soybean (Glycine max L.) on a global scale. In the present study, systematic identification and functional analysis of miRNAs under chilling stress were carried out to clarify the molecular mechanism of chilling resistance. Two independent small RNA libraries from leaves of soybean were constructed and sequenced with the high-throughput Illumina Solexa system. A total of 434 known miRNAs and 3 novel miRNAs were identified. Thirty-five miRNAs were verified by qRT-PCR analysis. Furthermore, their gene targets were identified via high-throughput degradome sequencing. A total of 898 transcripts were targeted by 54 miRNA families attributed to five categories. More importantly, we identified 51 miRNAs differentially expressed between chilling stress and control conditions. The targets of these miRNAs were enriched in oxidation-reduction, signal transduction, and metabolic process functional categories. Our qRT-PCR analysis confirmed a negative relationship among the miRNAs and their targets under chilling stress. Our work thus provides comprehensive molecular evidence supporting the involvement of miRNAs in chilling-stress responses in vegetable soybean.
Collapse
Affiliation(s)
- Shengchun Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Na Liu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weihua Mao
- Center of Analysis and Measurement, Zhejiang University, Hangzhou, 310058, China
| | - Qizan Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Guofu Wang
- Department of Life Science, Yuanpei College, Shaoxing University, Shaoxing 312000, China
| | - Yaming Gong
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
705
|
Geisler A, Fechner H. MicroRNA-regulated viral vectors for gene therapy. World J Exp Med 2016; 6:37-54. [PMID: 27226955 PMCID: PMC4873559 DOI: 10.5493/wjem.v6.i2.37] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 03/02/2016] [Accepted: 03/17/2016] [Indexed: 02/06/2023] Open
Abstract
Safe and effective gene therapy approaches require targeted tissue-specific transfer of a therapeutic transgene. Besides traditional approaches, such as transcriptional and transductional targeting, microRNA-dependent post-transcriptional suppression of transgene expression has been emerging as powerful new technology to increase the specificity of vector-mediated transgene expression. MicroRNAs are small non-coding RNAs and often expressed in a tissue-, lineage-, activation- or differentiation-specific pattern. They typically regulate gene expression by binding to imperfectly complementary sequences in the 3' untranslated region (UTR) of the mRNA. To control exogenous transgene expression, tandem repeats of artificial microRNA target sites are usually incorporated into the 3' UTR of the transgene expression cassette, leading to subsequent degradation of transgene mRNA in cells expressing the corresponding microRNA. This targeting strategy, first shown for lentiviral vectors in antigen presenting cells, has now been used for tissue-specific expression of vector-encoded therapeutic transgenes, to reduce immune response against the transgene, to control virus tropism for oncolytic virotherapy, to increase safety of live attenuated virus vaccines and to identify and select cell subsets for pluripotent stem cell therapies, respectively. This review provides an introduction into the technical mechanism underlying microRNA-regulation, highlights new developments in this field and gives an overview of applications of microRNA-regulated viral vectors for cardiac, suicide gene cancer and hematopoietic stem cell therapy, as well as for treatment of neurological and eye diseases.
Collapse
|
706
|
Ražná K, Bežo M, Hlavačková L, Žiarovská J, Miko M, Gažo J, Habán M. MicroRNA (miRNA) in food resources and medicinal plant. POTRAVINARSTVO 2016. [DOI: 10.5219/583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
707
|
Zhou B, Fan P, Li Y, Yan H, Xu Q. Exploring miRNAs involved in blue/UV-A light response in Brassica rapa reveals special regulatory mode during seedling development. BMC PLANT BIOLOGY 2016; 16:111. [PMID: 27160188 PMCID: PMC4862165 DOI: 10.1186/s12870-016-0799-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/03/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Growth, development, and pigment synthesis in Brassica rapa subsp. rapa cv. Tsuda, a popular vegetable crop, are influenced by light. Although microRNAs (miRNAs) have vital roles in the metabolic processes and abiotic stress responses of plants, whether miRNAs play a role in anthocyanin biosynthesis and development of Tsuda seedlings exposed to light is unknown. RESULTS Seventeen conserved and 226 novel miRNAs differed at least 2-fold in response to blue and UV-A light compared with levels after a dark treatment. Real time PCR showed that BrmiR159, BrmiRC0191, BrmiRC0460, BrmiRC0323, BrmiRC0418, BrmiRC0005 were blue light-induced and northern blot revealed that the transcription level of BrmiR167 did not differ significantly among seedlings treated with dark, blue or UV-light. BrmiR156 and BrmiR157 were present in the greatest amount (number of reads) and among their 8 putative targets in the SPL gene family, only SPL9 (Bra004674) and SPL15 (Bra003305) increased in expression after blue or UV-A exposure. In addition, miR157-guided cleavage of target SPL9 mRNAs (Bra004674, Bra016891) and SPL15 mRNAs (Bra003305, Bra014599) took place 10 or 11 bases from the 5' ends of the binding region in the miR157 sequence. CONCLUSIONS A set of miRNAs and their targets involved in the regulation of the light-induced photomorphogenic phenotype in seedlings of Brassica rapa was identified, providing new insights into blue and UV-A light-responsive miRNAs in seedlings of Tsuda and evidence of multiple targets for the miRNAs and their diverse roles in plant development.
Collapse
Affiliation(s)
- Bo Zhou
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Pengzhen Fan
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Yuhua Li
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Haifang Yan
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Qijiang Xu
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
708
|
Large-scale rewiring of innate immunity circuitry and microRNA regulation during initial rice blast infection. Sci Rep 2016; 6:25493. [PMID: 27150822 PMCID: PMC4858701 DOI: 10.1038/srep25493] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/19/2016] [Indexed: 12/12/2022] Open
Abstract
Rice blast is a recurrent fungal disease, and resistance to fungal infection is a complex trait. Therefore, a comprehensive examination of rice transcriptome and its variation during fungal infection is necessary to understand the complex gene regulatory networks. In this study, adopting Next-Generation Sequencing we profiled the transcriptomes and microRNAomes of rice varieties, one susceptible and the other resistant to M. oryzae, at multiple time points during the fungal infection. Our results revealed a substantial variation in the plant transcriptome and microRNAome as well as change to rice innate immunity during fungal infection. A number of putative R gene candidates were identified from a perturbed rice transcriptome analysis. The expression of genes and non-coding RNA molecules changed in both fungal resistant and susceptible plants during M. oryzae invasion discovered distinct pathways triggered in the susceptible and resistant plants. In addition, a number of fungus genes in the susceptible and resistant plants were constantly expressed at different time points, suggesting that they were likely to be the potential AVR genes. Our results revealed large-scale rewiring of innate immunity circuitry and microRNA regulation during initial rice blast infection, which would help to develop more robust blast-resistant rice plants.
Collapse
|
709
|
Feng H, Wang T, Feng C, Zhang Q, Zhang X, Huang L, Wang X, Kang Z. Identification of microRNAs and their corresponding targets involved in the susceptibility interaction of wheat response to Puccinia striiformis f. sp. tritici. PHYSIOLOGIA PLANTARUM 2016; 157:95-107. [PMID: 26563616 DOI: 10.1111/ppl.12407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 05/06/2023]
Abstract
MicroRNAs (miRNAs) play very important roles in plant defense responses. However, little is known about their roles in the susceptibility interaction between wheat and Puccinia striiformis f. sp. tritici (Pst). In this study, two miRNA libraries were constructed from the leaves of the cultivar Xingzi 9104 inoculated with the virulent Pst race CYR32 and sterile water, respectively. A total of 1316 miRNA candidates, including 173 known miRNAs that were generated from 98 pre-miRNAs, were obtained. The remaining 1143 miRNA candidates included 145 conserved and 998 wheat-specific miRNAs that were generated from 87 and 1088 pre-miRNAs, respectively. The 173 known and 145 conserved miRNAs were sub-classified into 63 miRNA families. The target genes of wheat miRNAs were also confirmed using degradome sequencing technology. Most of the annotated target genes were related to signal transduction or energy metabolism. Additionally, we found that miRNAs and their target genes form complicated regulation networks. The expression profiles of miRNAs and their corresponding target genes were further analyzed by quantitative real-time polymerase chain reaction (qRT-PCR), and the results indicate that some miRNAs are involved in the compatible wheat-Pst susceptibility interaction. Importantly, tae-miR1432 was highly expressed when wheat was challenged with CYR32, and the corresponding target gene, predicted to be a calcium ion-binding protein, also exhibited upregulated expression but a divergent expression trend. PC-3P-7484, a specific wheat miRNA, was highly expressed in the wheat response to Pst infection, while the expression of the corresponding target gene ubiquillin was dramatically downregulated. These data provide the foundation for evaluating the important regulatory roles of miRNAs in wheat-Pst susceptibility interaction.
Collapse
Affiliation(s)
- Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Ting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Chuanxin Feng
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Qiong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Xinmei Zhang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
710
|
Wang X, Li X, Zhang S, Korpelainen H, Li C. Physiological and transcriptional responses of two contrasting Populus clones to nitrogen stress. TREE PHYSIOLOGY 2016; 36:628-42. [PMID: 27095258 PMCID: PMC4886292 DOI: 10.1093/treephys/tpw019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/14/2016] [Indexed: 05/20/2023]
Abstract
The aim of this study was to reveal mechanisms responsible for nitrogen (N) stress in two contrasting Populus clones. Leaves of Nanlin 1388 (N stress-insensitive clone hybrids of Populus deltoides Bart.CV. × Populus euramericana (Dode) Guineir CV) and Nanlin 895 (N stress-sensitive clone hybrids of Populus deltoides Bart.CV. × Populus euramericana (Dode) Guineir CV) were harvested and analyzed. Different responses visible in photosynthesis, N and carbon contents, physiological traits, and chlorophyll were observed. The Solexa/Illumina's digital gene expression system was used to investigate differentially expressed miRNAs and mRNAs under N stress. Target profiling, and biological network and function analyses were also performed. Randomly selected mRNAs and miRNAs were validated by quantitative reverse transcription polymerase chain reaction. In all, 110 Nanlin 1388 and 122 Nanlin 895 miRNAs were differentially expressed, among which 34 and 23 miRNAs were newly found in the two clones, respectively. Under N stress, a total of 329 and 98 mRNAs were regulated in N stress-insensitive and -sensitive clones, respectively. Notably, the miR396 family and its regulated mRNAs were altered in both clones under N stress, while miR646 was regulated only in the N stress-insensitive clone (Nanlin 1388), and miR156, miR319 and miR393 in the N stress-sensitive clone (Nanlin 895). Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses also proved several clone-specific functions and pathways. These findings may be significant for understanding the genetic responses of Populus to N stress.
Collapse
Affiliation(s)
- Xiaoli Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China Guizhou Institute of Prataculture, Guizhou Academy of Agriculture Science, Guiyang 550006, Guizhou, China
| | - Xiaodong Li
- Guizhou Institute of Prataculture, Guizhou Academy of Agriculture Science, Guiyang 550006, Guizhou, China
| | - Sheng Zhang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, FI-00014 Helsinki, Finland
| | - Chunyang Li
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an 311300, Zhejiang, China
| |
Collapse
|
711
|
Wang T, Sun MY, Wang XS, Li WB, Li YG. Over-Expression of GmGIa-Regulated Soybean miR172a Confers Early Flowering in Transgenic Arabidopsis thaliana. Int J Mol Sci 2016; 17:E645. [PMID: 27136537 PMCID: PMC4881471 DOI: 10.3390/ijms17050645] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 12/20/2022] Open
Abstract
Flowering is a pivotal event in the life cycle of plants. miR172 has been widely confirmed to play critical roles in flowering time control by regulating its target gene expression in Arabidopsis. However, the role of its counterpart in soybean remains largely unclear. In the present study, we found that the gma-miR172a was regulated by a GIGANTEA ortholog, GmGIa, in soybean through miRNA metabolism. The expression analysis revealed that gma-miR172a has a pattern of diurnal rhythm expression and its abundance increased rapidly as plants grew until the initiation of flowering phase in soybean. One target gene of gma-miR172a, Glyma03g33470, was predicted and verified using a modified RLM 5'-RACE (RNA ligase-mediated rapid amplification of 5' cDNA ends) assay. Overexpression of gma-miR172a exhibited an early flowering phenotype and the expression of FT, AP1 and LFY were simultaneously increased in gma-miR172a-transgenic Arabidopsis plants, suggesting that the early flowering phenotype was associated with up-regulation of these genes. The overexpression of the gma-miR172a-resistant version of Glyma03g33470 weakened early flowering phenotype in the toe1 mutant of Arabidopsis. Taken together, our results suggested that gma-miR172a played an important role in GmGIa-mediated flowering by repressing Glyma03g33470, which in turn increased the expression of FT, AP1 and LFY to promote flowering in soybean.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics & Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin 150030, China.
| | - Ming-Yang Sun
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics & Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin 150030, China.
| | - Xue-Song Wang
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics & Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin 150030, China.
| | - Wen-Bin Li
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics & Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin 150030, China.
| | - Yong-Guang Li
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics & Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
712
|
Li C, Zhang B. MicroRNAs in Control of Plant Development. J Cell Physiol 2016; 231:303-13. [PMID: 26248304 DOI: 10.1002/jcp.25125] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 12/19/2022]
Abstract
In the long evolutionary history, plant has evolved elaborate regulatory network to control functional gene expression for surviving and thriving, such as transcription factor-regulated transcriptional programming. However, plenty of evidences from the past decade studies demonstrate that the 21-24 nucleotides small RNA molecules, majorly microRNAs (miRNAs) play dominant roles in post-transcriptional gene regulation through base pairing with their complementary mRNA targets, especially prefer to target transcription factors in plants. Here, we review current progresses on miRNA-controlled plant development, from miRNA biogenesis dysregulation-caused pleiotropic developmental defects to specific developmental processes, such as SAM regulation, leaf and root system regulation, and plant floral transition. We also summarize some miRNAs that are experimentally proved to greatly affect crop plant productivity and quality. In addition, recent reports show that a single miRNA usually displays multiple regulatory roles, such as organ development, phase transition, and stresses responses. Thus, we infer that miRNA may act as a node molecule to coordinate the balance between plant development and environmental clues, which may shed the light on finding key regulator or regulatory pathway for uncovering the mysterious molecular network.
Collapse
Affiliation(s)
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, 27858, North Carolina
| |
Collapse
|
713
|
Seifert F, Bössow S, Kumlehn J, Gnad H, Scholten S. Analysis of wheat microspore embryogenesis induction by transcriptome and small RNA sequencing using the highly responsive cultivar "Svilena". BMC PLANT BIOLOGY 2016; 16:97. [PMID: 27098368 PMCID: PMC4839079 DOI: 10.1186/s12870-016-0782-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/14/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Microspore embryogenesis describes a stress-induced reprogramming of immature male plant gametophytes to develop into embryo-like structures, which can be regenerated into doubled haploid plants after whole genome reduplication. This mechanism is of high interest for both research as well as plant breeding. The objective of this study was to characterize transcriptional changes and regulatory relationships in early stages of cold stress-induced wheat microspore embryogenesis by transcriptome and small RNA sequencing using a highly responsive cultivar. RESULTS Transcriptome and small RNA sequencing was performed in a staged time-course to analyze wheat microspore embryogenesis induction. The analyzed stages were freshly harvested, untreated uninucleate microspores and the two following stages from in vitro anther culture: directly after induction by cold-stress treatment and microspores undergoing the first nuclear divisions. A de novo transcriptome assembly resulted in 29,388 contigs distributing to 20,224 putative transcripts of which 9,305 are not covered by public wheat cDNAs. Differentially expressed transcripts and small RNAs were identified for the stage transitions highlighting various processes as well as specific genes to be involved in microspore embryogenesis induction. CONCLUSION This study establishes a comprehensive functional genomics resource for wheat microspore embryogenesis induction and initial understanding of molecular mechanisms involved. A large set of putative transcripts presumably specific for microspore embryogenesis induction as well as contributing processes and specific genes were identified. The results allow for a first insight in regulatory roles of small RNAs in the reprogramming of microspores towards an embryogenic cell fate.
Collapse
Affiliation(s)
- Felix Seifert
- />Developmental Biology, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Sandra Bössow
- />Saaten-Union Biotec GmbH, Am Schwabenplan 6, 06466 Seeland, OT Gatersleben Germany
| | - Jochen Kumlehn
- />Plant Reproductive Biology, Leibnitz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben Germany
| | - Heike Gnad
- />Saaten-Union Biotec GmbH, Am Schwabenplan 6, 06466 Seeland, OT Gatersleben Germany
| | - Stefan Scholten
- />Developmental Biology, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
- />Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
714
|
Zhang X, Gamarra J, Castro S, Carrasco E, Hernandez A, Mock T, Hadaegh AR, Read BA. Characterization of the Small RNA Transcriptome of the Marine Coccolithophorid, Emiliania huxleyi. PLoS One 2016; 11:e0154279. [PMID: 27101007 PMCID: PMC4839659 DOI: 10.1371/journal.pone.0154279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/11/2016] [Indexed: 12/31/2022] Open
Abstract
Small RNAs (smRNAs) control a variety of cellular processes by silencing target genes at the transcriptional or post-transcription level. While extensively studied in plants, relatively little is known about smRNAs and their targets in marine phytoplankton, such as Emiliania huxleyi (E. huxleyi). Deep sequencing was performed of smRNAs extracted at different time points as E. huxleyi cells transition from logarithmic to stationary phase growth in batch culture. Computational analyses predicted 18 E. huxleyi specific miRNAs. The 18 miRNA candidates and their precursors vary in length (18–24 nt and 71–252 nt, respectively), genome copy number (3–1,459), and the number of genes targeted (2–107). Stem-loop real time reverse transcriptase (RT) PCR was used to validate miRNA expression which varied by nearly three orders of magnitude when growth slows and cells enter stationary phase. Stem-loop RT PCR was also used to examine the expression profiles of miRNA in calcifying and non-calcifying cultures, and a small subset was found to be differentially expressed when nutrients become limiting and calcification is enhanced. In addition to miRNAs, endogenous small RNAs such as ra-siRNAs, ta-siRNAs, nat-siRNAs, and piwiRNAs were predicted along with the machinery for the biogenesis and processing of si-RNAs. This study is the first genome-wide investigation smRNAs pathways in E. huxleyi. Results provide new insights into the importance of smRNAs in regulating aspects of physiological growth and adaptation in marine phytoplankton and further challenge the notion that smRNAs evolved with multicellularity, expanding our perspective of these ancient regulatory pathways.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Computer Science and Information Systems, California State University, San Marcos, CA, 92096, United States of America
| | - Jaime Gamarra
- Department of Computer Science and Information Systems, California State University, San Marcos, CA, 92096, United States of America
| | - Steven Castro
- Department of Biological Sciences, California State University, San Marcos, CA, 92096, United States of America
| | - Estela Carrasco
- Department of Biological Sciences, California State University, San Marcos, CA, 92096, United States of America
| | - Aaron Hernandez
- Department of Biological Sciences, California State University, San Marcos, CA, 92096, United States of America
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, United Kingdom
| | - Ahmad R. Hadaegh
- Department of Computer Science and Information Systems, California State University, San Marcos, CA, 92096, United States of America
| | - Betsy A. Read
- Department of Biological Sciences, California State University, San Marcos, CA, 92096, United States of America
- * E-mail:
| |
Collapse
|
715
|
Zhang H, Hu J, Qian Q, Chen H, Jin J, Ding Y. Small RNA Profiles of the Rice PTGMS Line Wuxiang S Reveal miRNAs Involved in Fertility Transition. FRONTIERS IN PLANT SCIENCE 2016; 7:514. [PMID: 27148335 PMCID: PMC4837141 DOI: 10.3389/fpls.2016.00514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/01/2016] [Indexed: 05/08/2023]
Abstract
MicroRNAs (miRNAs) play key roles in the regulation of plant growth and developmental processes. In this study, RNA-seq was used to examine the expression profiles of miRNAs in a novel, photo-thermosensitive genic male sterile (PTGMS) rice line, Wuxiang S (WXS), during fertility transition. A total of 497 known miRNAs and 273 novel miRNAs were identified. In a differential expression analysis, 26 miRNAs exhibited significant differential expression between WXS (Sterile, S) and WXS (Fertile, F). Some of these miRNAs were validated by quantitative real-time PCR. Among these miRNAs, 11 showed decreased expression levels, and 15 showed increased expression levels in WXS (S) compared to WXS (F). Some of these miRNAs, such as osa-miR156a-j, osa-miR164d, and osa-miR528, were shown to be negatively correlated with their targets. These targets have previously been reported to be related to pollen development and male sterility, suggesting that these miRNAs may be involved in the regulation of pollen development in the rice PTGMS line WXS. Furthermore, miRNA-mediated editing events were also observed. In this study, a possible model for the control of signaling pathways during the process of fertility transition in the rice PTGMS line WXS by miRNAs was developed. These findings contribute to our understanding of the roles of miRNAs during anther development in PTGMS lines in rice.
Collapse
Affiliation(s)
| | | | | | | | | | - Yi Ding
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan UniversityWuhan, China
| |
Collapse
|
716
|
Li D, Liu Z, Gao L, Wang L, Gao M, Jiao Z, Qiao H, Yang J, Chen M, Yao L, Liu R, Kan Y. Genome-Wide Identification and Characterization of microRNAs in Developing Grains of Zea mays L. PLoS One 2016; 11:e0153168. [PMID: 27082634 PMCID: PMC4833412 DOI: 10.1371/journal.pone.0153168] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 03/24/2016] [Indexed: 11/23/2022] Open
Abstract
The development and maturation of maize kernel involves meticulous and fine gene regulation at transcriptional and post-transcriptional levels, and miRNAs play important roles during this process. Although a number of miRNAs have been identified in maize seed, the ones involved in the early development of grains and in different lines of maize have not been well studied. Here, we profiled four small RNA libraries, each constructed from groups of immature grains of Zea mays inbred line Chang 7–2 collected 4–6, 7–9, 12–14, and 18–23 days after pollination (DAP). A total of 40 known (containing 111 unique miRNAs) and 162 novel (containing 196 unique miRNA candidates) miRNA families were identified. For conserved and novel miRNAs with over 100 total reads, 44% had higher accumulation before the 9th DAP, especially miR166 family members. 42% of miRNAs had highest accumulation during 12–14 DAP (which is the transition stage from embryogenesis to nutrient storage). Only 14% of miRNAs had higher expression 18–23 DAP. Prediction of potential targets of all miRNAs showed that 165 miRNA families had 377 target genes. For miR164 and miR166, we showed that the transcriptional levels of their target genes were significantly decreased when co-expressed with their cognate miRNA precursors in vivo. Further analysis shows miR159, miR164, miR166, miR171, miR390, miR399, and miR529 families have putative roles in the embryogenesis of maize grain development by participating in transcriptional regulation and morphogenesis, while miR167 and miR528 families participate in metabolism process and stress response during nutrient storage. Our study is the first to present an integrated dynamic expression pattern of miRNAs during maize kernel formation and maturation.
Collapse
Affiliation(s)
- Dandan Li
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Zongcai Liu
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Lei Gao
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
| | - Lifang Wang
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Meijuan Gao
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Zhujin Jiao
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Huili Qiao
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Jianwei Yang
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Min Chen
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Lunguang Yao
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Renyi Liu
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
- * E-mail: (RYL); (YCK)
| | - Yunchao Kan
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
- * E-mail: (RYL); (YCK)
| |
Collapse
|
717
|
Baldrich P, Hsing YIC, San Segundo B. Genome-Wide Analysis of Polycistronic MicroRNAs in Cultivated and Wild Rice. Genome Biol Evol 2016; 8:1104-14. [PMID: 27190137 PMCID: PMC4860694 DOI: 10.1093/gbe/evw062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that direct posttranscriptional gene silencing in eukaryotes. They are frequently clustered in the genomes of animals and can be independently transcribed or simultaneously transcribed into single polycistronic transcripts. Only a few miRNA clusters have been described in plants, and most of them are generated from independent transcriptional units. Here, we used a combination of bioinformatic tools and experimental analyses to discover new polycistronic miRNAs in rice. A genome-wide analysis of clustering patterns of MIRNA loci in the rice genome was carried out using a criterion of 3 kb as the maximal distance between two miRNAs. This analysis revealed 28 loci with the ability to form the typical hairpin structure of miRNA precursors in which 2 or more mature miRNAs mapped along the same structure. RT-PCR provided evidence for the polycistronic nature of seven miRNA precursors containing homologous or nonhomologous miRNA species. Polycistronic miRNAs and candidate polycistronic miRNAs are located across different rice chromosomes, except chromosome 12, and resided in both duplicated and nonduplicated chromosomal regions. Finally, most polycistronic and candidate polycistronic miRNAs showed a pattern of conservation in the genome of rice species with an AA genome. The diversity in the organization of MIR genes that are transcribed as polycistrons suggests a versatile mechanism for the control of gene expression in different biological processes and supports additional levels of complexity in miRNA functioning in plants.
Collapse
Affiliation(s)
- Patricia Baldrich
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | | | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| |
Collapse
|
718
|
Wang Y, Li L, Tang S, Liu J, Zhang H, Zhi H, Jia G, Diao X. Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet. BMC Genet 2016; 17:57. [PMID: 27068810 PMCID: PMC4828802 DOI: 10.1186/s12863-016-0364-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/01/2016] [Indexed: 12/03/2022] Open
Abstract
Background Foxtail millet (Setaria italica) is a diploid C4 panicoid species. Because of its prominent drought resistance, small genome size, self-pollination, and short life cycle, foxtail millet has become an ideal model system for studying drought tolerance of crops. MicroRNAs (miRNAs) are endogenous, small RNAs that play important regulatory roles in the development and stress response in plants. Results In this study, we applied Illumina sequencing to systematically investigate the drought-responsive miRNAs derived from S. italica inbred An04-4783 seedlings grown under control and drought conditions. Degradome sequencing was applied to confirm the targets of these miRNAs at a global level. A total of 81 known miRNAs belonging to 28 families were identified, among which 14 miRNAs were upregulated and four were downregulated in response to drought. In addition, 72 potential novel miRNAs were identified, three of which were differentially expressed under drought conditions. Degradome sequencing analysis showed that 56 and 26 genes were identified as targets of known and novel miRNAs, respectively. Conclusions Our analysis revealed post-transcriptional remodeling of cell development, transcription factors, ABA signaling, and cellar homeostasis in S.italica in response to drought. This preliminary characterization provided useful information for further studies on the regulatory networks of drought-responsive miRNAs in foxtail millet. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0364-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongqiang Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050012, People's Republic of China.,Institute of cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 05003, People's Republic of China
| | - Lin Li
- College of Life Science, Hebei Normal University, Shijiazhuang, 050012, People's Republic of China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jianguang Liu
- Institute of cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 05003, People's Republic of China
| | - Hanshuang Zhang
- Institute of cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 05003, People's Republic of China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Xianmin Diao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050012, People's Republic of China. .,Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
719
|
In silico search and biological validation of microRNAs related to drought response in peach and almond. Funct Integr Genomics 2016; 17:189-201. [PMID: 27068847 DOI: 10.1007/s10142-016-0488-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
Plant responses to drought stress are regulated at the transcriptional and post-transcriptional levels through noncoding endogenous microRNAs. These microRNAs play key roles in gene expression, mainly by down-regulating target mRNAs. In this work, an in silico search and validation for microRNAs related to drought response in peach ('G.H. Hill'), almond ('Sefied') and an interspecific peach-almond hybrid ('GN 15') has been performed. We used qPCR to analyse the gene expression of several miRNAs described as being related to drought response in peach, including miR156, miR159, miR160, miR167, miR171, miR172, miR398, miR403, miR408, miR842 and miR2275 under mild and severe water deficit. These miRNAs were in silico selected on the basis of previous works, their conservation in plants and their drought response. qPCR analysis confirmed the implication of these miRNAs in the dehydration stress response in the three assayed genotypes. Comparison of miRNA expression patterns in the three evaluated genotypes indicated that the hybrid GN 15 showed higher expression levels of specific miRNAs which should be related to the observed drought tolerance. mRNA target transcripts of the miRNAs studied were predicted using the Rose database, which includes transcription factors that regulate plant growth and development. In addition, results showed that the promoter region contains responsive elements to hormone-mediated regulatory elements. Network analysis not only unravelled the interaction between miRNAs and their predicted gene targets but also highlighted the roles of miRNAs in response to drought stress.
Collapse
|
720
|
Melnikova NV, Dmitriev AA, Belenikin MS, Koroban NV, Speranskaya AS, Krinitsina AA, Krasnov GS, Lakunina VA, Snezhkina AV, Sadritdinova AF, Kishlyan NV, Rozhmina TA, Klimina KM, Amosova AV, Zelenin AV, Muravenko OV, Bolsheva NL, Kudryavtseva AV. Identification, Expression Analysis, and Target Prediction of Flax Genotroph MicroRNAs Under Normal and Nutrient Stress Conditions. FRONTIERS IN PLANT SCIENCE 2016; 7:399. [PMID: 27092149 PMCID: PMC4821855 DOI: 10.3389/fpls.2016.00399] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/14/2016] [Indexed: 05/19/2023]
Abstract
Cultivated flax (Linum usitatissimum L.) is an important plant valuable for industry. Some flax lines can undergo heritable phenotypic and genotypic changes (LIS-1 insertion being the most common) in response to nutrient stress and are called plastic lines. Offspring of plastic lines, which stably inherit the changes, are called genotrophs. MicroRNAs (miRNAs) are involved in a crucial regulatory mechanism of gene expression. They have previously been assumed to take part in nutrient stress response and can, therefore, participate in genotroph formation. In the present study, we performed high-throughput sequencing of small RNAs (sRNAs) extracted from flax plants grown under normal, phosphate deficient and nutrient excess conditions to identify miRNAs and evaluate their expression. Our analysis revealed expression of 96 conserved miRNAs from 21 families in flax. Moreover, 475 novel potential miRNAs were identified for the first time, and their targets were predicted. However, none of the identified miRNAs were transcribed from LIS-1. Expression of seven miRNAs (miR168, miR169, miR395, miR398, miR399, miR408, and lus-miR-N1) with up- or down-regulation under nutrient stress (on the basis of high-throughput sequencing data) was evaluated on extended sampling using qPCR. Reference gene search identified ETIF3H and ETIF3E genes as most suitable for this purpose. Down-regulation of novel potential lus-miR-N1 and up-regulation of conserved miR399 were revealed under the phosphate deficient conditions. In addition, the negative correlation of expression of lus-miR-N1 and its predicted target, ubiquitin-activating enzyme E1 gene, as well as, miR399 and its predicted target, ubiquitin-conjugating enzyme E2 gene, was observed. Thus, in our study, miRNAs expressed in flax plastic lines and genotrophs were identified and their expression and expression of their targets was evaluated using high-throughput sequencing and qPCR for the first time. These data provide new insights into nutrient stress response regulation in plastic flax cultivars.
Collapse
Affiliation(s)
- Nataliya V. Melnikova
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Alexey A. Dmitriev
- Laboratory of Structural and Functional Genomics, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Maxim S. Belenikin
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
- Department of Higher Plants, Lomonosov Moscow State UniversityMoscow, Russia
| | - Nadezhda V. Koroban
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Anna S. Speranskaya
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
- Department of Higher Plants, Lomonosov Moscow State UniversityMoscow, Russia
| | | | - George S. Krasnov
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Valentina A. Lakunina
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Anastasiya V. Snezhkina
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Asiya F. Sadritdinova
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Natalya V. Kishlyan
- Laboratory of Genetics, All-Russian Research Institute for FlaxTorzhok, Russia
| | - Tatiana A. Rozhmina
- Laboratory of Genetics, All-Russian Research Institute for FlaxTorzhok, Russia
| | - Kseniya M. Klimina
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of SciencesMoscow, Russia
| | - Alexandra V. Amosova
- Laboratory of Molecular Karyology, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Alexander V. Zelenin
- Laboratory of Molecular Karyology, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Olga V. Muravenko
- Laboratory of Molecular Karyology, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Nadezhda L. Bolsheva
- Laboratory of Molecular Karyology, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Anna V. Kudryavtseva
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
721
|
Mermigka G, Verret F, Kalantidis K. RNA silencing movement in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:328-42. [PMID: 26297506 DOI: 10.1111/jipb.12423] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/20/2015] [Indexed: 05/21/2023]
Abstract
Multicellular organisms, like higher plants, need to coordinate their growth and development and to cope with environmental cues. To achieve this, various signal molecules are transported between neighboring cells and distant organs to control the fate of the recipient cells and organs. RNA silencing produces cell non-autonomous signal molecules that can move over short or long distances leading to the sequence specific silencing of a target gene in a well defined area of cells or throughout the entire plant, respectively. The nature of these signal molecules, the route of silencing spread, and the genes involved in their production, movement and reception are discussed in this review. Additionally, a short section on features of silencing spread in animal models is presented at the end of this review.
Collapse
Affiliation(s)
- Glykeria Mermigka
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Frédéric Verret
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | - Kriton Kalantidis
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| |
Collapse
|
722
|
Zhao Y, Zhang C, Liu W, Gao W, Liu C, Song G, Li WX, Mao L, Chen B, Xu Y, Li X, Xie C. An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci Rep 2016; 6:23890. [PMID: 27033976 PMCID: PMC4817149 DOI: 10.1038/srep23890] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/15/2016] [Indexed: 12/16/2022] Open
Abstract
Precision DNA/gene replacement is a promising genome-editing tool that is highly desirable for molecular engineering and breeding by design. Although the CRISPR/Cas9 system works well as a tool for gene knockout in plants, gene replacement has rarely been reported. Towards this end, we first designed a combinatory dual-sgRNA/Cas9 vector (construct #1) that successfully deleted miRNA gene regions (MIR169a and MIR827a). The deletions were confirmed by PCR and subsequent sequencing, yielding deletion efficiencies of 20% and 24% on MIR169a and MIR827a loci, respectively. We designed a second structure (construct #2) that contains sites homologous to Arabidopsis TERMINAL FLOWER 1 (TFL1) for homology-directed repair (HDR) with regions corresponding to the two sgRNAs on the modified construct #1. The two constructs were co-transformed into Arabidopsis plants to provide both targeted deletion and donor repair for targeted gene replacement by HDR. Four of 500 stably transformed T0 transgenic plants (0.8%) contained replaced fragments. The presence of the expected recombination sites was further confirmed by sequencing. Therefore, we successfully established a gene deletion/replacement system in stably transformed plants that can potentially be utilized to introduce genes of interest for targeted crop improvement.
Collapse
Affiliation(s)
- Yongping Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081 China
| | - Congsheng Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081 China.,Anhui Agricultural University, Hefei, Anhui Province, 230036 China
| | - Wenwen Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081 China
| | - Wei Gao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081 China
| | - Changlin Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081 China
| | - Gaoyuan Song
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081 China
| | - Wen-Xue Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081 China
| | - Long Mao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081 China
| | - Beijiu Chen
- Anhui Agricultural University, Hefei, Anhui Province, 230036 China
| | - Yunbi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081 China
| | - Xinhai Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081 China
| | - Chuanxiao Xie
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081 China
| |
Collapse
|
723
|
Reyes CA, Ocolotobiche EE, Marmisollé FE, Robles Luna G, Borniego MB, Bazzini AA, Asurmendi S, García ML. Citrus psorosis virus 24K protein interacts with citrus miRNA precursors, affects their processing and subsequent miRNA accumulation and target expression. MOLECULAR PLANT PATHOLOGY 2016; 17:317-29. [PMID: 26033697 PMCID: PMC6638441 DOI: 10.1111/mpp.12282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sweet orange (Citrus sinensis), one of the most important fruit crops worldwide, may suffer from disease symptoms induced by virus infections, thus resulting in dramatic economic losses. Here, we show that the infection of sweet orange plants with two isolates of Citrus psorosis virus (CPsV) expressing different symptomatology alters the accumulation of a set of endogenous microRNAs (miRNAs). Within these miRNAs, miR156, miR167 and miR171 were the most down-regulated, with almost a three-fold reduction in infected samples. This down-regulation led to a concomitant up-regulation of some of their targets, such as Squamosa promoter-binding protein-like 9 and 13, as well as Scarecrow-like 6. The processing of miRNA precursors, pre-miR156 and pre-miR171, in sweet orange seems to be affected by the virus. For instance, virus infection increases the level of unprocessed precursors, which is accompanied by a concomitant decrease in mature species accumulation. miR156a primary transcript accumulation remained unaltered, thus strongly suggesting a processing deregulation for this transcript. The co-immunoprecipitation of viral 24K protein with pre-miR156a or pre-miR171a suggests that the alteration in the processing of these precursors might be caused by a direct or indirect interaction with this particular viral protein. This result is also consistent with the nuclear localization of both miRNA precursors and the CPsV 24K protein. This study contributes to the understanding of the manner in which a virus can alter host regulatory mechanisms, particularly miRNA biogenesis and target expression.
Collapse
Affiliation(s)
- Carina A Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| | - Eliana E Ocolotobiche
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| | - Facundo E Marmisollé
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| | - Gabriel Robles Luna
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| | - María B Borniego
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| | - Ariel A Bazzini
- Instituto de Biotecnología, CICVyA-INTA, Hurlingham, Buenos Aires, Argentina
| | - Sebastian Asurmendi
- Instituto de Biotecnología, CICVyA-INTA, Hurlingham, Buenos Aires, Argentina
| | - María L García
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| |
Collapse
|
724
|
Wu P, Wu Y, Liu CC, Liu LW, Ma FF, Wu XY, Wu M, Hang YY, Chen JQ, Shao ZQ, Wang B. Identification of Arbuscular Mycorrhiza (AM)-Responsive microRNAs in Tomato. FRONTIERS IN PLANT SCIENCE 2016; 7:429. [PMID: 27066061 PMCID: PMC4814767 DOI: 10.3389/fpls.2016.00429] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/18/2016] [Indexed: 05/25/2023]
Abstract
A majority of land plants can form symbiosis with arbuscular mycorrhizal (AM) fungi. MicroRNAs (miRNAs) have been implicated to regulate this process in legumes, but their involvement in non-legume species is largely unknown. In this study, by performing deep sequencing of sRNA libraries in tomato roots and comparing with tomato genome, a total of 700 potential miRNAs were predicted, among them, 187 are known plant miRNAs that have been previously deposited in miRBase. Unlike the profiles in other plants such as rice and Arabidopsis, a large proportion of predicted tomato miRNAs was 24 nt in length. A similar pattern was observed in the potato genome but not in tobacco, indicating a Solanum genus-specific expansion of 24-nt miRNAs. About 40% identified tomato miRNAs showed significantly altered expressions upon Rhizophagus irregularis inoculation, suggesting the potential roles of these novel miRNAs in AM symbiosis. The differential expression of five known and six novel miRNAs were further validated using qPCR analysis. Interestingly, three up-regulated known tomato miRNAs belong to a known miR171 family, a member of which has been reported in Medicago truncatula to regulate AM symbiosis. Thus, the miR171 family likely regulates AM symbiosis conservatively across different plant lineages. More than 1000 genes targeted by potential AM-responsive miRNAs were provided and their roles in AM symbiosis are worth further exploring.
Collapse
Affiliation(s)
- Ping Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Yue Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Cheng-Chen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Li-Wei Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Fang-Fang Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Xiao-Yi Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Mian Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Yue-Yu Hang
- Institute of Botany, Jiangsu Province and Chinese Academy of SciencesNanjing, China
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Bin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| |
Collapse
|
725
|
Singh NK. microRNAs Databases: Developmental Methodologies, Structural and Functional Annotations. Interdiscip Sci 2016; 9:357-377. [PMID: 27021491 DOI: 10.1007/s12539-016-0166-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/08/2016] [Accepted: 03/11/2016] [Indexed: 12/31/2022]
Abstract
microRNA (miRNA) is an endogenous and evolutionary conserved non-coding RNA, involved in post-transcriptional process as gene repressor and mRNA cleavage through RNA-induced silencing complex (RISC) formation. In RISC, miRNA binds in complementary base pair with targeted mRNA along with Argonaut proteins complex, causes gene repression or endonucleolytic cleavage of mRNAs and results in many diseases and syndromes. After the discovery of miRNA lin-4 and let-7, subsequently large numbers of miRNAs were discovered by low-throughput and high-throughput experimental techniques along with computational process in various biological and metabolic processes. The miRNAs are important non-coding RNA for understanding the complex biological phenomena of organism because it controls the gene regulation. This paper reviews miRNA databases with structural and functional annotations developed by various researchers. These databases contain structural and functional information of animal, plant and virus miRNAs including miRNAs-associated diseases, stress resistance in plant, miRNAs take part in various biological processes, effect of miRNAs interaction on drugs and environment, effect of variance on miRNAs, miRNAs gene expression analysis, sequence of miRNAs, structure of miRNAs. This review focuses on the developmental methodology of miRNA databases such as computational tools and methods used for extraction of miRNAs annotation from different resources or through experiment. This study also discusses the efficiency of user interface design of every database along with current entry and annotations of miRNA (pathways, gene ontology, disease ontology, etc.). Here, an integrated schematic diagram of construction process for databases is also drawn along with tabular and graphical comparison of various types of entries in different databases. Aim of this paper is to present the importance of miRNAs-related resources at a single place.
Collapse
Affiliation(s)
- Nagendra Kumar Singh
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, M.P., 462003, India.
| |
Collapse
|
726
|
Wu X, Ding D, Shi C, Xue Y, Zhang Z, Tang G, Tang J. microRNA-dependent gene regulatory networks in maize leaf senescence. BMC PLANT BIOLOGY 2016; 16:73. [PMID: 27000050 PMCID: PMC4802599 DOI: 10.1186/s12870-016-0755-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/14/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND Maize grain yield depends mainly on the photosynthetic efficiency of functional leaves, which is controlled by an array of gene networks and other factors, including environmental conditions. MicroRNAs (miRNAs) are small RNA molecules that play important roles in plant developmental regulation. A few senescence-associated miRNAs (SA-miRNAs) have been identified as important participants in regulating leaf senescence by modulating the expression levels of their target genes. RESULTS To elucidate miRNA roles in leaf senescence and their underlying molecular mechanisms in maize, a stay-green line, Yu87-1, and an early leaf senescence line, Early leaf senescence-1 (ELS-1), were selected as experimental materials for the differential expression of candidate miRNAs. Four small RNA libraries were constructed from ear leaves at 20 and 30 days after pollination and sequenced by Illumina deep sequencing technology. Altogether, 81 miRNAs were detected in both lines. Of these, 16 miRNAs of nine families were differentially expressed between ELS-1 andYu87-1. The phenotypic and chlorophyll content analyses of both lines identified these 16 differentially expressed miRNAs as candidate SA-miRNAs. CONCLUSIONS In this study, 16 candidate SA-miRNAs of ELS-1 were identified through small RNA deep sequencing technology. Degradome sequencing results indicated that these candidate SA-miRNAs may regulate leaf senescence through their target genes, mainly transcription factors, and potentially control chlorophyll degradation pathways. The results highlight the regulatory roles of miRNAs during leaf senescence in maize.
Collapse
Affiliation(s)
- Xiangyuan Wu
- />National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| | - Dong Ding
- />National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| | - Chaonan Shi
- />National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| | - Yadong Xue
- />National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| | - Zhanhui Zhang
- />National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| | - Guiliang Tang
- />National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
- />Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931 USA
| | - Jihua Tang
- />National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
- />Hubei Collaborative Innovation Center for the Grain Industry, Yangtze University, Jingzhou, 434025 China
| |
Collapse
|
727
|
Ma X, Tang Z, Qin J, Meng Y. The use of high-throughput sequencing methods for plant microRNA research. RNA Biol 2016; 12:709-19. [PMID: 26016494 DOI: 10.1080/15476286.2015.1053686] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
MicroRNA (miRNA) acts as a critical regulator of gene expression at post-transcriptional and occasionally transcriptional levels in plants. Identification of reliable miRNA genes, monitoring the procedures of transcription, processing and maturation of the miRNAs, quantification of the accumulation levels of the miRNAs in specific biological samples, and validation of miRNA-target interactions become the basis for thoroughly understanding of the miRNA-mediated regulatory networks and the underlying mechanisms. Great progresses have been achieved for sequencing technology. Based on the high degree of sequencing depth and coverage, the high-throughput sequencing (HTS, also called next-generation sequencing) technology provides unprecedentedly efficient way for genome-wide or transcriptome-wide studies. In this review, we will introduce several HTS platform-based methods useful for plant miRNA research, including RNA-seq (RNA sequencing), RNA-PET-seq (paired end tag sequencing of RNAs), sRNA-seq (small RNA sequencing), dsRNA-seq (double-stranded RNA sequencing), ssRNA-seq (single-stranded RNA sequencing) and degradome-seq (degradome sequencing). In particular, we will provide some special cases to illustrate the novel use of HTS methods for investigation of the processing modes of the miRNA precursors, identification of the RNA editing sites on miRNA precursors, mature miRNAs and target transcripts, re-examination of the current miRNA registries, and discovery of novel miRNA species and novel miRNA-target interactions. Summarily, we opinioned that integrative use of the above mentioned HTS methods could make the studies on miRNAs more efficient.
Collapse
Affiliation(s)
- Xiaoxia Ma
- a College of Life and Environmental Sciences; Hangzhou Normal University ; Hangzhou , PR China
| | | | | | | |
Collapse
|
728
|
Deng P, Bian J, Yue H, Feng K, Wang M, Du X, Weining S, Nie X. Characterization of microRNAs and their targets in wild barley (Hordeum vulgare subsp. spontaneum) using deep sequencing. Genome 2016; 59:339-48. [PMID: 27100818 DOI: 10.1139/gen-2015-0224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
MicroRNAs (miRNA) are a class of small, endogenous RNAs that play a negative regulatory role in various developmental and metabolic processes of plants. Wild barley (Hordeum vulgare subsp. spontaneum), as the progenitor of cultivated barley (Hordeum vulgare subsp. vulgare), has served as a valuable germplasm resource for barley genetic improvement. To survey miRNAs in wild barley, we sequenced the small RNA library prepared from wild barley using the Illumina deep sequencing technology. A total of 70 known miRNAs and 18 putative novel miRNAs were identified. Sequence analysis revealed that all of the miRNAs identified in wild barley contained the highly conserved hairpin sequences found in barley cultivars. MiRNA target predictions showed that 12 out of 52 miRNA families were predicted to target transcription factors, including 8 highly conserved miRNA families in plants and 4 wheat-barley conserved miRNA families. In addition to transcription factors, other predicted target genes were involved in diverse physiological and metabolic processes and stress defense. Our study for the first time reported the large-scale investigation of small RNAs in wild barley, which will provide essential information for understanding the regulatory role of miRNAs in wild barley and also shed light on future practical utilization of miRNAs for barley improvement.
Collapse
Affiliation(s)
- Pingchuan Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianxin Bian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Yue
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kewei Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengxing Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianghong Du
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Song Weining
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
729
|
Bai S, Saito T, Ito A, Tuan PA, Xu Y, Teng Y, Moriguchi T. Small RNA and PARE sequencing in flower bud reveal the involvement of sRNAs in endodormancy release of Japanese pear (Pyrus pyrifolia 'Kosui'). BMC Genomics 2016; 17:230. [PMID: 26976036 PMCID: PMC4791883 DOI: 10.1186/s12864-016-2514-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/23/2016] [Indexed: 01/12/2023] Open
Abstract
Background In woody perennial plants, including deciduous fruit trees, such as pear, endodormancy is a strategy for surviving the cold winter. A better understanding of the mechanism underlying the endodormancy phase transition is necessary for developing countermeasures against the effects of global warming. In this study, we analyzed the sRNAome of Japanese pear flower buds in endodormant and ecodormant stages over two seasons by implementing of RNA-seq and degradome-sequencing. Results We identified 137 conserved or less conserved miRNAs and 50 pear-specific miRNAs. However, none of the conserved microRNAs or pear-specific miRNAs was differentially expressed between endodormancy and ecodormancy stages. On the contrast, 1540 of 218,050 loci that produced sRNAs were differentially expressed between endodormancy and ecodormancy, suggesting their potential roles on the phase transition from endodormancy to ecodomancy. We also characterized a multifunctional miRNA precursor MIR168, which produces two functional miR168 transcripts, namely miR168.1 and miR168.2; cleavage events were predominantly mediated by the non-conserved variant miR168.2 rather than the conserved variant miR168.1. Finally, we showed that a TAS3 trans-acting siRNA triggered phased siRNA within the ORF of one of its target genes, AUXIN RESPONSE FACTOR 4, via the analysis of phased siRNA loci, indicating that siRNAs are able to trigger phased siRNAs in pear. Conclusion We analyzed the sRNAome of pear flower bud during dormant phase transition. Our work described the sRNA profiles of pear winter buds during dormant phase transition, showing that dormancy release is a highly coordinated physiological process involving the regulation of sRNAs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2514-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Songling Bai
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605, Japan. .,Department of Horticulture, The State Agricultural Ministry's Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| | - Takanori Saito
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605, Japan.,Present address: Graduate School of Horticulture, Chiba University, Matsudo-shi, Chiba, 271-8510, Japan
| | - Akiko Ito
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605, Japan
| | - Pham Anh Tuan
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605, Japan
| | - Ying Xu
- Department of Horticulture, The State Agricultural Ministry's Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yuanwen Teng
- Department of Horticulture, The State Agricultural Ministry's Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Takaya Moriguchi
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605, Japan.
| |
Collapse
|
730
|
Huang JH, Qi YP, Wen SX, Guo P, Chen XM, Chen LS. Illumina microRNA profiles reveal the involvement of miR397a in Citrus adaptation to long-term boron toxicity via modulating secondary cell-wall biosynthesis. Sci Rep 2016; 6:22900. [PMID: 26962011 PMCID: PMC4790630 DOI: 10.1038/srep22900] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/24/2016] [Indexed: 12/25/2022] Open
Abstract
The mechanisms underlying tolerance to B-toxicity in plants are still controversial. Our previous studies indicated that B-toxicity is mainly limited to leaves in Citrus and that alternations of cell-wall structure in vascular bundles are involved in tolerance to B-toxicity. Here, miRNAs and their expression patterns were first identified in B-treated Citrus sinensis (tolerant) and C. grandis (intolerant) leaves via high-throughput sequencing. Candidate miRNAs were then verified with molecular and anatomical approaches. The results showed that 51 miRNAs in C. grandis and 20 miRNAs in C. sinensis were differentially expressed after B-toxic treatment. MiR395a and miR397a were the most significantly up-regulated miRNAs in B-toxic C. grandis leaves, but both were down-regulated in B-toxic C. sinensis leaves. Four auxin response factor genes and two laccase (LAC) genes were confirmed through 5′-RACE to be real targets of miR160a and miR397a, respectively. Up-regulation of LAC4 resulted in secondary deposition of cell-wall polysaccharides in vessel elements of C. sinensis, whereas down-regulation of both LAC17 and LAC4, led to poorly developed vessel elements in C. grandis. Our findings demonstrated that miR397a plays a pivotal role in woody Citrus tolerance to B-toxicity by targeting LAC17 and LAC4, both of which are responsible for secondary cell-wall synthesis.
Collapse
Affiliation(s)
- Jing-Hao Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Pomological Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Shou-Xing Wen
- Pomological Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Peng Guo
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Resource and Environmental Science, Fujian Agriculture and Forestry University,Fuzhou 350002, China
| | - Xiao-Min Chen
- Pomological Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Resource and Environmental Science, Fujian Agriculture and Forestry University,Fuzhou 350002, China.,Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
731
|
Gu M, Chen A, Sun S, Xu G. Complex Regulation of Plant Phosphate Transporters and the Gap between Molecular Mechanisms and Practical Application: What Is Missing? MOLECULAR PLANT 2016; 9:396-416. [PMID: 26714050 DOI: 10.1016/j.molp.2015.12.012] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/18/2015] [Accepted: 12/11/2015] [Indexed: 05/18/2023]
Abstract
It has been almost 25 years since the first report of the gene encoding a high-affinity phosphate transporter (PT), PHO84, in yeast. Since then, an increasing number of yeast PHO84 homologs as well as other genes encoding proteins with phosphate (Pi) transport activities have been identified and functionally characterized in diverse plant species. Great progress has been made also in deciphering the molecular mechanism underlying the regulation of the abundance and/or activity of these genes and their products. The regulatory genes affect plant Pi homeostasis commonly through direct or indirect regulation of the abundance of PTs at different levels. However, little has been achieved in the use of PTs for developing genetically modified crops with high phosphorus use efficiency (PUE). This might be a consequence of overemphasizing Pi uptake from the rhizosphere and lack of knowledge about the roles of PTs in Pi transport and recycling within the plant that are required to optimize PUE. Here, we mainly focused on the genes encoding proteins with Pi transport activities and the emerging understanding of their regulation at the transcriptional, post-transcriptional, translational, and post-translational levels. In addition, we propose potential strategies for effective use of PTs in improving plant growth and development.
Collapse
Affiliation(s)
- Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Aiqun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China.
| |
Collapse
|
732
|
Ma CL, Qi YP, Liang WW, Yang LT, Lu YB, Guo P, Ye X, Chen LS. MicroRNA Regulatory Mechanisms on Citrus sinensis leaves to Magnesium-Deficiency. FRONTIERS IN PLANT SCIENCE 2016; 7:201. [PMID: 26973661 PMCID: PMC4778066 DOI: 10.3389/fpls.2016.00201] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/05/2016] [Indexed: 05/06/2023]
Abstract
Magnesium (Mg)-deficiency, which affects crop productivity and quality, widespreadly exists in many agricultural crops, including citrus. However, very limited data are available on Mg-deficiency-responsive microRNAs (miRNAs) in higher plants. Using Illumina sequencing, we isolated 75 (73 known and 2 novel) up- and 71 (64 known and 7 novel) down-regulated miRNAs from Mg-deficient Citrus sinensis leaves. In addition to the remarkable metabolic flexibility as indicated by the great alteration of miRNA expression, the adaptive responses of leaf miRNAs to Mg-deficiency might also involve the following several aspects: (a) up-regulating stress-related genes by down-regulating miR164, miR7812, miR5742, miR3946, and miR5158; (b) enhancing cell transport due to decreased expression of miR3946 and miR5158 and increased expression of miR395, miR1077, miR1160, and miR8019; (c) activating lipid metabolism-related genes by repressing miR158, miR5256, and miR3946; (d) inducing cell wall-related gene expansin 8A by repressing miR779; and (e) down-regulating the expression of genes involved in the maintenance of S, K and Cu by up-regulating miR395 and miR6426. To conclude, we isolated some new known miRNAs (i.e., miR7812, miR8019, miR6218, miR1533, miR6426, miR5256, miR5742, miR5561, miR5158, and miR5818) responsive to nutrient deficiencies and found some candidate miRNAs that might contribute to Mg-deficiency tolerance. Therefore, our results not only provide novel information about the responses of plant to Mg-deficiency, but also are useful for obtaining the key miRNAs for plant Mg-deficiency tolerance.
Collapse
Affiliation(s)
- Cui-Lan Ma
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical SciencesFuzhou, China
| | - Wei-Wei Liang
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yi-Bin Lu
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Peng Guo
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xin Ye
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
733
|
Chand SK, Nanda S, Joshi RK. Regulation of miR394 in Response to Fusarium oxysporum f. sp. cepae (FOC) Infection in Garlic (Allium sativum L). FRONTIERS IN PLANT SCIENCE 2016; 7:258. [PMID: 26973694 PMCID: PMC4777725 DOI: 10.3389/fpls.2016.00258] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/16/2016] [Indexed: 05/23/2023]
Abstract
MicroRNAs (miRNAs) are a class of post-transcriptional regulators that negatively regulate gene expression through target mRNA cleavage or translational inhibition and play important roles in plant development and stress response. In the present study, six conserved miRNAs from garlic (Allium sativum L.) were analyzed to identify differentially expressed miRNAs in response to Fusarium oxysporum f. sp. cepae (FOC) infection. Stem-loop RT-PCR revealed that miR394 is significantly induced in garlic seedlings post-treatment with FOC for 72 h. The induction of miR394 expression during FOC infection was restricted to the basal stem plate tissue, the primary site of infection. Garlic miR394 was also upregulated by exogenous application of jasmonic acid. Two putative targets of miR394 encoding F-box domain and cytochrome P450 (CYP450) family proteins were predicted and verified using 5' RLM-RACE (RNA ligase mediated rapid amplification of cDNA ends) assay. Quantitative RT-PCR showed that the transcript levels of the predicted targets were significantly reduced in garlic plants exposed to FOC. When garlic cultivars with variable sensitivity to FOC were exposed to the pathogen, an upregulation of miR394 and down regulation of the targets were observed in both varieties. However, the expression pattern was delayed in the resistant genotypes. These results suggest that miR394 functions in negative modulation of FOC resistance and the difference in timing and levels of expression in variable genotypes could be examined as markers for selection of FOC resistant garlic cultivars.
Collapse
|
734
|
Yadav A, Khan Y, Prasad M. Dehydration-responsive miRNAs in foxtail millet: genome-wide identification, characterization and expression profiling. PLANTA 2016; 243:749-66. [PMID: 26676987 DOI: 10.1007/s00425-015-2437-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/20/2015] [Indexed: 05/27/2023]
Abstract
A set of novel and known dehydration-responsive miRNAs have been identified in foxtail millet. These findings provide new insights into understanding the functional role of miRNAs and their respective targets in regulating plant response to dehydration stress. MicroRNAs perform significant regulatory roles in growth, development and stress response of plants. Though the miRNA-mediated gene regulatory networks under dehydration stress remain largely unexplored in plant including foxtail millet (Setaria italica), which is a natural abiotic stress tolerant crop. To find out the dehydration-responsive miRNAs at the global level, four small RNA libraries were constructed from control and dehydration stress treated seedlings of two foxtail millet cultivars showing contrasting tolerance behavior towards dehydration stress. Using Illumina sequencing technology, 55 known and 136 novel miRNAs were identified, representing 22 and 48 miRNA families, respectively. Eighteen known and 33 novel miRNAs were differentially expressed during dehydration stress. After the stress treatment, 32 dehydration-responsive miRNAs were up-regulated in tolerant cultivar and 22 miRNAs were down-regulated in sensitive cultivar, suggesting that miRNA-mediated molecular regulation might play important roles in providing contrasting characteristics to these cultivars. Predicted targets of identified miRNAs were found to encode various transcription factors and functional enzymes, indicating their involvement in broad spectrum regulatory functions and biological processes. Further, differential expression patterns of seven known miRNAs were validated by northern blot and expression of ten novel dehydration-responsive miRNAs were confirmed by SL-qRT PCR. Differential expression behavior of five miRNA-target genes was verified under dehydration stress treatment and two of them also validated by RLM RACE. Overall, the present study highlights the importance of dehydration stress-associated post-transcriptional regulation governed by miRNAs and their targets in a naturally stress-tolerant model crop.
Collapse
Affiliation(s)
- Amita Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Yusuf Khan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| |
Collapse
|
735
|
de Sousa Cardoso TC, Portilho LG, de Oliveira CL, McKeown PC, Maluf WR, Gomes LAA, Teixeira TA, do Amaral LR, Spillane C, de Souza Gomes M. Genome-wide identification and in silico characterisation of microRNAs, their targets and processing pathway genes in Phaseolus vulgaris L. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:206-219. [PMID: 26250338 DOI: 10.1111/plb.12377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 08/03/2015] [Indexed: 06/04/2023]
Abstract
Common bean (Phaseolus vulgaris L., Fabaceae) is a globally important staple crop, which is an important source of calories, protein and essential micronutrients. At the genomic level little is known regarding the small non-coding RNAs within the common bean genome. One of the most important classes of such small non-coding RNAs is microRNAs (miRNAs), which control mRNA and protein expression levels in many eukaryotes. Computational methods have been applied to identify putative miRNAs in the genomes of different organisms. In this study, our objective was to comprehensively identify and characterise miRNAs from the genome and transcriptome of P. vulgaris, including both mature and precursor miRNA forms. We also sought to identify the putative proteins involved in miRNA processing and the likely target genes of common bean miRNAs. We identified 221 mature miRNAs and 136 precursor miRNAs distributed across 52 different miRNA families in the P. vulgaris genome. Amongst these, we distinguished 129 novel mature miRNAs and 123 miRNA precursors belonging to 24 different miRNA families. We also identified 31 proteins predicted to participate in the miRNA-processing pathway in P. vulgaris. Finally, we also identified 483 predicted miRNA targets, including many which corroborate results from other species, suggesting that miRNA regulatory systems are evolutionarily conserved and important for plant development. Our results expand the study of miRNAs and their target genes in common bean, and provide new opportunities to understand their roles in the biology of this important staple crop.
Collapse
Affiliation(s)
- T C de Sousa Cardoso
- Laboratory of Bioinformatics and Molecular Analysis - INGEB/FACOM, Federal University of Uberlandia, Patos de Minas, Brazil
| | - L G Portilho
- Laboratory of Bioinformatics and Molecular Analysis - INGEB/FACOM, Federal University of Uberlandia, Patos de Minas, Brazil
| | - C L de Oliveira
- Department of Agriculture, Federal University of Lavras, Lavras, Brazil
| | - P C McKeown
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), School of Natural Sciences, Áras de Brún, National University of Ireland, Galway, Ireland
| | - W R Maluf
- Department of Agriculture, Federal University of Lavras, Lavras, Brazil
| | - L A A Gomes
- Department of Agriculture, Federal University of Lavras, Lavras, Brazil
| | - T A Teixeira
- Laboratory of Bioinformatics and Molecular Analysis - INGEB/FACOM, Federal University of Uberlandia, Patos de Minas, Brazil
| | - L R do Amaral
- Laboratory of Bioinformatics and Molecular Analysis - INGEB/FACOM, Federal University of Uberlandia, Patos de Minas, Brazil
| | - C Spillane
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), School of Natural Sciences, Áras de Brún, National University of Ireland, Galway, Ireland
| | - M de Souza Gomes
- Laboratory of Bioinformatics and Molecular Analysis - INGEB/FACOM, Federal University of Uberlandia, Patos de Minas, Brazil
| |
Collapse
|
736
|
Liu B, Childs-Disney JL, Znosko BM, Wang D, Fallahi M, Gallo SM, Disney MD. Analysis of secondary structural elements in human microRNA hairpin precursors. BMC Bioinformatics 2016; 17:112. [PMID: 26928172 PMCID: PMC4772329 DOI: 10.1186/s12859-016-0960-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/19/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) regulate gene expression by targeting complementary mRNAs for destruction or translational repression. Aberrant expression of miRNAs has been associated with various diseases including cancer, thus making them interesting therapeutic targets. The composite of secondary structural elements that comprise miRNAs could aid the design of small molecules that modulate their function. RESULTS We analyzed the secondary structural elements, or motifs, present in all human miRNA hairpin precursors and compared them to highly expressed human RNAs with known structures and other RNAs from various organisms. Amongst human miRNAs, there are 3808 are unique motifs, many residing in processing sites. Further, we identified motifs in miRNAs that are not present in other highly expressed human RNAs, desirable targets for small molecules. MiRNA motifs were incorporated into a searchable database that is freely available. We also analyzed the most frequently occurring bulges and internal loops for each RNA class and found that the smallest loops possible prevail. However, the distribution of loops and the preferred closing base pairs were unique to each class. CONCLUSIONS Collectively, we have completed a broad survey of motifs found in human miRNA precursors, highly expressed human RNAs, and RNAs from other organisms. Interestingly, unique motifs were identified in human miRNA processing sites, binding to which could inhibit miRNA maturation and hence function.
Collapse
Affiliation(s)
- Biao Liu
- Department of Chemistry, Scripps Florida, The Scripps Research Institute, 130 Scripps Way 3A1, Jupiter, FL, 33458, USA.
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA.
| | - Jessica L Childs-Disney
- Department of Chemistry, Scripps Florida, The Scripps Research Institute, 130 Scripps Way 3A1, Jupiter, FL, 33458, USA.
| | - Brent M Znosko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO, 63103, USA.
| | - Dan Wang
- Department of Biostatistics, Roswell Park Cancer Institute, 701 Ellicott St, Buffalo, NY, 14203, USA.
- NYS Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott St, Buffalo, NY, 14203, USA.
| | - Mohammad Fallahi
- Informatics Core, The Scripps Research Institute, 130 Scripps Way 2B2, Jupiter, FL, 33458, USA.
| | - Steven M Gallo
- NYS Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott St, Buffalo, NY, 14203, USA.
- The State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| | - Matthew D Disney
- Department of Chemistry, Scripps Florida, The Scripps Research Institute, 130 Scripps Way 3A1, Jupiter, FL, 33458, USA.
| |
Collapse
|
737
|
Ghosal S, Saha S, Das S, Sen R, Goswami S, Jana SS, Chakrabarti J. miRepress: modelling gene expression regulation by microRNA with non-conventional binding sites. Sci Rep 2016; 6:22334. [PMID: 26923536 PMCID: PMC4770313 DOI: 10.1038/srep22334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/08/2016] [Indexed: 01/03/2023] Open
Abstract
Some earlier studies have reported an alternative mode of microRNA-target interaction. We detected target regions within mRNA transcripts from AGO PAR-CLIP that did not contain any conventional microRNA seed pairing but only had non-conventional binding sites with microRNA 3' end. Our study from 7 set of data that measured global protein fold change after microRNA transfection pointed towards the association of target protein fold change with 6-mer and 7-mer target sites involving microRNA 3' end. We developed a model to predict the degree of microRNA target regulation in terms of protein fold changes from the number of different conventional and non-conventional target sites present in the target, and found significant correlation of its output with protein expression changes. We validated the effect of non-conventional interactions with target by modulating the abundance of microRNA in a human breast cancer cell line MCF-7. The validation was done using luciferase assay and immunoblot analysis for our predicted non-conventional microRNA-target pair WNT1 (3' UTR) and miR-367-5p and immunoblot analysis for another predicted non-conventional microRNA-target pair MYH10 (coding region) and miR-181a-5p. Both experiments showed inhibition of targets by transfection of microRNA mimics that were predicted to have only non-conventional sites.
Collapse
Affiliation(s)
- Suman Ghosal
- Computational Biology Group, Indian Association for the Cultivation of Science, Kolkata, West Bengal, 700032, India
| | - Shekhar Saha
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Kolkata, West Bengal, 700032, India
| | - Shaoli Das
- Computational Biology Group, Indian Association for the Cultivation of Science, Kolkata, West Bengal, 700032, India
| | - Rituparno Sen
- Gyanxet, BF 286 Salt Lake, Kolkata, West Bengal, 700064, India
| | - Swagata Goswami
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Kolkata, West Bengal, 700032, India
| | - Siddhartha S. Jana
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Kolkata, West Bengal, 700032, India
| | - Jayprokas Chakrabarti
- Computational Biology Group, Indian Association for the Cultivation of Science, Kolkata, West Bengal, 700032, India
- Gyanxet, BF 286 Salt Lake, Kolkata, West Bengal, 700064, India
| |
Collapse
|
738
|
Liu P, Li X, Gu J, Dong Y, Liu Y, Santhosh P, Chen X. Development of non-defective recombinant densovirus vectors for microRNA delivery in the invasive vector mosquito, Aedes albopictus. Sci Rep 2016; 6:20979. [PMID: 26879823 PMCID: PMC4754678 DOI: 10.1038/srep20979] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
We previously reported that mosquito densoviruses (MDVs) are potential vectors for delivering foreign nucleic acids into mosquito cells. However, considering existing expression strategies, recombinant viruses would inevitably become replication-defective viruses and lose their ability for secondary transmission. The packaging limitations of the virion represent a barrier for the development of MDVs for viral paratransgenesis or as high-efficiency bioinsecticides. Herein, we report the development of a non-defective recombinant Aedes aegypti densovirus (AaeDV) miRNA expression system, mediated by an artificial intron, using an intronic miRNA expression strategy. We demonstrated that this recombinant vector could be used to overexpress endogenous miRNAs or to decrease endogenous miRNAs by generating antisense sponges to explore the biological functions of miRNAs. In addition, the vector could express antisense-miRNAs to induce efficient gene silencing in vivo and in vitro. The recombinant virus effectively self-replicated and retained its secondary transmission ability, similar to the wild-type virus. The recombinant virus was also genetically stable. This study demonstrated the first construction of a non-defective recombinant MDV miRNA expression system, which represents a tool for the functional analysis of mosquito genes and lays the foundation for the application of viral paratransgenesis for dengue virus control.
Collapse
Affiliation(s)
- Peiwen Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaocong Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jinbao Gu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yunqiao Dong
- Reproductive Medical Center of Guangdong Women and Children Hospital, Guangzhou, Guangdong, 511442, China
| | - Yan Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Puthiyakunnon Santhosh
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaoguang Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
739
|
Niu J, Wang J, Hu H, Chen Y, An J, Cai J, Sun R, Sheng Z, Liu X, Lin S. Cross-talk between freezing response and signaling for regulatory transcriptions of MIR475b and its targets by miR475b promoter in Populus suaveolens. Sci Rep 2016; 6:20648. [PMID: 26853706 PMCID: PMC4745078 DOI: 10.1038/srep20648] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/07/2016] [Indexed: 01/20/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that play important roles in post-transcriptional regulation of their target genes, yet the transcriptional regulation of plant miRNAs by promoter is poorly understood. Here, we firstly clone pri-miR475b cDNA and its native promoter from P. suaveolens, and characterize Psu-MIR475b as class-II gene transcribed by RNA polymerase II. By 5′ deletion analysis of Psu-miR475b promoter in a series of promoter-GUS chimeric vectors, we functionally identify three positive regulatory regions and multiple cis-acting elements responsible for Psu-miR475b promoter activity in response to freezing stress and exogenous hormone treatment. Moreover, the Psu-miR475b promoter activity displays a tissue-specific manner, negatively regulated by freezing stress and positively by MeJA, SA or GA treatment. Importantly, we comparatively analyze the time-course transcriptional profiles of Psu-miR475b and its targets in Psu-miR475b over-expression transgenic plants controlled by Psu-miR475b-specific promoter or CaMV 35S constitutive promoter, and explore the regulatory mechanism of Psu-miR475b promoter controlling transcriptional expressions of Psu-MIR475b and its targets in response to freezing stress and exogenous hormone treatment. Our results reveal that Psu-miR475b promoter-mediated transcriptions of Psu-MIR475b and its targets in response to freezing stress may be involved in a cross-talk between freezing response and stress signaling process.
Collapse
Affiliation(s)
- Jun Niu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 10083, China
| | - Jia Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 10083, China
| | - Huiwen Hu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 10083, China
| | - Yinlei Chen
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 10083, China
| | - Jiyong An
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 10083, China
| | - Jian Cai
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 10083, China
| | - Runze Sun
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 10083, China
| | - Zhongting Sheng
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 10083, China
| | - Xieping Liu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 10083, China
| | - Shanzhi Lin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 10083, China
| |
Collapse
|
740
|
Pantaleo V, Vitali M, Boccacci P, Miozzi L, Cuozzo D, Chitarra W, Mannini F, Lovisolo C, Gambino G. Novel functional microRNAs from virus-free and infected Vitis vinifera plants under water stress. Sci Rep 2016; 6:20167. [PMID: 26833264 PMCID: PMC4735847 DOI: 10.1038/srep20167] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/22/2015] [Indexed: 02/01/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the post-transcriptional control of several pathway intermediates, thus playing pivotal roles in plant growth, development and response to biotic and abiotic stresses. In recent years, the grapevine genome release, small(s)-RNAseq and degradome-RNAseq together has allowed the discovery and characterisation of many miRNA species, thus rendering the discovery of additional miRNAs difficult and uncertain. Taking advantage of the miRNA responsiveness to stresses and the availability of virus-free Vitis vinifera plants and those infected only by a latent virus, we have analysed grapevines subjected to drought in greenhouse conditions. The sRNA-seq and other sequence-specific molecular analyses have allowed us to characterise conserved miRNA expression profiles in association with specific eco-physiological parameters. In addition, we here report 12 novel grapevine-specific miRNA candidates and describe their expression profile. We show that latent viral infection can influence the miRNA profiles of V. vinifera in response to drought. Moreover, study of eco-physiological parameters showed that photosynthetic rate, stomatal conductance and hydraulic resistance to water transport were significantly influenced by drought and viral infection. Although no unequivocal cause–effect explanation could be attributed to each miRNA target, their contribution to the drought response is discussed.
Collapse
Affiliation(s)
- Vitantonio Pantaleo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Research Unit of Bari. Via Amendola 165/a, 70126 Bari, Italy
| | - Marco Vitali
- Department of Agricultural, Forest and Food Sciences, University of Torino. Largo P. Braccini 2, 10095 Grugliasco-TO, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Grugliasco Unit. Largo P. Braccini 2, 10095 Grugliasco-TO, Italy
| | - Laura Miozzi
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino. Strada delle Cacce 73, 10135 Torino, Italy
| | - Danila Cuozzo
- Department of Agricultural, Forest and Food Sciences, University of Torino. Largo P. Braccini 2, 10095 Grugliasco-TO, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Grugliasco Unit. Largo P. Braccini 2, 10095 Grugliasco-TO, Italy
| | - Franco Mannini
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Grugliasco Unit. Largo P. Braccini 2, 10095 Grugliasco-TO, Italy
| | - Claudio Lovisolo
- Department of Agricultural, Forest and Food Sciences, University of Torino. Largo P. Braccini 2, 10095 Grugliasco-TO, Italy.,Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Grugliasco Unit. Largo P. Braccini 2, 10095 Grugliasco-TO, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Grugliasco Unit. Largo P. Braccini 2, 10095 Grugliasco-TO, Italy
| |
Collapse
|
741
|
Tsuzuki M, Nishihama R, Ishizaki K, Kurihara Y, Matsui M, Bowman JL, Kohchi T, Hamada T, Watanabe Y. Profiling and Characterization of Small RNAs in the Liverwort, Marchantia polymorpha, Belonging to the First Diverged Land Plants. PLANT & CELL PHYSIOLOGY 2016; 57:359-72. [PMID: 26589267 DOI: 10.1093/pcp/pcv182] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/13/2015] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) have important roles in gene regulation during plant development. Previous studies revealed that some miRNAs are highly shared by most land plants. Recently, the liverwort, Marchantia polymorpha, has been studied by molecular genetic approaches, and sequencing of its genome is currently underway. The expression pattern and the detailed functions of miRNAs during Marchantia development are unknown. Here, we profiled the small RNAs expressed in thalli, antheridiophores and archegoniophores of M. polymorpha using high-throughput RNA sequencing. We revealed that a limited number of miRNAs are shared between M. polymorpha and the moss, Physcomitrella patens, and that a number of miRNAs are M. polymorpha specific. Like other land plants, cognate target genes corresponding to conserved miRNAs could be found in the genome database and were experimentally confirmed to guide cleavage of target mRNAs. The results suggested that two genes in the SPL (SQUAMOSA PROMOTER BINDING-LIKE) transcription factor family, which are regulated by miR156 in most land plants, were instead targeted by two distinct miRNAs in M. polymorpha. In order to demonstrate the physiological roles of miRNAs in M. polymorpha, we constructed an miRNA ectopic expression system to establish overexpression transformants for conserved miRNAs, miR166 and miR319. Ectopic expression of these miRNAs induced abnormal development of the thallus and gemma cups, suggesting that balanced expression of miRNA/target mRNAs has a crucial role in developmental regulation in M. polymorpha. Profiling data on miRNA together with the ectopic expression system would provide new information on the liverwort small RNA world and evolutionary divergence/conservation of small RNA function among land plants.
Collapse
Affiliation(s)
- Masayuki Tsuzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | | | - Yukio Kurihara
- Synthetic Genomics Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045 Japan
| | - Minami Matsui
- Synthetic Genomics Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045 Japan
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia Department of Plant Biology, UC Davis, Davis, CA 95616, USA
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Takahiro Hamada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902 Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902 Japan
| |
Collapse
|
742
|
Baek D, Chun HJ, Kang S, Shin G, Park SJ, Hong H, Kim C, Kim DH, Lee SY, Kim MC, Yun DJ. A Role for Arabidopsis miR399f in Salt, Drought, and ABA Signaling. Mol Cells 2016; 39:111-8. [PMID: 26674968 PMCID: PMC4757798 DOI: 10.14348/molcells.2016.2188] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 11/27/2022] Open
Abstract
MiR399f plays a crucial role in maintaining phosphate homeostasis in Arabidopsis thaliana. Under phosphate starvation conditions, AtMYB2, which plays a role in plant salt and drought stress responses, directly regulates the expression of miR399f. In this study, we found that miR399f also participates in plant responses to abscisic acid (ABA), and to abiotic stresses including salt and drought. Salt and ABA treatment induced the expression of miR399f, as confirmed by histochemical analysis of promoter-GUS fusions. Transgenic Arabidopsis plants overexpressing miR399f (miR399f-OE) exhibited enhanced tolerance to salt stress and exogenous ABA, but hypersensitivity to drought. Our in silico analysis identified ABF3 and CSP41b as putative target genes of miR399f, and expression analysis revealed that mRNA levels of ABF3 and CSP41b decreased remarkably in miR399f-OE plants under salt stress and in response to treatment with ABA. Moreover, we showed that activation of stress-responsive gene expression in response to salt stress and ABA treatment was impaired in miR399f-OE plants. Thus, these results suggested that in addition to phosphate starvation signaling, miR399f might also modulates plant responses to salt, ABA, and drought, by regulating the expression of newly discovered target genes such as ABF3 and CSP41b.
Collapse
Affiliation(s)
- Dongwon Baek
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Hyun Jin Chun
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Songhwa Kang
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Gilok Shin
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Su Jung Park
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Hyewon Hong
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Chanmin Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Doh Hoon Kim
- College of Life Science and Natural Resources, Dong-A University, Busan 604-714,
Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Min Chul Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Dae-Jin Yun
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| |
Collapse
|
743
|
Cakir O, Candar-Cakir B, Zhang B. Small RNA and degradome sequencing reveals important microRNA function in Astragalus chrysochlorus response to selenium stimuli. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:543-56. [PMID: 25998129 PMCID: PMC11388920 DOI: 10.1111/pbi.12397] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/09/2015] [Accepted: 04/14/2015] [Indexed: 05/23/2023]
Abstract
Selenium (Se), an essential element, plays important roles in human health as well as environmental sustainability. Se hyperaccumulating plants are thought as an alternative selenium resource, recently. Astragalus species are known as hyperaccumulator of Se by converting it to nonaminoacid compounds. However, Se-metabolism-related hyperaccumulation is not elucidated in plants yet. MicroRNAs (miRNAs) are key molecules in many biological and metabolic processes via targeting mRNAs, which may also play an important role in Se accumulation in plants. In this study, we identified 418 known miRNAs, belonging to 380 families, and 151 novel miRNAs induced by Se exposure in Astragalus chyrsochlorus callus. Among known miRNAs, the expression of 287 families was common in both libraries, besides 71 families were expressed only in Se-treated sample, whereas 60 conserved families were expressed in control tissue. miR1507a, miR1869 and miR2867-3p were mostly up-regulated, whereas miR1507-5p and miR8781b were significantly down-regulated by Se exposure. Computational analysis shows that the targets of miRNAs are involved in different types of biological mechanisms including 47 types of cellular component, 103 types of molecular function and 144 types of biological process. Degradome analysis shows that 1256 mRNAs were targeted by 499 miRNAs. We conclude that some known and novel miRNAs such as miR167a, miR319, miR1507a, miR4346, miR7767-3p, miR7800, miR9748 and miR-n93 target transcription factors, disease resistance proteins and some specific genes like cysteine synthase and might be related to plant hormone signal transduction, plant-pathogen interaction and sulphur metabolism pathways.
Collapse
Affiliation(s)
- Ozgur Cakir
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Bilgin Candar-Cakir
- Program of Molecular Biology and Genetics, Institute of Science, Istanbul University, Istanbul, Turkey
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, USA
| |
Collapse
|
744
|
Liu T, Fang C, Ma Y, Shen Y, Li C, Li Q, Wang M, Liu S, Zhang J, Zhou Z, Yang R, Wang Z, Tian Z. Global investigation of the co-evolution of MIRNA genes and microRNA targets during soybean domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:396-409. [PMID: 26714457 DOI: 10.1111/tpj.13113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/26/2015] [Accepted: 12/21/2015] [Indexed: 05/24/2023]
Abstract
Although the selection of coding genes during plant domestication has been well studied, the evolution of MIRNA genes (MIRs) and the interaction between microRNAs (miRNAs) and their targets in this process are poorly understood. Here, we present a genome-wide survey of the selection of MIRs and miRNA targets during soybean domestication and improvement. Our results suggest that, overall, MIRs have higher evolutionary rates than miRNA targets. Nonetheless, they do demonstrate certain similar evolutionary patterns during soybean domestication: MIRs and miRNA targets with high expression and duplication status, and with greater numbers of partners, exhibit lower nucleotide divergence than their counterparts without these characteristics, suggesting that expression level, duplication status, and miRNA-target interaction are essential for evolution of MIRs and miRNA targets. Further investigation revealed that miRNA-target pairs that are subjected to strong purifying selection have greater similarities than those that exhibited genetic diversity. Moreover, mediated by domestication and improvement, the similarities of a large number of miRNA-target pairs in cultivated soybean populations were increased compared to those in wild soybeans, whereas a small number of miRNA-target pairs exhibited decreased similarity, which may be associated with the adoption of particular domestication traits. Taken together, our results shed light on the co-evolution of MIRs and miRNA targets during soybean domestication.
Collapse
Affiliation(s)
- Tengfei Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Fang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanming Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Beijing University of Agriculture, Beijing, China
| | - Yanting Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Congcong Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jixiang Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhengkui Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Rui Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zheng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
745
|
Flores-Sandoval E, Dierschke T, Fisher TJ, Bowman JL. Efficient and Inducible Use of Artificial MicroRNAs in Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2016; 57:281-90. [PMID: 25971256 DOI: 10.1093/pcp/pcv068] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 05/07/2015] [Indexed: 05/07/2023]
Abstract
We describe the efficient use of artificial microRNAs (amiRs) in Marchantia polymorpha using both endogenous and heterologous primary microRNA (pri-miR) hairpin backbones. Targeting of two transcription factor genes, MpARF1 and MpRR-B, mediating different hormonal responses, demonstrated that amiRs can create specific and reproducible physiological and morphological defects, facilitating interpretation of gene function. A third amiR was designed to target a gene encoding a component of the Polycomb recessive complex 2, MpE(z), and constitutive expression of this amiR results in sporeling lethality. Adaptation of an estrogen-inducible system allowed analysis of the phenotypic effects of induction of this amiR during other stages of the life cycle. We discuss the advantages and challenges of the use of amiRs as a tool for reverse genetic analysis in M. polymorpha.
Collapse
Affiliation(s)
| | - Tom Dierschke
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Tom J Fisher
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia Department of Plant Biology, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
746
|
Iwamoto M, Tagiri A. MicroRNA-targeted transcription factor gene RDD1 promotes nutrient ion uptake and accumulation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:466-77. [PMID: 26729506 DOI: 10.1111/tpj.13117] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/11/2015] [Accepted: 12/21/2015] [Indexed: 05/20/2023]
Abstract
Fertilizers are often potential environmental pollutants, therefore increasing productivity and the efficiency of nutrient uptake to boost crop yields without the risk of environmental pollution is a desirable goal. Here, we show that the transcription factor encoding gene RDD1 plays a role in improving the uptake and accumulation of various nutrient ions in rice. RDD1 was found to be targeted by the microRNA miR166. An RDD1 transgene driven by a strong constitutive promoter exhibited a diurnally oscillating expression similar to that of the endogenous RDD1, and nucleotide substitution within the miR166 recognition site to prevent miR166-RDD1 mRNA pairing resulted in constitutive RDD1 expression. The RDD1 protein was localized to vascular tissue because miR166 repressed RDD1 expression in the mesophyll. The overexpression of RDD1 induced the expression of genes associated with the transport of several nutrients such as NH4(+), Na(+), SO4(2-), Cl(-), PO4(3-) and sucrose, and the uptake and accumulation of various nutrient ions under low-nutrient conditions. Moreover, the overexpression of RDD1 increased nitrogen responsiveness and grain productivity. Our results suggest that RDD1 can contribute to the increased grain productivity of rice via inducing the efficient uptake and accumulation of various nutrient ions.
Collapse
Affiliation(s)
- Masao Iwamoto
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba Ibaraki, 305-8602, Japan
- JST, PRESTO, Kawaguchi, Saitama, 332-0012, Japan
| | - Akemi Tagiri
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba Ibaraki, 305-8602, Japan
| |
Collapse
|
747
|
Roy S, Tripathi AM, Yadav A, Mishra P, Nautiyal CS. Identification and Expression Analyses of miRNAs from Two Contrasting Flower Color Cultivars of Canna by Deep Sequencing. PLoS One 2016; 11:e0147499. [PMID: 26799570 PMCID: PMC4723037 DOI: 10.1371/journal.pone.0147499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022] Open
Abstract
miRNAs are endogenous small RNA (sRNA) that play critical roles in plant development processes. Canna is an ornamental plant belonging to family Cannaceae. Here, we report for the first time the identification and differential expression of miRNAs in two contrasting flower color cultivars of Canna, Tropical sunrise and Red president. A total of 313 known miRNAs belonging to 78 miRNA families were identified from both the cultivars. Thirty one miRNAs (17 miRNA families) were specific to Tropical sunrise and 43 miRNAs (10 miRNA families) were specific to Red president. Thirty two and 18 putative new miRNAs were identified from Tropical sunrise and Red president, respectively. One hundred and nine miRNAs were differentially expressed in the two cultivars targeting 1343 genes. Among these, 16 miRNAs families targeting60 genes were involved in flower development related traits and five miRNA families targeting five genes were involved in phenyl propanoid and pigment metabolic processes. We further validated the expression analysis of a few miRNA and their target genes by qRT-PCR. Transcription factors were the major miRNA targets identified. Target validation of a few randomly selected miRNAs by RLM-RACE was performed but was successful with only miR162. These findings will help in understanding flower development processes, particularly the color development in Canna.
Collapse
Affiliation(s)
- Sribash Roy
- Division of Genetics and Molecular Biology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute campus, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Abhinandan Mani Tripathi
- Division of Genetics and Molecular Biology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute campus, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Amrita Yadav
- Division of Genetics and Molecular Biology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Parneeta Mishra
- Division of Genetics and Molecular Biology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute campus, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Chandra Shekhar Nautiyal
- Division of Plant Microbe Interaction, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
748
|
Yang J, Zhang F, Li J, Chen JP, Zhang HM. Integrative Analysis of the microRNAome and Transcriptome Illuminates the Response of Susceptible Rice Plants to Rice Stripe Virus. PLoS One 2016; 11:e0146946. [PMID: 26799317 PMCID: PMC4723043 DOI: 10.1371/journal.pone.0146946] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/22/2015] [Indexed: 11/19/2022] Open
Abstract
Rice stripe virus (RSV) is one of the most serious rice viruses in East Asia. To investigate how rice responds to RSV infection, we integrated miRNA expression with parallel mRNA transcription profiling by deep sequencing. A total of 570 miRNAs were identified of which 69 miRNAs (56 up-regulated and 13 down-regulated) were significantly modified by RSV infection. Digital gene expression (DGE) analysis showed that 1274 mRNAs (431 up-regulated and 843 down-regulated genes) were differentially expressed as a result of RSV infection. The differential expression of selected miRNAs and mRNAs was confirmed by qRT-PCR. Gene ontology (GO) and pathway enrichment analysis showed that a complex set of miRNA and mRNA networks were selectively regulated by RSV infection. In particular, 63 differentially expressed miRNAs were found to be significantly and negatively correlated with 160 target mRNAs. Interestingly, 22 up-regulated miRNAs were negatively correlated with 24 down-regulated mRNAs encoding disease resistance-related proteins, indicating that the host defense responses were selectively suppressed by RSV infection. The suppression of both osa-miR1423-5p- and osa-miR1870-5p-mediated resistance pathways was further confirmed by qRT-PCR. Chloroplast functions were also targeted by RSV, especially the zeaxanthin cycle, which would affect the stability of thylakoid membranes and the biosynthesis of ABA. All these modifications may contribute to viral symptom development and provide new insights into the pathogenicity mechanisms of RSV.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fen Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Jing Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jian-Ping Chen
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- * E-mail: (HZ); (JC)
| | - Heng-Mu Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- * E-mail: (HZ); (JC)
| |
Collapse
|
749
|
Rogans SJ, Rey C. Unveiling the Micronome of Cassava (Manihot esculenta Crantz). PLoS One 2016; 11:e0147251. [PMID: 26799216 PMCID: PMC4723133 DOI: 10.1371/journal.pone.0147251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/03/2016] [Indexed: 12/03/2022] Open
Abstract
MicroRNAs (miRNAs) are an important class of endogenous non-coding single-stranded small RNAs (21-24 nt in length), which serve as post-transcriptional negative regulators of gene expression in plants. Despite the economic importance of Manihot esculenta Crantz (cassava) only 153 putative cassava miRNAs (from multiple germplasm) are available to date in miRBase (Version 21), and identification of a number of miRNAs from the cassava EST database have been limited to comparisons with Arabidopsis. In this study, mature sequences of all known plant miRNAs were used as a query for homologous searches against cassava EST and GSS databases, and additional identification of novel and conserved miRNAs were gleaned from next generation sequencing (NGS) of two cassava landraces (T200 from southern Africa and TME3 from West Africa) at three different stages post explant transplantation and acclimatization. EST and GSS derived data revealed 259 and 32 miRNAs in cassava, and one of the miRNA families (miR2118) from previous studies has not been reported in cassava. NGS data collectively displayed expression of 289 conserved miRNAs in leaf tissue, of which 230 had not been reported previously. Of the 289 conserved miRNAs identified in T200 and TME3, 208 were isomiRs. Thirty-nine novel cassava-specific miRNAs of low abundance, belonging to 29 families, were identified. Thirty-eight (98.6%) of the putative new miRNAs identified by NGS have not been previously reported in cassava. Several miRNA targets were identified in T200 and TME3, highlighting differential temporal miRNA expression between the two cassava landraces. This study contributes to the expanding knowledge base of the micronome of this important crop.
Collapse
Affiliation(s)
- Sarah Jane Rogans
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Chrissie Rey
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
750
|
Li D, Wang F, Wang C, Zou L, Wang Z, Chen Q, Niu C, Zhang R, Ling Y, Wang B. MicroRNA-mediated susceptible poplar gene expression regulation associated with the infection of virulent Melampsora larici-populina. BMC Genomics 2016; 17:59. [PMID: 26768277 PMCID: PMC4714501 DOI: 10.1186/s12864-015-2286-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/10/2015] [Indexed: 11/10/2022] Open
Abstract
Background Rust caused by Melampsora larici-populina is one of the most damaging diseases of poplars. Rust is considered to be a model pathogen for genetic studies because both pathogen and host genomes are available. The poplar ‘Robusta’, whose general rust resistance is defeated by virulent rust E4, provides suitable host material for studies of the gene regulation involved in rust resistance/susceptibility. In this study, we investigated the microRNA-mediated susceptible poplar gene expression regulation associated with the infection of virulent rust. We were particularly interested in delineating the host-pathogen interactions with a specific focus on microRNAs (miRNAs). Results To study the susceptibility of poplar to M. larici-populina, small RNA (sRNA) libraries, a degradome cDNA library and digital gene expression libraries were constructed for rust-inoculated and rust-free susceptible poplar ‘Robusta’ leaves through high-throughput sequencing. Altogether, 12,722 regulating interactions were identified. The results delineated the framework of post-transcriptional regulation of gene expression in the susceptible poplar, which was infected by the virulent rust. The results indicated that pathogen-associated molecular patterns (PAMPs) and PAMP-triggered immunity were induced by the infection of virulent rust E4 and that miRNAs still functioned at this stage. After this stage, miRNA-regulated R genes, such as TIR-NBS-LRR and CC-NBS-LRR, were not fully functional. Additionally, the rust-responsive miRNAs did not regulate the signaling component genes related to the salicylic acid pathway or the hypersensitive response. Conclusions We found that the defense-related post-transcriptional regulation of the susceptible poplar ‘Robusta’ functions normally only at the stage of PAMPs and PAMP-triggered immunity (PTI). More importantly, the miRNA-mediated post-transcriptional regulation of defense signal pathway genes were inactivated by the infection of virulent rust at the stage of effector-triggered susceptibility and during the following stages of salicylic acid and hypersensitive responses. This inactivation was the major characteristic of ‘Robusta’ susceptibility. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2286-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Danlei Li
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Feng Wang
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Chao Wang
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Li Zou
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Zhiying Wang
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Qiaoli Chen
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Chunyang Niu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Ruizhi Zhang
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Yaming Ling
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Bowen Wang
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|