751
|
Hitti E, Eliat PA, Abgueguen E, Ropert M, Leroyer P, Brissot P, Gandon Y, Saint-Jalmes H, Loréal O. MRI quantification of splenic iron concentration in mouse. J Magn Reson Imaging 2011; 32:639-46. [PMID: 20815062 DOI: 10.1002/jmri.22290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To quantify hepatic and splenic iron load, which is a critical issue for iron overload disease diagnosis. MRI is useful to noninvasively determine liver iron concentration, but not proven to be adequate for robust evaluation of splenic iron load. We evaluated the usefulness of MRI-derived parameters to determine splenic iron concentration in mice. MATERIALS AND METHODS A mouse model of experimental iron load was used. Multi-echo spin-echo images of liver and spleen were acquired at 4.7 Tesla. The parameters were tested at all echoes with and without an external reference. Splenic and hepatic iron concentrations were determined using biochemical assay as the gold standard. RESULTS Our results show that (i) use of an internal or external reference is essential; (ii) optimal echo times were TE = 19.5 ms and TE = 32.5 ms for the liver and spleen, respectively; (iii) in the liver, the relationship between biochemical and MRI iron concentration determinations is logarithmic; (iv) in the spleen, the best relationship is an inverse function. CONCLUSION A single spin-echo sequence allows robust estimation of hepatic and splenic iron content. Parameters classically used for hepatic iron concentration cannot be applied to splenic iron determination, which requires both the specific sequence and the adapted fitting function.
Collapse
Affiliation(s)
- Eric Hitti
- Université de Rennes 1, LTSI, Rennes, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
752
|
Nahirnyak VM, Moros EG, Novák P, Suzanne Klimberg V, Shafirstein G. Doppler signals observed during high temperature thermal ablation are the result of boiling. Int J Hyperthermia 2011; 26:586-93. [PMID: 20569109 DOI: 10.3109/02656731003801469] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To elucidate the causation mechanism of Spectral Doppler ultrasound signals (DUS) observed during high temperature thermal ablation and evaluate their potential for image-guidance. METHODS Sixteen ex vivo ablations were performed in fresh turkey breast muscle, eight with radiofrequency ablation (RFA) devices, and eight with a conductive interstitial thermal therapy (CITT) device. Temperature changes in the ablation zone were measured with thermocouples located at 1 to 10 mm away from the ablation probes. Concomitantly, DUS were recorded using a standard diagnostic ultrasound scanner. Retrospectively, sustained observations of DUS were correlated with measured temperatures. Sustained DUS was arbitrarily defined as the Doppler signals lasting more than 10 s as observed in the diagnostic ultrasound videos captured from the scanner. RESULTS For RFA experiments, minimum average temperature (T1 +/- SD) at which sustained DUS were observed was 97.2 +/- 7.3 degrees C, while the maximum average temperature (T2 +/- SD) at which DUS were not seen was 74.3 +/- 9.1 degrees C. For CITT ablation, T1 and T2 were 95.7 +/- 5.9 degrees C and 91.6 +/- 7.2 degrees C, respectively. It was also observed, especially during CITT ablation, that temperatures remained relatively constant during Doppler activity. CONCLUSIONS The value of T1 was near the standard boiling point of water (99.61 degrees C) while T2 was below it. Together, T1 and T2 support the conclusion that DUS during high temperature thermal ablation are the result of boiling (phase change). This conclusion is also supported by the nearly constant temperature histories maintained at locations from which DUS emanated.
Collapse
Affiliation(s)
- Volodymyr M Nahirnyak
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
753
|
FUENTES D, WALKER C, ELLIOTT A, SHETTY A, HAZLE J, STAFFORD R. Magnetic resonance temperature imaging validation of a bioheat transfer model for laser-induced thermal therapy. Int J Hyperthermia 2011; 27:453-64. [PMID: 21756043 PMCID: PMC3930085 DOI: 10.3109/02656736.2011.557028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Magnetic resonance-guided laser-induced thermal therapy (MRgLITT) is currently undergoing initial safety and feasibility clinical studies for the treatment of intracranial lesions in humans. As studies progress towards evaluation of treatment efficacy, predictive computational models may play an important role for prospective 3D treatment planning. The current work critically evaluates a computational model of laser induced bioheat transfer against retrospective multiplanar MR thermal imaging (MRTI) in a canine model of the MRgLITT procedure in the brain. METHODS A 3D finite element model of the bioheat transfer that couples Pennes equation to a diffusion theory approximation of light transport in tissue is used. The laser source is modelled conformal with the applicator geometry. Dirichlet boundary conditions are used to model the temperature of the actively cooled catheter. The MRgLITT procedure was performed on n = 4 canines using a 1-cm diffusing tip 15-W diode laser (980 nm). A weighted L₂norm is used as the metric of comparison between the spatiotemporal MR-derived temperature estimates and model prediction. RESULTS The normalised error history between the computational models and MRTI was within 1-4 standard deviations of MRTI noise. Active cooling models indicate that the applicator temperature has a strong effect on the maximum temperature reached, but does not significantly decrease the tissue temperature away from the active tip. CONCLUSIONS Results demonstrate the computational model of the bioheat transfer may provide a reasonable approximation of the laser-tissue interaction, which could be useful for treatment planning, but cannot readily replace MR temperature imaging in a complex environment such as the brain.
Collapse
Affiliation(s)
- D. FUENTES
- Department of Imaging Physics, M.D. Anderson Cancer Center, University of Texas, Houston
| | - C. WALKER
- Department of Imaging Physics, M.D. Anderson Cancer Center, University of Texas, Houston
| | - A. ELLIOTT
- Department of Imaging Physics, M.D. Anderson Cancer Center, University of Texas, Houston
| | | | - J.D. HAZLE
- Department of Imaging Physics, M.D. Anderson Cancer Center, University of Texas, Houston
| | - R.J. STAFFORD
- Department of Imaging Physics, M.D. Anderson Cancer Center, University of Texas, Houston
| |
Collapse
|
754
|
de Senneville BD, Ries M, Bartels LW, Moonen CTW. MRI-Guided High-Intensity Focused Ultrasound Sonication of Liver and Kidney. INTERVENTIONAL MAGNETIC RESONANCE IMAGING 2011. [DOI: 10.1007/174_2011_394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
755
|
Milne M, Hudson RH. Contrast agents possessing high temperature sensitivity. Chem Commun (Camb) 2011; 47:9194-6. [DOI: 10.1039/c1cc13073k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
756
|
Gillman PK. Neuroleptic malignant syndrome: mechanisms, interactions, and causality. Mov Disord 2010; 25:1780-90. [PMID: 20623765 DOI: 10.1002/mds.23220] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This review focuses on new data from recent publications concerning how compounding interactions between different thermoregulatory pathways influence the development of hyperthermia and/or neuroleptic malignant syndrome (NMS), and the fundamental issue of the presumed causal role of antipsychotic drugs. The formal criteria for substantiating cause-effect relationships in medical science, established by Hill, are applied to NMS and, for comparison, also to malignant hyperthermia and serotonin toxicity. The risk of morbidities related to hyperthermia is reviewed from human and experimental data: temperatures in excess of 39.5°C cause physiological and cellular dysfunction and high mortality. The most temperature-sensitive elements of neural cells are mitochondrial and plasma membranes, in which irreversible changes occur around 40°C. Temperatures of up to 39°C are "normal" in mammals, so, the term hyperthermia should be reserved for temperatures of 39.5°C or greater. The implicitly accepted presumption that NMS is a hypermetabolic and hyperthermic syndrome is questionable and does not explain the extensive morbidity in the majority of cases, where the temperature is less than 39°C. The thermoregulatory effects of dopamine and acetylcholine are outlined, especially because they are probably the main pathways by which neuroleptic drugs might affect thermoregulation. It is notable that even potent antagonism of these mechanisms rarely causes temperature elevation and that multiple mechanisms, including the acute phase response, stress-induced hyperthermia, drugs effects, etc., involving compounding interactions, are required to precipitate hyperthermia. The application of the Hill criteria clearly supports causality for drugs inducing both MH and ST but do not support causality for NMS.
Collapse
|
757
|
Yung JP, Shetty A, Elliott A, Weinberg JS, McNichols RJ, Gowda A, Hazle JD, Stafford RJ. Quantitative comparison of thermal dose models in normal canine brain. Med Phys 2010; 37:5313-21. [PMID: 21089766 DOI: 10.1118/1.3490085] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Minimally invasive thermal ablative therapies as alternatives to conventional surgical management of solid tumors and other pathologies is increasing owing to the potential benefits of performing these procedures in an outpatient setting with reduced complications and comorbidity. Magnetic resonance temperature imaging (MRTI) measurement allows existing thermal dose models to use the spatiotemporal temperature history to estimate the thermal damage to tissue. However, the various thermal dose models presented in the literature employ different parameters and thresholds, affecting the reliability of thermal dosimetry. In this study, the authors quantitatively compared three thermal dose models (Arrhenius rate process, CEM43, and threshold temperature) using the dice similarity coefficient (DSC). METHODS The DSC was used to compare the spatial overlap between the region of thermal damage as predicted by the models for in vivo normal canine brain during thermal therapy to the region of thermal damage as revealed by contrast-enhanced T1-weighted images acquired immediately after therapy (< 20 min). The outer edge of the hyperintense rim of the ablation region was used as the surrogate marker for the limits of thermal coagulation. The DSC was also used to investigate the impact of varying the thresholds on each models' ability to predict the zone of thermal necrosis. RESULTS At previously reported thresholds, the authors found that all three models showed good agreement (defined as DSC > 0.7) with post-treatment imaging. All three models examined across the range of commonly applied thresholds consistently showed highly accurate spatial overlap, low variability, and little dependence on temperature uncertainty. DSC values corresponding to cited thresholds were not significantly different from peak DSC values. CONCLUSIONS Thus, the authors conclude that the all three thermal dose models can be used as a reliable surrogate for postcontrast tissue damage verification imaging in rapid ablation procedures and can also be used to enhance the capability of MRTI to control thermal therapy in real time.
Collapse
Affiliation(s)
- Joshua P Yung
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
758
|
Grissom WA, Rieke V, Holbrook AB, Medan Y, Lustig M, Santos J, McConnell MV, Pauly KB. Hybrid referenceless and multibaseline subtraction MR thermometry for monitoring thermal therapies in moving organs. Med Phys 2010; 37:5014-26. [PMID: 20964221 DOI: 10.1118/1.3475943] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Magnetic resonance thermometry using the proton resonance frequency (PRF) shift is a promising technique for guiding thermal ablation. For temperature monitoring in moving organs, such as the liver and the heart, problems with motion must be addressed. Multi-baseline subtraction techniques have been proposed, which use a library of baseline images covering the respiratory and cardiac cycle. However, main field shifts due to lung and diaphragm motion can cause large inaccuracies in multi-baseline subtraction. Referenceless thermometry methods based on polynomial phase regression are immune to motion and susceptibility shifts. While referenceless methods can accurately estimate temperature within the organ, in general, the background phase at organ/tissue interfaces requires large polynomial orders to fit, leading to increased danger that the heated region itself will be fitted by the polynomial and thermal dose will be underestimated. In this paper, a hybrid method for PRF thermometry in moving organs is presented that combines the strengths of referenceless and multi-baseline thermometry. METHODS The hybrid image model assumes that three sources contribute to image phase during thermal treatment: Background anatomical phase, spatially smooth phase deviations, and focal, heat-induced phase shifts. The new model and temperature estimation algorithm were tested in the heart and liver of normal volunteers, in a moving phantom HIFU heating experiment, and in numerical simulations of thermal ablation. The results were compared to multi-baseline and referenceless methods alone. RESULTS The hybrid method allows for in vivo temperature estimation in the liver and the heart with lower temperature uncertainty compared to multi-baseline and referenceless methods. The moving phantom HIFU experiment showed that the method accurately estimates temperature during motion in the presence of smooth main field shifts. Numerical simulations illustrated the method's sensitivity to algorithm parameters and hot spot features. CONCLUSIONS This new hybrid method for MR thermometry in moving organs combines the strengths of both multi-baseline subtraction and referenceless thermometry and overcomes their fundamental weaknesses.
Collapse
Affiliation(s)
- William A Grissom
- Department of Radiology, Stanford University, Stanford, California 94304, USA.
| | | | | | | | | | | | | | | |
Collapse
|
759
|
Streitparth F, Teichgräber U, Walter T, Schaser KD, Gebauer B. Recurrent osteoid osteoma: interstitial laser ablation under magnetic resonance imaging guidance. Skeletal Radiol 2010; 39:1131-7. [PMID: 20563575 DOI: 10.1007/s00256-010-0977-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 05/16/2010] [Accepted: 05/19/2010] [Indexed: 02/02/2023]
Abstract
Thermal ablation has become a therapy of choice in the treatment of osteoid osteomas. To date, computed tomography has been the standard imaging modality for minimally invasive treatment regimes. We report a case of a 46-year-old man with a recurrent osteoid osteoma in the right tibial head after CT-guided drill excision and repeat treatment with laser ablation under open high-field MRI guidance. We describe the steps of the interventional MRI procedure and discuss related innovative guidance and monitoring features, and potential benefits of MRI compared with CT-guided techniques. In conclusion, MR-guided laser ablation was proved to be safe and effective.
Collapse
Affiliation(s)
- Florian Streitparth
- Department of Radiology, Charité, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | | | | | | | | |
Collapse
|
760
|
Wonneberger U, Schnackenburg B, Wlodarczyk W, Walter T, Streitparth F, Rump J, Teichgräber UKM. Intradiscal temperature monitoring using double gradient-echo pulse sequences at 1.0T. J Magn Reson Imaging 2010; 31:1499-503. [PMID: 20512906 DOI: 10.1002/jmri.22197] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To validate an unspoiled gradient-recalled echo pulse sequence with dual echo acquisition as a means to increase temperature sensitivity while monitoring intradiscal laser ablation therapy. MATERIALS AND METHODS Phantom experiments as well as in vitro thermal ablation simulations were performed in an open 1.0T magnetic resonance (MR) scanner. Three methods of noninvasive MR-thermometry based on the signal void decrease caused by T1-relaxation time increase (T1), the temperature-dependent proton resonance frequency (PRF) shift, and a combination of both methods with complex differences (CD) were compared. Temperature accuracy and reliability of temperature distribution were the main assessment criteria. RESULTS The optimum temperature sensitivity was found using CD in phantom experiments. During in vitro experiments the PRF showed the smallest margin of error (T1: +/-1.64 degrees C, PRF: +/-1.23 degrees C, CD: +/-1.29 degrees C) and the best qualitative evaluation of temperature. CONCLUSION Intradiscal temperature monitoring with an unspoiled dual-echo sequence is most accurate with PRF-thermometry in combination with the long echo time. Magnitude images with an initial short echo time permit high image detail of the heat-induced lesion.
Collapse
Affiliation(s)
- Uta Wonneberger
- Institut für Radiologie, Charité, Universitätsmedizin Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
761
|
Ries M, de Senneville BD, Roujol S, Berber Y, Quesson B, Moonen C. Real-time 3D target tracking in MRI guided focused ultrasound ablations in moving tissues. Magn Reson Med 2010; 64:1704-12. [DOI: 10.1002/mrm.22548] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 05/19/2010] [Accepted: 05/26/2010] [Indexed: 01/15/2023]
|
762
|
Ranneberg M, Weiser M, Weihrauch M, Budach V, Gellermann J, Wust P. Regularized antenna profile adaptation in online hyperthermia treatment. Med Phys 2010; 37:5382-94. [DOI: 10.1118/1.3488896] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
763
|
Schilling F, Schröder L, Palaniappan KK, Zapf S, Wemmer DE, Pines A. MRI Thermometry Based on Encapsulated Hyperpolarized Xenon. Chemphyschem 2010; 11:3529-33. [DOI: 10.1002/cphc.201000507] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
764
|
Affiliation(s)
- John B. Weaver
- Department of Radiology, Dartmouth College Medical School and Dartmouth-Hitchcock Medical Center, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
765
|
Quesson B, Merle M, Köhler MO, Mougenot C, Roujol S, de Senneville BD, Moonen CT. A method for MRI guidance of intercostal high intensity focused ultrasound ablation in the liver. Med Phys 2010; 37:2533-40. [PMID: 20632565 DOI: 10.1118/1.3413996] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE High intensity focused ultrasound (HIFU) is a promising method for the noninvasive treatment of liver tumors. However, the presence of ribs in the HIFU beam path remains problematic since it may lead to adverse effects (skin burns) by absorption and reflection of the incident beam at or near the bone surface. This article presents a method based on magnetic resonance (MR) imaging for identification of the ribs in the HIFU beam, and for selection of the transducer elements to deactivate. METHODS The ribs are visualized on anatomical images acquired prior to heating and manually segmented. The resulting regions of interest surrounding the ribs are projected onto the transducer surface by ray tracing from the focal point. The transducer elements in the "shadow" of the ribs are then deactivated. The method was validated ex vivo and in vivo in pig liver during breathing under multislice real-time MR thermometry, using the proton resonance frequency shift method. RESULTS Ex vivo and in vivo temperature data showed that the temperature increase near the ribs was substantial when HIFU sonications were performed with all elements active, whereas the temperature was reduced with deactivation of the transducer elements located in front of the ribs. The temperature at the focal point was similar with and without deactivation of the transducer elements, indicative of no loss of heat efficiency with the proposed technique. CONCLUSIONS This method is simple, rapid, and reliable, and enables intercostal HIFU ablation while sparing ribs and their surrounding tissues.
Collapse
Affiliation(s)
- Bruno Quesson
- Laboratory for Molecular and Functional Imaging, UMR5231, CNRS, University Victor Segalen Bordeaux 2, 33076 Bordeaux, France.
| | | | | | | | | | | | | |
Collapse
|
766
|
Stafford RJ, Shetty A, Elliott AM, Klumpp SA, McNichols RJ, Gowda A, Hazle JD, Ward JF. Magnetic resonance guided, focal laser induced interstitial thermal therapy in a canine prostate model. J Urol 2010; 184:1514-20. [PMID: 20727549 DOI: 10.1016/j.juro.2010.05.091] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Indexed: 01/12/2023]
Abstract
PURPOSE We evaluated a newly Food and Drug Administration cleared, closed loop, magnetic resonance guided laser induced interstitial thermal therapy system for targeted ablation of prostate tissue to assess the feasibility of targeting, real-time monitoring and predicting lesion generation in the magnetic resonance environment. MATERIALS AND METHODS Seven mongrel dogs (University of Texas Health Science Center, Houston, Texas) with (2) and without (5) canine transmissible venereal tumors in the prostate were imaged with a 1.5 T magnetic resonance imaging scanner. Real-time 3-dimensional magnetic resonance imaging was used to accurately position water cooled, 980 nm laser applicators to predetermined targets in the canine prostate. Destruction of targeted tissue was guided by real-time magnetic resonance temperature imaging to precisely control thermal ablation. Magnetic resonance predictions of thermal damage were correlated with posttreatment imaging results and compared to histopathology findings. RESULTS Template based targeting using magnetic resonance guidance allowed the laser applicator to be placed within a mean ± SD of 1.1 ± 0.7 mm of the target site. Mean width and length of the ablation zone on magnetic resonance imaging were 13.7 ± 1.3 and 19.0 ± 4.2 mm, respectively, using single and compound exposures. The damage predicted by magnetic resonance based thermal damage calculations correlated with the damage on posttreatment imaging with a slope near unity and excellent correlation (r(2) = 0.94). CONCLUSIONS This laser induced interstitial thermal therapy system provided rapid, localized tissue heating under magnetic resonance temperature imaging control. Combined with real-time monitoring and template based planning, magnetic resonance guided, laser induced interstitial thermal therapy is an attractive modality for prostate cancer focal therapy.
Collapse
Affiliation(s)
- R Jason Stafford
- Department of Imaging Physics, University of Texas M D Anderson Cancer Center, Houston, Texas 77030-4009, USA.
| | | | | | | | | | | | | | | |
Collapse
|
767
|
MRI-guided transurethral ultrasound therapy of the prostate gland using real-time thermal mapping: initial studies. Urology 2010; 76:1506-11. [PMID: 20709381 DOI: 10.1016/j.urology.2010.04.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/31/2010] [Accepted: 04/24/2010] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To confirm the correlation between planning and thermal injury of the prostate as determined by magnetic resonance imaging (MRI) and histology in canine and humans treated with transurethral ultrasound. MATERIAL AND METHODS Canine studies: 2 sets of in vivo studies were performed under general anesthesia in 1.5 T clinical MRI. Nine dogs were treated using single transducer; 8 dogs were treated using urethral applicator with multiple transducers. Rectal cooling was maintained. After initial imaging, a target boundary was selected and high-intensity ultrasound energy delivered. The spatial temperature distribution was measured continuously every 5 seconds with MR thermometry using the proton-resonant frequency shift method. The goal was to achieve 55 °C at the target boundary. After treatment, the prostate was harvested and fixed with adjoining tissue, including rectum. Temperature maps, anatomical images, and histologic sections were registered to each other and compared. Human studies: To date, 5 patients with localized prostate cancer have been treated immediately before radical prostatectomy. Approximately 30% of the gland volume was targeted. RESULTS A continuous pattern of thermal coagulation was successfully achieved within the target region, with an average spatial precision of 1-2 mm. Radical prostatectomy was routine, with an uncomplicated postoperative course in all patients. The correlation between anatomical, thermal, and histologic images was ≤3 mm. Treatment time was <30 minutes. No thermal damage to rectal tissue was observed. CONCLUSIONS Thermal ablation within the prescribed target of the prostate has been successfully demonstrated in canine studies. The treatment is also feasible in humans.
Collapse
|
768
|
Melzer A. [Principles of MR-guided interventions, surgery, navigation, and robotics]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2010; 53:768-75. [PMID: 20700775 DOI: 10.1007/s00103-010-1101-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The application of magnetic resonance imaging (MRI) as an imaging technique in interventional and surgical techniques provides a new dimension of soft tissue-oriented precise procedures without exposure to ionizing radiation and nephrotoxic allergenic, iodine-containing contrast agents. The technical capabilities of MRI in combination with interventional devices and systems, navigation, and robotics are discussed.
Collapse
Affiliation(s)
- A Melzer
- IMSaT Institute for Medical Science and Technology, Dundee, UK.
| |
Collapse
|
769
|
Korteweg MA, Zwanenburg JJM, van Diest PJ, van den Bosch MAAJ, Luijten PR, van Hillegersberg R, Mali WPTM, Veldhuis WB. Characterization of ex vivo healthy human axillary lymph nodes with high resolution 7 Tesla MRI. Eur Radiol 2010; 21:310-7. [PMID: 20694817 PMCID: PMC3034875 DOI: 10.1007/s00330-010-1915-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/18/2010] [Accepted: 07/21/2010] [Indexed: 12/17/2022]
Abstract
Objective To characterize ex vivo healthy human axillary lymph nodes on 7 Tesla MRI and to correlate the findings with pathological analysis as a first step towards non-invasive staging of breast cancer patients in the future. Methods Four axillary lymph node dissection (ALND) specimens from 2 autopsy patients, who had no cancer, were examined on a clinical 7 Tesla MRI system. For morphological analysis a 3D T1-weighted fat-suppressed fast-field-echo [isotropic resolution 180 μm] was acquired. For quantitative analyses 2D T1-, 3D T2-, T2*- and diffusion-weighted images were acquired. The ALNDs were mapped and stained for precise correlation of MRI to pathology. Nodes were sliced in 3 μm sections, Haematoxylin & Eosin stained, and examined by an experienced pathologist. Results MRI detected all 45 nodes and 6 additional nodes that were not detected at pathological analysis. B-cell follicles, efferent- and afferent lymph vessels and blood vessels were identified. Mean T1, T2, T2*, ADC values (± standard deviation) were 944 ± 113 ms, 32 ± 2 ms, 16 ± 2 ms, 0.39 ± 0.09·10−3 mm2/s, respectively. Conclusions 7 Tesla MRI of ex vivo human axillary lymph nodes correlated well with pathology. MRI detected all nodes present in the specimens and allowed visualization of fine structural detail. Pathology-correlated quantitative MRI data are presented.
Collapse
Affiliation(s)
- M A Korteweg
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
770
|
Soher BJ, Wyatt C, Reeder SB, MacFall JR. Noninvasive temperature mapping with MRI using chemical shift water-fat separation. Magn Reson Med 2010; 63:1238-46. [PMID: 20432295 DOI: 10.1002/mrm.22310] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tissues containing both water and lipids, e.g., breast, confound standard MR proton reference frequency-shift methods for mapping temperatures due to the lack of temperature-induced frequency shift in lipid protons. Generalized Dixon chemical shift-based water-fat separation methods, such as GE's iterative decomposition of water and fat with echo asymmetry and least-squares estimation method, can result in complex water and fat images. Once separated, the phase change over time of the water signal can be used to map temperature. Phase change of the lipid signal can be used to correct for non-temperature-dependent phase changes, such as amplitude of static field drift. In this work, an image acquisition and postprocessing method, called water and fat thermal MRI, is demonstrated in phantoms containing 30:70, 50:50, and 70:30 water-to-fat by volume. Noninvasive heating was applied in an Off1-On-Off2 pattern over 50 min, using a miniannular phased radiofrequency array. Temperature changes were referenced to the first image acquisition. Four fiber optic temperature probes were placed inside the phantoms for temperature comparison. Region of interest (ROI) temperature values colocated with the probes showed excellent agreement (global mean +/- standard deviation: -0.09 +/- 0.34 degrees C) despite significant amplitude of static field drift during the experiments.
Collapse
Affiliation(s)
- Brian J Soher
- Department of Radiology, Duke University, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
771
|
Wu EX, Cheung MM. MR diffusion kurtosis imaging for neural tissue characterization. NMR IN BIOMEDICINE 2010; 23:836-848. [PMID: 20623793 DOI: 10.1002/nbm.1506] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In conventional diffusion tensor imaging (DTI), water diffusion distribution is described as a 2nd-order three-dimensional (3D) diffusivity tensor. It assumes that diffusion occurs in a free and unrestricted environment with a Gaussian distribution of diffusion displacement, and consequently that diffusion weighted (DW) signal decays with diffusion factor (b-value) monoexponentially. In biological tissue, complex cellular microstructures make water diffusion a highly hindered or restricted process. Non-monoexponential decays are experimentally observed in both white matter and gray matter. As a result, DTI quantitation is b-value dependent and DTI fails to fully utilize the diffusion measurements that are inherent to tissue microstructure. Diffusion kurtosis imaging (DKI) characterizes restricted diffusion and can be readily implemented on most clinical scanners. It provides a higher-order description of water diffusion process by a 2nd-order 3D diffusivity tensor as in conventional DTI together with a 4th-order 3D kurtosis tensor. Because kurtosis is a measure of the deviation of the diffusion displacement profile from a Gaussian distribution, DKI analyses quantify the degree of diffusion restriction or tissue complexity without any biophysical assumption. In this work, the theory of diffusion kurtosis and DKI including the directional kurtosis analysis is revisited. Several recent rodent DKI studies from our group are summarized, and DKI and DTI compared for their efficacy in detecting neural tissue alterations. They demonstrate that DKI offers a more comprehensive approach than DTI in describing the complex water diffusion process in vivo. By estimating both diffusivity and kurtosis, it may provide improved sensitivity and specificity in MR diffusion characterization of neural tissues.
Collapse
Affiliation(s)
- Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | | |
Collapse
|
772
|
Arthur RM, Basu D, Guo Y, Trobaugh JW, Moros EG. 3-D in vitro estimation of temperature using the change in backscattered ultrasonic energy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2010; 57:1724-1733. [PMID: 20679004 DOI: 10.1109/tuffc.2010.1611] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Temperature imaging with a non-invasive modality to monitor the heating of tumors during hyperthermia treatment is an attractive alternative to sparse invasive measurement. Previously, we predicted monotonic changes in backscattered energy (CBE) of ultrasound with temperature for certain sub-wavelength scatterers. We also measured CBE values similar to our predictions in bovine liver, turkey breast muscle, and pork rib muscle in 2-D in vitro studies and in nude mice during 2-D in vivo studies. To extend these studies to three dimensions, we compensated for motion and measured CBE in turkey breast muscle. 3-D data sets were assembled from images formed by a phased-array imager with a 7.5-MHz linear probe moved in 0.6-mm steps in elevation during uniform heating from 37 to 45 degrees C in 0.5 degrees C increments. We used cross-correlation as a similarity measure in RF signals to automatically track feature displacement as a function of temperature. Feature displacement was non-rigid. Envelopes of image regions, compensated for non-rigid motion, were found with the Hilbert transform then smoothed with a 3 x 3 running average filter before forming the backscattered energy at each pixel. CBE in 3-D motion-compensated images was nearly linear with an average sensitivity of 0.30 dB/ degrees C. 3-D estimation of temperature in separate tissue regions had errors with a maximum standard deviation of about 0.5 degrees C over 1-cm(3) volumes. Success of CBE temperature estimation based on 3-D non-rigid tracking and compensation for real and apparent motion of image features could serve as the foundation for the eventual generation of 3-D temperature maps in soft tissue in a non-invasive, convenient, and low-cost way in clinical hyperthermia.
Collapse
Affiliation(s)
- R Martin Arthur
- Department of Electrical and Systems Engineering, Washington University School of Engineering, St. Louis, MO, USA.
| | | | | | | | | |
Collapse
|
773
|
Kolandaivelu A, Zviman MM, Castro V, Lardo AC, Berger RD, Halperin HR. Noninvasive assessment of tissue heating during cardiac radiofrequency ablation using MRI thermography. Circ Arrhythm Electrophysiol 2010; 3:521-9. [PMID: 20657028 DOI: 10.1161/circep.110.942433] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Failure to achieve properly localized, permanent tissue destruction is a common cause of arrhythmia recurrence after cardiac ablation. Current methods of assessing lesion size and location during cardiac radiofrequency ablation are unreliable or not suited for repeated assessment during the procedure. MRI thermography could be used to delineate permanent ablation lesions because tissue heating above 50°C is the cause of permanent tissue destruction during radiofrequency ablation. However, image artifacts caused by cardiac motion, the ablation electrode, and radiofrequency ablation currently pose a challenge to MRI thermography in the heart. In the current study, we sought to demonstrate the feasibility of MRI thermography during cardiac ablation. METHODS AND RESULTS An MRI-compatible electrophysiology catheter and filtered radiofrequency ablation system was used to perform ablation in the left ventricle of 6 mongrel dogs in a 1.5-T MRI system. Fast gradient-echo imaging was performed before and during radiofrequency ablation, and thermography images were derived from the preheating and postheating images. Lesion extent by thermography was within 20% of the gross pathology lesion. CONCLUSIONS MR thermography appears to be a promising technique for monitoring lesion formation and may allow for more accurate placement and titration of ablation, possibly reducing arrhythmia recurrences.
Collapse
|
774
|
Krafft AJ, Jenne JW, Maier F, Stafford RJ, Huber PE, Semmler W, Bock M. A long arm for ultrasound: a combined robotic focused ultrasound setup for magnetic resonance-guided focused ultrasound surgery. Med Phys 2010; 37:2380-93. [PMID: 20527572 DOI: 10.1118/1.3377777] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Focused ultrasound surgery (FUS) is a highly precise noninvasive procedure to ablate pathogenic tissue. FUS therapy is often combined with magnetic resonance (MR) imaging as MR imaging offers excellent target identification and allows for continuous monitoring of FUS induced temperature changes. As the dimensions of the ultrasound (US) focus are typically much smaller than the targeted volume, multiple sonications and focus repositioning are interleaved to scan the focus over the target volume. Focal scanning can be achieved electronically by using phased-array US transducers or mechanically by using dedicated mechanical actuators. In this study, the authors propose and evaluate the precision of a combined robotic FUS setup to overcome some of the limitations of the existing MRgFUS systems. Such systems are typically integrated into the patient table of the MR scanner and thus only provide an application of the US wave within a limited spatial range from below the patient. METHODS The fully MR-compatible robotic assistance system InnoMotion (InnoMedic GmbH, Herxheim, Germany) was originally designed for MR-guided interventions with needles. It offers five pneumatically driven degrees of freedom and can be moved over a wide range within the bore of the magnet. In this work, the robotic system was combined with a fixed-focus US transducer (frequency: 1.7 MHz; focal length: 68 mm, and numerical aperture: 0.44) that was integrated into a dedicated, in-house developed treatment unit for FUS application. A series of MR-guided focal scanning procedures was performed in a polyacrylamide-egg white gel phantom to assess the positioning accuracy of the combined FUS setup. In animal experiments with a 3-month-old domestic pig, the system's potential and suitability for MRgFUS was tested. RESULTS In phantom experiments, a total targeting precision of about 3 mm was found, which is comparable to that of the existing MRgFUS systems. Focus positioning could be performed within a few seconds. During in vivo experiments, a defined pattern of single thermal lesions and a therapeutically relevant confluent thermal lesion could be created. The creation of local tissue necrosis by coagulation was confirmed by post-FUS MR imaging and histological examinations on the treated tissue sample. During all sonications in phantom and in vivo, reliable MR imaging and online MR thermometry could be performed without compromises due to operation of the combined robotic FUS setup. CONCLUSIONS Compared to the existing MRgFUS systems, the combined robotic FUS approach offers a wide range of spatial flexibility so that highly flexible application of the US wave would be possible, for example, to avoid risk structures within the US field. The setup might help to realize new ways of patient access in MRgFUS therapy. The setup is compatible with any closed-bore MR system and does not require an especially designed patient table.
Collapse
Affiliation(s)
- Axel J Krafft
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
775
|
Chung SH, Cerussi AE, Merritt SI, Ruth J, Tromberg BJ. Non-invasive tissue temperature measurements based on quantitative diffuse optical spectroscopy (DOS) of water. Phys Med Biol 2010; 55:3753-65. [PMID: 20551502 DOI: 10.1088/0031-9155/55/13/012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We describe the development of a non-invasive method for quantitative tissue temperature measurements using Broadband diffuse optical spectroscopy (DOS). Our approach is based on well-characterized opposing shifts in near-infrared (NIR) water absorption spectra that appear with temperature and macromolecular binding state. Unlike conventional reflectance methods, DOS is used to generate scattering-corrected tissue water absorption spectra. This allows us to separate the macromolecular bound water contribution from the thermally induced spectral shift using the temperature isosbestic point at 996 nm. The method was validated in intralipid tissue phantoms by correlating DOS with thermistor measurements (R=0.96) with a difference of 1.1+/-0.91 degrees C over a range of 28-48 degrees C. Once validated, thermal and hemodynamic (i.e. oxy- and deoxy-hemoglobin concentration) changes were measured simultaneously and continuously in human subjects (forearm) during mild cold stress. DOS-measured arm temperatures were consistent with previously reported invasive deep tissue temperature studies. These results suggest that DOS can be used for non-invasive, co-registered measurements of absolute temperature and hemoglobin parameters in thick tissues, a potentially important approach for optimizing thermal diagnostics and therapeutics.
Collapse
Affiliation(s)
- S H Chung
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
776
|
Streitparth F, Knobloch G, Balmert D, Chopra S, Rump J, Wonneberger U, Philipp C, Hamm B, Teichgräber U. Laser-induced thermotherapy (LITT)--evaluation of a miniaturised applicator and implementation in a 1.0-T high-field open MRI applying a porcine liver model. Eur Radiol 2010; 20:2671-8. [PMID: 20526885 DOI: 10.1007/s00330-010-1831-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To evaluate the feasibility and safety of a novel LITT applicator for thermal ablation of liver malignancies in 1.0-T high-field open MRI. METHODS A miniaturised 6-F double-tubed protective catheter with a closed cooling circuit was used with a flexible laser fibre, connected to a 1,064-nm Nd:YAG laser and evaluated in non-perfused porcine livers (18-30 W for 10-20 min, 2-W and 2-min increments; n = 210/applicator) in reference to an established 9-F system. As a proof of concept, MR-guided LITT was performed in two healthy domestic pigs in high-field open MRI. RESULTS Ex-vivo, the coagulation volumes induced by the 6-F system with maximum applicable power of 24 W for 20 min (33.0 ± 4.4 cm(3)) did not differ significantly from those set with the 9-F system at 30 W for 20 min (35.8 ± 4.9 cm(3)) (p = 0.73). A flow-rate of 15 ml/min of the cooling saline solution was sufficient. MR navigation and thermometry were feasible. CONCLUSION The miniaturised 6-F applicator can create comparable coagulation sizes to those of the 9-F system. Applicator guidance and online-thermometry in high-field open MRI are feasible.
Collapse
Affiliation(s)
- Florian Streitparth
- Department of Radiology, Charité, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
777
|
Leveillee RJ, Ramanathan R. Optimization of Image-Guided Targeting in Renal Focal Therapy. J Endourol 2010; 24:729-44. [DOI: 10.1089/end.2009.0622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Raymond J. Leveillee
- Department of Urology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Rajan Ramanathan
- Department of Urology, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
778
|
Bruners P, Levit E, Penzkofer T, Isfort P, Ocklenburg C, Schmidt B, Schmitz-Rode T, Günther RW, Mahnken AH. Multi-slice computed tomography: A tool for non-invasive temperature measurement? Int J Hyperthermia 2010; 26:359-65. [DOI: 10.3109/02656731003605654] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Philipp Bruners
- Department of Applied Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Germany
- Department of Diagnostic Radiology, University Hospital, RWTH Aachen University, Germany
| | - Elena Levit
- Department of Diagnostic Radiology, University Hospital, RWTH Aachen University, Germany
| | - Tobias Penzkofer
- Department of Applied Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Germany
- Department of Diagnostic Radiology, University Hospital, RWTH Aachen University, Germany
| | - Peter Isfort
- Department of Applied Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Germany
- Department of Diagnostic Radiology, University Hospital, RWTH Aachen University, Germany
| | - Christina Ocklenburg
- Institute of Medical Statistics, University Hospital, RWTH Aachen University, Germany
| | | | - Thomas Schmitz-Rode
- Department of Applied Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Germany
| | - Rolf W. Günther
- Department of Diagnostic Radiology, University Hospital, RWTH Aachen University, Germany
| | - Andreas H. Mahnken
- Department of Diagnostic Radiology, University Hospital, RWTH Aachen University, Germany
| |
Collapse
|
779
|
Zhou X, He Q, Zhang A, Beckmann M, Ni C. Temperature measurement error reduction for MRI-guided HIFU treatment. Int J Hyperthermia 2010; 26:347-58. [DOI: 10.3109/02656731003601737] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xiaodong Zhou
- College of Life Science and Technology, Tongji University, Shanghai China
- Siemens Mindit Magnetic Resonance Ltd, Shenzhen, China
| | - Qiang He
- College of Life Science and Technology, Tongji University, Shanghai China
- Siemens Mindit Magnetic Resonance Ltd, Shenzhen, China
| | - Al Zhang
- Siemens Mindit Magnetic Resonance Ltd, Shenzhen, China
| | - Marc Beckmann
- Siemens Mindit Magnetic Resonance Ltd, Shenzhen, China
| | - Cheng Ni
- College of Life Science and Technology, Tongji University, Shanghai China
- Siemens Mindit Magnetic Resonance Ltd, Shenzhen, China
| |
Collapse
|
780
|
Paulides MM, Bakker JF, Linthorst M, van der Zee J, Rijnen Z, Neufeld E, Pattynama PMT, Jansen PP, Levendag PC, van Rhoon GC. The clinical feasibility of deep hyperthermia treatment in the head and neck: new challenges for positioning and temperature measurement. Phys Med Biol 2010; 55:2465-80. [PMID: 20371911 DOI: 10.1088/0031-9155/55/9/003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To apply high-quality hyperthermia treatment to tumours at deep locations in the head and neck (H&N), we have designed and built a site-specific phased-array applicator. Earlier, we demonstrated its features in parameter studies, validated those by phantom measurements and clinically introduced the system. In this paper we will critically review our first clinical experiences and demonstrate the pivotal role of hyperthermia treatment planning (HTP). Three representative patient cases (thyroid, oropharynx and nasal cavity) are selected and discussed. Treatment planning, the treatment, interstitially measured temperatures and their interrelation are analysed from a physics point of view. Treatments lasting 1 h were feasible and well tolerated and no acute treatment-related toxicity has been observed. Maximum temperatures measured are in the range of those obtained during deep hyperthermia treatments in the pelvic region but mean temperatures are still to be improved. Further, we found that simulated power absorption correlated well with measured temperatures illustrating the validity of our treatment approach of using energy profile optimizations to arrive at higher temperatures. This is the first data proving that focussed heating of tumours in the H&N is feasible. Further, HTP proved a valuable tool in treatment optimization. Items to improve are (1) the transfer of HTP settings into the clinic and (2) the registration of the thermal dose, i.e. dosimetry.
Collapse
Affiliation(s)
- M M Paulides
- Department of Radiation Oncology, Erasmus MC-Daniel den Hoed Cancer Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
781
|
Pan X, Li C, Ying K, Weng D, Qin W, Li K. Model-based PRFS thermometry using fat as the internal reference and the extended Prony algorithm for model fitting. Magn Reson Imaging 2010; 28:418-26. [DOI: 10.1016/j.mri.2009.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 08/05/2009] [Accepted: 11/25/2009] [Indexed: 10/19/2022]
|
782
|
Lüdemann L, Wlodarczyk W, Nadobny J, Weihrauch M, Gellermann J, Wust P. Non-invasive magnetic resonance thermography during regional hyperthermia. Int J Hyperthermia 2010; 26:273-82. [DOI: 10.3109/02656731003596242] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
783
|
Wonneberger U, Schnackenburg B, Wlodarczyk W, Rump J, Walter T, Streitparth F, Teichgräber UKM. Evaluation of thermometric monitoring for intradiscal laser ablation in an open 1.0 T MR scanner. Int J Hyperthermia 2010; 26:295-304. [DOI: 10.3109/02656730903463784] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Uta Wonneberger
- Institut für Radiologie, Charité, Universitätsmedizin Berlin, Germany
| | | | | | - Jens Rump
- Institut für Radiologie, Charité, Universitätsmedizin Berlin, Germany
| | - Thula Walter
- Institut für Radiologie, Charité, Universitätsmedizin Berlin, Germany
| | | | | |
Collapse
|
784
|
Sapin-de Brosses E, Gennisson JL, Pernot M, Fink M, Tanter M. Temperature dependence of the shear modulus of soft tissues assessed by ultrasound. Phys Med Biol 2010; 55:1701-18. [DOI: 10.1088/0031-9155/55/6/011] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
785
|
Wyatt C, Soher B, Maccarini P, Charles HC, Stauffer P, Macfall J. Hyperthermia MRI temperature measurement: evaluation of measurement stabilisation strategies for extremity and breast tumours. Int J Hyperthermia 2010; 25:422-33. [PMID: 19925322 DOI: 10.1080/02656730903133762] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE MR thermometry using the proton resonance frequency shift (PRFS) method has been used to measure temperature changes during clinical hyperthermia treatment. However, frequency drift of the MRI system can add large errors to the measured temperature change. These drifts can be measured and corrected using oil references placed around the treatment region. In this study, the number and position of four or more oil references were investigated to obtain a practical approach to correct frequency drift during PRFS thermometry in phantoms and in vivo. MATERIALS AND METHODS Experiments were performed in a 140 MHz four antenna mini-annular phased array (MAPA) heat applicator (for treatment of extremity tumours) and an applicator for heating of the breast, with symmetric and asymmetric positioning of the oil references, respectively. Temperature change PRFS images were obtained during an hour or more of measurement with no application of heat. Afterwards, errors in calculating temperature change due to system drift were quantified with and without various oil reference correction arrangements. RESULTS Results showed good temperature correction in phantoms and in a human leg, with average errors of 0.28 degrees C and 0.94 degrees C respectively. There was further improvement in the leg when using eight or more oil references, reducing the average error to 0.44 degrees C, while the phantoms showed no significant improvement. CONCLUSIONS These results indicate that oil reference correction performs well in vivo, and that eight references can improve the correction by up to 0.5 degrees C compared to four references.
Collapse
Affiliation(s)
- Cory Wyatt
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA.
| | | | | | | | | | | |
Collapse
|
786
|
van Nierop BJ, Stekelenburg A, Loerakker S, Oomens CW, Bader D, Strijkers GJ, Nicolay K. Diffusion of water in skeletal muscle tissue is not influenced by compression in a rat model of deep tissue injury. J Biomech 2010; 43:570-5. [PMID: 19897200 DOI: 10.1016/j.jbiomech.2009.07.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 07/29/2009] [Accepted: 07/29/2009] [Indexed: 10/20/2022]
Abstract
Sustained mechanical loading of skeletal muscle may result in the development of a severe type of pressure ulcer, referred to as deep tissue injury. Recently it was shown that the diffusion of large molecules (10-150kDa) is impaired during deformation of tissue-engineered skeletal muscle, suggesting a role for impaired diffusion in the aetiology of deep tissue injury. However, the influence of deformation on diffusion of smaller molecules on its aetiology is less clear. This motivated the present study designed to investigate the influence of deformation of skeletal muscle on the diffusion of water, which can be measured with diffusion tensor magnetic resonance imaging (MRI). It could be predicted that this approach will provide valuable information on the diffusion of small molecules. Additionally the relationship between muscle temperature and diffusion was investigated. During deformation of the tibialis anterior a decrease of the apparent diffusion coefficient (ADC) was observed (7.2+/-3.9%). The use of a finite element model showed that no correlation existed between the maximum shear strain and the decrease of the ADC. The ADC in the uncompressed gastrocnemius muscle decreased with 5.9+/-3.7%. In an additional experiment a clear correlation was obtained between the decrease of the ADC and the relative temperature change of skeletal muscle tissue as measured by MRI. Taken together, it was concluded that (1) the decreased diffusion of water was not a direct effect of tissue deformation and (2) that it is likely that the observed decreased ADC during deformation was a result of a decreased muscle temperature. The present study therefore provides evidence that diffusion of small molecules, particularly oxygen and carbon dioxide, is not impaired during deformation of skeletal muscle tissue.
Collapse
Affiliation(s)
- Bastiaan J van Nierop
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
787
|
Abstract
Thermal tissue ablation is an interventional procedure increasingly being used for treatment of diverse medical conditions. Microwave ablation is emerging as an attractive modality for thermal therapy of large soft tissue targets in short periods of time, making it particularly suitable for ablation of hepatic and other tumors. Theoretical models of the ablation process are a powerful tool for predicting the temperature profile in tissue and resultant tissue damage created by ablation devices. These models play an important role in the design and optimization of devices for microwave tissue ablation. Furthermore, they are a useful tool for exploring and planning treatment delivery strategies. This review describes the status of theoretical models developed for microwave tissue ablation. It also reviews current challenges, research trends and progress towards development of accurate models for high temperature microwave tissue ablation.
Collapse
|
788
|
Prakash P. Theoretical modeling for hepatic microwave ablation. Open Biomed Eng J 2010; 4:27-38. [PMID: 20309393 PMCID: PMC2840585 DOI: 10.2174/1874120701004020027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 11/29/2009] [Accepted: 12/30/2009] [Indexed: 01/08/2023] Open
Abstract
Thermal tissue ablation is an interventional procedure increasingly being used for treatment of diverse medical conditions. Microwave ablation is emerging as an attractive modality for thermal therapy of large soft tissue targets in short periods of time, making it particularly suitable for ablation of hepatic and other tumors. Theoretical models of the ablation process are a powerful tool for predicting the temperature profile in tissue and resultant tissue damage created by ablation devices. These models play an important role in the design and optimization of devices for microwave tissue ablation. Furthermore, they are a useful tool for exploring and planning treatment delivery strategies. This review describes the status of theoretical models developed for microwave tissue ablation. It also reviews current challenges, research trends and progress towards development of accurate models for high temperature microwave tissue ablation.
Collapse
Affiliation(s)
- Punit Prakash
- Department of Radiation Oncology, University of California, San Francisco, USA
| |
Collapse
|
789
|
Huang J, Xu JS, Xu RX. Heat-sensitive microbubbles for intraoperative assessment of cancer ablation margins. Biomaterials 2010; 31:1278-86. [DOI: 10.1016/j.biomaterials.2009.11.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 11/02/2009] [Indexed: 10/20/2022]
|
790
|
Hynynen K. MRI-guided focused ultrasound treatments. ULTRASONICS 2010; 50:221-229. [PMID: 19818981 DOI: 10.1016/j.ultras.2009.08.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 08/27/2009] [Accepted: 08/27/2009] [Indexed: 05/28/2023]
Abstract
Focused ultrasound (FUS) allows noninvasive focal delivery of energy deep into soft tissues. The focused energy can be used to modify and eliminate tissue for therapeutic purposes while the energy delivery is targeted and monitored using magnetic resonance imaging (MRI). MRI compatible methods to deliver these exposures have undergone rapid development over the past 10 years such that clinical treatments are now routinely performed. This paper will review the current technical and clinical status of MRI-guided focused ultrasound therapy and discuss future research and development opportunities.
Collapse
Affiliation(s)
- Kullervo Hynynen
- Sunnybrook Health Sciences Centre, Imaging Research, Department of Medical Biophysics, University of Toronto, 2075 Bayview Ave., Toronto, ON, Canada M4N 3M5.
| |
Collapse
|
791
|
Kozak LR, Bango M, Szabo M, Rudas G, Vidnyanszky Z, Nagy Z. Using diffusion MRI for measuring the temperature of cerebrospinal fluid within the lateral ventricles. Acta Paediatr 2010; 99:237-43. [PMID: 19845565 PMCID: PMC2816360 DOI: 10.1111/j.1651-2227.2009.01528.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Aim: Hypothermia is often induced to reduce brain injury in newborns, following perinatal hypoxic–ischaemic events, and in adults following traumatic brain injury, stroke or cardiac arrest. We aimed to devise a method, based on diffusion-weighted MRI, to measure non-invasively the temperature of the cerebrospinal fluid in the lateral ventricles. Methods: The well-known temperature dependence of the water diffusion constant was used for the estimation of temperature. We carried out diffusion MRI measurements on a 3T Philips Achieva Scanner involving phantoms (filled with water or artificial cerebrospinal fluid while slowly cooling from 41 to 32°C) and healthy adult volunteers. Results: The estimated temperature of water phantoms followed that measured using a mercury thermometer, but the estimates for artificial cerebrospinal fluid were 1.04°C lower. After correcting for this systematic difference, the estimated temperature within the lateral ventricles of volunteers was 39.9°C. Using diffusion directions less sensitive to cerebrospinal fluid flow, it was 37.7°C, which was in agreement with the literature. Conclusion: Although further improvements are needed, measuring the temperature within the lateral ventricles using diffusion MRI is a viable method that may be useful for clinical applications. We introduced the method, identified sources of error and offered remedies for each.
Collapse
Affiliation(s)
- L R Kozak
- MR Research Center, Szentagothai J. Knowledge Center, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
792
|
Kickhefel A, Roland J, Weiss C, Schick F. Accuracy of real-time MR temperature mapping in the brain: a comparison of fast sequences. Phys Med 2010; 26:192-201. [PMID: 20096617 DOI: 10.1016/j.ejmp.2009.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 10/29/2009] [Accepted: 11/29/2009] [Indexed: 11/15/2022] Open
Abstract
PURPOSE To compare magnetic resonance (MR) thermometry based on the proton resonance frequency (PRF) method using a single shot echoplanar imaging (ss EPI) sequence to both of the standard sequences, gradient echo (GRE) and segmented echoplanar imaging (seg EPI) in the in vivo human brain, at 1.5T and 3T. MATERIAL AND METHODS Repetitive MR thermometry was performed on the brain of six volunteers using GRE, seg EPI, and ss EPI sequences on whole-body 1.5T and 3T clinical systems using comparable acquisition parameters. Phase stability and temperature data precision in the human head were determined over 12 min for the three sequences at both field strengths. An ex-vivo swine skeletal muscle model was used to evaluate temperature accuracy of the ss EPI sequence during heating by high intensity focused ultrasound (HIFU). RESULTS In-vivo examinations of brain revealed an average temperature precision of 0.37 °C/0.39 °C/0.16 °C at 3T for the GRE/seg EPI/ss EPI sequences. At 1.5T, a precision of 0.58 °C/0.63 °C/0.21 °C was achieved. In the ex-vivo swine model, a strong correlation of temperature data derived using ss EPI and GRE sequences was found with a temperature deviation <1 °C. CONCLUSION The ss EPI sequence was the fastest and the most precise sequence for MR thermometry, with significantly higher accuracy compared to GRE.
Collapse
Affiliation(s)
- A Kickhefel
- Siemens Healthcare, H IM MR PLM AW Oncology, FH5/2008, Allee am Röthelheimpark 2, 91052 Erlangen, Germany.
| | | | | | | |
Collapse
|
793
|
Craciunescu OI, Stauffer PR, Soher BJ, Wyatt CR, Arabe O, Maccarini P, Das SK, Cheng KS, Wong TZ, Jones EL, Dewhirst MW, Vujaskovic Z, MacFall JR. Accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas. Med Phys 2010; 36:4848-58. [PMID: 19994492 DOI: 10.1118/1.3227506] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To establish accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas. METHODS Protocol patients with advanced extremity sarcomas were treated with external beam radiation therapy and hyperthermia. Invasive temperature measures were compared to noninvasive magnetic resonance thermal imaging (MRTI) at 1.5 T performed during hyperthermia. Volumetric temperature rise images were obtained using the proton resonance frequency shift (PRFS) technique during heating in a 140 MHz miniannular phased array applicator. MRTI temperature changes were compared to invasive measurements of temperature with a multisensor fiber optic probe inside a #15 g catheter in the tumor. Since the PRFS technique is sensitive to drifts in the primary imaging magnetic field, temperature change distributions were corrected automatically during treatment using temperature-stable reference materials to characterize field changes in 3D. The authors analyzed MRT images and compared, in evaluable treatments, MR-derived temperatures to invasive temperatures measured in extremity sarcomas. Small regions of interest (ROIs) were specified near each invasive sensor identified on MR images. Temperature changes in the interstitial sensors were compared to the corresponding ROI PRFS-based temperature changes over the entire treatment and over the steady-state period. Nonevaluable treatments (motion/imaging artifacts, noncorrectable drifts) were not included in the analysis. RESULTS The mean difference between MRTI and interstitial probe measurements was 0.91 degrees C for the entire heating time and 0.85 degrees C for the time at steady state. These values were obtained from both tumor and normal tissue ROIs. When the analysis is done on just the tumor ROIs, the mean difference for the whole power on time was 0.74 degrees C and during the period of steady state was 0.62 degrees C. CONCLUSIONS The data show that for evaluable treatments, excellent correlation (deltaT < 1 degrees C) of MRTI-ROI and invasive measurements can be achieved, but that motion and other artifacts are still serious challenges that must be overcome in future work.
Collapse
Affiliation(s)
- Oana I Craciunescu
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
794
|
Salomir R, Rata M, Cadis D, Petrusca L, Auboiroux V, Cotton F. Endocavitary thermal therapy by MRI-guided phased-array contact ultrasound: experimental and numerical studies on the multi-input single-output PID temperature controller's convergence and stability. Med Phys 2010; 36:4726-41. [PMID: 19928104 DOI: 10.1118/1.3215534] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Endocavitary high intensity contact ultrasound (HICU) may offer interesting therapeutic potential for fighting localized cancer in esophageal or rectal wall. On-line MR guidance of the thermotherapy permits both excellent targeting of the pathological volume and accurate preoperatory monitoring of the temperature elevation. In this article, the authors address the issue of the automatic temperature control for endocavitary phased-array HICU and propose a tailor-made thermal model for this specific application. The convergence and stability of the feedback loop were investigated against tuning errors in the controller's parameters and against input noise, through ex vivo experimental studies and through numerical simulations in which nonlinear response of tissue was considered as expected in vivo. METHODS An MR-compatible, 64-element, cooled-tip, endorectal cylindrical phased-array applicator of contact ultrasound was integrated with fast MR thermometry to provide automatic feedback control of the temperature evolution. An appropriate phase law was applied per set of eight adjacent transducers to generate a quasiplanar wave, or a slightly convergent one (over the circular dimension). A 2D physical model, compatible with on-line numerical implementation, took into account (1) the ultrasound-mediated energy deposition, (2) the heat diffusion in tissue, and (3) the heat sink effect in the tissue adjacent to the tip-cooling balloon. This linear model was coupled to a PID compensation algorithm to obtain a multi-input single-output static-tuning temperature controller. Either the temperature at one static point in space (situated on the symmetry axis of the beam) or the maximum temperature in a user-defined ROI was tracked according to a predefined target curve. The convergence domain in the space of controller's parameters was experimentally explored ex vivo. The behavior of the static-tuning PID controller was numerically simulated based on a discrete-time iterative solution of the bioheat transfer equation in 3D and considering temperature-dependent ultrasound absorption and blood perfusion. RESULTS The intrinsic accuracy of the implemented controller was approximately 1% in ex vivo trials when providing correct estimates for energy deposition and heat diffusivity. Moreover, the feedback loop demonstrated excellent convergence and stability over a wide range of the controller's parameters, deliberately set to erroneous values. In the extreme case of strong underestimation of the ultrasound energy deposition in tissue, the temperature tracking curve alone, at the initial stage of the MR-controlled HICU treatment, was not a sufficient indicator for a globally stable behavior of the feedback loop. Our simulations predicted that the controller would be able to compensate for tissue perfusion and for temperature-dependent ultrasound absorption, although these effects were not included in the controller's equation. The explicit pattern of acoustic field was not required as input information for the controller, avoiding time-consuming numerical operations. CONCLUSIONS The study demonstrated the potential advantages of PID-based automatic temperature control adapted to phased-array MR-guided HICU therapy. Further studies will address the integration of this ultrasound device with a miniature RF coil for high resolution MRI and, subsequently, the experimental behavior of the controller in vivo.
Collapse
Affiliation(s)
- Rares Salomir
- Inserm, U556, Lyon F-69003, France and Université de Lyon, Lyon F-69003, France.
| | | | | | | | | | | |
Collapse
|
795
|
Will K, Krug J, Jungnickel K, Fischbach F, Ricke J, Rose G, Omar A. MR-compatible RF ablation system for online treatment monitoring using MR thermometry. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2010:1601-1604. [PMID: 21096130 DOI: 10.1109/iembs.2010.5626664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
RF ablation (RFA) is used for thermal ablation of tumors in which the RF electrode is placed in the tissue under image-guidance. Because of the good tumor visibility and the lack of ionizing radiation, MR-guided RFA is the method of choice. Additionally, with the help of MR thermometry the RF ablation can be monitored during the intervention. Unfortunately, the imaging of an MR scanner is highly sensitive to interferences caused by external electrical signals. In this paper the high-power RF ablation signal of a commercially available medical therapy device is made MR-compatible. A design of a low-pass filter with high-power compatibility is presented. The filter performance is demonstrated by means of simulations and measurements.
Collapse
Affiliation(s)
- Karl Will
- Department of Signal Processing and Communications, Otto-von-Guericke-University of Magdeburg, Universitaetsplatz 2, 39106, Germany.
| | | | | | | | | | | | | |
Collapse
|
796
|
Jenista ER, Branca RT, Warren WS. Absolute temperature imaging using intermolecular multiple quantum MRI. Int J Hyperthermia 2010; 26:725-34. [PMID: 20849265 PMCID: PMC3108856 DOI: 10.3109/02656736.2010.499527] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE A review of MRI temperature imaging methods based on intermolecular multiple quantum coherences (iMQCs) is presented. Temperature imaging based on iMQCs can provide absolute temperature maps that circumvent the artefacts that other proton frequency shift techniques suffer from such as distortions to the detected temperature due to susceptibility changes and magnetic field inhomogeneities. Thermometry based on iMQCs is promising in high-fat tissues such as the breast, since it relies on the fat signal as an internal reference. This review covers the theoretical background of iMQCs, and the necessary adaptations for temperature imaging using iMQCs. MATERIALS AND METHODS Data is presented from several papers on iMQC temperature imaging. These studies were done at 7T in both phantoms and in vivo. Results from phantoms of cream (homogeneous mixture of water and fat) are presented as well as in vivo temperature maps in obese mice. RESULTS Thermometry based on iMQCs offers the potential to provide temperature maps which are free of artefacts due to susceptibility and magnetic field inhomogeneities, and detect temperature on an absolute scale. CONCLUSIONS The data presented in the papers reviewed highlights the promise of iMQC-based temperature imaging in fatty tissues such as the breast. The change in susceptibility of fat with temperature makes standard proton frequency shift methods (even with fat suppression) challenging and iMQC-based imaging offers an alternative approach.
Collapse
|
797
|
McCarthy KL, McCarthy MJ, Rakesh V, Datta AK. Experimental and Analytical Temperature Distributions during Oven-Based Convection Heating. J Food Sci 2010; 75:E66-72. [DOI: 10.1111/j.1750-3841.2009.01442.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
798
|
Bley TA, Wieben O, François CJ, Brittain JH, Reeder SB. Fat and water magnetic resonance imaging. J Magn Reson Imaging 2009; 31:4-18. [DOI: 10.1002/jmri.21895] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
799
|
Farny CH, Clement GT. Ultrasound phase contrast thermal imaging with reflex transmission imaging methods in tissue phantoms. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:1995-2006. [PMID: 19683380 PMCID: PMC2790025 DOI: 10.1016/j.ultrasmedbio.2009.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 04/16/2009] [Accepted: 05/25/2009] [Indexed: 05/11/2023]
Abstract
Thermal imaging measurements using ultrasound phase contrast have been performed in tissue phantoms heated with a focused ultrasound source. Back projection and reflex transmission imaging principles were used to detect sound speed-induced changes in the phase caused by an increase in the temperature. The temperature was determined from an empirical relationship for the temperature dependence on sound speed. The phase contrast was determined from changes in the sound field measured with a hydrophone scan conducted before and during applied heating. The lengthy scanning routine used to mimic a large two-dimensional array required a steady-state temperature distribution within the phantom. The temperature distribution in the phantom was validated with magnetic resonance (MR) thermal imaging measurements. The peak temperature was found to agree within 1 degrees C with MR, and good agreement was found between the temperature profiles. The spatial resolution was 0.3x0.3x0.3mm, comparing favorably with the 0.625x0.625x1.5-mm MR spatial resolution.
Collapse
Affiliation(s)
- Caleb H Farny
- Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
800
|
Saikus CE, Lederman RJ. Interventional cardiovascular magnetic resonance imaging: a new opportunity for image-guided interventions. JACC Cardiovasc Imaging 2009; 2:1321-31. [PMID: 19909937 PMCID: PMC2843404 DOI: 10.1016/j.jcmg.2009.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 01/12/2023]
Abstract
Cardiovascular magnetic resonance (CMR) combines excellent soft-tissue contrast, multiplanar views, and dynamic imaging of cardiac function without ionizing radiation exposure. Interventional cardiovascular magnetic resonance (iCMR) leverages these features to enhance conventional interventional procedures or to enable novel ones. Although still awaiting clinical deployment, this young field has tremendous potential. We survey promising clinical applications for iCMR. Next, we discuss the technologies that allow CMR-guided interventions and, finally, what still needs to be done to bring them to the clinic.
Collapse
Affiliation(s)
- Christina E Saikus
- Translational Medicine Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892-1538, USA
| | | |
Collapse
|