751
|
Shi ZD, Pang K, Wu ZX, Dong Y, Hao L, Qin JX, Wang W, Chen ZS, Han CH. Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new strategies. Signal Transduct Target Ther 2023; 8:113. [PMID: 36906600 PMCID: PMC10008648 DOI: 10.1038/s41392-023-01383-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/07/2022] [Accepted: 02/20/2023] [Indexed: 03/13/2023] Open
Abstract
Despite the success of targeted therapies in cancer treatment, therapy-induced resistance remains a major obstacle to a complete cure. Tumor cells evade treatments and relapse via phenotypic switching driven by intrinsic or induced cell plasticity. Several reversible mechanisms have been proposed to circumvent tumor cell plasticity, including epigenetic modifications, regulation of transcription factors, activation or suppression of key signaling pathways, as well as modification of the tumor environment. Epithelial-to-mesenchymal transition, tumor cell and cancer stem cell formation also serve as roads towards tumor cell plasticity. Corresponding treatment strategies have recently been developed that either target plasticity-related mechanisms or employ combination treatments. In this review, we delineate the formation of tumor cell plasticity and its manipulation of tumor evasion from targeted therapy. We discuss the non-genetic mechanisms of targeted drug-induced tumor cell plasticity in various types of tumors and provide insights into the contribution of tumor cell plasticity to acquired drug resistance. New therapeutic strategies such as inhibition or reversal of tumor cell plasticity are also presented. We also discuss the multitude of clinical trials that are ongoing worldwide with the intention of improving clinical outcomes. These advances provide a direction for developing novel therapeutic strategies and combination therapy regimens that target tumor cell plasticity.
Collapse
Affiliation(s)
- Zhen-Duo Shi
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.,School of Life Sciences, Jiangsu Normal University, Jiangsu, China.,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China
| | - Kun Pang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jia-Xin Qin
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Wei Wang
- Department of Medical College, Southeast University, Nanjing, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Cong-Hui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China. .,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China. .,School of Life Sciences, Jiangsu Normal University, Jiangsu, China. .,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China.
| |
Collapse
|
752
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22:48. [PMID: 36906534 PMCID: PMC10007858 DOI: 10.1186/s12943-023-01744-8] [Citation(s) in RCA: 273] [Impact Index Per Article: 136.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 03/13/2023] Open
Abstract
The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - He Dou
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, 150001, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150000, China.
| | - Min Xiao
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
753
|
Chen S, Yu W, Li Z, Wang Y, Peng B. STYXL1 promotes proliferation and epithelial mesenchymal transition of gastric cancer cells via activating the PI3K/AKT pathway. Mol Cell Toxicol 2023. [DOI: 10.1007/s13273-023-00345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
754
|
Yin S, Lu R, Li Y, Sun D, Liu C, Liu B, Li J. A microfluidic device inspired by leaky tumor vessels for hematogenous metastasis mechanism research. Analyst 2023; 148:1570-1578. [PMID: 36892183 DOI: 10.1039/d2an02081e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Endothelial intercellular pores of tumor vessels generally lead to enhanced interstitial flow and may facilitate the migration of tumor cells. The permeability of tumor vessels causes a concentration gradient of growth factors (CGGF) from blood vessels to tumor tissues, which is opposite to the direction of interstitial flow. In this work, exogenous chemotaxis under the CGGF is demonstrated as a mechanism of hematogenous metastasis. A bionic microfluidic device inspired by endothelial intercellular pores of tumor vessels has been designed to study the mechanism. A porous membrane vertically integrated into the device using a novel compound mold is utilized to mimic the leaky vascular wall. The formation mechanism of the CGGF caused by endothelial intercellular pores is numerically analyzed and experimentally verified. The migration behavior of U-2OS cells is studied in the microfluidic device. The device is divided into three regions of interest (ROI): primary site, migration zone, and tumor vessel. The number of cells in the migration zone increases significantly under the CGGF, but decreases under no CGGF, indicating tumor cells may be guided to the vascellum by exogenous chemotaxis. Transendothelial migration is subsequently monitored, demonstrating the successful replication of the key steps in vitro in the metastatic cascade by the bionic microfluidic device.
Collapse
Affiliation(s)
- Shuqing Yin
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China.
| | - Ruoyu Lu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China.
| | - Yang Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China.
| | - Dexian Sun
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China.
| | - Chong Liu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China. .,Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, China
| | - Bo Liu
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, China.
| | - Jingmin Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China.
| |
Collapse
|
755
|
Contreras-Rodríguez JA, Puente-Rivera J, Córdova-Esparza DM, Nuñez-Olvera SI, Silva-Cázares MB. Bioinformatic miRNA-mRNAs Analysis Revels to miR-934 as a Potential Regulator of the Epithelial-Mesenchymal Transition in Triple-Negative Breast Cancer. Cells 2023; 12:cells12060834. [PMID: 36980175 PMCID: PMC10047237 DOI: 10.3390/cells12060834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer and has the worst prognosis. In patients with TNBC tumors, the tumor cells have been reported to have mesenchymal features, which help them migrate and invade. Various studies on cancer have revealed the importance of microRNAs (miRNAs) in different biological processes of the cell in that aberrations, in their expression, lead to alterations and deregulations in said processes, giving rise to tumor progression and aggression. In the present work, we determined the miRNAs that are deregulated in the epithelial-mesenchymal transition process in breast cancer. We discovered that 25 miRNAs that regulate mesenchymal genes are overexpressed in patients with TNBC. We found that miRNA targets modulate different processes and pathways, such as apoptosis, FoxO signaling pathways, and Hippo. We also found that the expression level of miR-934 is specific to the molecular subtype of the triple-negative breast cancer and modulates a set of related epithelial-mesenchymal genes. We determined that miR-934 inhibition in TNBC cell lines inhibits the migratory abilities of tumor cells.
Collapse
Affiliation(s)
| | | | | | - Stephanie I Nuñez-Olvera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | |
Collapse
|
756
|
Pan J, Huang T, Deng Z, Zou C. Roles and therapeutic implications of m6A modification in cancer immunotherapy. Front Immunol 2023; 14:1132601. [PMID: 36960074 PMCID: PMC10028070 DOI: 10.3389/fimmu.2023.1132601] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Recent studies have demonstrated that N6-methyladenosine (m6A), the most abundant, dynamic, and reversible epigenetic RNA modification in eukaryotes, is regulated by a series of enzymes, including methyltransferases (writers), demethylases (erasers), and m6A recognition proteins (readers). Aberrant regulation of m6A modification is pivotal for tumorigenesis, progression, invasion, metastasis, and apoptosis of malignant tumors. Immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment, as recognized by the 2018 Nobel Prize in Medicine and Physiology. However, not all cancer patients response to ICI therapy, which is thought to be the result of intricate immune escape mechanisms. Recently, numerous studies have suggested a novel role for m6A epigenetic modification in the regulation of tumor immune evasion. Herein, we review the relevant mechanisms of m6A regulators in regulating various key signaling pathways in cancer biology and how m6A epigenetic modifications regulate the expression of immune checkpoints, opening a new window to understand the roles and mechanisms of m6A epigenetic modifications in regulating tumor immune evasion. In addition, we highlight the prospects and development directions of future combined immunotherapy strategies based on m6A modification targeting, providing directions for promoting the treatment outcomes of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Juan Pan
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
- Department of Clinical Medical Research Center, The 2nd Clinical Medical College (Shenzhen People’s Hospital) of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Tuxiong Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhenjun Deng
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chang Zou
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
- Department of Clinical Medical Research Center, The 2nd Clinical Medical College (Shenzhen People’s Hospital) of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Shenzhen Public Service Platform On Tumor Precision Medicine and Molecular Diagnosis, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| |
Collapse
|
757
|
Ren X, Jiang M, Ding P, Zhang X, Zhou X, Shen J, Liu D, Yan X, Ma Z. Ubiquitin-specific protease 28: the decipherment of its dual roles in cancer development. Exp Hematol Oncol 2023; 12:27. [PMID: 36879346 PMCID: PMC9990303 DOI: 10.1186/s40164-023-00389-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
As significant posttranslational modifications, ubiquitination and deubiquitination, whose balance is modulated by ubiquitin-conjugating enzymes and deubiquitinating enzymes (DUBs), can regulate many biological processes, such as controlling cell cycle progression, signal transduction and transcriptional regulation. Belonging to DUBs, ubiquitin-specific protease 28 (USP28) plays an essential role in turning over ubiquitination and then contributing to the stabilization of quantities of substrates, including several cancer-related proteins. In previous studies, USP28 has been demonstrated to participate in the progression of various cancers. Nevertheless, several reports have recently shown that in addition to promoting cancers, USP28 can also play an oncostatic role in some cancers. In this review, we summarize the correlation between USP28 and tumor behaviors. We initially give a brief introduction of the structure and related biological functions of USP28, and we then introduce some concrete substrates of USP28 and the underlying molecular mechanisms. In addition, the regulation of the actions and expression of USP28 is also discussed. Moreover, we concentrate on the impacts of USP28 on diverse hallmarks of cancer and discuss whether USP28 can accelerate or inhibit tumor progression. Furthermore, clinical relevance, including impacting clinical prognosis, influencing therapy resistance and being the therapy target in some cancers, is depicted systematically. Thus, assistance may be given to future experimental designs by the information provided here, and the potential of targeting USP28 for cancer therapy is emphasized.
Collapse
Affiliation(s)
- Xiaoya Ren
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China.,Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China
| | - Menglong Jiang
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei City, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Xiaoyan Zhang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Xin Zhou
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China
| | - Jian Shen
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China
| | - Dong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishi Road, Beijing, 100037, China.
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China.
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
758
|
Malgundkar SH, Tamimi Y. Exosomes as crucial emerging tools for intercellular communication with therapeutic potential in ovarian cancer. Future Sci OA 2023; 9:FSO833. [PMID: 37006229 PMCID: PMC10051132 DOI: 10.2144/fsoa-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
More than two-thirds of epithelial ovarian cancer (EOC) patients are diagnosed at advanced stages due to the lack of sensitive biomarkers. Currently, exosomes are intensively investigated as non-invasive cancer diagnostic markers. Exosomes are nanovesicles released in the extracellular milieu with the potential to modulate recipient cells' behavior. EOC cells release many altered exosomal cargoes that exhibit clinical relevance to tumor progression. Exosomes represent powerful therapeutic tools (drug carriers or vaccines), posing a promising option in clinical practice for curing EOC in the near future. In this review, we highlight the importance of exosomes in cell–cell communication, epithelial–mesenchymal transition (EMT), and their potential to serve as diagnostic and prognostic factors, particularly in EOC.
Collapse
Affiliation(s)
- Shika Hanif Malgundkar
- Department of Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University, PO Box 35, PC 123, Muscat, Sultanate of Oman
| | - Yahya Tamimi
- Department of Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University, PO Box 35, PC 123, Muscat, Sultanate of Oman
| |
Collapse
|
759
|
Epithelial–Mesenchymal Transition Expression Profile Stratifies Human Glioma into Two Distinct Tumor-Immune Subtypes. Brain Sci 2023; 13:brainsci13030447. [PMID: 36979257 PMCID: PMC10046881 DOI: 10.3390/brainsci13030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
Glioma is the primary tumor with the highest incidence and the worst prognosis in the human central nervous system. Epithelial–mesenchymal transition (EMT) and immune responses are two crucial processes that contribute to it having the worst prognosis. However, a comprehensive correlation between these two processes remains elusive. The mRNA expression profiles and corresponding clinical data of patients with glioma were downloaded from public databases. EMT-related genes were collected and provided in the dbEMT database. Risk scores, Lasso regression, and enrichment analysis were conducted for functional validation. In our study, we used unsupervised clustering of EMT gene expression profiles to classify gliomas into two subtypes. We assessed the reliability of this classification system by testing it in three independent cohorts. Each subtype had different clinical and immune system characteristics. The study suggests a possible link between EMT and immune responses in gliomas.
Collapse
|
760
|
Yamakado N, Okuda S, Tobiume K, Uetsuki R, Ono S, Mizuta K, Nakagawa T, Aikawa T. Chemical inhibition of LSD1 leads to epithelial to mesenchymal transition in vitro of an oral squamous cell carcinoma OM-1 cell line via release from LSD1-dependent suppression of ZEB1. Biochem Biophys Res Commun 2023; 647:23-29. [PMID: 36709669 DOI: 10.1016/j.bbrc.2023.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
The epigenetic regulation for gene expression determines cell plasticity. Oral squamous cell carcinoma (SCC) exhibits bidirectional cell plasticity, i.e. epithelial differentiation and epithelial to mesenchymal transition (EMT). The epigenetic regulator LSD1 is a histone H3-specific demethylase to which chemical inhibitors for its activity had been developed as an anti-cancer therapeutics. The bidirectional plasticity of the oral SCC cell line OM-1 had been characterized, but it remained unclear how chemical LSD1 inhibitors affect cell plasticity. Here we reported an adverse effect against cancer therapeutics, which was EMT induction in vitro by the chemical LSD1 inhibitor. The LSD1 inhibitor caused EMT-TF ZEB1 in OM-1 to undergo EMT. Furthermore, an additional EMT-TF Snail-dependent partial EMT phenotype in OM-1 progressed to complete EMT in conjunction with LSD1 inhibitor-dependent ZEB1 induction. The promotor activity of ZEB1 was up-regulated under LSD1 inhibition. The regulatory chromatin regions of ZEB1 accumulated histone H3 methylation under the chemical inhibition of LSD1. The LSD1 inhibitor also upregulates epithelial gene expression in vitro; however, the bidirectional effect of LSD1 inhibitor should be considered in cancer therapeutics.
Collapse
Affiliation(s)
- Nao Yamakado
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Satoshi Okuda
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kei Tobiume
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Ryo Uetsuki
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigehiro Ono
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kuniko Mizuta
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takayuki Nakagawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomonao Aikawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
761
|
Aida T, Iwase R, Usuba T, Kumagai Y, Furukawa K, Onda S, Ogawa M, Ikegami T. Successful resection of port site recurrence of pancreatic ductal adenocarcinoma after laparoscopic distal pancreatectomy. Surg Case Rep 2023; 9:35. [PMID: 36867254 PMCID: PMC9984651 DOI: 10.1186/s40792-023-01607-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND There are many reports of port site recurrence after laparoscopic surgery for various types of cancer. However, only two cases of port site recurrence after laparoscopic pancreatectomy have been reported to date. We herein report a case of port site recurrence after laparoscopic distal pancreatectomy. CASE PRESENTATION A 73-year-old woman was diagnosed with pancreatic tail cancer and underwent laparoscopic distal pancreatectomy with splenectomy. Histopathological examination revealed pancreatic ductal carcinoma (pT1N0M0 pStage I). The patient was discharged on postoperative day 14 with no complications. However, 5 months after surgery, computed tomography showed a small tumor at the right abdominal wall. No distant metastasis had appeared after 7 months of follow-up. Under the diagnosis of port site recurrence without any other metastases, we resected this abdominal tumor. Histopathological examination showed port site recurrence of pancreatic ductal carcinoma. No recurrence was observed 15 months postoperatively. CONCLUSIONS This is the report of successful resection of port site recurrence of pancreatic cancer.
Collapse
Affiliation(s)
- Takashi Aida
- grid.411898.d0000 0001 0661 2073Department of Surgery, The Jikei University Katsushika Medical Center, 6-41-2, Aoto, Katsushika-Ku, Tokyo, 125-8506 Japan
| | - Ryota Iwase
- grid.411898.d0000 0001 0661 2073Department of Surgery, The Jikei University Katsushika Medical Center, 6-41-2, Aoto, Katsushika-Ku, Tokyo, 125-8506 Japan
| | - Teruyuki Usuba
- grid.411898.d0000 0001 0661 2073Department of Surgery, The Jikei University Katsushika Medical Center, 6-41-2, Aoto, Katsushika-Ku, Tokyo, 125-8506 Japan
| | - Yu Kumagai
- grid.411898.d0000 0001 0661 2073Department of Surgery, The Jikei University Katsushika Medical Center, 6-41-2, Aoto, Katsushika-Ku, Tokyo, 125-8506 Japan
| | - Kenei Furukawa
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan.
| | - Shinji Onda
- grid.411898.d0000 0001 0661 2073Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461 Japan
| | - Masaichi Ogawa
- grid.411898.d0000 0001 0661 2073Department of Surgery, The Jikei University Katsushika Medical Center, 6-41-2, Aoto, Katsushika-Ku, Tokyo, 125-8506 Japan
| | - Toru Ikegami
- grid.411898.d0000 0001 0661 2073Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461 Japan
| |
Collapse
|
762
|
Subbalakshmi AR, Sahoo S, Manjunatha P, Goyal S, Kasiviswanathan VA, Mahesh Y, Ramu S, McMullen I, Somarelli JA, Jolly MK. The ELF3 transcription factor is associated with an epithelial phenotype and represses epithelial-mesenchymal transition. J Biol Eng 2023; 17:17. [PMID: 36864480 PMCID: PMC9983220 DOI: 10.1186/s13036-023-00333-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal plasticity (EMP) involves bidirectional transitions between epithelial, mesenchymal and multiple intermediary hybrid epithelial/mesenchymal phenotypes. While the process of epithelial-mesenchymal transition (EMT) and its associated transcription factors are well-characterised, the transcription factors that promote mesenchymal-epithelial transition (MET) and stabilise hybrid E/M phenotypes are less well understood. RESULTS Here, we analyse multiple publicly-available transcriptomic datasets at bulk and single-cell level and pinpoint ELF3 as a factor that is strongly associated with an epithelial phenotype and is inhibited during EMT. Using mechanism-based mathematical modelling, we also show that ELF3 inhibits the progression of EMT. This behaviour was also observed in the presence of an EMT inducing factor WT1. Our model predicts that the MET induction capacity of ELF3 is stronger than that of KLF4, but weaker than that of GRHL2. Finally, we show that ELF3 levels correlates with worse patient survival in a subset of solid tumour types. CONCLUSION ELF3 is shown to be inhibited during EMT progression and is also found to inhibit the progression of complete EMT suggesting that ELF3 may be able to counteract EMT induction, including in the presence of EMT-inducing factors, such as WT1. The analysis of patient survival data indicates that the prognostic capacity of ELF3 is specific to cell-of-origin or lineage.
Collapse
Affiliation(s)
- Ayalur Raghu Subbalakshmi
- grid.34980.360000 0001 0482 5067Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bangalore, India
| | - Sarthak Sahoo
- grid.34980.360000 0001 0482 5067Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bangalore, India
| | - Prakruthi Manjunatha
- grid.444321.40000 0004 0501 2828Department of Medical Electronics, M S Ramaiah Institute of Technology, 560054 Bangalore, India
| | - Shaurya Goyal
- grid.429017.90000 0001 0153 2859Department of Humanities and Social Sciences, Indian Institute of Technology, 721302 Kharagpur, India
| | - Vignesh A Kasiviswanathan
- grid.512757.30000 0004 1761 9897Department of Biotechnology, JSS Science and Technology University, 570006 Mysore, India
| | - Yeshwanth Mahesh
- grid.34980.360000 0001 0482 5067Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bangalore, India
| | - Soundharya Ramu
- grid.419655.a0000 0001 0008 3668Department of Biotechnology, National Institute of Technology Warangal, 506004 Warangal, India
| | - Isabelle McMullen
- grid.26009.3d0000 0004 1936 7961Department of Medicine, Duke University, NC 27708 Durham, USA
| | - Jason A. Somarelli
- grid.26009.3d0000 0004 1936 7961Department of Medicine, Duke University, NC 27708 Durham, USA ,grid.26009.3d0000 0004 1936 7961Duke Cancer Institute, Duke University, NC 27708 Durham, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012, Bangalore, India.
| |
Collapse
|
763
|
Rhaponticin suppresses the hypoxia-induced factor-1 alpha-mediated aggressive phenotype of tongue squamous cell carcinoma. Mol Cell Toxicol 2023. [DOI: 10.1007/s13273-023-00337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Abstract
Background
Emerging evidence suggests that rhaponticin, a stilbene monomeric compound isolated from North China rhubarb, has been shown to exhibit significant biological activity against tumors. However, the anticancer effects and mechanisms of rhaponticin in tongue squamous cell carcinoma (TSCC) remain elusive.
Objective
We investigated the changes of migration and invasion abilities and EMT progression of TSCC cells treated with different concentrations of rhaponticin under hypoxia, as well as the possible mechanisms, in order to initially explore the effects of rhaponticin on the biological characteristics of TSCC cells under hypoxia.
Results
The number of cell migration and invasion was prominently increased, E-cadherin protein was down-regulated, and N-cadherin and HIF-1α protein expression was elevated under hypoxia. Rhaponticin intervention strikingly prevented the increased abilities of migration and invasion and EMT of TSCC cells under hypoxia. This was followed by further validation finding that rhaponticin indeed leads to reduced HIF-1α post-transcriptional activity. Mechanistically, rhaponticin may bind to aryl-hydrocarbon nuclear translocator (ARNT) domain of HIF-1α.
Conclusions
Rhaponticin repressed the invasion and migration abilities and EMT process of TSCC cells under a hypoxic environment in vitro by targeted suppression of HIF-1α.
Collapse
|
764
|
Zhu L, Yu X, Cao T, Deng H, Tang X, Lin Q, Zhou Q. Immune cell membrane-based biomimetic nanomedicine for treating cancer metastasis. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
|
765
|
Tumor Microenvironment Responsive Nanomicelle with Folic Acid Modification Co-Delivery of Doxorubicin/Shikonin for Triple Negative Breast Cancer Treatment. Pharmaceuticals (Basel) 2023; 16:ph16030374. [PMID: 36986473 PMCID: PMC10055947 DOI: 10.3390/ph16030374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Triple negative breast cancer (TNBC), which has poor prognosis, easily develops drug resistance and metastasizes. In general, those TNBC characteristics are related to a high activation of the epithelial-mesenchymal transition (EMT) pathway, which is inhibited by shikonin (SKN). Therefore, the synergistic therapy of SKN and doxorubicin (DOX) will increase anti-tumor efficacy and reduce metastasis. In this study, we prepared the folic acid-linked PEG nanomicelle (NM) grafted with the DOX (denoted as FPD) to load the SKN. We prepared the SKN@FPD NM according to the effective ratio of dual drugs, where the drug loadings of DOX and SKN were 8.86 ± 0.21% and 9.43 ± 0.13%, with 121.8 ± 1.1 nm of its hydrodynamic dimension and 6.33 ± 0.16 mV of zeta potential, respectively. The nanomaterials significantly slowed down the release of DOX and SKN over 48 h, leading to the release of pH-responsive drugs. Meanwhile, the prepared NM inhibited the activity of MBA-MD-231 cells in vitro. Further in vitro study revealed that the SKN@FPD NM increased the DOX uptake and significantly reduced the metastasis of MBA-MD-231 cells. Overall, these active-targeting NMs improved the tumor-targeting of small molecular drugs and effectively treated TNBC.
Collapse
|
766
|
Kralj J, Pernar Kovač M, Dabelić S, Polančec DS, Wachtmeister T, Köhrer K, Brozovic A. Transcriptome analysis of newly established carboplatin-resistant ovarian cancer cell model reveals genes shared by drug resistance and drug-induced EMT. Br J Cancer 2023; 128:1344-1359. [PMID: 36717670 PMCID: PMC10050213 DOI: 10.1038/s41416-023-02140-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND In ovarian cancer (OC) therapy, even initially responsive patients develop drug resistance. METHODS Here, we present an OC cell model composed of variants with differing degrees of acquired resistance to carboplatin (CBP), cross-resistance to paclitaxel, and CBP-induced metastatic properties (migration and invasion). Transcriptome data were analysed by two approaches identifying differentially expressed genes and CBP sensitivity-correlating genes. The impact of selected genes and signalling pathways on drug resistance and metastatic potential, along with their clinical relevance, was examined by in vitro and in silico approaches. RESULTS TMEM200A and PRKAR1B were recognised as potentially involved in both phenomena, also having high predictive and prognostic values for OC patients. CBP-resistant MES-OV CBP8 cells were more sensitive to PI3K/Akt/mTOR pathway inhibitors Rapamycin, Wortmannin, SB216763, and transcription inhibitor Triptolide compared with parental MES-OV cells. When combined with CBP, Rapamycin decreased the sensitivity of parental cells while Triptolide sensitised drug-resistant cells to CBP. Four PI3K/Akt/mTOR inhibitors reduced migration in both cell lines. CONCLUSIONS A newly established research model and two distinct transcriptome analysis approaches identified novel candidate genes enrolled in CBP resistance development and/or CBP-induced EMT and implied that one-gene targeting could be a better approach than signalling pathway inhibition for influencing both phenomena.
Collapse
Affiliation(s)
- Juran Kralj
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Margareta Pernar Kovač
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Sanja Dabelić
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, Zagreb, Croatia
| | | | - Thorsten Wachtmeister
- Genomics and Transcriptomics Laboratory at the Biological and Medical Research Center (BMFZ), Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory at the Biological and Medical Research Center (BMFZ), Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia.
| |
Collapse
|
767
|
Shu C, Wang S, Hu J, Xu M, Deng H, Maimaiti Y, Huang T. CircNDST1 promotes papillary thyroid cancer progression via its interaction with CSNK2A1 to activate the PI3K-Akt pathway and epithelial-mesenchymal transition. J Endocrinol Invest 2023; 46:545-557. [PMID: 36306106 PMCID: PMC9938055 DOI: 10.1007/s40618-022-01928-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Multiple studies have established a strong relationship between circRNA and cancer progression. Cervical lymph node metastasis is a key factor influencing the surgical approach and distant metastasis of papillary thyroid cancer (PTC). However, the role of circNDST1 in PTC has not been investigated. Our research focused on revealing the function and mechanism of action of circNDST1 in PTC. METHODS High-throughput sequencing and qPCR were used to assess the expression of circRNA in PTC tissues with extensive cervical lymph node metastasis and circNDST1 in cell lines, respectively. The proliferative effects of circNDST1 in vitro and in vivo were analyzed using CCK8, clone formation assay, EdU, and nude mouse tumorigenesis assay. The transwell scratch assay was employed in the scrutiny of the effect of circNDST1 on the migration and invasion abilities of thyroid cancer cells, while circNDST1's influence on the PI3K-Akt pathway and the Epithelial-Mesenchymal Transition (EMT) key protein expression was evaluated utilizing RNA sequencing and western blot. RNA pull-down and RIP were used to examine the binding of circNDST1 to CSNK2A1. RESULTS CircNDST1 was highly expressed in PTC cell lines, but knocking it down inhibited the proliferation, migration, and invasive abilities of TPC1 and KTC1 cell lines. CircNDST1 bonded with CSNK2A1 and promoted the interaction between CSNK2A1 and Akt, leading to the activation of the PI3K-Akt pathway and EMT. CONCLUSION CircNDST1's high expression boosted thyroid cancer progression through the activation of the PI3K-Akt pathway and EMT in a CSNK2A1-dependent manner.
Collapse
Affiliation(s)
- C Shu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - S Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - M Xu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - H Deng
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y Maimaiti
- Department of General Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.
| | - T Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
768
|
Chen YH, Yang SH, Liu LX, Hu S, Wang XJ, Liao ZJ, Huan YF, He K, Zhang XW. Knockdown of FGFR3 inhibits the proliferation, migration and invasion of intrahepatic cholangiocarcinoma. Dig Liver Dis 2023; 55:400-406. [PMID: 35999136 DOI: 10.1016/j.dld.2022.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/13/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022]
Abstract
The FGF/FGFR signaling axis deregulation of the fibroblast growth factor receptor (FGFR) family is closely related to tumorigenesis, tumor progression and drug resistance to anticancer therapy. And fibroblast growth factor receptor 3 (FGFR3) is one member of this family. In this study, we aimed to investigate the effect of siRNA-induced knockdown of FGFR3 on the biological behaviors of intrahepatic cholangiocarcinoma (ICC). The expression levels of FGFR3 were determined in three intrahepatic cholangiocarcinoma cell lines RBE, HUCCT1 and HCCC9810 cell lines by Western blot. FGFR3 expression in RBE cell line was knocked down by siRNA. Our study found that knockdown of FGFR3 inhibited the migration, invasion and proliferation of ICC cells using Wound healing assay, Transwell migration and invasion assays and Cell proliferation assay. And significantly down-regulated the protein expression levels of MMP2, cyclinD1, and NCadherin, but had no significant effect on MMP9, cyclinD3, vimentin, E-cadherin protein. In addition, we found that ERK/c-Myc presumably is its signaling pathway by bioinformatics analysis and Western blot verification. To sum up, knockdown of FGFR3 inhibited the migration, invasion and proliferation of ICC cells. It demonstrated that FGFR3 probably becomes a therapeutic target for ICC and increases the proportion of potentially curable intrahepatic cholangiocarcinoma patients treated with FGFR inhibitors.
Collapse
MESH Headings
- Humans
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/pharmacology
- Cell Proliferation/genetics
- Cell Movement/genetics
- Cholangiocarcinoma/pathology
- RNA, Small Interfering/metabolism
- Bile Ducts, Intrahepatic/pathology
- Bile Duct Neoplasms/pathology
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Yi-Hui Chen
- The Second Affiliated Hospital of Kunming Medical University, Department of Hepatobiliary Surgery, Kunming, Yunnan, China
| | - Shao-Hua Yang
- The Second Affiliated Hospital of Kunming Medical University, Department of Hepatobiliary Surgery, Kunming, Yunnan, China
| | - Li-Xin Liu
- The Second Affiliated Hospital of Kunming Medical University, Department of Hepatobiliary Surgery, Kunming, Yunnan, China
| | - Sheng Hu
- The Second Affiliated Hospital of Kunming Medical University, Department of Hepatobiliary Surgery, Kunming, Yunnan, China
| | - Xue-Jun Wang
- The Second Affiliated Hospital of Kunming Medical University, Department of Hepatobiliary Surgery, Kunming, Yunnan, China
| | - Zhou-Jun Liao
- The Second Affiliated Hospital of Kunming Medical University, Department of Hepatobiliary Surgery, Kunming, Yunnan, China
| | - Yun-Feng Huan
- The Second Affiliated Hospital of Kunming Medical University, Department of Hepatobiliary Surgery, Kunming, Yunnan, China
| | - Kai He
- The Second Affiliated Hospital of Kunming Medical University, Department of Hepatobiliary Surgery, Kunming, Yunnan, China
| | - Xiao-Wen Zhang
- The Second Affiliated Hospital of Kunming Medical University, Department of Hepatobiliary Surgery, Kunming, Yunnan, China.
| |
Collapse
|
769
|
Ohshima H, Mishima K. Oral biosciences: The annual review 2022. J Oral Biosci 2023; 65:1-12. [PMID: 36740188 DOI: 10.1016/j.job.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The Journal of Oral Biosciences is devoted to advancing and disseminating fundamental knowledge concerning every aspect of oral biosciences. HIGHLIGHT This review features review articles in the fields of "Bone Cell Biology," "Tooth Development & Regeneration," "Tooth Bleaching," "Adipokines," "Milk Thistle," "Epithelial-Mesenchymal Transition," "Periodontitis," "Diagnosis," "Salivary Glands," "Tooth Root," "Exosome," "New Perspectives of Tooth Identification," "Dental Pulp," and "Saliva" in addition to the review articles by the winner of the "Lion Dental Research Award" ("Plastic changes in nociceptive pathways contributing to persistent orofacial pain") presented by the Japanese Association for Oral Biology. CONCLUSION The review articles in the Journal of Oral Biosciences have inspired its readers to broaden their knowledge about various aspects of oral biosciences. The current editorial review introduces these exciting review articles.
Collapse
Affiliation(s)
- Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
770
|
GAS5 attenuates the malignant progression of glioma stem-like cells by promoting E-cadherin. Cancer Gene Ther 2023; 30:450-461. [PMID: 36460802 DOI: 10.1038/s41417-022-00566-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 11/05/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
It has been widely reported that glioma stem-like cells (GSCs) serve a crucial role in the malignant progression of glioma. In particular, recent studies have reported that long non-coding RNAs (lncRNAs) are closely associated with glioma development. However, the underlying molecular regulatory mechanistic role of GSCs remains poorly understood. The present study established two highly malignant glioma stem-like cell lines from clinical surgical specimens. In these, it was found that the lncRNA growth arrest-specific 5 (GAS5) expression was downregulated in GSCs and high-grade glioma tissues, compared with normal human astrocyte cells (NHAs) and normal brain tissues, respectively, which also showed a positive correlation with patient survival. Functional assays revealed that knocking down GAS5 expression promoted the proliferation, invasion, migration, stemness, and tumorigenicity of GSGs, while suppressing their apoptosis. Mechanistically, GAS5 directly sponged miR-23a, which in turn functioned as an oncogene by inhibiting E-cadherin, through the assays of reverse transcription-quantitative PCR (RT-qPCR) and luciferase reports. In addition, rescue experiments demonstrated that GAS5 could promote the expression and function of E-cadherin in a miR-23a-dependent manner. Collectively, these data suggest that GAS5 functions as a suppressor in GSCs by targeting the miR-23a/E-cadherin axis, which may be a promising therapeutic target against glioma.
Collapse
|
771
|
Nandy N, Roy JK. Rab11 negatively regulates wingless preventing JNK-mediated apoptosis in Drosophila epithelium during embryonic dorsal closure. Cell Tissue Res 2023; 391:485-504. [PMID: 36705747 DOI: 10.1007/s00441-023-03740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/12/2023] [Indexed: 01/28/2023]
Abstract
Rab11, a small Ras like GTPase marking the recycling endosomes, plays instrumental roles in Drosophila embryonic epithelial morphogenesis where an array of reports testify its importance in the maintenance of cyto-architectural as well as functional attributes of the concerned cells. Proper Rab11 functions ensure a precise regulation of developmentally active cell signaling pathways which in turn promote the expression of morphogens and other physico-chemical cues which finally forge an embryo out of a single layer of cells. Earlier reports have established that Rab11 functions are vital for fly embryonic development where amorphic mutants such as EP3017 homozygotes show a fair degree of epithelial defects along with incomplete dorsal closure. Here, we present a detailed account of the effects of Rab11 loss of function in the dorso-lateral epithelium which resulted in severe dorsal closure defects along with an elevated JNK-Dpp expression. We further observed that the dorso-lateral epithelial cells undergo epithelial to mesenchymal transition as well as apoptosis in Rab11 mutants with elevated expression levels of MMP1 and Caspase-3, where Caspase-3 contributes to the Rab11 knockout phenotype contrary to the knockdown mutants or hypomorphs. Interestingly, the elevated expressions of the core JNK-Dpp signaling could be rescued with a simultaneous knockdown of wingless in the Rab11 knockout mutants suggesting a genetic interaction of Rab11 with the Wingless pathway during dorsal closure, an ideal model of epithelial wound healing.
Collapse
Affiliation(s)
- Nabarun Nandy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
772
|
Jia F, Li Y, Gao Y, Wang X, Lu J, Cui X, Pan Z, Xu C, Deng X, Wu Y. Sequential-delivery nanocomplex for combined anti-angiogenesis and gene therapy against colorectal cancer. Int J Pharm 2023; 637:122850. [PMID: 36990169 DOI: 10.1016/j.ijpharm.2023.122850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/18/2023] [Accepted: 03/11/2023] [Indexed: 03/29/2023]
Abstract
Neovascularization can provide tumors with essential nutrients and oxygen, as well as maintain a microenvironment for tumor cell growth. In this study, we combined anti-angiogenic therapy and gene therapy for synergistic anti-tumor therapy. We co-delivered the vascular endothelial growth factor receptor inhibitor fruquintinib (Fru) and small interfering RNA CCAT1 (siCCAT1) inhibiting epithelial-mesenchymal transition using 1,2-distearoyl-snglycero-3-phosphoethanolamine-N- [methoxy (polyethylene glycol)] with a pH-responsive benzoic imine linker bond (DSPE-Hyd-mPEG) and polyethyleneimine-poly (d, l-lactide) (PEI-PDLLA) nanocomplex (Fru and siCCAT1 co-delivery NP, FCNP). Due to the characteristics of pH-response, DSPE-Hyd-mPEG removed from FCNP after enrichment at the tumor site, which had a protective effect in the body. Meanwhile, Fru acting on the peritumor blood vessels was rapidly released, and then the nanoparticles loaded with siCCAT1 (CNP) was engulfed by cancer cells and facilitate the successful lysosomal escape of siCCAT1 in, playing the role of silencing CCAT1. Efficient silencing of CCAT1 by FCNP was observed, and simultaneously, the expression of VEGFR-1 was also down-regulated. Furthermore, FCNP elicited significant synergistic antitumor efficacy via anti-angiogenesis and gene therapy in the SW480 subcutaneous xenograft model with favorable biosafety and biocompatibility during the treatment. Overall, FCNP was considered a promising strategy for the combined anti-angiogenesis-gene treatment against colorectal cancer.
Collapse
|
773
|
Chen H, Cai X, Du B, Cai J, Luo Z. MicroRNA-150-5p inhibits the proliferation and invasion of human larynx epidermiod cancer cells though regulating peptidyl-prolyl cis/trans isomerase. Braz J Otorhinolaryngol 2023; 89:383-392. [PMID: 37105032 PMCID: PMC10164829 DOI: 10.1016/j.bjorl.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the molecular mechanism of miR-150-5p regulating the malignant biological behavior of Human Epidermoid cancer cell (HEp-2) by targeting peptidyl-prolyl cis/trans isomerase NIMA-Interacting-1 (PIN1). METHODS Firstly, qRT-PCR and Western blot were adopted to detect the expression levels of miR-150-5p and PIN1 in cancer tissue and paracancerous tissues of patients with LSCC, and those in human bronchial epithelial cells (16 HBE) and HEp-2. Next, the targeted relationship between miR-150-5p and PIN1 was assessed by bioinformatics website and dual-luciferase reporter assay, followed by their correlation analysis. Besides, after interfering with miR-150-5p or PIN1 expression in HEp-2 cells, CCK-8, cell colony formation assay, and transwell assay were utilized to detect the proliferation, viability, and invasion of cells, respectively. Subsequently, the protein levels of MMP-2, MMP-9, and EMT-related proteins in HEp-2 cells were checked by Western blot. RESULTS Expression of miR-150-5p was down-regulated in LSCC tissues and HEp-2 cells. Moreover, miR-150-5p suppressed proliferation and invasion of HEp-2 cells, affected protein expression related to MMP and EMT, thereby inhibiting development of cancer. The expression of PIN1 was significantly increased in cancer tissues and HEp-2 cells, and there was a targeted relationship and negative correlation between miR-150-5p and PIN1 in cancer tissue. However, overexpression of PIN1 could reverse the effect of miR-150-5p on the proliferation and invasion of HEp-2 cells. CONCLUSION In a nutshell, there is a targeted relationship between PIN1 and miR-150-5p. Besides, miR-150-5p can inhibit the proliferation and invasion of HEp-2 cells by regulating the expression of PIN1. LEVEL OF EVIDENCE: 3
Collapse
|
774
|
Roles of oncogenes in esophageal squamous cell carcinoma and their therapeutic potentials. Clin Transl Oncol 2023; 25:578-591. [PMID: 36315334 DOI: 10.1007/s12094-022-02981-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common type of esophageal cancer (EC) in Asia. It is a malignant digestive tract tumor with abundant gene mutations. Due to the lack of specific diagnostic markers and early cancer screening markers, most patients are diagnosed at an advanced stage. Genetic and epigenetic changes are closely related to the occurrence and development of ESCC. Here, We review the activation of proto-oncogenes into oncogenes through gene mutation and gene amplification in ESCC from a genetic and epigenetic genome perspective, We also discuss the specific regulatory mechanisms through which these oncogenes mainly affect the biological function and occurrence and development of ESCC through specific regulatory mechanisms. In addition, we summarize the clinical application value of these oncogenes is summarized, and it provides a feasible direction for clinical use as potential therapeutic and diagnostic markers.
Collapse
|
775
|
He Y, Ji Z, Gong Y, Fan L, Xu P, Chen X, Miao J, Zhang K, Zhang W, Ma P, Zhao H, Cheng C, Wang D, Wang J, Jing N, Liu K, Zhang P, Dong B, Zhuang G, Fu Y, Xue W, Gao WQ, Zhu HH. Numb/Parkin-directed mitochondrial fitness governs cancer cell fate via metabolic regulation of histone lactylation. Cell Rep 2023; 42:112033. [PMID: 36724072 DOI: 10.1016/j.celrep.2023.112033] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/30/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
Cell plasticity and neuroendocrine differentiation in prostate and lung adenocarcinomas are one of the major reasons for therapeutic resistance to targeted therapy. Whether and how metabolic changes contribute to this adenocarcinoma-to-neuroendocrine cell fate transition remains largely unclear. Here we show that neuroendocrine prostate or lung cancer cells possess mostly fragmented mitochondria with low membrane potential and rely on glycolysis for energy metabolism. We further show an important role of the cell fate determinant Numb in mitochondrial quality control via binding to Parkin and facilitating Parkin-mediated mitophagy. Deficiency in the Numb/Parkin pathway in prostate or lung adenocarcinomas causes a metabolic reprogramming featured with a significant increase in production of lactate acid, which subsequently leads to an upregulation of histone lactylation and transcription of neuroendocrine-associated genes. Collectively, the Numb/Parkin-directed mitochondrial fitness is a key metabolic switch and a promising therapeutic target on cancer cell plasticity through the regulation of histone lactylation.
Collapse
Affiliation(s)
- Yuman He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Zhongzhong Ji
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Yiming Gong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Liancheng Fan
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Penghui Xu
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Juju Miao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Kai Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Wentian Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Pengfei Ma
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Huifang Zhao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Chaping Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Deng Wang
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jinming Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Na Jing
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China; School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Kaiyuan Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Baijun Dong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Yujie Fu
- Department of Thoracic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xue
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China; School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China.
| |
Collapse
|
776
|
Xie J, Zhou J, Xia J, Zeng Y, Huang G, Zeng W, Fan T, Li L, Zeng X, Tao Q. Phospholipase C delta 1 inhibits WNT/β-catenin and EGFR-FAK-ERK signaling and is disrupted by promoter CpG methylation in renal cell carcinoma. Clin Epigenetics 2023; 15:30. [PMID: 36849889 PMCID: PMC9972803 DOI: 10.1186/s13148-023-01448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND PLCD1, located at 3p22, encodes an enzyme that mediates cellular metabolism and homeostasis, intracellular signal transduction and movement. PLCD1 plays a pivotal role in tumor suppression of several types of cancers; however, its expression and underlying molecular mechanisms in renal cell carcinoma (RCC) pathogenesis remain elusive. METHODS RT-PCR and Western blot were used to detect PLCD1 expression in RCC cell lines and normal tissues. Bisulfite treatment, MSP and BGS were utilized to explore the CpG methylation status of PLCD1 promoter. Online databases were analyzed for the association between PLCD1 expression/methylation and patient survival. In vitro experiments including CCK8, colony formation, wound-healing, transwell migration and invasion, immunofluorescence and flow cytometry assays were performed to evaluate tumor cell behavior. Luciferase assay and Western blot were used to examine effect of PLCD1 on WNT/β-catenin and EGFR-FAK-ERK signaling. RESULTS We found that PLCD1 was widely expressed in multiple adult normal tissues including kidney, but frequently downregulated or silenced in RCC due to its promoter CpG methylation. Restoration of PLCD1 expression inhibited the viability, migration and induced G2/M cell cycle arrest and apoptosis in RCC cells. PLCD1 restoration led to the inhibition of signaling activation of WNT/β-catenin and EGFR-FAK-ERK pathways, and the EMT program of RCC cells. CONCLUSIONS Our results demonstrate that PLCD1 is a potent tumor suppressor frequently inactivated by promoter methylation in RCC and exerts its tumor suppressive functions via suppressing WNT/β-catenin and EGFR-FAK-ERK signaling. These findings establish PLCD1 as a promising prognostic biomarker and treatment target for RCC.
Collapse
Affiliation(s)
- Jianlian Xie
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Zhou
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Jiliang Xia
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Ying Zeng
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Guo Huang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Weihong Zeng
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tingyu Fan
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
777
|
Harnessing epithelial-mesenchymal plasticity to boost cancer immunotherapy. Cell Mol Immunol 2023; 20:318-340. [PMID: 36823234 PMCID: PMC10066239 DOI: 10.1038/s41423-023-00980-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/17/2023] [Indexed: 02/25/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy is a powerful option for cancer treatment. Despite demonstrable progress, most patients fail to respond or achieve durable responses due to primary or acquired ICB resistance. Recently, tumor epithelial-to-mesenchymal plasticity (EMP) was identified as a critical determinant in regulating immune escape and immunotherapy resistance in cancer. In this review, we summarize the emerging role of tumor EMP in ICB resistance and the tumor-intrinsic or extrinsic mechanisms by which tumors exploit EMP to achieve immunosuppression and immune escape. We discuss strategies to modulate tumor EMP to alleviate immune resistance and to enhance the efficiency of ICB therapy. Our discussion provides new prospects to enhance the ICB response for therapeutic gain in cancer patients.
Collapse
|
778
|
Li D, Xia L, Huang P, Wang Z, Guo Q, Huang C, Leng W, Qin S. Heterogeneity and plasticity of epithelial-mesenchymal transition (EMT) in cancer metastasis: Focusing on partial EMT and regulatory mechanisms. Cell Prolif 2023:e13423. [PMID: 36808651 DOI: 10.1111/cpr.13423] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) or mesenchymal-epithelial transition (MET) plays critical roles in cancer metastasis. Recent studies, especially those based on single-cell sequencing, have revealed that EMT is not a binary process, but a heterogeneous and dynamic disposition with intermediary or partial EMT states. Multiple double-negative feedback loops involved by EMT-related transcription factors (EMT-TFs) have been identified. These feedback loops between EMT drivers and MET drivers finely regulate the EMT transition state of the cell. In this review, the general characteristics, biomarkers and molecular mechanisms of different EMT transition states were summarized. We additionally discussed the direct and indirect roles of EMT transition state in tumour metastasis. More importantly, this article provides direct evidence that the heterogeneity of EMT is closely related to the poor prognosis in gastric cancer. Notably, a seesaw model was proposed to explain how tumour cells regulate themselves to remain in specific EMT transition states, including epithelial state, hybrid/intermediate state and mesenchymal state. Additionally, this article also provides a review of the current status, limitations and future perspectives of EMT signalling in clinical applications.
Collapse
Affiliation(s)
- Dandan Li
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Pan Huang
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Zidi Wang
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Qiwei Guo
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Congcong Huang
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Shanshan Qin
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
779
|
Sufentanil combined with parecoxib sodium inhibits proliferation and metastasis of HER2-positive breast cancer cells and regulates epithelial-mesenchymal transition. Clin Exp Metastasis 2023; 40:149-160. [PMID: 36807216 DOI: 10.1007/s10585-023-10199-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/10/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND Sufentanil combined with parecoxib sodium is a commonly used postoperative medication for cancer patients. However, the effects of this combination therapy on human epidermal growth factor receptor-2 (HER2)-positive breast cancer cells have still remained elusive. This study aimed to investigate the effects and potential mechanisms of sufentanil combined with parecoxib sodium on HER2-positive breast cancer cells. METHODS The cell counting kit-8 (CCK-8), colony formation, flow cytometry, scratch, transwell invasion, and angiogenesis assays were used to assess the proliferation, cell cycling, migration, invasion, and angiogenesis of HER2-positive breast cancer BT474 cells. Western blot assay was employed for detecting the expression levels of proteins involved in the cell cycle, migration, invasion, angiogenesis, and epithelial-mesenchymal transition (EMT). The in vivo effects of tumor growth and metastasis were examined by establishing an orthotopic transplantation mouse model of HER2-positive breast cancer (MMTV-PyMT). RESULTS Functional assays indicated that sufentanil combined with parecoxib sodium induced blockade of HER2-positive breast cancer BT474 cells in the G1 phase of the cell cycle and inhibited cell proliferation, migration, angiogenesis, and invasion in vitro. Western blot assay revealed that sufentanil combined with parecoxib sodium downregulated the expression levels of cyclin D1, matrix metalloproteinase-9 (MMP-9), cyclooxygenase-2 (COX-2), vascular endothelial growth factor A (VEGFA), and EMT-related proteins (N-cadherin, Vimentin, and Snail), while up-regulated the expression level of E-cadherin in BT474 cells. In addition, it was found that sufentanil combined with parecoxib sodium inhibited tumor growth and metastasis in the orthotopic transplantation mouse model of HER2-positive breast cancer. CONCLUSION Sufentanil combined with parecoxib sodium inhibited HER2-positive breast cancer progression, including cell proliferation, cell cycle, migration, invasion, and angiogenesis, and regulated EMT.
Collapse
|
780
|
Chakraborti S, Karmakar A, Guha R, Ngan C, Kumar Das R, Whitaker N. Induction of epithelial to mesenchymal transition in HPV16 E6/E7 oncogene transfected C33A cell line. Tissue Cell 2023; 82:102041. [PMID: 36827821 DOI: 10.1016/j.tice.2023.102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
This study focuses on the induction of EMT by HPV16 in the C33A cell line. Expression of β-catenin, EMT-transcription factors (EMT-TFs), and c-myc in the nuclei of HPV16 E6/E7 oncogene transfected and non-transfected C33A cells were investigated through immunofluorescence and RT-PCR. Microphotographs of β-catenin, c-myc, and DAPI-stained nuclei were processed and analyzed by Python and ImageJ respectively. Microphotographs of immunocytochemically stained transfected and control cells were then processed and analyzed with the help of ImageJ and Python programming. The intensity and the integrated density of β-catenin were computed at the cell membrane area as well as the cytoplasmic area along with the integrated density of c-myc and Renyi entropy of DAPI-stained nuclei was quantified by ImageJ software. Python programming was implemented to determine the total percentage of white pixels depicting the presence of β-catenin in the cytoplasmic area of cells. The signal of β-catenin at the cytoplasmic area was found significantly higher in transfected samples which implies the nuclear accumulation of β-catenin. The expression of the c-myc protein was found significantly higher in transfected cells along with significantly higher nuclear entropy. RT-PCR result shows two folds of up-regulation of EMT-TFs Snail1, Twist1, and Zeb2 and down-regulation of Snail2 and Twist2. The study concludes that HPV16 E6/E7 oncogene can induce EMT.
Collapse
Affiliation(s)
- Sourangshu Chakraborti
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - Aparajita Karmakar
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Riana Guha
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - Christopher Ngan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Raunak Kumar Das
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, Tamilnadu, India; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Noel Whitaker
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
781
|
Fonseca I, Horta C, Ribeiro AS, Sousa B, Marteil G, Bettencourt-Dias M, Paredes J. Polo-like kinase 4 (Plk4) potentiates anoikis-resistance of p53KO mammary epithelial cells by inducing a hybrid EMT phenotype. Cell Death Dis 2023; 14:133. [PMID: 36797240 PMCID: PMC9935921 DOI: 10.1038/s41419-023-05618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/18/2023]
Abstract
Polo-like kinase 4 (Plk4), the major regulator of centriole biogenesis, has emerged as a putative therapeutic target in cancer due to its abnormal expression in human carcinomas, leading to centrosome number deregulation, mitotic defects and chromosomal instability. Moreover, Plk4 deregulation promotes tumor growth and metastasis in mouse models and is significantly associated with poor patient prognosis. Here, we further investigate the role of Plk4 in carcinogenesis and show that its overexpression significantly potentiates resistance to cell death by anoikis of nontumorigenic p53 knock-out (p53KO) mammary epithelial cells. Importantly, this effect is independent of Plk4's role in centrosome biogenesis, suggesting that this kinase has additional cellular functions. Interestingly, the Plk4-induced anoikis resistance is associated with the induction of a stable hybrid epithelial-mesenchymal phenotype and is partially dependent on P-cadherin upregulation. Furthermore, we found that the conditioned media of Plk4-induced p53KO mammary epithelial cells also induces anoikis resistance of breast cancer cells in a paracrine way, being also partially dependent on soluble P-cadherin secretion. Our work shows, for the first time, that high expression levels of Plk4 induce anoikis resistance of both mammary epithelial cells with p53KO background, as well as of breast cancer cells exposed to their secretome, which is partially mediated through P-cadherin upregulation. These results reinforce the idea that Plk4, independently of its role in centrosome biogenesis, functions as an oncogene, by impacting the tumor microenvironment to promote malignancy.
Collapse
Affiliation(s)
- Irina Fonseca
- Instituto Gulbenkian de Ciência (IGC), Oeiras, 2780-156, Portugal.
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal.
- Cancel Stem, Portuguese Consortium on Cancer Stem Cells, Porto, Portugal.
| | - Cíntia Horta
- Instituto Gulbenkian de Ciência (IGC), Oeiras, 2780-156, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal
- Cancel Stem, Portuguese Consortium on Cancer Stem Cells, Porto, Portugal
| | - Ana Sofia Ribeiro
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal
- Cancel Stem, Portuguese Consortium on Cancer Stem Cells, Porto, Portugal
| | - Barbara Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal
| | | | - Mónica Bettencourt-Dias
- Instituto Gulbenkian de Ciência (IGC), Oeiras, 2780-156, Portugal.
- Cancel Stem, Portuguese Consortium on Cancer Stem Cells, Porto, Portugal.
| | - Joana Paredes
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal.
- Cancel Stem, Portuguese Consortium on Cancer Stem Cells, Porto, Portugal.
| |
Collapse
|
782
|
Liu Z, Shi M, Ren Y, Xu H, Weng S, Ning W, Ge X, Liu L, Guo C, Duo M, Li L, Li J, Han X. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy. Mol Cancer 2023; 22:35. [PMID: 36797756 PMCID: PMC9933290 DOI: 10.1186/s12943-023-01738-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The incidence and mortality of cancer are the major health issue worldwide. Apart from the treatments developed to date, the unsatisfactory therapeutic effects of cancers have not been addressed by broadening the toolbox. The advent of immunotherapy has ushered in a new era in the treatments of solid tumors, but remains limited and requires breaking adverse effects. Meanwhile, the development of advanced technologies can be further boosted by gene analysis and manipulation at the molecular level. The advent of cutting-edge genome editing technology, especially clustered regularly interspaced short palindromic repeats (CRISPR-Cas9), has demonstrated its potential to break the limits of immunotherapy in cancers. In this review, the mechanism of CRISPR-Cas9-mediated genome editing and a powerful CRISPR toolbox are introduced. Furthermore, we focus on reviewing the impact of CRISPR-induced double-strand breaks (DSBs) on cancer immunotherapy (knockout or knockin). Finally, we discuss the CRISPR-Cas9-based genome-wide screening for target identification, emphasis the potential of spatial CRISPR genomics, and present the comprehensive application and challenges in basic research, translational medicine and clinics of CRISPR-Cas9.
Collapse
Affiliation(s)
- Zaoqu Liu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.207374.50000 0001 2189 3846Interventional Institute of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 Henan China
| | - Meixin Shi
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yuqing Ren
- grid.412633.10000 0004 1799 0733Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Hui Xu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Siyuan Weng
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wenjing Ning
- grid.207374.50000 0001 2189 3846Department of Emergency Center, Zhengzhou University People’s Hospital, Zhengzhou, 450003 Henan China
| | - Xiaoyong Ge
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Long Liu
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Chunguang Guo
- grid.412633.10000 0004 1799 0733Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Mengjie Duo
- grid.412633.10000 0004 1799 0733Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Lifeng Li
- grid.412633.10000 0004 1799 0733Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jing Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
783
|
Polyacetylene Isomers Isolated from Bidens pilosa L. Suppress the Metastasis of Gastric Cancer Cells by Inhibiting Wnt/ β-Catenin and Hippo/YAP Signaling Pathways. Molecules 2023; 28:molecules28041837. [PMID: 36838824 PMCID: PMC9962988 DOI: 10.3390/molecules28041837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
(E)-7-Phenyl-2-hepten-4,6-diyn-1-ol (1) and (Z)-7-Phenyl-2-hepten-4,6-diyn-1-ol (2) are isomeric natural polyacetylenes isolated from the Chinese medicinal plant Bidens pilosa L. This study first revealed the excellent anti-metastasis potential of these two polyacetylenes on human gastric cancer HGC-27 cells and the distinctive molecular mechanisms underlying their activities. Polyacetylenes 1 and 2 significantly inhibited the migration, invasion, and adhesion of HGC-27 cells at their non-toxic concentrations in a dose-dependent manner. The results of a further mechanism investigation showed that polyacetylene 1 inhibited the expressions of Vimentin, Snail, β-catenin, GSK3β, MST1, YAP, YAP/TAZ, and their phosphorylation, and upregulated the expression of E-cadherin and p-LATS1. In addition, the expressions of various downstream metastasis-related proteins, such as MMP2/7/9/14, c-Myc, ICAM-1, VCAM-1, MAPK, p-MAPK, Sox2, Cox2, and Cyr61, were also suppressed in a dose-dependent manner. These findings suggested that polyacetylene 1 exhibited its anti-metastasis activities on HGC-27 cells through the reversal of the EMT process and the suppression of the Wnt/β-catenin and Hippo/YAP signaling pathways.
Collapse
|
784
|
Chen PJ, Lin ES, Su HH, Huang CY. Cytotoxic, Antibacterial, and Antioxidant Activities of the Leaf Extract of Sinningia bullata. PLANTS (BASEL, SWITZERLAND) 2023; 12:859. [PMID: 36840206 PMCID: PMC9967939 DOI: 10.3390/plants12040859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/12/2023]
Abstract
Sinningia bullata is a tuberous member of the flowering plant family Gesneriaceae. Prior to this work, the antibacterial, antioxidant, and cytotoxic properties of S. bullata were undetermined. Here, we prepared different extracts from the leaf, stem, and tuber of S. bullata and investigated their pharmacological activities. The leaf extract of S. bullata, obtained by 100% acetone (Sb-L-A), had the highest total flavonoid content, antioxidation capacity, and cytotoxic and antibacterial activities. Sb-L-A displayed a broad range of antibacterial activities against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The inhibition zones of Sb-L-A ranged from 8 to 30 mm and were in the following order: S. aureus > E. coli > P. aeruginosa. Incubation of B16F10 melanoma cells with Sb-L-A at a concentration of 80 μg/mL caused deaths at the rate of 96%, reduced migration by 100%, suppressed proliferation and colony formation by 99%, and induced apoptosis, which was observed in 96% of the B16F10 cells. In addition, the cytotoxic activities of Sb-L-A were synergistically enhanced when coacting with the antitumor drug epothilone B. Sb-L-A was also used to determine the cytotoxic effects against 4T1 mammary carcinoma cells. Sb-L-A of 60 μg/mL boosted the distribution of the G2 phase from 1.4% to 24.4% in the B16F10 cells. Accordingly, Sb-L-A might suppress melanoma cell proliferation by inducing G2 cell-cycle arrest. The most abundant compounds in Sb-L-A were identified using gas chromatography-mass spectrometry. Overall, the collective data in this study may indicate the pharmacological potentials of Sb-L-A for possible medical applications.
Collapse
Affiliation(s)
- Pin-Jui Chen
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan;
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan;
| | - Hsin-Hui Su
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 717, Taiwan;
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
785
|
Wang R, Yu W, Zhu T, Lin F, Hua C, Ru L, Guo P, Wan X, Xue G, Guo Z, Han S, Lv K, Zhang G, Ge H, Guo W, Xu L, Deng W. MED27 plays a tumor-promoting role in breast cancer progression by targeting KLF4. Cancer Sci 2023. [PMID: 36786527 DOI: 10.1111/cas.15757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
The mediator complex usually cooperates with transcription factors to be involved in RNA polymerase II-mediated gene transcription. As one component of this complex, MED27 has been reported in our previous studies to promote thyroid cancer and melanoma progression. However, the precise function of MED27 in breast cancer development remains poorly understood. Here, we found that MED27 was more highly expressed in breast cancer samples than in normal tissues, especially in triple-negative breast cancer, and its expression level was elevated with the increase in pathological stage. MED27 knockdown in triple-negative breast cancer cells inhibited cancer cell metastasis and stemness maintenance, which was accompanied by downregulation of the expression of EMT- and stem traits-associated proteins, and vice versa in non-triple-negative breast cancer. Furthermore, MED27 knockdown sensitized breast cancer cells to epirubicin treatment by inducing cellular apoptosis and reducing tumorsphere-forming ability. Based on RNA-seq, we identified KLF4 as the possible downstream target of MED27. KLF4 overexpression reversed the MED27 silencing-mediated arrest of cellular metastasis and stemness maintenance capacity in breast cancer in vitro and in vivo. Mechanistically, MED27 transcriptionally regulated KLF4 by binding to its promoter region at positions -156 to +177. Collectively, our study not only demonstrated the tumor-promoting role of MED27 in breast cancer progression by transcriptionally targeting KLF4, but also suggested the possibility of developing the MED27/KLF4 signaling axis as a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Ruozhu Wang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tianhua Zhu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fei Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Chunyu Hua
- Institute of Cancer Stem Cell & The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liyuan Ru
- Institute of Cancer Stem Cell & The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ping Guo
- Institute of Cancer Stem Cell & The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinyu Wan
- Institute of Cancer Stem Cell & The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guoqing Xue
- Institute of Cancer Stem Cell & The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ziyue Guo
- Institute of Cancer Stem Cell & The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilong Han
- Institute of Cancer Stem Cell & The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kuan Lv
- Institute of Cancer Stem Cell & The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guohui Zhang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hanxiao Ge
- Institute of Cancer Stem Cell & The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Guo
- Institute of Cancer Stem Cell & The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lingzhi Xu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| |
Collapse
|
786
|
Zhang R, Liu Q, Zhou S, He H, Zhao M, Ma W. Mesenchymal stem cell suppresses the efficacy of CAR-T toward killing lymphoma cells by modulating the microenvironment through stanniocalcin-1. eLife 2023; 12:82934. [PMID: 36779699 PMCID: PMC10019890 DOI: 10.7554/elife.82934] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/12/2023] [Indexed: 02/14/2023] Open
Abstract
Stem cells play critical roles both in the development of cancer and therapy resistance. Although mesenchymal stem cells (MSCs) can actively migrate to tumor sites, their impact on chimeric antigen receptor modified T cell (CAR-T) immunotherapy has been little addressed. Using an in vitro cell co-culture model including lymphoma cells and macrophages, here we report that CAR-T cell-mediated cytotoxicity was significantly inhibited in the presence of MSCs. MSCs caused an increase of CD4+ T cells and Treg cells but a decrease of CD8+ T cells. In addition, MSCs stimulated the expression of indoleamine 2,3-dioxygenase and programmed cell death-ligand 1 which contributes to the immune-suppressive function of tumors. Moreover, MSCs suppressed key components of the NLRP3 inflammasome by modulating mitochondrial reactive oxygen species release. Interestingly, all these suppressive events hindering CAR-T efficacy could be abrogated if the stanniocalcin-1 (STC1) gene, which encodes the glycoprotein hormone STC-1, was knockdown in MSC. Using xenograft mice, we confirmed that CAR-T function could also be inhibited by MSC in vivo, and STC1 played a critical role. These data revealed a novel function of MSC and STC-1 in suppressing CAR-T efficacy, which should be considered in cancer therapy and may also have potential applications in controlling the toxicity arising from the excessive immune response.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai UniversityTianjinChina
| | - Qingxi Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai UniversityTianjinChina
- Qilu Institute of TechnologyShandongChina
| | - Sa Zhou
- College of Biotechnology, Tianjin University of Science and TechnologyTianjinChina
| | - Hongpeng He
- College of Biotechnology, Tianjin University of Science and TechnologyTianjinChina
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai UniversityTianjinChina
| | - Wenjian Ma
- Qilu Institute of TechnologyShandongChina
- College of Biotechnology, Tianjin University of Science and TechnologyTianjinChina
| |
Collapse
|
787
|
Chen K, Xu J, Tong YL, Yan JF, Pan Y, Wang WJ, Zheng L, Zheng XX, Hu C, Hu X, Shen X, Chen W. Rab31 promotes metastasis and cisplatin resistance in stomach adenocarcinoma through Twist1-mediated EMT. Cell Death Dis 2023; 14:115. [PMID: 36781842 PMCID: PMC9925739 DOI: 10.1038/s41419-023-05596-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 02/15/2023]
Abstract
Stomach adenocarcinoma (STAD) is one of the leading causes of cancer-related death globally. Metastasis and drug resistance are two major causes of failures in current chemotherapy. Here, we found that the expression of Ras-related protein 31 (Rab31) is upregulated in human STAD tissues and high expression of Rab31 is closely associated with poor survival time. Furthermore, we revealed that Rab31 promotes cisplatin resistance and metastasis in human STAD cells. Reduced Rab31 expression induces tumor cell apoptosis and increases cisplatin sensitivity in STAD cells; Rab31 overexpression yielded the opposite result. Rab31 silencing prevented STAD cell migration, whereas the overexpression of Rab31 increased the metastatic potential. Further work showed that Rab31 mediates cisplatin resistance and metastasis via epithelial-mesenchymal transition (EMT) pathway. In addition, we found that both Rab31 overexpression and cisplatin treatment results in increased Twist1 expression. Depletion of Twist1 enhances sensitivity to cisplatin in STAD cells, which cannot be fully reversed by Rab31 overexpression. Rab31 could activate Twist1 by activating Stat3 and inhibiting Mucin 1 (MUC-1). The present study also demonstrates that Rab31 knockdown inhibited tumor growth in mice STAD models. These findings indicate that Rab31 is a novel and promising biomarker and potential therapeutic target for diagnosis, treatment and prognosis prediction in STAD patients. Our data not only identifies a novel Rab31/Stat3/MUC-1/Twist1/EMT pathway in STAD metastasis and drug resistance, but it also provides direction for the exploration of novel strategies to predict and treat STAD in the future.
Collapse
Affiliation(s)
- Ke Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang Province, China
| | - Ji Xu
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
| | - Yu-Ling Tong
- Department of General Practice, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Jia-Fei Yan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang Province, China
| | - Yu Pan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang Province, China
| | - Wei-Jia Wang
- Department of Pharmacy, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, Zhejiang Province, China
| | - Li Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Xiao-Xiao Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Can Hu
- Department of Gastric Surgery, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang Province, China
| | - Xiu Hu
- Department of Pharmacy, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, Zhejiang Province, China.
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China.
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China.
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China.
| |
Collapse
|
788
|
Malagoli Tagliazucchi G, Wiecek AJ, Withnell E, Secrier M. Genomic and microenvironmental heterogeneity shaping epithelial-to-mesenchymal trajectories in cancer. Nat Commun 2023; 14:789. [PMID: 36774358 PMCID: PMC9922305 DOI: 10.1038/s41467-023-36439-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/31/2023] [Indexed: 02/13/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a key cellular process underlying cancer progression, with multiple intermediate states whose molecular hallmarks remain poorly characterised. To fill this gap, we present a method to robustly evaluate EMT transformation in individual tumours based on transcriptomic signals. We apply this approach to explore EMT trajectories in 7180 tumours of epithelial origin and identify three macro-states with prognostic and therapeutic value, attributable to epithelial, hybrid E/M and mesenchymal phenotypes. We show that the hybrid state is relatively stable and linked with increased aneuploidy. We further employ spatial transcriptomics and single cell datasets to explore the spatial heterogeneity of EMT transformation and distinct interaction patterns with cytotoxic, NK cells and fibroblasts in the tumour microenvironment. Additionally, we provide a catalogue of genomic events underlying distinct evolutionary constraints on EMT transformation. This study sheds light on the aetiology of distinct stages along the EMT trajectory, and highlights broader genomic and environmental hallmarks shaping the mesenchymal transformation of primary tumours.
Collapse
Affiliation(s)
| | - Anna J Wiecek
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Eloise Withnell
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
789
|
Okuyama K, Suzuki K, Yanamoto S. Relationship between Tumor Budding and Partial Epithelial-Mesenchymal Transition in Head and Neck Cancer. Cancers (Basel) 2023; 15:cancers15041111. [PMID: 36831453 PMCID: PMC9953904 DOI: 10.3390/cancers15041111] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Tumor budding (TB), a microscopic finding in the stroma ahead of the invasive fronts of tumors, has been well investigated and reported as a prognostic marker in head and neck squamous cell carcinoma (HNSCC). Epithelial-mesenchymal transition (EMT) is a crucial step in tumor progression and metastasis, and its status cannot be distinguished from TB. The current understanding of partial EMT (p-EMT), the so-called halfway step of EMT, focuses on the tumor microenvironment (TME). Although this evidence has been investigated, the clinicopathological and biological relationship between TB and p-EMT remains debatable. At the invasion front, previous research suggested that cancer-associated fibroblasts (CAFs) are important for tumor progression, metastasis, p-EMT, and TB formation in the TME. Although there is biological evidence of TB drivers, no report has focused on their organized functional relationships. Understanding the mechanism of TB onset and the relationship between p-EMTs may facilitate the development of novel diagnostic and prognostic methods, and targeted therapies for the prevention of metastasis in epithelial cancer. Thus far, major pieces of evidence have been established from colorectal cancer (CRC), due to a large number of patients with the disease. Herein, we review the current understanding of p-EMT and TME dynamics and discuss the relationship between TB development and p-EMT, focusing on CAFs, hypoxia, tumor-associated macrophages, laminin-integrin crosstalk, membrane stiffness, enzymes, and viral infections in cancers, and clarify the gap of evidence between HNSCC and CRC.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 North University Ave, Ann Arbor, MI 48109, USA
- University of Michigan Rogel Cancer Center, 1600 Huron Pathway, Ann Arbor, MI 48105, USA
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Correspondence: or
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
790
|
Zhu S, Li W, Zhang H, Yan Y, Mei Q, Wu K. Retinal determination gene networks: from biological functions to therapeutic strategies. Biomark Res 2023; 11:18. [PMID: 36750914 PMCID: PMC9906957 DOI: 10.1186/s40364-023-00459-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/28/2023] [Indexed: 02/09/2023] Open
Abstract
The retinal determinant gene network (RDGN), originally discovered as a critical determinator in Drosophila eye specification, has become an important regulatory network in tumorigenesis and progression, as well as organogenesis. This network is not only associated with malignant biological behaviors of tumors, such as proliferation, and invasion, but also regulates the development of multiple mammalian organs. Three members of this conservative network have been extensively investigated, including DACH, SIX, and EYA. Dysregulated RDGN signaling is associated with the initiation and progression of tumors. In recent years, it has been found that the members of this network can be used as prognostic markers for cancer patients. Moreover, they are considered to be potential therapeutic targets for cancer. Here, we summarize the research progress of RDGN members from biological functions to signaling transduction, especially emphasizing their effects on tumors. Additionally, we discuss the roles of RDGN members in the development of organs and tissue as well as their correlations with the pathogenesis of chronic kidney disease and coronary heart disease. By summarizing the roles of RDGN members in human diseases, we hope to promote future investigations into RDGN and provide potential therapeutic strategies for patients.
Collapse
Affiliation(s)
- Shuangli Zhu
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Wanling Li
- grid.412793.a0000 0004 1799 5032Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,grid.470966.aCancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Hao Zhang
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yuheng Yan
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qi Mei
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. .,Cancer Center, Tongji hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
791
|
Zhao F, Zhao P, Chang J, Sun X, Ma X, Shi B, Yin M, Wang Y, Yang Y. Identification and vitro verification of the potential drug targets of active ingredients of Chonglou in the treatment of lung adenocarcinoma based on EMT-related genes. Front Genet 2023; 14:1112671. [PMID: 36824434 PMCID: PMC9942681 DOI: 10.3389/fgene.2023.1112671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the main histological type of lung cancer with an unfavorable survival rate. Metastasis is the leading LUAD-related death with Epithelial-Mesenchymal Transition (EMT) playing an essential role. The anticancer efficacies of the active ingredients in Chonglou have been widely reported in various cancers. However, the potential therapeutic targets of the Chonglou active ingredients in LUAD patients remain unknown. Here, the network pharmacology and bioinformatics were performed to analyze the associations of the clinical characteristics, immune infiltration factors and m6A-related genes with the EMT-related genes associated with LUAD (EMT-LUAD related genes), and the molecular docking, STRING, GO, and KEGG enrichment for the drug targets of Chonglou active ingredients associated with EMT (EMT-LUAD-Chonglou related genes). And, cell viability analysis and cell invasion and infiltration analysis were used to confirm the theoretical basis of this study. A total of 166 EMT-LUAD related genes were identified and a multivariate Cox proportional hazards regression model with a favorable predictive accuracy was constructed. Meanwhile, the immune cell infiltration, immune cell subsets, checkpoint inhibitors and the expression of m6A-related genes were significantly associated with the risk scores for EMT-LUAD related genes with independent significant prognostic value of all included LUAD patients. Furthermore, 12 EMT-LUAD-Chonglou related genes with five core drug targets were identified, which participated in LUAD development through extracellular matrix disassembly, collagen metabolic process, collagen catabolic process, extracellular matrix organization, extracellular structure organization and inflammatory response. Moreover, we found that the active ingredients of Chonglou could indeed inhibit the progression of lung adenocarcinoma cells. These results are oriented towards EMT-related genes to achieve a better understanding of the role of Chonglou and its targets in osteosarcoma development and metastasis, thus guiding future preclinical studies and facilitating clinical translation of LUAD treatment.
Collapse
Affiliation(s)
- Fulai Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Peng Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Junli Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Xingyuan Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Xiaoping Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Binhao Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Mengchen Yin
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China,*Correspondence: Yongjun Wang, ; Yanping Yang,
| | - Yanping Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China,*Correspondence: Yongjun Wang, ; Yanping Yang,
| |
Collapse
|
792
|
Huang J, Lv C, Zhao B, Ji Z, Gao Z. SCARA5 inhibits oral squamous cell carcinoma via inactivating the STAT3 and PI3K/AKT signaling pathways. Open Med (Wars) 2023; 18:20230627. [PMID: 36785765 PMCID: PMC9921916 DOI: 10.1515/med-2023-0627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 12/17/2022] [Indexed: 02/09/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common tumor in the world. Despite the rapid development of medical care, OSCC is also accompanied by high incidence and mortality every year. Therefore, it is still necessary to continuously develop new methods or find new targets to treat OSCC. Previous research showed that scavenger receptor class A member 5 (SCARA5) was one of the potential biomarkers of OSCC, and its expression is significantly low in OSCC. This study aimed to explore the role and related molecular mechanisms of SCARA5 in OSCC. In this study, we found that the SCARA5 expression was lower in CAL-27 and SCC-9 cells than that in human normal oral epithelial keratinocytes. SCARA5 overexpression significantly inhibited cell proliferation and induced apoptosis of CAL-27 and SCC-9 cells. In addition, SCARA5 repressed OSCC cell epithelial-mesenchymal transformation (EMT), evidenced by increased E-cadherin expression and reduced N-cadherin expression. Finally, we found that SCARA5 could suppress STAT3, PI3K, and AKT phosphorylation. Therefore, SCARA5 was related to STAT3 and PI3K/AKT signaling pathways in OSCC. In conclusion, SCARA5 inhibited the proliferation and EMT and induced the apoptosis of OSCC cells through the inhibition of STAT3 and PI3K/AKT signaling pathways, thereby exerting a tumor suppressor effect.
Collapse
Affiliation(s)
- Juan Huang
- Department of Stomatology, Taizhou People’s Hospital, Tauzhou225300, China
| | - Chunhua Lv
- Department of Stomatology, Taizhou People’s Hospital, Tauzhou225300, China
| | - Baoyu Zhao
- Department of Stomatology, Taizhou People’s Hospital, Tauzhou225300, China
| | - Zhongqian Ji
- Department of Stomatology, Taizhou People’s Hospital, Tauzhou225300, China
| | - Zhenran Gao
- Department of Stomatology, Taizhou People’s Hospital, No. 366 Taihu Road, Tauzhou225300, China
| |
Collapse
|
793
|
Neogenin suppresses tumor progression and metastasis via inhibiting Merlin/YAP signaling. Cell Death Dis 2023; 9:47. [PMID: 36746934 PMCID: PMC9902585 DOI: 10.1038/s41420-023-01345-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/08/2023]
Abstract
From in situ growth to invasive dissemination is the most lethal attribute of various tumor types. This transition is majorly mediated by the dynamic interplay between two cancer hallmarks, EMT and cell cycle. In this study, we applied nonlinear association analysis in 33 cancer types and found that most signaling receptors simultaneously associating with EMT and cell cycle are potential tumor suppressors. Here we find that a top co-associated receptor, Neogenin (NEO1), inhibits colorectal cancer (CRC) and Glioma in situ growth and metastasis by forming a complex with Merlin (NF2), and subsequent simultaneous promoting the phosphorylation of YAP. Furthermore, Neogenin protein level is associated with good prognosis and correlates with Merlin status in CRC and Glioma. Collectively, our results define Neogenin as a tumor suppressor in CRC and Glioma that acts by restricting oncogenic signaling by the Merlin-YAP pathway, and suggest Neogenin as a candidate therapeutic agent for CRC and Glioma.
Collapse
|
794
|
Liu J, Zhang J, Fu X, Yang S, Li Y, Liu J, DiSanto ME, Chen P, Zhang X. The Emerging Role of Cell Adhesion Molecules on Benign Prostatic Hyperplasia. Int J Mol Sci 2023; 24:2870. [PMID: 36769190 PMCID: PMC9917596 DOI: 10.3390/ijms24032870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/01/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in elderly men. It is characterized by prostatic enlargement and urethral compression and often causes lower urinary tract symptoms (LUTs) such as urinary frequency, urgency, and nocturia. Existing studies have shown that the pathological process of prostate hyperplasia is mainly related to the imbalance of cell proliferation and apoptosis, inflammation, epithelial-mesenchymal transition (EMT), and growth factors. However, the exact molecular mechanisms remain incompletely elucidated. Cell adhesion molecules (CAMs) are a group of cell surface proteins that mediate cell-cell adhesion and cell migration. Modulating adhesion molecule expression can regulate cell proliferation, apoptosis, EMT, and fibrotic processes, engaged in the development of prostatic hyperplasia. In this review, we went over the important roles and molecular mechanisms of cell adhesion molecules (mainly integrins and cadherins) in both physiological and pathological processes. We also analyzed the mechanisms of CAMs in prostate hyperplasia and explored the potential value of targeting CAMs as a therapeutic strategy for BPH.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Junchao Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shu Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Michael E. DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
795
|
Hu J, Li G, Liu Z, Ma H, Yuan W, Lu Z, Zhang D, Ling H, Zhang F, Liu Y, Liu C, Qiu Y. Bicarbonate transporter SLC4A7 promotes EMT and metastasis of HNSCC by activating the PI3K/AKT/mTOR signaling pathway. Mol Carcinog 2023; 62:628-640. [PMID: 36727616 DOI: 10.1002/mc.23511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 02/03/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Currently, therapeutic modalities such as surgery, chemotherapy, radiotherapy, and immunotherapy are being used to treat HNSCC. However, the treatment outcomes of most patients are dismal because they are already in middle or advanced stage by the time of diagnosis and poorly responsive to treatments. It is therefore of great interest to clarify mechanisms that contribute to the metastasis of cells to identify possible targets for therapy. In this study, we identified the Na+ -coupled bicarbonate transporter, SLC4A7, play essential roles in the metastasis of HNSCC. Our results showed that the relative expression of SLC4A7 messenger RNA was highly expressed in HNSCCs samples from TCGA, and compared with precancerous cells of human oral mucosa (DOK), SLC4A7 was highly expressed in HNSCC cell lines. In vitro and in vivo experiments showed that dysregulation of SLC4A7 had minor influence on the proliferation of HNSCC but impacted HNSCC's migration and invasion. Meanwhile, SLC4A7 could promote epithelial-mesenchymal transition (EMT) in HNSCC. RNA-seq, KEGG pathway enrichment analysis and Western blot further revealed that downregulation of SLC4A7 in HNSCC cells inhibited the PI3K/AKT pathway. These findings were further validated via rescue experiments using a small molecule inhibitor of PI3K/mTOR (GDC-0980). Our findings suggest that SLC4A7 promotes EMT and metastasis of HNSCC through the PI3K/AKT/mTOR signaling pathway, which may be a valuable predictive biomarker and potential therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Junli Hu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,Department of Otolaryngology Head and Neck Surgery, Yantian District People's Hospital, Shenzhen, Guangdong, China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhifeng Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Huiling Ma
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Wenhui Yuan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Zhaoyi Lu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Diekuo Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Hang Ling
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Fengyu Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
796
|
Zamborlin A, Voliani V. Gold nanoparticles as antiangiogenic and antimetastatic agents. Drug Discov Today 2023; 28:103438. [PMID: 36375738 DOI: 10.1016/j.drudis.2022.103438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Angiogenesis and metastasis are two interdependent cancer hallmarks, the latter of which is the key cause of treatment failure. Thus, establishing effective antiangiogenesis/antimetastasis agents is the final frontier in cancer research. Gold nanoparticles (GNPs) may provide disruptive advancements in this regard due to their intrinsic physical and physiological features. Here, we comprehensively discuss recent potential therapeutical strategies to treat angiogenesis and metastasis and present a critical review on the state-of-the-art in vitro and in vivo evaluations of the antiangiogenic/antimetastatic activity of GNPs. Finally, we provide perspectives on the contribution of GNPs to the advancement of cancer management.
Collapse
Affiliation(s)
- Agata Zamborlin
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12 - 56127 Pisa, Italy; NEST-Scuola Normale Superiore, Piazza San Silvestro, 12 - 56127 Pisa, Italy
| | - Valerio Voliani
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12 - 56127 Pisa, Italy; Department of Pharmacy, University of Genoa, Viale Cembrano, 4 - 16148 Genoa, Italy.
| |
Collapse
|
797
|
Wang J, Yang Z, Liu Y, Li H, Yang X, Gao W, Zhao Q, Yang X, Wei J. The GAL/GALR2 axis promotes the perineural invasion of salivary adenoid cystic carcinoma via epithelial-to-mesenchymal transition. Cancer Med 2023; 12:4496-4509. [PMID: 36039037 PMCID: PMC9972115 DOI: 10.1002/cam4.5181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Perineural invasion (PNI) is a typical pathological characteristic of salivary adenoid cystic carcinoma (SACC) and other neurotrophic cancers. The mechanism of the neural microenvironment controlling tumor progression during the PNI process is unclear. In the present study, we investigated the role and molecular mechanisms of nerve-derived neuropeptide galanin (GAL) and its receptor (GALR2) in the regulation of PNI in SACC. METHODS Immunohistochemistry staining and clinical association studies were performed to analyze the expression of GAL and GALR2 in SACC tissues and their clinical value. Dorsal root ganglion or SH-SY5Y cells were co-cultured with SACC cells in vitro to simulate the interactions between the neural microenvironment and tumor cells, and a series of assays including transcriptome sequencing, Western blot, and Transwell were performed to investigate the role and molecular mechanism of GAL and GALR2 in the regulation of SACC cells. Moreover, both the in vitro and in vivo PNI models were established to assess the potential PNI-specific therapeutic effects by blocking the GAL/GALR2 axis. RESULTS GAL and GALR2 were highly expressed in SACC tissues, and were associated with PNI and poor prognosis in SACC patients (p < 0.05). Nerve-derived GAL activated GALR2 expression in SACC cells and induced epithelial-to-mesenchymal transition (EMT) in SACC cells. Adding human recombinant GAL to the co-culture system promoted the proliferation, migration, and invasion of SACC cells significantly, but inhibited the apoptosis of SACC cells. Adding M871, a specific antagonist of GALR2, significantly blocked the above effects (p < 0.05) and inhibited the PNI of SACC cells in vitro and in vivo (p < 0.05). CONCLUSIONS This study demonstrated that nerve-derived GAL activated GALR2 expression, and promoted EMT in SACC cells, thereby enhancing the PNI process. Interruption of the GAL/GALR2 axis might be a novel strategy for anti-PNI therapy for SACC.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Zihui Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Yuanyang Liu
- Senior Department of Neurosurgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Huan Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xiangming Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Wanpeng Gao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Qi Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xinjie Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Jianhua Wei
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
798
|
Okuyama NCM, Ribeiro DL, da Rocha CQ, Pereira ÉR, Cólus IMDS, Serpeloni JM. Three-dimensional cell cultures as preclinical models to assess the biological activity of phytochemicals in breast cancer. Toxicol Appl Pharmacol 2023; 460:116376. [PMID: 36638973 DOI: 10.1016/j.taap.2023.116376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
The demand for the development of three-dimensional (3D) cell culture models in both/either drug screening and/or toxicology is gradually magnified. Natural Products derived from plants are known as phytochemicals and serve as resources for novel drugs and cancer therapy. Typical examples include taxol analogs (i.e., paclitaxel and docetaxel), vinca alkaloids (i.e., vincristine, vinblastine), and camptothecin analogs (topotecan, irinotecan). Breast cancer is the most frequent malignancy in women, with a 70% chance of patients being cured; however, metastatic disease is not considered curable using currently available chemotherapeutic options. In addition, phytochemicals present promising options for overcoming chemotherapy-related problems, such as drug resistance and toxic effects on non-target tissues. In the toxicological evaluation of these natural compounds, 3D cell culture models are a powerful tool for studying their effects on different tissues and organs in similar environments and behave as if they are in vivo conditions. Considering that 3D cell cultures represent a valuable platform for identifying the biological features of tumor cells as well as for screening natural products with antitumoral activity, the present review aims to summarize the most common 3D cell culture methods, focusing on multicellular tumor spheroids (MCTS) of breast cancer cell lines used in the discovery of phytochemicals with anticancer properties in the last ten years.
Collapse
Affiliation(s)
- Nádia Calvo Martins Okuyama
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil
| | - Diego Luís Ribeiro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo 05508-000, Brazil.
| | - Claudia Quintino da Rocha
- Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão, São Luís 65080-805, Brazil.
| | - Érica Romão Pereira
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil
| | - Juliana Mara Serpeloni
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| |
Collapse
|
799
|
Liao H, Li H, Song J, Chen H, Si H, Dong J, Wang J, Bai X. Expression of the prognostic marker IL-8 correlates with the immune signature and epithelial-mesenchymal transition in breast cancer. J Clin Lab Anal 2023; 37:e24797. [PMID: 36725216 PMCID: PMC9978063 DOI: 10.1002/jcla.24797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND IL-8 has been implicated in the malignant progression of various types of cancers; however, the precise molecular mechanisms associated with IL-8 in breast cancer (BRCA) are unclear. METHODS We analyzed the clinical signature and immune characteristics of BRCA patients and its correlation with IL-8 expression using The Cancer Genome Atlas (TCGA) datasets. The role of IL-8 in epithelial-mesenchymal transition (EMT) was verified through Western blotting, Cell Counting Kit-8 assay, and wound healing assays, as well as cell invasion experiments. RESULTS Through a comprehensive bioinformatics study, we determined that high IL-8 expression was associated with poor prognosis. Enrichment analysis revealed that high IL-8 expression was enriched in immune-related processes and cancer-related signaling pathways. In addition, IL-8 was associated with most of the immune-infiltrating cells, and high IL-8 expression indicated poor response to immunotherapy. Importantly, we found that IL-8 induced EMT in vitro. CONCLUSIONS Taken together, our data indicate that IL-8 may be a potential and valuable prognostic marker in BRCA, which may induce adverse outcomes by modulating the immune response and promoting EMT in BRCA patients.
Collapse
Affiliation(s)
- Huifeng Liao
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina,Department of General SurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Huayan Li
- Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jin Song
- Department of General Surgery, The Seventh Medical Center of Chinese PLA General HospitalBeijingChina
| | - Hongye Chen
- Department of General SurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Huiyan Si
- Department of General SurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Junhua Dong
- Department of General Surgery, The Seventh Medical Center of Chinese PLA General HospitalBeijingChina
| | - Jiandong Wang
- Department of General SurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Xue Bai
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina,Department of General SurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
800
|
Zhang Y, Zhang X, Huang X, Tang X, Zhang M, Li Z, Hu X, Zhang M, Wang X, Yan Y. Tumor stemness score to estimate epithelial-to-mesenchymal transition (EMT) and cancer stem cells (CSCs) characterization and to predict the prognosis and immunotherapy response in bladder urothelial carcinoma. Stem Cell Res Ther 2023; 14:15. [PMID: 36721217 PMCID: PMC9890713 DOI: 10.1186/s13287-023-03239-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND A growing number of investigations have suggested a close link between cancer stem cells (CSCs), epithelial-to-mesenchymal transition (EMT), and the tumor microenvironment (TME). However, the relationships between these physiological processes in bladder urothelial carcinoma (BLCA) remain unclear. METHODS We first explored biomarkers of tumor stemness (TS) by single-cell sequencing analysis. Then, subtypes of bladder urothelial carcinoma (BLCA) were identified using clustering analysis based on TS biomarkers. The TS score was constructed using principal component analysis to quantify tumor stemness in BLCA. Then, meta-analysis was performed to measure the hazard ratio of the TS score in BLCA cohorts. Moreover, we evaluated the clinical value of the TS score for predicting the response to tumor immunotherapy using immunotherapy cohorts. Finally, we built an EMT cell model by treating T24 cells with TGF-β and validated the relationship between the TS score and the EMT process in tumors by real-time quantitative PCR, cell invasion assays, and RNA-seq. In total, 3846 BLCA cells, 6 cell lines, 1627 BLCA samples, and 9858 samples from 32 other types of tumors were included in our study. RESULTS Three TS clusters and two TS-related gene clusters were identified with differential EMT activity status, CSC features, and TME characteristics in BLCA. Then, a TS scoring system was established with 61 TS-related genes to quantify the TS. The prognostic value of the TS score was then confirmed in multiple independent cohorts. A high TS score was associated with high EMT activity, CSC characteristics, high stromal cell content, high TP53 mutation rate, poor prognosis, and high tumor immunotherapy tolerance. The cell line experiment and RNA-seq further validated that our TS score can reflect the EMT and CSC characterization of tumor cells. CONCLUSION Overall, this research provides a better understanding of tumor invasion and metastasis mechanisms through an analysis of TS patterns with different EMT processes and CSC characteristics. The TS score provides an index for EMT and CSC research and helps clinicians develop treatment plans and predict outcomes for patients.
Collapse
Affiliation(s)
- Yanlong Zhang
- Department of Urology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Xuefeng Huang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaomeng Tang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Menghan Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ziyi Li
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Min Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
- Department of Research Ward, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020 China
| | - Xi Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
- Beijing Institute of Infectious Diseases, Beijing, 100015 China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Yong Yan
- Department of Urology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|