751
|
Mei C, Hou M, Guo S, Hua F, Zheng D, Xu F, Jiang Y, Li L, Qiao Y, Fan Y, Zhou Q. Polymorphisms in DNA repair genes of XRCC1, XPA, XPC, XPD and associations with lung cancer risk in Chinese people. Thorac Cancer 2014; 5:232-42. [PMID: 26767006 DOI: 10.1111/1759-7714.12073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/01/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The carcinogenic chemicals and reactive oxygen species in tobacco can result in DNA damage. DNA repair genes play an important role in maintaining genome integrity. Genetic polymorphisms of DNA repair genes and smoking may contribute to susceptibility of lung cancer. METHODS In this hospital-based case-control study, we investigated the relationship between 13 tagging single nucleotide polymorphisms (SNPs) in base excision repair pathway and nucleotide excision repair pathway genes, smoking, and lung cancer susceptibility. Thirteen tag SNPs were genotyped in 265 lung cancer patients and 301 healthy controls. Logistic regression and multifactor dimensionality reduction method were applied to explore the association and high-order gene-gene and gene-smoking interaction. RESULTS In single tag SNP analysis, XPA rs2808668, XPC rs2733533, and XPD rs1799787 were significantly associated with lung cancer susceptibility. Joint effects analysis of XPA rs2808668, XPC rs2733533 and XPD rs1799787 showed that there was an increased risk of lung cancer with increasing numbers of risk alleles. Haplotype analysis showed that XRCC1 (rs25487, rs1799782, rs3213334) GCC had a positive association with lung cancer. Analysis of gene-gene and gene-smoking interaction by multifactor dimensionality reduction showed that a positive interaction existed between the four genes and smoking. The two-factor model, including XPC rs2755333 and smoking, had the best prediction ability for lung cancer. Compared with the C/C genotype of XPC rs2733533 and no smoking, the combination of genotype A carriers with XPC rs2733533 and heavy smokers (≥30 pack-year) had a 13.32-fold risk of lung cancer. CONCLUSION Our results suggest multiple genetic variants in multiple DNA repair genes may jointly contribute to lung cancer risk through gene-gene and gene-smoking interactions.
Collapse
Affiliation(s)
- Chaorong Mei
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin, China; Tibet Chengdu branch of West China Hospital, Sichuan University Changdu, China
| | - Mei Hou
- Cancer Center, West China Hospital, Sichuan University Chengdu, China
| | - Shanxian Guo
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin, China
| | - Feng Hua
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin, China
| | - Dejie Zheng
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin, China
| | - Feng Xu
- Cancer Center, West China Hospital, Sichuan University Chengdu, China
| | - Yong Jiang
- Department of Cancer Epidemiology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Lu Li
- Cancer Center, West China Hospital, Sichuan University Chengdu, China
| | - Youlin Qiao
- Department of Cancer Epidemiology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Yaguang Fan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin, China
| |
Collapse
|
752
|
Sawicka A, Seiser C. Sensing core histone phosphorylation - a matter of perfect timing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:711-8. [PMID: 24747175 PMCID: PMC4103482 DOI: 10.1016/j.bbagrm.2014.04.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/23/2014] [Accepted: 04/11/2014] [Indexed: 11/24/2022]
Abstract
Systematic analysis of histone modifications has revealed a plethora of posttranslational modifications that mediate changes in chromatin structure and gene expression. Histone phosphorylation is a transient histone modification that becomes induced by extracellular signals, DNA damage or entry into mitosis. Importantly, phosphorylation of histone proteins does lead not only to the binding of specific reader proteins but also to changes in the affinity for readers or writers of other histone modifications. This induces a cross-talk between different chromatin modifications that allows the spatio-temporal control of chromatin-associated events. In this review we will summarize the progress in our current knowledge of factors sensing reversible histone phosphorylation in different biological scenarios. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function. Signal induced histone phosphorylation is associated with local chromatin opening and transcriptional activation. Histone phosphorylation is also linked with chromatin condensation during mitosis. Histone phosphorylation marks are important for regulation of the DNA damage response. Specific reader proteins recognize histone phosphorylation marks alone or in combination with other histone modifications. Histone phosphorylation affects the affinity of readers or writers of other histone modifications.
Collapse
Affiliation(s)
- Anna Sawicka
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Christian Seiser
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna, Austria.
| |
Collapse
|
753
|
Turner RL, Wilkinson JC, Ornelles DA. E1B and E4 oncoproteins of adenovirus antagonize the effect of apoptosis inducing factor. Virology 2014; 456-457:205-19. [PMID: 24889240 DOI: 10.1016/j.virol.2014.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 02/28/2014] [Accepted: 03/10/2014] [Indexed: 01/03/2023]
Abstract
Adenovirus inundates the productively infected cell with linear, double-stranded DNA and an abundance of single-stranded DNA. The cellular response to this stimulus is antagonized by the adenoviral E1B and E4 early genes. A mutant group C adenovirus that fails to express the E1B-55K and E4orf3 genes is unable to suppress the DNA-damage response. Cells infected with this double-mutant virus display significant morphological heterogeneity at late times of infection and frequently contain fragmented nuclei. Nuclear fragmentation was due to the translocation of apoptosis inducing factor (AIF) from the mitochondria into the nucleus. The release of AIF was dependent on active poly(ADP-ribose) polymerase-1 (PARP-1), which appeared to be activated by viral DNA replication. Nuclear fragmentation did not occur in AIF-deficient cells or in cells treated with a PARP-1 inhibitor. The E1B-55K or E4orf3 proteins independently prevented nuclear fragmentation subsequent to PARP-1 activation, possibly by altering the intracellular distribution of PAR-modified proteins.
Collapse
Affiliation(s)
- Roberta L Turner
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - John C Wilkinson
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
754
|
Vandersickel V, Beukes P, Van Bockstaele B, Depuydt J, Vral A, Slabbert J. Induction and disappearance of γH2AX foci and formation of micronuclei after exposure of human lymphocytes to ⁶⁰Co γ-rays and p(66)+ Be(40) neutrons. Int J Radiat Biol 2014; 90:149-58. [PMID: 24168313 DOI: 10.3109/09553002.2014.860252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate both the formation of micronuclei (MN) and the induction and subsequent loss of phosphorylated histone H2AX foci (γH2AX foci) after in vitro exposure of human lymphocytes to either (60)Co γ-rays or p(66)+ Be(40) neutrons. MATERIALS AND METHODS MN dose response (DR) curves were obtained by exposing isolated lymphocytes of 10 different donors to doses ranging from 0-4 Gy γ-rays or 0-2 Gy neutrons. Also, γH2AX foci DR curves were obtained following exposure to doses ranging from 0-0.5 Gy of either γ-rays or neutrons. Foci kinetics for lymphocytes for a single donor exposed to 0.5 Gy γ-rays or neutrons were studied up to 24 hours post-irradiation. RESULTS Micronuclei yields following neutron exposure were consistently higher compared to that from (60)Co γ-rays. All MN yields were over-dispersed compared to a Poisson distribution. Over-dispersion was higher after neutron irradiation for all doses > 0.1 Gy. Up to 4 hours post-irradiation lower yields of neutron-induced γH2AX foci were observed. Between 4 and 24 hours the numbers of foci from neutrons were consistently higher than that from γ-rays. The half-live of foci disappearance is only marginally longer for neutrons compared to that from γ-rays. Foci formations were more likely to be over-dispersed for neutron irradiations. CONCLUSION Although neutrons are more effective to induce MN, the absolute number of induced γH2AX foci are less at first compared to γ-rays. With time neutron-induced foci are more persistent. These findings are helpful for using γH2AX foci in biodosimetry and to understand the repair of neutron-induced cellular damage.
Collapse
Affiliation(s)
- Veerle Vandersickel
- NRF iThemba LABS (Laboratory for Accelerated Based Sciences), Somerset West, South Africa and Department of Medical Imaging and Clinical Oncology, University of Stellenbosch , South Africa
| | | | | | | | | | | |
Collapse
|
755
|
Wu X, Pu X, Lin J. Lung Cancer Susceptibility and Risk Assessment Models. Lung Cancer 2014. [DOI: 10.1002/9781118468791.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
756
|
Burgess JT, Croft LV, Wallace NC, Stephenson SA, Adams MN, Ashton NW, Solomon B, O’Byrne K, Richard DJ. DNA repair pathways and their therapeutic potential in lung cancer. Lung Cancer Manag 2014. [DOI: 10.2217/lmt.14.12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SUMMARY: Lung cancer is the leading cause of cancer-related mortality. According to WHO, 1.37 million deaths occur globally each year as a result of this disease. More than 70% of these cases are associated with prior tobacco consumption and/or cigarette smoking, suggesting a direct causal relationship. The development and progression of lung cancer and other malignancies involves the loss of genetic stability, resulting in acquisition of cumulative genetic changes; this affords the cell increased malignant potential. As such, an understanding of the mechanisms through which these events may occur will potentially allow for development of new anticancer therapies. This review will address the association between lung cancer and genetic instability, with a central focus on genetic mutations in the DNA damage repair pathways. In addition, we will discuss the potential clinical exploitation of these pathways, both in terms of biomarker staging, as well as through direct therapeutic targeting.
Collapse
Affiliation(s)
- Joshua T Burgess
- Genome Stability Laboratory, Cancer & Ageing Research Program, Institute of Health & Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland 4102, Australia
| | - Laura V Croft
- Genome Stability Laboratory, Cancer & Ageing Research Program, Institute of Health & Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland 4102, Australia
| | - Nathan C Wallace
- Genome Stability Laboratory, Cancer & Ageing Research Program, Institute of Health & Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland 4102, Australia
| | - Sally-Anne Stephenson
- Eph Receptor Biology Group, Institute of Health & Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland 4102, Australia
| | - Mark N Adams
- Genome Stability Laboratory, Cancer & Ageing Research Program, Institute of Health & Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland 4102, Australia
| | - Nicholas W Ashton
- Genome Stability Laboratory, Cancer & Ageing Research Program, Institute of Health & Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland 4102, Australia
| | - Benjamin Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, East Melbourne 3002, Australia
| | - Ken O’Byrne
- Genome Stability Laboratory, Cancer & Ageing Research Program, Institute of Health & Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland 4102, Australia
| | - Derek J Richard
- Genome Stability Laboratory, Cancer & Ageing Research Program, Institute of Health & Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
757
|
Gresner P, Gromadzinska J, Twardowska E, Rydzynski K, Wasowicz W. Rad51C: a novel suppressor gene modulates the risk of head and neck cancer. Mutat Res 2014; 762:47-54. [PMID: 24631219 DOI: 10.1016/j.mrfmmm.2014.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 02/16/2014] [Accepted: 02/27/2014] [Indexed: 06/03/2023]
Abstract
We conducted a case-control study to investigate the possible association between the head and neck cancer (HNC) and genetic variability of Rad51C tumor suppressor gene. Eight polymorphic sites spanning over non-coding regions of Rad51C promoter, exon 1 and intron 1 were genotyped in 81 HNC cases and 156 healthy controls using the real-time PCR technique. One investigated site turned out to be not polymorphic, while among the remaining seven sites a significant HNC risk-increasing effect was found for rs16943176 (c.-118G>A), rs12946397 (c.-26C>T) and rs17222691 (c.145+947C>T) on both allelic (OR=1.8; p<0.05) and genotypic (OR=2.0; p<0.05) level. Furthermore, our data seem to provide marginal evidence, that this effect might possibly be confined to women only (OR=2.8; p=0.05 for allelic and OR=3.7; p=0.05 for genotypic comparisons). These SNPs were found to co-segregate together forming two distinct, HNC risk-modulating haplotypes. The genetic variability of Rad51C might thus be of relevance with respect to HNC risk.
Collapse
Affiliation(s)
- Peter Gresner
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, 8, Sw. Teresy St., 91-348 Lodz, Poland.
| | - Jolanta Gromadzinska
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, 8, Sw. Teresy St., 91-348 Lodz, Poland
| | - Ewa Twardowska
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, 8, Sw. Teresy St., 91-348 Lodz, Poland
| | - Konrad Rydzynski
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, 8, Sw. Teresy St., 91-348 Lodz, Poland
| | - Wojciech Wasowicz
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, 8, Sw. Teresy St., 91-348 Lodz, Poland
| |
Collapse
|
758
|
Moghtit FZ, Aberkane MS, Le Morvan V, Louhibi L, Bellot R, Bousahba A, Megaiz A, Fodil M, Mediene-Benchekor S, Zemani-Fodil F, Boudjema A, Robert J, Saidi-Mehtar N. No association between XRCC3 Thr241Met and XPD Lys751Gln polymorphisms and the risk of colorectal cancer in West Algerian population: a case-control study. Med Oncol 2014; 31:942. [PMID: 24687779 DOI: 10.1007/s12032-014-0942-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/25/2014] [Indexed: 12/27/2022]
Abstract
Colorectal cancer (CRC) is a complex and multifactorial disease, in which genetic and environmental factors both seem to play a part. Many epidemiological studies have explored the association between genetic polymorphisms of X-ray repair cross-complementing group 3 (XRCC3) (Thr241Met) and Xeroderma pigmentosum group D (XPD) lysine to glutamine at codon 751 (Lys751Gln) and risk of CRC in various populations; however, the results are controversial. We conducted this case-control study in a West Algerian population to assess the potential role of this genetic polymorphism on the risk of CRC in this population. Genomic DNA was extracted from blood samples collected from 129 sporadic CRC patients and 148 normal controls. The polymorphisms were determined by pyrosequencing technique. The distribution of XRCC3 Thr241Met and XPD Lys751Gln genotypes among controls did not differ significantly from those predicted by the Hardy-Weinberg distribution (p > 0.05). There were no significant differences in the genotypes distribution and allele frequencies between CRC patients and controls. A significant association was found between the combined heterozygous of XRCC3 and homozygous variant of XPD gene and CRC. This is the first study on DNA repair genetic polymorphisms in West Algerian population, and it suggests that the XRCC3 Thr241Met and XPD Lys751Gln polymorphisms may not be associated with the CRC risk in this population.
Collapse
Affiliation(s)
- Fatima Zohra Moghtit
- Laboratoire de Génétique Moléculaire et Cellulaire, Département de Génétique Moléculaire Appliquée, Faculté des sciences de la nature et de la vie, Université des Sciences et de la Technologie d'Oran-Mohamed BOUDIAF-USTOMB, BP 1505, El M'naouer, 31000, Oran, Algeria,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
759
|
Abstract
MYC dysregulation initiates a dynamic process of genomic instability that is linked to tumor initiation. Early studies using MYC-carrying retroviruses showed that these viruses were potent transforming agents. Cell culture models followed that addressed the role of MYC in transformation. With the advent of MYC transgenic mice, it became obvious that MYC deregulation alone was sufficient to initiate B-cell neoplasia in mice. More than 70% of all tumors have some form of c-MYC gene dysregulation, which affects gene regulation, microRNA expression profiles, large genomic amplifications, and the overall organization of the nucleus. These changes set the stage for the dynamic genomic rearrangements that are associated with cellular transformation.
Collapse
Affiliation(s)
- Alexandra Kuzyk
- Manitoba Institute of Cell Biology, University of Manitoba, CancerCare Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | | |
Collapse
|
760
|
Gu Y, Yu Y, Ai L, Shi J, Liu X, Sun H, Liu Y. Association of the ATM gene polymorphisms with papillary thyroid cancer. Endocrine 2014; 45:454-61. [PMID: 23925578 DOI: 10.1007/s12020-013-0020-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/18/2013] [Indexed: 01/02/2023]
Abstract
Papillary thyroid cancer (PTC) is the most common type of thyroid cancer, yet few genetic markers of PTC risk useful for screening exist. Our study aimed to evaluate the association between single nucleotide polymorphisms (SNPs) of the ataxia telangiectasia mutated (ATM) gene and PTC risk. 358 patients with PTC and 360 healthy controls were included in the case-control study. Four ATM SNPs (rs664677, rs373759, rs4988099, and rs189037) were genotyped by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). The analysis of genetic data was performed using the SNPStats program. The allele frequencies and genotype distributions of the four ATM SNPs were not different between PTC patients and controls. We did not observe any tendency of increasing the frequency of the risk allele from controls, patients without metastasis to patients with metastasis (P(trend) > 0.05). Interestingly, the AG genotype of rs373759 was associated with PTC risk under an overdominant model of inheritance (adjusted OR = 1.38; 95 % CI, 1.03-1.87; P = 0.03). No haplotype was observed to be significantly associated with PTC risk. Our results suggest that heterozygosity for the ATM rs373759 polymorphism may be a potential risk factor for PTC.
Collapse
Affiliation(s)
- Yulu Gu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | | | | | | | | | | | | |
Collapse
|
761
|
Koyama N, Nishida Y, Ishii T, Yoshida T, Furukawa Y, Narahara H. Telmisartan induces growth inhibition, DNA double-strand breaks and apoptosis in human endometrial cancer cells. PLoS One 2014; 9:e93050. [PMID: 24667764 PMCID: PMC3965508 DOI: 10.1371/journal.pone.0093050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 02/28/2014] [Indexed: 12/17/2022] Open
Abstract
Telmisartan, an angiotensin II receptor type 1 blocker, is often used as an antihypertension drug, and it has also been characterized as a peroxisome proliferator-activated receptor-gamma (PPARγ) ligand. The purpose of this study was to elucidate the antitumor effects of telmisartan on endometrial cancer cells. We treated three endometrial cancer cell lines with various concentrations of telmisartan, and we investigated the effects of the telmisartan on the cell proliferation, apoptosis, and their related measurements in vitro. We also administered telmisartan to nude mice with experimental tumors to determine its in vivo effects and toxicity. All three endometrial cancer cell lines were sensitive to the growth-inhibitory effect of telmisartan. The induction of apoptosis was confirmed in concert with the altered expression of genes and proteins related to the apoptosis. We also observed that DNA double-strand breaks (DSBs) were induced in HHUA (human endometrial cancer) cells by telmisartan treatment. In addition, experiments in nude mice showed that telmisartan significantly inhibited human endometrial tumor growth, without toxic side effects. Our results suggest that telmisartan might be a new therapeutic option for the treatment of endometrial cancers.
Collapse
Affiliation(s)
- Naoko Koyama
- Department of Obstetrics and Gynecology, Oita University Faculty of Medicine, Oita, Japan
| | - Yoshihiro Nishida
- Department of Obstetrics and Gynecology, Oita University Faculty of Medicine, Oita, Japan
- * E-mail:
| | - Terukazu Ishii
- Department of Obstetrics and Gynecology, Oita University Faculty of Medicine, Oita, Japan
| | - Toshie Yoshida
- Department of Obstetrics and Gynecology, Oita University Faculty of Medicine, Oita, Japan
| | - Yuichi Furukawa
- Department of Obstetrics and Gynecology, Oita University Faculty of Medicine, Oita, Japan
| | - Hisashi Narahara
- Department of Obstetrics and Gynecology, Oita University Faculty of Medicine, Oita, Japan
| |
Collapse
|
762
|
Marzio A, Merigliano C, Gatti M, Vernì F. Sugar and chromosome stability: clastogenic effects of sugars in vitamin B6-deficient cells. PLoS Genet 2014; 10:e1004199. [PMID: 24651653 PMCID: PMC3961173 DOI: 10.1371/journal.pgen.1004199] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 01/10/2014] [Indexed: 02/07/2023] Open
Abstract
Pyridoxal 5′-phosphate (PLP), the active form of vitamin B6, has been implicated in preventing human pathologies, such as diabetes and cancer. However, the mechanisms underlying the beneficial effects of PLP are still unclear. Using Drosophila as a model system, we show that PLP deficiency, caused either by mutations in the pyridoxal kinase-coding gene (dPdxk) or by vitamin B6 antagonists, results in chromosome aberrations (CABs). The CAB frequency in PLP-depleted cells was strongly enhanced by sucrose, glucose or fructose treatments, and dPdxk mutant cells consistently displayed higher glucose contents than their wild type counterparts, an effect that is at least in part a consequence of an acquired insulin resistance. Together, our results indicate that a high intracellular level of glucose has a dramatic clastogenic effect if combined with PLP deficiency. This is likely due to an elevated level of Advanced Glycation End-products (AGE) formation. Treatment of dPdxk mutant cells with α-lipoic acid (ALA) lowered both AGE formation and CAB frequency, suggesting a possible AGE-CAB cause-effect relationship. The clastogenic effect of glucose in PLP-depleted cells is evolutionarily conserved. RNAi-mediated silencing of PDXK in human cells or treatments with PLP inhibitors resulted in chromosome breakage, which was potentiated by glucose and reduced by ALA. These results suggest that patients with concomitant hyperglycemia and vitamin B6 deficiency may suffer chromosome damage. This might impact cancer risk, as CABs are a well-known tumorigenic factor. We show that the active form of vitamin B6 (Pyridoxal 5′-phosphate, PLP) plays an important role in the maintenance of genome integrity. We found, using Drosophila as a model system, that PLP deficiency results in chromosome breaks and rearrangements (collectively dubbed chromosome aberrations, abbreviated with CABs). Most importantly, we observed that in PLP deficient cells, sucrose, glucose, or fructose strongly enhance the frequency of CABs. The mutagenic effects of sugars in the presence of PLP deficiency are evolutionarily conserved, as PLP depletion or inhibition in human cells results in CAB formation, which is potentiated by glucose or fructose. These results suggest that patients with concomitant hyperglycemic crises and vitamin B6 deficiency may suffer genetic damage, which might promote cancer and diabetes complications. Our work further suggests that patients treated with PLP antagonist drugs should keep under control the level of sugar in their blood and compensate their vitamin B6 level.
Collapse
Affiliation(s)
- Antonio Marzio
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Chiara Merigliano
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Maurizio Gatti
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
- * E-mail: (MG); (FV)
| | - Fiammetta Vernì
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
- * E-mail: (MG); (FV)
| |
Collapse
|
763
|
Yaacob NS, Ismail NF. Comparison of cytotoxicity and genotoxicity of 4-hydroxytamoxifen in combination with Tualang honey in MCF-7 and MCF-10A cells. Altern Ther Health Med 2014; 14:106. [PMID: 24646375 PMCID: PMC3994783 DOI: 10.1186/1472-6882-14-106] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 03/12/2014] [Indexed: 02/07/2023]
Abstract
Background The Malaysian Tualang honey (TH) is not only cytotoxic to human breast cancer cell lines but it has recently been reported to promote the anticancer activity induced by tamoxifen in MCF-7 and MDA-MB-231 cells suggesting its potential as an adjuvant for the chemotherapeutic agent. However, tamoxifen produces adverse effects that could be due to its ability to induce cellular DNA damage. Therefore, the study is undertaken to determine the possible modulation of the activity of 4-hydroxytamoxifen (OHT), an active metabolite of tamoxifen, by TH in non-cancerous epithelial cell line, MCF-10A, in comparison with MCF-7 cells. Methods MCF-7 and MCF-10A cells were treated with TH, OHT or the combination of both and cytotoxicity and antiproliferative activity were determined using LDH and MTT assays, respectively. The effect on cellular DNA integrity was analysed by comet assay and the expression of DNA repair enzymes was determined by Western blotting. Results OHT exposure was cytotoxic to both cell lines whereas TH was cytotoxic to MCF-7 cells only. TH also significantly decreased the cytotoxic effect of OHT in MCF-10A but not in MCF-7 cells. TH induced proliferation of MCF10A cells but OHT caused growth inhibition that was abrogated by the concomitant treatment with TH. While TH enhanced the OHT-induced DNA damage in the cancer cells, it dampened the genotoxic effect of OHT in the non-cancerous cells. This was supported by the increased expression of DNA repair proteins, Ku70 and Ku80, in MCF-10A cells by TH. Conclusion The findings indicate that TH could afford protection of non-cancerous cells from the toxic effects of tamoxifen by increasing the efficiency of DNA repair mechanism in these cells.
Collapse
|
764
|
He Y, Zhang Y, Jin C, Deng X, Wei M, Wu Q, Yang T, Zhou Y, Wang Z. Impact of XRCC2 Arg188His polymorphism on cancer susceptibility: a meta-analysis. PLoS One 2014; 9:e91202. [PMID: 24621646 PMCID: PMC3951328 DOI: 10.1371/journal.pone.0091202] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 02/11/2014] [Indexed: 02/05/2023] Open
Abstract
Background Association between the single nucleotide polymorphism rs3218536 (known as Arg188His) located in the X-ray repair cross complementing group 2 (XRCC2) gene and cancer susceptibility has been widely investigated. However, results thus far have remained controversial. A meta-analysis was performed to identify the impact of this polymorphism on cancer susceptibility. Methods PubMed and Embase databases were searched systematically until September 7, 2013 to obtain all the records evaluating the association between the XRCC2 Arg188His polymorphism and the risk of all types of cancers. We used the odds ratio (OR) as measure of effect, and pooled the data in a Mantel-Haenszel weighed random-effects meta-analysis to provide a summary estimate of the impact of this polymorphism on breast cancer, ovarian cancer and other cancers. All the analyses were carried out in STATA 12.0. Results With 30868 cases and 38656 controls, a total of 45 case-control studies from 26 publications were eventually included in our meta-analysis. No significant association was observed between the XRCC2 Arg188His polymorphism and breast cancer susceptibility (dominant model: OR = 0.94, 95%CI = 0.86–1.04, P = 0.232). However, a significant impact of this polymorphism was detected on decreased ovarian cancer risk (dominant model: OR = 0.83, 95%CI = 0.73–0.95, P = 0.007). In addition, we found this polymorphism was associated with increased upper aerodigestive tract (UADT) cancer susceptibility (dominant model: OR = 1.51, 95%CI = 1.04–2.20, P = 0.032). Conclusion The Arg188His polymorphism might play different roles in carcinogenesis of various cancer types. Current evidence did not suggest that this polymorphism was directly associated with breast cancer susceptibility. However, this polymorphism might contribute to decreased gynecological cancer risk and increased UADT cancer risk. More preclinical and epidemiological studies were still imperative for further evaluation.
Collapse
Affiliation(s)
- Yazhou He
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R China
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R China
| | - Yuanchuan Zhang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R China
| | - Chengwu Jin
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R China
| | - Xiangbing Deng
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R China
| | - Mingtian Wei
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R China
| | - Qingbin Wu
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R China
| | - Tinghan Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R China
| | - Yanhong Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu,Sichuan Province, P.R China
| | - Ziqiang Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R China
- * E-mail:
| |
Collapse
|
765
|
Frit P, Barboule N, Yuan Y, Gomez D, Calsou P. Alternative end-joining pathway(s): bricolage at DNA breaks. DNA Repair (Amst) 2014; 17:81-97. [PMID: 24613763 DOI: 10.1016/j.dnarep.2014.02.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 02/01/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
To cope with DNA double strand break (DSB) genotoxicity, cells have evolved two main repair pathways: homologous recombination which uses homologous DNA sequences as repair templates, and non-homologous Ku-dependent end-joining involving direct sealing of DSB ends by DNA ligase IV (Lig4). During the last two decades a third player most commonly named alternative end-joining (A-EJ) has emerged, which is defined as any Ku- or Lig4-independent end-joining process. A-EJ increasingly appears as a highly error-prone bricolage on DSBs and despite expanding exploration, it still escapes full characterization. In the present review, we discuss the mechanism and regulation of A-EJ as well as its biological relevance under physiological and pathological situations, with a particular emphasis on chromosomal instability and cancer. Whether or not it is a genuine DSB repair pathway, A-EJ is emerging as an important cellular process and understanding A-EJ will certainly be a major challenge for the coming years.
Collapse
Affiliation(s)
- Philippe Frit
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, 31077 Toulouse, Cedex4, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France; Equipe labellisée Ligue Nationale Contre le Cancer, France
| | - Nadia Barboule
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, 31077 Toulouse, Cedex4, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France; Equipe labellisée Ligue Nationale Contre le Cancer, France
| | - Ying Yuan
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, 31077 Toulouse, Cedex4, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France; Equipe labellisée Ligue Nationale Contre le Cancer, France
| | - Dennis Gomez
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, 31077 Toulouse, Cedex4, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France; Equipe labellisée Ligue Nationale Contre le Cancer, France
| | - Patrick Calsou
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, 31077 Toulouse, Cedex4, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France; Equipe labellisée Ligue Nationale Contre le Cancer, France.
| |
Collapse
|
766
|
The effect of RAD51 135 G>C and XRCC2 G>A (rs3218536) polymorphisms on ovarian cancer risk among Caucasians: a meta-analysis. Tumour Biol 2014; 35:5797-804. [DOI: 10.1007/s13277-014-1769-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/17/2014] [Indexed: 12/12/2022] Open
|
767
|
Tichy A, Durisova K, Salovska B, Pejchal J, Zarybnicka L, Vavrova J, Dye NA, Sinkorova Z. Radio-sensitization of human leukaemic MOLT-4 cells by DNA-dependent protein kinase inhibitor, NU7441. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:83-92. [PMID: 24100951 DOI: 10.1007/s00411-013-0494-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/17/2013] [Indexed: 06/02/2023]
Abstract
We studied the effect of pre-incubation with NU7441, a specific inhibitor of DNA-dependent protein kinase (DNA-PK), on molecular mechanisms triggered by ionizing radiation (IR). The experimental design involved four groups of human T-lymphocyte leukaemic MOLT-4 cells: control, NU7441-treated (1 μM), IR-treated (1 Gy), and combination of NU7441 and IR. We used flow cytometry for apoptosis assessment, Western blotting and ELISA for detection of proteins involved in DNA repair signalling and epifluorescence microscopy for detection of IR-induced phosphorylation of histone H2A.X. We did not observe any major changes in the amount of DNA-PK subunits Ku70/80 caused by the combination of NU7441 and radiation. Their combination led to an increased phosphorylation of H2A.X, a hallmark of DNA damage. However, it did not prevent up-regulation of neither p53 (and its phosphorylation at Ser 15 and 392) nor p21. We observed a decrease in the levels of anti-apoptotic Mcl-1, cdc25A phosphatase, cleavage of PARP and a significant increase in apoptosis in the group treated with combination. In conclusion, the combination of NU7441 with IR caused increased phosphorylation of H2A.X early after irradiation and subsequent induction of apoptosis. It was efficient in MOLT-4 cells in 10× lower concentration than the inhibitor NU7026. NU7441 proved as a potent radio-sensitizing agent, and it might provide a platform for development of new radio-sensitizers in radiotherapy.
Collapse
Affiliation(s)
- Ales Tichy
- Department of Radiobiology, Faculty of Health Sciences in Hradec Kralove, University of Defence in Brno, Brno, Czech Republic,
| | | | | | | | | | | | | | | |
Collapse
|
768
|
LeGresley SE, Wilt J, Antonik M. DNA damage may drive nucleosomal reorganization to facilitate damage detection. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:032708. [PMID: 24730875 DOI: 10.1103/physreve.89.032708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Indexed: 06/03/2023]
Abstract
One issue in genome maintenance is how DNA repair proteins find lesions at rates that seem to exceed diffusion-limited search rates. We propose a phenomenon where DNA damage induces nucleosomal rearrangements which move lesions to potential rendezvous points in the chromatin structure. These rendezvous points are the dyad and the linker DNA between histones, positions in the chromatin which are more likely to be accessible by repair proteins engaged in a random search. The feasibility of this mechanism is tested by considering the statistical mechanics of DNA containing a single lesion wrapped onto the nucleosome. We consider lesions which make the DNA either more flexible or more rigid by modeling the lesion as either a decrease or an increase in the bending energy. We include this energy in a partition function model of nucleosome breathing. Our results indicate that the steady state for a breathing nucleosome will most likely position the lesion at the dyad or in the linker, depending on the energy of the lesion. A role for DNA binding proteins and chromatin remodelers is suggested based on their ability to alter the mechanical properties of the DNA and DNA-histone binding, respectively. We speculate that these positions around the nucleosome potentially serve as rendezvous points where DNA lesions may be encountered by repair proteins which may be sterically hindered from searching the rest of the nucleosomal DNA. The strength of the repositioning is strongly dependent on the structural details of the DNA lesion and the wrapping and breathing of the nucleosome. A more sophisticated evaluation of this proposed mechanism will require detailed information about breathing dynamics, the structure of partially wrapped nucleosomes, and the structural properties of damaged DNA.
Collapse
Affiliation(s)
- Sarah E LeGresley
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, USA
| | - Jamie Wilt
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, USA
| | - Matthew Antonik
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
769
|
Santos GS, Tsutsumi S, Vieira DP, Bartolini P, Okazaki K. Effect of Brazilian propolis (AF-08) on genotoxicity, cytotoxicity and clonogenic death of Chinese hamster ovary (CHO-K1) cells irradiated with 60Co gamma-radiation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 762:17-23. [DOI: 10.1016/j.mrgentox.2013.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 08/26/2013] [Accepted: 11/02/2013] [Indexed: 01/12/2023]
|
770
|
Desai A, Webb B, Gerson SL. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells. Radiother Oncol 2014; 110:538-45. [PMID: 24440048 PMCID: PMC4004669 DOI: 10.1016/j.radonc.2013.10.040] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 10/14/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Radioresistance in human tumors has been linked in part to a subset of cells termed cancer stem cells (CSCs). The prominin 1 (CD133) cell surface protein is proposed to be a marker enriching for CSCs. We explore the importance of DNA repair in contributing to radioresistance in CD133+ lung cancer cells. MATERIALS AND METHODS A549 and H1299 lung cancer cell lines were used. Sorted CD133+ cells were exposed to either single 4 Gy or 8 Gy doses and clonogenic survival measured. ϒ-H2AX immunofluorescence and quantitative real time PCR was performed on sorted CD133+ cells both in the absence of IR and after two single 4 Gy doses. Lentiviral shRNA was used to silence repair genes. RESULTS A549 but not H1299 cells expand their CD133+ population after single 4 Gy exposure, and isolated A549 CD133+ cells demonstrate IR resistance. This resistance corresponded with enhanced repair of DNA double strand breaks (DSBs) and upregulated expression of DSB repair genes in A549 cells. Prior IR exposure of two single 4 Gy doses resulted in acquired DNA repair upregulation and improved repair proficiency in both A549 and H1299. Finally Exo1 and Rad51 silencing in A549 cells abrogated the CD133+ IR expansion phenotype and induced IR sensitivity in sorted CD133+ cells. CONCLUSIONS CD133 identifies a population of cells within specific tumor types containing altered expression of DNA repair genes that are inducible upon exposure to chemotherapy. This altered gene expression contributes to enhanced DSB resolution and the radioresistance phenotype of these cells. We also identify DNA repair genes which may serve as promising therapeutic targets to confer radiosensitivity to CSCs.
Collapse
Affiliation(s)
- Amar Desai
- Department of Pharmacology, Seidman Cancer Center, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, United States; Division of Hematology/Oncology, National Center for Regenerative Medicine, Seidman Cancer Center, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, United States
| | - Bryan Webb
- Division of Hematology/Oncology, National Center for Regenerative Medicine, Seidman Cancer Center, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, United States
| | - Stanton L Gerson
- Department of Pharmacology, Seidman Cancer Center, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, United States; Division of Hematology/Oncology, National Center for Regenerative Medicine, Seidman Cancer Center, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, United States; Case Comprehensive Cancer Center, Seidman Cancer Center, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, United States.
| |
Collapse
|
771
|
Zhang SX, Yang S, Xu CQ, Hou RP, Zhang CZ, Xu CP. Equivocal association of RAD51 polymorphisms with risk of esophageal squamous cell carcinoma in a Chinese population. Asian Pac J Cancer Prev 2014; 15:763-7. [PMID: 24568492 DOI: 10.7314/apjcp.2014.15.2.763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AIM To study the contribution of genetic variation in RAD51 to risk of esophageal squamous cell carcinoma (ESCC). METHODS Three single nucleotide polymorphisms (SNPs) in RAD51 (rs1801320, rs4144242 and rs4417527) were genotyped in 316 ESCC patients and 316 healthy controls in Anyang area of China using PCR- RFLP (polymerase chain reaction-restriction fragment length polymorphism). Demographic variables between cases and controls were statistically compared by T test and Chi-square test. Hardy-Weinberg equilibrium was evaluated by the Chi-square test. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to measure any association with ESCC. Haplotype frequencies were estimated by Phase 2.1. RESULT The genotype frequencies of rs1801320, rs4144242 and rs4417527 in patients with ESCC demonstrated no significant differences from those in control group (P>0.05). When the haplotypes of these three SNPs were constructed and their relationships with ESCC risk investigated, however, CGG was observed to increase the risk (P=0.020, OR=2. 289). CONCLUSIONS There was no association between the three SNPs of RAD51 and ESCC susceptibility in our Chinese population. However, the CGG haplotype might be a risk factor.
Collapse
Affiliation(s)
- Shu-Xiang Zhang
- Nursing Department, Shandong Provincial Qianfoshan Hospital, Jinan, China E-mail :
| | | | | | | | | | | |
Collapse
|
772
|
Tahara M, Inoue T, Sato F, Miyakura Y, Horie H, Yasuda Y, Fujii H, Kotake K, Sugano K. The use of Olaparib (AZD2281) potentiates SN-38 cytotoxicity in colon cancer cells by indirect inhibition of Rad51-mediated repair of DNA double-strand breaks. Mol Cancer Ther 2014; 13:1170-80. [PMID: 24577941 DOI: 10.1158/1535-7163.mct-13-0683] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Potent application of topoisomerase I inhibitor plus PARP inhibitor has been suggested to be an effective strategy for cancer therapy. Reportedly, mismatch repair (MMR)-deficient colon cancer cells are sensitive to topoisomerase I inhibitor, presumably due to microsatellite instability (MSI) of the MRE11 locus. We examined the synergy of SN-38, an active metabolite of irinotecan, in combination with the PARP inhibitor olaparib in colon cancer cells showing different MMR status, such as MSI or microsatellite stable (MSS) phenotype. Treatment with SN-38 and olaparib in combination almost halved the IC50 of SN-38 for a broad spectrum of colon cancer cells independent of the MMR status. Furthermore, olaparib potentiated S-phase-specific double-strand DNA breaks (DSB) induced by SN-38, which is followed by Rad51 recruitment. siRNA-mediated knockdown of Rad51, but not Mre11 or Rad50, increased the sensitivity to olaparib and/or SN-38 treatment in colon cancer cells. In vivo study using mouse xenograft demonstrated that olaparib was effective to potentiate the antitumor effect of irinotecan. In conclusion, olaparib shows a synergistic effect in colon cancer cells in combination with SN-38 or irinotecan, potentiated by the Rad51-mediated HR pathway, irrespective of the Mre11-mediated failure of the MRN complex. These results may contribute to future clinical trials using PARP inhibitor plus topoisomerase I inhibitor in combination. Furthermore, the synergistic effect comprising topoisomerase I-mediated DNA breakage-reunion reaction, PARP and Rad51-mediated HR pathway suggests the triple synthetic lethal pathways contribute to this event and are applicable as a potential target for future chemotherapy.
Collapse
Affiliation(s)
- Makiko Tahara
- Authors' Affiliations: Oncogene Research Unit/Cancer Prevention Unit, Tochigi Cancer Center Research Institute, Department of Surgery, Tochigi Cancer Center, Utsunomiya; and Department of Gastrointestinal Surgery and Division of Clinical Oncology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
773
|
Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. Int J Mol Sci 2014; 15:3403-31. [PMID: 24573252 PMCID: PMC3975345 DOI: 10.3390/ijms15033403] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/22/2014] [Accepted: 02/14/2014] [Indexed: 12/19/2022] Open
Abstract
When a human cell detects damaged DNA, it initiates the DNA damage response (DDR) that permits it to repair the damage and avoid transmitting it to daughter cells. Despite this response, changes to the genome occur and some cells, such as proliferating cancer cells, are prone to genome instability. The cellular processes that lead to genomic changes after a genotoxic event are not well understood. Our research focuses on the relationship between genotoxic cancer drugs and checkpoint adaptation, which is the process of mitosis with damaged DNA. We examine the types of DNA damage induced by widely used cancer drugs and describe their effects upon proliferating cancer cells. There is evidence that cell death caused by genotoxic cancer drugs in some cases includes exiting a DNA damage cell cycle arrest and entry into mitosis. Furthermore, some cells are able to survive this process at a time when the genome is most susceptible to change or rearrangement. Checkpoint adaptation is poorly characterised in human cells; we predict that increasing our understanding of this pathway may help to understand genomic instability in cancer cells and provide insight into methods to improve the efficacy of current cancer therapies.
Collapse
|
774
|
Manda K, Kavanagh JN, Buttler D, Prise KM, Hildebrandt G. Low dose effects of ionizing radiation on normal tissue stem cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 761:6-14. [PMID: 24566131 DOI: 10.1016/j.mrrev.2014.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 02/03/2014] [Accepted: 02/13/2014] [Indexed: 12/18/2022]
Abstract
In recent years, there has been growing evidence for the involvement of stem cells in cancer initiation. As a result of their long life span, stem cells may have an increased propensity to accumulate genetic damage relative to differentiated cells. Therefore, stem cells of normal tissues may be important targets for radiation-induced carcinogenesis. Knowledge of the effects of ionizing radiation (IR) on normal stem cells and on the processes involved in carcinogenesis is very limited. The influence of high doses of IR (>5Gy) on proliferation, cell cycle and induction of senescence has been demonstrated in stem cells. There have been limited studies of the effects of moderate (0.5-5Gy) and low doses (<0.5Gy) of IR on stem cells however, the effect of low dose IR (LD-IR) on normal stem cells as possible targets for radiation-induced carcinogenesis has not been studied in any depth. There may also be important parallels between stem cell responses and those of cancer stem cells, which may highlight potential key common mechanisms of their response and radiosensitivity. This review will provide an overview of the current knowledge of radiation-induced effects on normal stem cells, with particular focus on low and moderate doses of IR.
Collapse
Affiliation(s)
- Katrin Manda
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Suedring 75, 18059 Rostock, Germany.
| | - Joy N Kavanagh
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| | - Dajana Buttler
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Suedring 75, 18059 Rostock, Germany.
| | - Kevin M Prise
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Suedring 75, 18059 Rostock, Germany.
| |
Collapse
|
775
|
Zhang X, Zhang L, Tian C, Yang L, Wang Z. Genetic variants and risk of cervical cancer: epidemiological evidence, meta-analysis and research review. BJOG 2014; 121:664-74. [DOI: 10.1111/1471-0528.12638] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2013] [Indexed: 12/31/2022]
Affiliation(s)
- X Zhang
- Department of Epidemiology and Health Statistics; School of Public Health; Shandong University; Jinan Shandong China
- Hangzhou Center for Disease Control and Prevention; Hangzhou Zhejiang China
| | - L Zhang
- Department of Epidemiology and Health Statistics; School of Public Health; Shandong University; Jinan Shandong China
| | - C Tian
- Kunshan Municipal Center for Disease Control and Prevention; Suzhou Jiangsu China
| | - L Yang
- Hangzhou Center for Disease Control and Prevention; Hangzhou Zhejiang China
| | - Z Wang
- Department of Epidemiology and Health Statistics; School of Public Health; Shandong University; Jinan Shandong China
| |
Collapse
|
776
|
Sunkaria A, Sharma DR, Wani WY, Gill KD. 4-Hydroxy TEMPO attenuates dichlorvos induced microglial activation and apoptosis. ACS Chem Neurosci 2014; 5:115-27. [PMID: 24369695 DOI: 10.1021/cn400206w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Microglial cells have been implicated in various neurodegenerative diseases. Previous studies from our lab have shown that dichlorvos (an organophosphate) could induce Parkinson's like features in rats. Recently, we have shown that dichlorvos can induce microglial activation, and if not checked in time could ultimately induce neuronal apoptosis. However, this activation does not always pose a threat to the neurons. Activated microglia also secrete various neuronal growth factors, suggesting that they have beneficial roles in CNS repair. Therefore, it is essential to control their detrimental functions selectively. Here, we tried to find out how microglial cells behave when exposed to dichlorvos in either the presence or absence of potent nitric oxide scavenger and superoxide dismutase mimetic, 4-hydroxy TEMPO (4-HT). Wistar rat pups (1 day) were used to isolate and culture primary microglial cells. We found 4-HT pretreatment successfully attenuated the dichlorvos mediated microglial activation. Moreover, 4-HT pretreatment decreased the up-regulated levels of p53 and its downstream effector, p21. The expression of various cell cycle regulators such as Chk2, CDC25a, and cyclin A remained close to their basal levels when 4-HT pretreatment was given. DNA fragmentation analysis showed significant reduction in the DNA damage of 4-HT pretreated microglia as compared to dichlorvos treated cells. In addition to this, we found 4-HT pretreatment prevented the microglial cells from undergoing apoptotic cell death even after 48 h of dichlorvos exposure. Taken together, our results showed 4-HT pretreatment could successfully ameliorate the dichlorvos induced microglial cell damage.
Collapse
Affiliation(s)
- Aditya Sunkaria
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Deep Raj Sharma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Willayat Yousuf Wani
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Kiran Dip Gill
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
777
|
Havaki S, Kotsinas A, Chronopoulos E, Kletsas D, Georgakilas A, Gorgoulis VG. The role of oxidative DNA damage in radiation induced bystander effect. Cancer Lett 2014; 356:43-51. [PMID: 24530228 DOI: 10.1016/j.canlet.2014.01.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/08/2013] [Accepted: 01/24/2014] [Indexed: 02/06/2023]
Abstract
Ionizing radiation (IR) has been described as a double-edged sword, since it is used for diagnostic and therapeutic medical applications, and at the same time it is a well known human mutagen and carcinogen, causing wide-ranging chromosomal aberrations. It is nowadays accepted that the detrimental effects of IR are not restricted only in the irradiated cells, but also to non-irradiated bystander or even distant cells manifesting various biological effects. This review presents the role of oxidative stress in the induction of bystander effects referring to the types of the implicated oxidative DNA lesions, the contributing intercellular and intracellular stress mediators, the way they are transmitted from irradiated to bystander cells and finally, the complex role of the bystander effect in the therapeutic efficacy of radiation treatment of cancer.
Collapse
Affiliation(s)
- Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | | | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Center for Scientific Research Demokritos, Athens, Greece
| | - Alexandros Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece; Biomedical Research Foundation, Academy of Athens, Athens, Greece; Faculty Institute for Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, M13 9WL, UK.
| |
Collapse
|
778
|
Yan Y, Liang H, Li T, Guo S, Li M, Qin X, Li S. Association of XRCC3 Thr241Met polymorphism and leukemia risk: evidence from a meta-analysis. Leuk Lymphoma 2014; 55:2130-4. [PMID: 24304418 DOI: 10.3109/10428194.2013.853303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED The relationship between the X-ray repair cross-complementing group 3 (XRCC3) Thr241Met (rs861539) polymorphism and the risk of leukemia remains inclusive or controversial. For a better understanding of the effect of XRCC3 Thr241Met (rs861539) polymorphism on leukemia risk, we performed a meta-analysis. All eligible studies were identified through a search of PubMed, Excerpta Medica Database (Embase) and the Chinese Biomedical Literature Database (CBM) up to August 2013. The association between the XRCC3 Thr241Met (rs861539) polymorphism and leukemia risk was analyzed by means of odds ratios (ORs) and 95% confidence intervals (CI). Ultimately, seven studies with 1070 cases and 1850 controls were included in the meta-analysis. There was no association between Thr241Met polymorphism and leukemia risk in any of the five models in the overall populations (T vs. C: OR = 1.43, 95% CI = 0.95-2.13, p = 0.086; TT vs. CC: OR = 1.71, 95% CI = 0.88-3.33, p = 0.112; TC vs. CC: OR = 1.35, 95% CI = 0.96-1.91, p = 0.089; TT vs. TC/CC OR = 1.59, 95% CI = 0.87-2.89, p = 0.132; TT/TC vs. CC: OR = 1.37, 95% CI = 0.98-1.94, p = 0.070). In subgroup analysis according to ethnicity, a significant association was found between XRCC3 Thr241Met (rs861539) polymorphism and leukemia risk in Asian but not in Caucasian or mixed populations. In conclusion, the results suggest no association between XRCC3 Thr241Met (rs861539) polymorphism and leukemia risk in the overall populations but a significant association between XRCC3 Thr241Met (rs861539) polymorphism and leukemia risk in the Asian population. Considering the limited sample size and ethnicities included in the meta-analysis, further large-scale, well-designed studies are needed to confirm our results.
Collapse
Affiliation(s)
- Yulan Yan
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University , Nanning 530021, Guangxi , People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
779
|
Cucurbitacin B induced ATM-mediated DNA damage causes G2/M cell cycle arrest in a ROS-dependent manner. PLoS One 2014; 9:e88140. [PMID: 24505404 PMCID: PMC3913755 DOI: 10.1371/journal.pone.0088140] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 01/05/2014] [Indexed: 01/11/2023] Open
Abstract
Cucurbitacins are a class of triterpenoids widely distributed in plant kingdom with potent anti-cancer activities both in vitro and in vivo by inducing cycle arrest, autophagy, and apoptosis. Cucurbitacin B (Cuc B), could induce S or G2/M cell cycle arrest in cancer cells while the detailed mechanisms remain to be clear. This study was designed to precisely dissect the signaling pathway(s) responsible for Cuc B induced cell cycle arrest in human lung adenocarcinoma epithelial A549 cells. We demonstrated that low concentrations of Cuc B dramatically induced G2/M phase arrest in A549 cells. Cuc B treatment caused DNA double-strand breaks (DSBs) without affecting the signal transducer and activator of transcription 3 (STAT3), the potential molecular target for Cuc B. Cuc B triggers ATM-activated Chk1-Cdc25C-Cdk1, which could be reversed by both ATM siRNA and Chk1 siRNA. Cuc B also triggers ATM-activated p53-14-3-3-σ pathways, which could be reversed by ATM siRNA. Cuc B treatment also led to increased intracellular reactive oxygen species (ROS) formation, which was inhibited by N-acetyl-l-cysteine (NAC) pretreatment. Furthermore, NAC pretreatment inhibited Cuc B induced DNA damage and G2/M phase arrest. Taken together, these results suggested that Cuc B induces DNA damage in A549 cells mediated by increasing intracellular ROS formation, which lead to G2/M cell phase arrest through ATM-activated Chk1-Cdc25C-Cdk1 and p53-14-3-3-σ parallel branches. These observations provide novel mechanisms and potential targets for better understanding of the anti-cancer mechanisms of cucurbitacins.
Collapse
|
780
|
Vellingiri B, Shanmugam S, Subramaniam MD, Balasubramanian B, Meyyazhagan A, Alagamuthu K, Prakash V, Shafiahammedkhan M, Kathannan S, Pappuswamy M, Raviganesh B, Anand S, Shahnaz N D, Cho SG, Keshavarao S. Cytogenetic endpoints and Xenobiotic gene polymorphism in lymphocytes of hospital workers chronically exposed to ionizing radiation in Cardiology, Radiology and Orthopedic Laboratories. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 100:266-274. [PMID: 24290889 DOI: 10.1016/j.ecoenv.2013.09.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/21/2013] [Accepted: 09/28/2013] [Indexed: 06/02/2023]
Abstract
Ionizing radiation (IR) is known as a classical mutagen capable of inducing various kinds of stable and unstable chromosomal aberrations (CA) including the possibility of increasing the incidence of DNA damage. This study aims to assess occupationally induced CA in workers chronically exposed to low doses of IR in Radiology (RL), Cardiology (CL) and Orthopedic (OL) Laboratories in hospitals of Tamil Nadu. We performed the analysis of CA by trypsin G-banding, micronucleus (MN) assay, Comet assay and Xenobiotic-metabolizing gene polymorphisms (GSTM1, GSTT1 and GSTP1) in 56 exposed and 56 control subjects who were matched for gender and age (± 2 years). Higher degree of CA and MN frequencies were observed in exposed groups, especially in CL subjects compared to other exposed groups and controls (p<0.05). Higher frequency of DNA tail length and tail moment was observed in the CL exposed subjects compared to the RL and OL subjects. The frequencies of GSTM1 and GSTT1 null genotypes were 39.3 percent and 14.3 percent, respectively. No significant difference in allele frequencies between exposed subjects and controls were observed (p=0.0128). Using multiple linear regression analysis, statistical significance was determined for work duration and age for the CL, RL and OL workers and the examination of the possible impact by confounding factors showed few significant influences on the radiation exposure, as a specific biomarker. However, the findings from the present study suggest that, awareness should be created among the personnel exposed to radiations in hospital laboratories, highlighting the necessity of applying radiation protection principles against medical radiation exposure.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Human Molecular Genetics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - Sureshkumar Shanmugam
- Human Molecular Genetics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Mohana Devi Subramaniam
- Human Molecular Genetics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | | | - Arun Meyyazhagan
- Human Molecular Genetics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Karthickkumar Alagamuthu
- Human Molecular Genetics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Varsha Prakash
- Human Molecular Genetics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | | | - Sankar Kathannan
- Human Molecular Genetics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Manikantan Pappuswamy
- Human Molecular Genetics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Banu Raviganesh
- PG and Research Center, Department of Biotechnology, Hindustan College, India
| | | | | | - Ssang-Goo Cho
- Molecular Cell Biology and Stem Cell Laboratory, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143 701, South Korea
| | - Sasikala Keshavarao
- Human Molecular Genetics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| |
Collapse
|
781
|
Therapeutic and space radiation exposure of mouse brain causes impaired DNA repair response and premature senescence by chronic oxidant production. Aging (Albany NY) 2014; 5:607-22. [PMID: 23928451 PMCID: PMC3796214 DOI: 10.18632/aging.100587] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite recent epidemiological evidences linking radiation exposure and a number of human ailments including cancer, mechanistic understanding of how radiation inflicts long-term changes in cerebral cortex, which regulates important neuronal functions, remains obscure. The current study dissects molecular events relevant to pathology in cerebral cortex of 6 to 8 weeks old female C57BL/6J mice two and twelve months after exposure to a γ radiation dose (2 Gy) commonly employed in fractionated radiotherapy. For a comparative study, effects of 1.6 Gy heavy ion 56Fe radiation on cerebral cortex were also investigated, which has implications for space exploration. Radiation exposure was associated with increased chronic oxidative stress, oxidative DNA damage, lipid peroxidation, and apoptosis. These results when considered with decreased cortical thickness, activation of cell-cycle arrest pathway, and inhibition of DNA double strand break repair factors led us to conclude to our knowledge for the first time that radiation caused aging-like pathology in cerebral cortical cells and changes after heavy ion radiation were more pronounced than γ radiation.
Collapse
|
782
|
Mitogen-induced B-cell proliferation activates Chk2-dependent G1/S cell cycle arrest. PLoS One 2014; 9:e87299. [PMID: 24498068 PMCID: PMC3907503 DOI: 10.1371/journal.pone.0087299] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 12/20/2013] [Indexed: 11/19/2022] Open
Abstract
B-cell activation and proliferation can be induced by a variety of extracellular stimuli. The fate of an activated B cell following mitogen stimulation can be dictated by the strength or duration of the signal, the expression of downstream signaling components necessary to promote proliferation, and the cell intrinsic sensors and regulators of the proliferative program. Previously we have identified the DNA damage response (DDR) signaling pathway as a cell intrinsic sensor that is activated upon latent infection of primary human B cells by Epstein-Barr virus (EBV). Here we have assessed the role of the DDR as a limiting factor in the proliferative response to non-viral B-cell mitogens. We report that TLR9 activation through CpG-rich oligonucleotides induced B-cell hyper-proliferation and an ATM/Chk2 downstream signaling pathway. However, B-cell activation through the CD40 pathway coupled with interleukin-4 (IL-4) promoted proliferation less robustly and only a modest DDR. These two mitogens, but not EBV, modestly induced intrinsic apoptosis that was independent from the DDR. However, all three mitogens triggered a DDR-dependent G1/S phase cell cycle arrest preventing B-cell proliferation. The extent of G1/S arrest, as evidenced by release through Chk2 inhibition, correlated with B-cell proliferation rates. These findings have implications for the regulation of extra-follicular B-cell activation as it may pertain to the development of auto-immune diseases or lymphoma.
Collapse
|
783
|
Zhao M, Chen P, Dong Y, Zhu X, Zhang X. Relationship between Rad51 G135C and G172T variants and the susceptibility to cancer: a meta-analysis involving 54 case-control studies. PLoS One 2014; 9:e87259. [PMID: 24475258 PMCID: PMC3903631 DOI: 10.1371/journal.pone.0087259] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/24/2013] [Indexed: 12/21/2022] Open
Abstract
Background The associations between Rad51 gene polymorphisms (G135C and G172T) and risk of cancer have been investigated, but the results were inconclusive. To get a comprehensive evaluation of the association above, we performed a meta-analysis of published studies. Methods A computerized search of PubMed, Embase and Web of Knowledge databases for all relevant studies was performed and the data were analyzed in a meta-analysis. The overall odds ratio (OR) with the 95% confidence interval (95% CI) was calculated to assess the strength of the association between Rad51 polymorphisms and cancer risk. Data were analyzed using fixed- or random-effects model when appropriate. Sensitivity analysis and publication bias test were also estimated. Results Overall, a total of 54 case-control studies were included in the current meta-analysis, among which 42 studies with 19,142 cases and 20,363 controls for RAD51 G135C polymorphism and 12 studies with 6,646 cases and 6,783 controls for G172T polymorphism. For G135C polymorphism, the pooled results indicated that significantly increased risk was found in overall cancers (homozygote model: OR = 1.776, 95% CI = 1.288–2.449; allelic genetic model: OR = 1.169, 95% CI = 1.016–1.345; recessive model: OR = 1.946, 95% CI = 1.336–2.835), especially in breast cancer (homozygote model: OR = 1.498, 95% CI = 1.026–2.189; recessive model: OR = 1.732, 95% CI = 1.170–2.562). For G172T polymorphism, a decreased cancer risk was observed in head and neck cancer (homozygote model: OR = 0.621, 95% CI = 0.460–0.837; allelic genetic model: OR = 0.824, 95% CI = 0.716–0.948; recessive model: OR = 0.639, 95% CI = 0.488–0.837). Conclusions Our results suggested that the Rad51 G135C polymorphism is a candidate for susceptibility to overall cancers, especially to breast cancer, and that the Rad51 G172T might play a protective role in the development of head and neck cancer.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanbin Dong
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xianji Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xilong Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
784
|
Transcription factor RFX1 is crucial for maintenance of genome integrity in Fusarium graminearum. EUKARYOTIC CELL 2014; 13:427-36. [PMID: 24465002 DOI: 10.1128/ec.00293-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The survival of cellular organisms depends on the faithful replication and transmission of DNA. Regulatory factor X (RFX) transcription factors are well conserved in animals and fungi, but their functions are diverse, ranging from the DNA damage response to ciliary gene regulation. We investigated the role of the sole RFX transcription factor, RFX1, in the plant-pathogenic fungus Fusarium graminearum. Deletion of rfx1 resulted in multiple defects in hyphal growth, conidiation, virulence, and sexual development. Deletion mutants of rfx1 were more sensitive to various types of DNA damage than the wild-type strain. Septum formation was inhibited and micronuclei were produced in the rfx1 deletion mutants. The results of the neutral comet assay demonstrated that disruption of rfx1 function caused spontaneous DNA double-strand breaks (DSBs). The transcript levels of genes involved in DNA DSB repair were upregulated in the rfx1 deletion mutants. DNA DSBs produced micronuclei and delayed septum formation in F. graminearum. Green fluorescent protein (GFP)-tagged RFX1 localized in nuclei and exhibited high expression levels in growing hyphae and conidiophores, where nuclear division was actively occurring. RNA-sequencing-based transcriptomic analysis revealed that RFX1 suppressed the expression of many genes, including those required for the repair of DNA damage. Taken together, these findings indicate that the transcriptional repressor rfx1 performs crucial roles during normal cell growth by maintaining genome integrity.
Collapse
|
785
|
Xie H, Huang S, Martin S, Wise JP. Arsenic is cytotoxic and genotoxic to primary human lung cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 760:33-41. [PMID: 24291234 PMCID: PMC3928068 DOI: 10.1016/j.mrgentox.2013.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/10/2013] [Accepted: 11/19/2013] [Indexed: 01/25/2023]
Abstract
Arsenic originates from both geochemical and numerous anthropogenic activities. Exposure of the general public to significant levels of arsenic is widespread. Arsenic is a well-documented human carcinogen. Long-term exposure to high levels of arsenic in drinking water has been linked to bladder, lung, kidney, liver, prostate, and skin cancers. Among them, lung cancer is of great public concern. However, little is known about how arsenic causes lung cancer and few studies have considered effects in normal human lung cells. The purpose of this study was to determine the cytotoxicity and genotoxicity of arsenic in human primary bronchial fibroblast and epithelial cells. Our data show that arsenic induces a concentration-dependent decrease in cell survival after short (24h) or long (120h) exposures. Arsenic induces concentration-dependent but not time-dependent increases in chromosome damage in fibroblasts. No chromosome damage is induced after either 24h or 120h arsenic exposure in epithelial cells. Using neutral comet assay and gamma-H2A.X foci forming assay, we found that 24h or 120h exposure to arsenic induces increases in DNA double strand breaks in both cell lines. These data indicate that arsenic is cytotoxic and genotoxic to human lung primary cells but lung fibroblasts are more sensitive to arsenic than epithelial cells. Further research is needed to understand the specific mechanisms involved in arsenic-induced genotoxicity in human lung cells.
Collapse
Affiliation(s)
- Hong Xie
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Portland, ME, United States; Maine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, ME, United States.
| | - Shouping Huang
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Portland, ME, United States; Maine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, ME, United States
| | - Sarah Martin
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Portland, ME, United States
| | - John P Wise
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Portland, ME, United States; Maine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, ME, United States
| |
Collapse
|
786
|
Kim SH, Park ER, Joo HY, Shen YN, Hong SH, Kim CH, Singh R, Lee KH, Shin HJ. RRM1 maintains centrosomal integrity via CHK1 and CDK1 signaling during replication stress. Cancer Lett 2014; 346:249-56. [PMID: 24434653 DOI: 10.1016/j.canlet.2013.12.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/12/2013] [Accepted: 12/26/2013] [Indexed: 01/14/2023]
Abstract
DNA lesion-induced centrosomal abnormalities during the replication phase are relatively unknown. Here, we report that RNAi-mediated depletion of RRM1 induces cell-cycle arrest at the replication phase, along with severe DNA damage and centrosomal amplification. Interestingly, CHK1 depletion synergistically increased RRM1-depletion-induced centrosomal amplification. In response to hydroxyurea, CHK1 was delocalized from the centrosome by RRM1 depletion. Moreover, CDK1, which functions in centrosome separation and is inhibited by CHK1, was found to be essential for RRMI1-depletion-induced centrosomal amplification. Thus, we herein demonstrate that RRM1 preserves chromosomal stability via the CHK1- and CDK1-dependent stabilization of the centrosomal integrity at the replication stage.
Collapse
Affiliation(s)
- Su-Hyeon Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Eun-Ran Park
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Hyun-Yoo Joo
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Yan Nan Shen
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Sung Hee Hong
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Chun Ho Kim
- Division of Radiation Effect, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Rachana Singh
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | - Kee-Ho Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea.
| | - Hyun-Jin Shin
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea.
| |
Collapse
|
787
|
|
788
|
Abstract
The spatial and temporal organization of the genome has emerged as an additional level of regulation of nuclear functions. Structural proteins associated with the nuclear envelope play important roles in the organization of the genome. The nuclear lamina, a polymeric meshwork formed by lamins (A- and B-type) and lamin-associated proteins, is viewed as a scaffold for tethering chromatin and protein complexes regulating a variety of nuclear functions. Alterations in lamins function impact DNA transactions such as transcription, replication, and repair, as well as epigenetic modifications that change chromatin structure. These data, and the association of defective lamins with a whole variety of degenerative disorders, premature aging syndromes, and cancer, provide evidence for these proteins operating as caretakers of the genome. In this chapter, we summarize current knowledge about the function of lamins in the maintenance of genome integrity, with special emphasis on the role of A-type lamins in the maintenance of telomere homeostasis and mechanisms of DNA damage repair. These findings have begun to shed some light onto molecular mechanisms by which alterations in A-type lamins induce genomic instability and contribute to the pathophysiology of aging and aging-related diseases, especially cancer.
Collapse
Affiliation(s)
- Susana Gonzalo
- Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, 1100 S Grand Ave, St. Louis, MO, 63104, USA,
| |
Collapse
|
789
|
Huefner ND, Yoshiyama K, Friesner JD, Conklin PA, Britt AB. Genomic stability in response to high versus low linear energy transfer radiation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2014; 5:206. [PMID: 24904606 PMCID: PMC4033213 DOI: 10.3389/fpls.2014.00206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/28/2014] [Indexed: 05/20/2023]
Abstract
Low linear energy transfer (LET) gamma rays and high LET HZE (high atomic weight, high energy) particles act as powerful mutagens in both plants and animals. DNA damage generated by HZE particles is more densely clustered than that generated by gamma rays. To understand the genetic requirements for resistance to high versus low LET radiation, a series of Arabidopsis thaliana mutants were exposed to either 1GeV Fe nuclei or gamma radiation. A comparison of effects on the germination and subsequent growth of seedlings led us to conclude that the relative biological effectiveness (RBE) of the two types of radiation (HZE versus gamma) are roughly 3:1. Similarly, in wild-type lines, loss of somatic heterozygosity was induced at an RBE of about a 2:1 (HZE versus gamma). Checkpoint and repair defects, as expected, enhanced sensitivity to both agents. The "replication fork" checkpoint, governed by ATR, played a slightly more important role in resistance to HZE-induced mutagenesis than in resistance to gamma induced mutagenesis.
Collapse
Affiliation(s)
- Neil D. Huefner
- Department of Plant Biology, University of California at DavisDavis, CA, USA
- Graduate Program in Genetics, University of California at DavisDavis, CA, USA
| | - Kaoru Yoshiyama
- Department of Plant Biology, University of California at DavisDavis, CA, USA
| | - Joanna D. Friesner
- Department of Plant Biology, University of California at DavisDavis, CA, USA
- Graduate Program in Genetics, University of California at DavisDavis, CA, USA
| | - Phillip A. Conklin
- Department of Plant Biology, University of California at DavisDavis, CA, USA
- Graduate Program in Genetics, University of California at DavisDavis, CA, USA
| | - Anne B. Britt
- Department of Plant Biology, University of California at DavisDavis, CA, USA
- Graduate Program in Genetics, University of California at DavisDavis, CA, USA
- *Correspondence: Anne B. Britt, Department of Plant Biology, University of California at Davis, 1002 Life Sciences, One Shields Avenue, Davis, CA 95616, USA e-mail:
| |
Collapse
|
790
|
Bennett G, Papamichos-Chronakis M, Peterson CL. DNA repair choice defines a common pathway for recruitment of chromatin regulators. Nat Commun 2013; 4:2084. [PMID: 23811932 PMCID: PMC3731036 DOI: 10.1038/ncomms3084] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 05/30/2013] [Indexed: 12/31/2022] Open
Abstract
DNA double-strand break (DSB) repair is essential for maintenance of genome stability. Recent work has implicated a host of chromatin regulators in the DNA damage response, and although several functional roles have been defined, the mechanisms that control their recruitment to DNA lesions remain unclear. Here, we find that efficient DSB recruitment of the INO80, SWR-C, NuA4, SWI/SNF, and RSC enzymes is inhibited by the non-homologous end joining machinery, and that their recruitment is controlled by early steps of homologous recombination. Strikingly, we find no significant role for H2A.X phosphorylation (γH2AX) in the recruitment of chromatin regulators, but rather their recruitment coincides with reduced levels of γH2AX. Our work indicates that cell cycle position plays a key role in DNA repair pathway choice and that recruitment of chromatin regulators is tightly coupled to homologous recombination.
Collapse
Affiliation(s)
- Gwendolyn Bennett
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01606, USA
| | | | | |
Collapse
|
791
|
Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev 2013; 66:222-307. [PMID: 24368738 DOI: 10.1124/pr.110.004044] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review addresses the oncopharmacological properties of curcumin at the molecular level. First, the interactions between curcumin and its molecular targets are addressed on the basis of curcumin's distinct chemical properties, which include H-bond donating and accepting capacity of the β-dicarbonyl moiety and the phenylic hydroxyl groups, H-bond accepting capacity of the methoxy ethers, multivalent metal and nonmetal cation binding properties, high partition coefficient, rotamerization around multiple C-C bonds, and the ability to act as a Michael acceptor. Next, the in vitro chemical stability of curcumin is elaborated in the context of its susceptibility to photochemical and chemical modification and degradation (e.g., alkaline hydrolysis). Specific modification and degradatory pathways are provided, which mainly entail radical-based intermediates, and the in vitro catabolites are identified. The implications of curcumin's (photo)chemical instability are addressed in light of pharmaceutical curcumin preparations, the use of curcumin analogues, and implementation of nanoparticulate drug delivery systems. Furthermore, the pharmacokinetics of curcumin and its most important degradation products are detailed in light of curcumin's poor bioavailability. Particular emphasis is placed on xenobiotic phase I and II metabolism as well as excretion of curcumin in the intestines (first pass), the liver (second pass), and other organs in addition to the pharmacokinetics of curcumin metabolites and their systemic clearance. Lastly, a summary is provided of the clinical pharmacodynamics of curcumin followed by a detailed account of curcumin's direct molecular targets, whereby the phenotypical/biological changes induced in cancer cells upon completion of the curcumin-triggered signaling cascade(s) are addressed in the framework of the hallmarks of cancer. The direct molecular targets include the ErbB family of receptors, protein kinase C, enzymes involved in prostaglandin synthesis, vitamin D receptor, and DNA.
Collapse
Affiliation(s)
- Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
792
|
Heylmann D, Bauer M, Becker H, van Gool S, Bacher N, Steinbrink K, Kaina B. Human CD4+CD25+ regulatory T cells are sensitive to low dose cyclophosphamide: implications for the immune response. PLoS One 2013; 8:e83384. [PMID: 24376696 PMCID: PMC3871695 DOI: 10.1371/journal.pone.0083384] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 11/03/2013] [Indexed: 12/23/2022] Open
Abstract
Regulatory T cells (Treg) play a pivotal role in the immune system since they inhibit the T cell response. It is well known that cyclophosphamide applied at low dose is able to stimulate the immune response while high dose cyclophosphamide exerts inhibitory activity. Data obtained in mice indicate that cyclophosphamide provokes a reduction in the number of Treg and impairs their suppressive activity, resulting in immune stimulation. Here, we addressed the question of the sensitivity of human Treg to cyclophosphamide, comparing Treg with cytotoxic T cells (CTL) and T helper cells (Th). We show that Treg are more sensitive than CTL and Th to mafosfamide, which is an active derivative of cyclophosphamide, which does not need metabolic activation. The high sensitivity of Treg was due to the induction of apoptosis. Treg compared to CTL and Th were not more sensitive to the alkylating drugs temozolomide and nimustine and also not to mitomycin C, indicating a specific Treg response to mafosfamide. The high sensitivity of Treg to mafosfamide resulted not only in enhanced cell death, but also in impaired Treg function as demonstrated by a decline in the suppressor activity of Treg in a co-culture model with Th and Helios positive Treg. Treatment of Treg with mafosfamide gave rise to a high level of DNA crosslinks, which were not repaired to the same extent as observed in Th and CTL. Also, Treg showed a low level of γH2AX foci up to 6 h and a high level 24 h after treatment, indicating alterations in the DNA damage response. Overall, this is the first demonstration that human Treg are, in comparison with Th and CTL, hypersensitive to cyclophosphamide, which is presumably due to a DNA repair defect.
Collapse
Affiliation(s)
- Daniel Heylmann
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Martina Bauer
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Huong Becker
- Department of Toxicology, University Medical Center, Mainz, Germany
| | | | - Nicole Bacher
- Department of Dermatology, University Medical Center, Mainz, Germany
| | | | - Bernd Kaina
- Department of Toxicology, University Medical Center, Mainz, Germany
- * E-mail:
| |
Collapse
|
793
|
The Molecular Crosstalk between the MET Receptor Tyrosine Kinase and the DNA Damage Response-Biological and Clinical Aspects. Cancers (Basel) 2013; 6:1-27. [PMID: 24378750 PMCID: PMC3980615 DOI: 10.3390/cancers6010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/06/2013] [Accepted: 12/06/2013] [Indexed: 02/07/2023] Open
Abstract
Radiation therapy remains an imperative treatment modality for numerous malignancies. Enduring significant technical achievements both on the levels of treatment planning and radiation delivery have led to improvements in local control of tumor growth and reduction in healthy tissue toxicity. Nevertheless, resistance mechanisms, which presumably also involve activation of DNA damage response signaling pathways that eventually may account for loco-regional relapse and consequent tumor progression, still remain a critical problem. Accumulating data suggest that signaling via growth factor receptor tyrosine kinases, which are aberrantly expressed in many tumors, may interfere with the cytotoxic impact of ionizing radiation via the direct activation of the DNA damage response, leading eventually to so-called tumor radioresistance. The aim of this review is to overview the current known data that support a molecular crosstalk between the hepatocyte growth factor receptor tyrosine kinase MET and the DNA damage response. Apart of extending well established concepts over MET biology beyond its function as a growth factor receptor, these observations directly relate to the role of its aberrant activity in resistance to DNA damaging agents, such as ionizing radiation, which are routinely used in cancer therapy and advocate tumor sensitization towards DNA damaging agents in combination with MET targeting.
Collapse
|
794
|
Grabauskiene S, Bergeron EJ, Chen G, Thomas DG, Giordano TJ, Beer DG, Morgan MA, Reddy RM. Checkpoint kinase 1 protein expression indicates sensitization to therapy by checkpoint kinase 1 inhibition in non-small cell lung cancer. J Surg Res 2013; 187:6-13. [PMID: 24418519 DOI: 10.1016/j.jss.2013.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/21/2013] [Accepted: 12/13/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND When presenting with advanced stage disease, lung cancer patients have <5% 5-y survival. The overexpression of checkpoint kinase 1 (CHK1) is associated with poorer outcomes and may contribute to therapy resistance. Targeting CHK1 with small-molecule inhibitors in p53 mutant tumors might improve the effectiveness of chemotherapy and radiotherapy in non-small cell lung cancer (NSCLC). METHODS We evaluated CHK1 messenger RNA and protein levels in multiple NSCLC cell lines. We assessed cell line sensitization to gemcitabine, pemetrexed, and radiotherapy by CHK1 inhibition with the small molecule AZD7762 using proliferation and clonogenic cell survival assays. We analyzed CHK1 signaling by Western blotting to confirm that AZD7762 inhibits CHK1. RESULTS We selected two p53 mutant NSCLC cell lines with either high (H1299) or low (H1993) CHK1 levels for further analysis. We found that AZD7762 sensitized both cell lines to gemcitabine, pemetrexed, and radiotherapy. Chemosensitization levels were greater, however, for the higher CHK1 protein expressing cell line, H1299, when compared with H1993. Furthermore, analysis of the CHK1 signaling pathway showed that H1299 cells have an increased dependence on the CHK1 pathway in response to chemotherapy. There was no increased sensitization to radiation in H1299 versus H1993. CONCLUSIONS CHK1 inhibition by AZD7762 preferentially sensitizes high CHK1 expressing cells, H1299, to anti-metabolite chemotherapy as compared with low CHK1 expressing H1993 cells. Thus, CHK1 inhibitors may improve the efficacy of standard lung cancer therapies, especially for those subgroups of tumors harboring higher expression levels of CHK1 protein.
Collapse
Affiliation(s)
- Svetlana Grabauskiene
- Section of Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Edward J Bergeron
- Section of Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Guoan Chen
- Section of Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Dafydd G Thomas
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Thomas J Giordano
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - David G Beer
- Section of Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan; University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan; University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Rishindra M Reddy
- Section of Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan; University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan.
| |
Collapse
|
795
|
Sahlberg SH, Gustafsson AS, Pendekanti PN, Glimelius B, Stenerlöw B. The influence of AKT isoforms on radiation sensitivity and DNA repair in colon cancer cell lines. Tumour Biol 2013; 35:3525-34. [PMID: 24338765 PMCID: PMC3980041 DOI: 10.1007/s13277-013-1465-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/22/2013] [Indexed: 12/11/2022] Open
Abstract
In response to ionizing radiation, several signaling cascades in the cell are activated to repair the DNA breaks, prevent apoptosis, and keep the cells proliferating. AKT is important for survival and proliferation and may also be an activating factor for DNA-PKcs and MRE11, which are essential proteins in the DNA repair process. AKT (PKB) is hyperactivated in several cancers and is associated with resistance to radiotherapy and chemotherapy. There are three AKT isoforms (AKT1, AKT2, and AKT3) with different expression patterns and functions in several cancer tumors. The role of AKT isoforms has been investigated in relation to radiation response and their effects on DNA repair proteins (DNA-PKcs and MRE11) in colon cancer cell lines. The knockout of AKT1 and/or AKT2 affected the radiation sensitivity, and a deficiency of both isoforms impaired the rejoining of radiation-induced DNA double strand breaks. Importantly, the active/phosphorylated forms of AKT and DNA-PKcs associate and exposure to ionizing radiation causes an increase in this interaction. Moreover, an increased expression of both DNA-PKcs and MRE11 was observed when AKT expression was ablated, yet only DNA-PKcs expression influenced AKT phosphorylation. Taken together, these results demonstrate a role for both AKT1 and AKT2 in radiotherapy response in colon cancer cells involving DNA repair capacity through the nonhomologous end joining pathway, thus suggesting that AKT in combination with DNA-PKcs inhibition may be used for radiotherapy sensitizing strategies in colon cancer.
Collapse
Affiliation(s)
| | | | | | - Bengt Glimelius
- Section of Oncology, Department of Radiology, Oncology and Radiation Science, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Bo Stenerlöw
- Biomedical Radiation Sciences, Uppsala University, 75185 Uppsala, Sweden
| |
Collapse
|
796
|
Mechanistic phenotypes: an aggregative phenotyping strategy to identify disease mechanisms using GWAS data. PLoS One 2013; 8:e81503. [PMID: 24349080 PMCID: PMC3861317 DOI: 10.1371/journal.pone.0081503] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/23/2013] [Indexed: 11/19/2022] Open
Abstract
A single mutation can alter cellular and global homeostatic mechanisms and give rise to multiple clinical diseases. We hypothesized that these disease mechanisms could be identified using low minor allele frequency (MAF<0.1) non-synonymous SNPs (nsSNPs) associated with “mechanistic phenotypes”, comprised of collections of related diagnoses. We studied two mechanistic phenotypes: (1) thrombosis, evaluated in a population of 1,655 African Americans; and (2) four groupings of cancer diagnoses, evaluated in 3,009 white European Americans. We tested associations between nsSNPs represented on GWAS platforms and mechanistic phenotypes ascertained from electronic medical records (EMRs), and sought enrichment in functional ontologies across the top-ranked associations. We used a two-step analytic approach whereby nsSNPs were first sorted by the strength of their association with a phenotype. We tested associations using two reverse genetic models and standard additive and recessive models. In the second step, we employed a hypothesis-free ontological enrichment analysis using the sorted nsSNPs to identify functional mechanisms underlying the diagnoses comprising the mechanistic phenotypes. The thrombosis phenotype was solely associated with ontologies related to blood coagulation (Fisher's p = 0.0001, FDR p = 0.03), driven by the F5, P2RY12 and F2RL2 genes. For the cancer phenotypes, the reverse genetics models were enriched in DNA repair functions (p = 2×10−5, FDR p = 0.03) (POLG/FANCI, SLX4/FANCP, XRCC1, BRCA1, FANCA, CHD1L) while the additive model showed enrichment related to chromatid segregation (p = 4×10−6, FDR p = 0.005) (KIF25, PINX1). We were able to replicate nsSNP associations for POLG/FANCI, BRCA1, FANCA and CHD1L in independent data sets. Mechanism-oriented phenotyping using collections of EMR-derived diagnoses can elucidate fundamental disease mechanisms.
Collapse
|
797
|
Mariotti LG, Pirovano G, Savage KI, Ghita M, Ottolenghi A, Prise KM, Schettino G. Use of the γ-H2AX assay to investigate DNA repair dynamics following multiple radiation exposures. PLoS One 2013; 8:e79541. [PMID: 24312182 DOI: 10.1371/journal.pone.0079541e.0079541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/23/2013] [Indexed: 05/25/2023] Open
Abstract
Radiation therapy is one of the most common and effective strategies used to treat cancer. The irradiation is usually performed with a fractionated scheme, where the dose required to kill tumour cells is given in several sessions, spaced by specific time intervals, to allow healthy tissue recovery. In this work, we examined the DNA repair dynamics of cells exposed to radiation delivered in fractions, by assessing the response of histone-2AX (H2AX) phosphorylation (γ-H2AX), a marker of DNA double strand breaks. γ-H2AX foci induction and disappearance were monitored following split dose irradiation experiments in which time interval between exposure and dose were varied. Experimental data have been coupled to an analytical theoretical model, in order to quantify key parameters involved in the foci induction process. Induction of γ-H2AX foci was found to be affected by the initial radiation exposure with a smaller number of foci induced by subsequent exposures. This was compared to chromatin relaxation and cell survival. The time needed for full recovery of γ-H2AX foci induction was quantified (12 hours) and the 1:1 relationship between radiation induced DNA double strand breaks and foci numbers was critically assessed in the multiple irradiation scenarios.
Collapse
Affiliation(s)
- Luca G Mariotti
- Dipartimento di Fisica, Università degli studi di Pavia, Pavia, Italy ; Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
798
|
Mariotti LG, Pirovano G, Savage KI, Ghita M, Ottolenghi A, Prise KM, Schettino G. Use of the γ-H2AX assay to investigate DNA repair dynamics following multiple radiation exposures. PLoS One 2013; 8:e79541. [PMID: 24312182 PMCID: PMC3843657 DOI: 10.1371/journal.pone.0079541] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/23/2013] [Indexed: 11/18/2022] Open
Abstract
Radiation therapy is one of the most common and effective strategies used to treat cancer. The irradiation is usually performed with a fractionated scheme, where the dose required to kill tumour cells is given in several sessions, spaced by specific time intervals, to allow healthy tissue recovery. In this work, we examined the DNA repair dynamics of cells exposed to radiation delivered in fractions, by assessing the response of histone-2AX (H2AX) phosphorylation (γ-H2AX), a marker of DNA double strand breaks. γ-H2AX foci induction and disappearance were monitored following split dose irradiation experiments in which time interval between exposure and dose were varied. Experimental data have been coupled to an analytical theoretical model, in order to quantify key parameters involved in the foci induction process. Induction of γ-H2AX foci was found to be affected by the initial radiation exposure with a smaller number of foci induced by subsequent exposures. This was compared to chromatin relaxation and cell survival. The time needed for full recovery of γ-H2AX foci induction was quantified (12 hours) and the 1:1 relationship between radiation induced DNA double strand breaks and foci numbers was critically assessed in the multiple irradiation scenarios.
Collapse
Affiliation(s)
- Luca G. Mariotti
- Dipartimento di Fisica, Università degli studi di Pavia, Pavia, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy
| | - Giacomo Pirovano
- Dipartimento di Fisica, Università degli studi di Pavia, Pavia, Italy
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, United Kingdom
| | - Kienan I. Savage
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, United Kingdom
| | - Mihaela Ghita
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, United Kingdom
| | - Andrea Ottolenghi
- Dipartimento di Fisica, Università degli studi di Pavia, Pavia, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy
| | - Kevin M. Prise
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, United Kingdom
| | - Giuseppe Schettino
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
799
|
Association of RECQL5 gene polymorphisms and osteosarcoma in a Chinese Han population. Tumour Biol 2013; 35:3255-9. [PMID: 24287950 DOI: 10.1007/s13277-013-1425-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/13/2013] [Indexed: 10/26/2022] Open
Abstract
Despite the knowledge on many genetic variants present in osteosarcoma, the complexity of this disease precludes placing its biology into a simple conceptual framework. RECQL is a DNA helicase involved in DNA mismatch repair and has been reported to be associated with many human cancers. We aimed to investigate the association of RECQL genetic polymorphism with osteosarcoma in a Chinese population. We selected three polymorphisms of the RECQL5 gene (rs820196, rs820200, and rs4789223) in the present study. TaqMan method was utilized for genotyping these three SNPs in 212 patients with osteosarcoma and 240 age- and sex-matched noncancer controls. In our study, we found that CC genotype in rs820196 (17.5 vs 8.3%, P = 0.005) and AA genotype in rs4789223 (21.7 vs 14.2, P < 0.001) were more frequent in osteosarcoma group compared to the control group, respectively. We also found that the C allele of rs820196 (OR = 1.492, 95% CI 1.138 ∼ 1.951; P = 0.004) and A allele of rs4789223 (OR = 1.767, 95% CI: 1.354 ∼ 2.301; P < 0.001) were common in the osteosarcoma patients than those in the control subjects, respectively. Haplotype analysis showed that TTA (OR = 3.469, 95% CI 1.798 ∼ 6.695; P < 0.001) was associated with increased risk for osteosarcoma. However, the TTG (OR = 0.578, 95% CI 0.442 ∼ 0.756) was associated with decreased risk for osteosarcoma. Our results suggested that RECQL5 genetic polymorphisms were associated with osteosarcoma in a Chinese population.
Collapse
|
800
|
Yu C, Liu SL, Qi MH, Zou X. Cinnamaldehyde/chemotherapeutic agents interaction and drug-metabolizing genes in colorectal cancer. Mol Med Rep 2013; 9:669-76. [PMID: 24276478 DOI: 10.3892/mmr.2013.1830] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 11/20/2013] [Indexed: 11/06/2022] Open
Abstract
Cinnamaldehyde is an active monomer isolated from the stem bark of Cinnamomum cassia, a traditional oriental medicinal herb, which is known to possess marked antitumor effects in vitro and in vivo. The aim of the present study was to examine the potential advantages of using cinnamaldehyde in combination with chemotherapeutic agents commonly used in colorectal carcinoma (CRC) therapy, as well as to investigate the effect of cinnamaldehyde on chemotherapeutic-associated gene expression. The synergistic interaction of cinnamaldehyde and chemotherapeutic agents on human CRC HT-29 and LoVo cells was evaluated using the combination index (CI) method. The double staining with Annexin V conjugated to fluorescein-isothiocyanate and phosphatidylserine was employed for apoptosis detection. The expression of drug-metabolizing genes, including excision repair cross‑complementing 1 (ERCC1), orotate phosphoribosyltransferase (OPRT), thymidylate synthase (TS), breast cancer susceptibility gene 1 (BRCA1) and topoisomerase 1 (TOPO1), all in HT-29 and LoVo cells, with or without the addition of cinnamaldehyde, was examined by quantitative polymerase chain reaction (PCR). Cinnamaldehyde had a synergistic effect on the chemotherapeutic agents cytotoxicity in HT-29 and LoVo cells. In addition, cinnamaldehyde suppressed BRCA1, TOPO1, ERCC1 and TS mRNA expression, except for OPRT expression, which was markedly upregulated. Our findings indicate that cinnamaldehyde appears to be a promising candidate as an adjuvant in combination therapy with 5-fluorouracil (5-FU) and oxaliplatin (OXA), two chemotherapeutic agents used in CRC treatment. The possible mechanisms of its action may involve the regulation of drug‑metabolizing genes.
Collapse
Affiliation(s)
- Chen Yu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, P.R. China
| | - Shen-Lin Liu
- Senior Expert Consultation Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Ming-Hao Qi
- National Clinical Research Base of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xi Zou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|