751
|
Lee ZW, Teo XY, Tay EYW, Tan CH, Hagen T, Moore PK, Deng LW. Utilizing hydrogen sulfide as a novel anti-cancer agent by targeting cancer glycolysis and pH imbalance. Br J Pharmacol 2014; 171:4322-36. [PMID: 24827113 DOI: 10.1111/bph.12773] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/31/2014] [Accepted: 05/07/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Many disparate studies have reported the ambiguous role of hydrogen sulfide (H2 S) in cell survival. The present study investigated the effect of H2 S on the viability of cancer and non-cancer cells. EXPERIMENTAL APPROACH Cancer and non-cancer cells were exposed to H2 S [using sodium hydrosulfide (NaHS) and GYY4137] and cell viability was examined by crystal violet assay. We then examined cancer cellular glycolysis by in vitro enzymatic assays and pH regulator activity. Lastly, intracellular pH (pHi ) was determined by ratiometric pHi measurement using BCECF staining. KEY RESULTS Continuous, but not a single, exposure to H2 S decreased cell survival more effectively in cancer cells, as compared to non-cancer cells. Slow H2 S-releasing donor, GYY4137, significantly increased glycolysis, leading to overproduction of lactate. H2 S also decreased anion exchanger and sodium/proton exchanger activity. The combination of increased metabolic acid production and defective pH regulation resulted in an uncontrolled intracellular acidification, leading to cancer cell death. In contrast, no significant intracellular acidification or cell death was observed in non-cancer cells. CONCLUSIONS AND IMPLICATIONS Low and continuous exposure to H2 S targets metabolic processes and pH homeostasis in cancer cells, potentially serving as a novel and selective anti-cancer strategy.
Collapse
Affiliation(s)
- Z-W Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
752
|
Morani F, Phadngam S, Follo C, Titone R, Thongrakard V, Galetto A, Alabiso O, Isidoro C. PTEN deficiency and mutant p53 confer glucose-addiction to thyroid cancer cells: impact of glucose depletion on cell proliferation, cell survival, autophagy and cell migration. Genes Cancer 2014; 5:226-39. [PMID: 25221641 PMCID: PMC4162142 DOI: 10.18632/genesandcancer.21] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/16/2014] [Indexed: 11/25/2022] Open
Abstract
Proliferating cancer cells oxidize glucose through the glycolytic pathway. Since this metabolism is less profitable in terms of ATP production, cancer cells consume large quantity of glucose, and those that experience insufficient blood supply become glucose-addicted. We have analyzed the response to glucose depletion in WRO and FTC133 follicular thyroid cancer cells, which differ in the expression of two key regulators of the glucose metabolism. WRO cells, which express wild type p53 and PTEN, showed a higher rate of cell proliferation and were much less sensitive to glucose-depletion than FTC133 cells, which are PTEN null and express mutant p53. Glucose depletion slowed-down the autophagy flux in FTC133 cells, not in WRO cells. In a wound-healing assay, WRO cells were shown to migrate faster than FTC133 cells. Glucose depletion slowed down the cell migration rate, and these effects were more evident in FTC133 cells. Genetic silencing of either wild-type PTEN or p53 in WRO cells resulted in increased uptake of glucose, whereas the ectopic expression of PTEN in FTC133 cells resulted in diminished glucose uptake. In conclusion, compared to WRO, FTC133 cells were higher glucose up-taker and consumer. These data do not support the general contention that cancer cells lacking PTEN or expressing the mutant p53R273H are more aggressive and prone to better face glucose depletion. We propose that concurrent PTEN deficiency and mutant p53 leads to a glucose-addiction state that renders the cancer cell more sensitive to glucose restriction. The present observation substantiates the view that glucose-restriction may be an adjuvant strategy to combat these tumours.
Collapse
Affiliation(s)
- Federica Morani
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara (Italy)
| | - Suratchanee Phadngam
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara (Italy)
| | - Carlo Follo
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara (Italy)
| | - Rossella Titone
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara (Italy)
| | - Visa Thongrakard
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara (Italy)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Alessandra Galetto
- Unit of Oncology, Department of Translational Medicine, Università del Piemonte Orientale “A. Avogadro”, Novara (Italy)
| | - Oscar Alabiso
- Unit of Oncology, Department of Translational Medicine, Università del Piemonte Orientale “A. Avogadro”, Novara (Italy)
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara (Italy)
| |
Collapse
|
753
|
El Sayed SM, Mohamed WG, Seddik MAH, Ahmed ASA, Mahmoud AG, Amer WH, Helmy Nabo MM, Hamed AR, Ahmed NS, Abd-Allah AAR. Safety and outcome of treatment of metastatic melanoma using 3-bromopyruvate: a concise literature review and case study. CHINESE JOURNAL OF CANCER 2014; 33:356-364. [PMID: 24636230 PMCID: PMC4110469 DOI: 10.5732/cjc.013.10111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 01/20/2014] [Accepted: 02/10/2014] [Indexed: 01/01/2023]
Abstract
3-Bromopyruvate (3BP) is a new, promising anticancer alkylating agent with several notable functions. In addition to inhibiting key glycolysis enzymes including hexokinase II and lactate dehydrogenase (LDH), 3BP also selectively inhibits mitochondrial oxidative phosphorylation, angiogenesis, and energy production in cancer cells. Moreover, 3BP induces hydrogen peroxide generation in cancer cells (oxidative stress effect) and competes with the LDH substrates pyruvate and lactate. There is only one published human clinical study showing that 3BP was effective in treating fibrolamellar hepatocellular carcinoma. LDH is a good measure for tumor evaluation and predicts the outcome of treatment better than the presence of a residual tumor mass. According to the Warburg effect, LDH is responsible for lactate synthesis, which facilitates cancer cell survival, progression, aggressiveness, metastasis, and angiogenesis. Lactate produced through LDH activity fuels aerobic cell populations inside tumors via metabolic symbiosis. In melanoma, the most deadly skin cancer, 3BP induced necrotic cell death in sensitive cells, whereas high glutathione (GSH) content made other melanoma cells resistant to 3BP. Concurrent use of a GSH depletor with 3BP killed resistant melanoma cells. Survival of melanoma patients was inversely associated with high serum LDH levels, which was reported to be highly predictive of melanoma treatment in randomized clinical trials. Here, we report a 28-year-old man presented with stage IV metastatic melanoma affecting the back, left pleura, and lung. The disease caused total destruction of the left lung and a high serum LDH level (4,283 U/L). After ethics committee approval and written patient consent, the patient received 3BP intravenous infusions (1-2.2 mg/kg), but the anticancer effect was minimal as indicated by a high serum LDH level. This may have been due to high tumor GSH content. On combining oral paracetamol, which depletes tumor GSH, with 3BP treatment, serum LDH level dropped maximally. Although a slow intravenous infusion of 3BP appeared to have minimal cytotoxicity, its anticancer efficacy via this delivery method was low. This was possibly due to high tumor GSH content, which was increased after concurrent use of the GSH depletor paracetamol. If the anticancer effectiveness of 3BP is less than expected, the combination with paracetamol may be needed to sensitize cancer cells to 3BP-induced effects.
Collapse
Affiliation(s)
- Salah Mohamed El Sayed
- Department of Medical Oncology and Nuclear Medicine, Sohag Faculty of Medicine, Sohag University, Sohag, Egypt. ,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
754
|
Metabolic effects of hypoxia in colorectal cancer by 13C NMR isotopomer analysis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:759791. [PMID: 25093181 PMCID: PMC4100400 DOI: 10.1155/2014/759791] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/27/2014] [Indexed: 02/08/2023]
Abstract
13C NMR isotopomer analysis was used to characterize intermediary metabolism in three colorectal cancer cell lines (WiDr, LS1034, and C2BBe1) and determine the “metabolic remodeling” that occurs under hypoxia. Under normoxia, the three colorectal cancer cell lines present high rates of lactate production and can be seen as “Warburg” like cancer cells independently of substrate availability, since such profile was dominant at both high and low glucose media contents. The LS1034 was the less glycolytic of the three cell lines and was the most affected by the event of hypoxia, raising abruptly glucose consumption and lactate production. The other two colorectal cell lines, WiDr and C2BBe1, adapted better to hypoxia and were able to maintain their oxidative fluxes even at the very low levels of oxygen. These differential metabolic behaviors of the three colorectal cell lines show how important an adequate knowledge of the “metabolic remodeling” that follows a given cancer treatment is towards the correct (re)design of therapeutic strategies against cancer.
Collapse
|
755
|
Song Y, Wang J, Yau ST. Controlled glucose consumption in yeast using a transistor-like device. Sci Rep 2014; 4:5429. [PMID: 24962647 PMCID: PMC4069707 DOI: 10.1038/srep05429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/04/2014] [Indexed: 12/03/2022] Open
Abstract
From the point of view of systems biology, insight into controlling the functioning of biological systems is conducive to the understanding of their complexness. The development of novel devices, instrumentation and approaches facilitates this endeavor. Here, we show a transistor-like device that can be used to control the kinetics of the consumption of glucose at a yeast-immobilised electrode. The gating voltage of the device applied at an insulated gating electrode was used to control both the rate of glucose consumption and the rate of the production of ATP and ethanol, the end-products of normal glucose metabolism. Further, a correlation between the glucose consumption and the production of ethanol controlled by the gating voltage was observed using two different forms of the device. The results suggest the relevance of glucose metabolism in our work and demonstrate the electrostatic nature of the device. An attempt to explain the effect of the gating voltage on the kinetics is made in terms of transfer of electrons from NADH to enzymes in the electron transport chain. This novel technique is applicable to general cells and the reported results show a possible role for electrostatic means in controlling processes in cells.
Collapse
Affiliation(s)
- Yang Song
- Department of Electrical and Computer Engineering, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Jiapeng Wang
- Department of Electrical and Computer Engineering, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Siu-Tung Yau
- 1] Department of Electrical and Computer Engineering, Cleveland State University, Cleveland, Ohio 44115, USA [2] The Applied Bioengineering Program, Cleveland State University, Cleveland, Ohio 44115, USA
| |
Collapse
|
756
|
Zheng FM, Long ZJ, Hou ZJ, Luo Y, Xu LZ, Xia JL, Lai XJ, Liu JW, Wang X, Kamran M, Yan M, Shao SJ, Lam EWF, Wang SW, Lu G, Liu Q. A novel small molecule aurora kinase inhibitor attenuates breast tumor-initiating cells and overcomes drug resistance. Mol Cancer Ther 2014; 13:1991-2003. [PMID: 24899685 DOI: 10.1158/1535-7163.mct-13-1029] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemoresistance is a major cause of cancer treatment failure. Tumor-initiating cells (TIC) have attracted a considerable amount of attention due to their role in chemoresistance and tumor recurrence. Here, we evaluated the small molecule Aurora kinase inhibitor AKI603 as a novel agent against TICs in breast cancer. AKI603 significantly inhibited Aurora-A (AurA) kinase and induced cell-cycle arrest. In addition, the intragastric administration of AKI603 reduced xenograft tumor growth. Interestingly, we found that breast cancer cells that were resistant to epirubicin expressed a high level of activated AurA and also have a high CD24(Low)/CD44(High) TIC population. The inhibition of AurA kinase by AKI603 abolished the epirubicin-induced enrichment of TICs. Moreover, AKI603 suppressed the capacity of cells to form mammosphere and also suppressed the expression of self-renewal genes (β-catenin, c-Myc, Sox2, and Oct4). Thus, our work suggests the potential clinical use of the small molecule Aurora kinase inhibitor AKI603 to overcome drug resistance induced by conventional chemotherapeutics in breast cancer.
Collapse
Affiliation(s)
- Fei-Meng Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine; Institute of Cancer Stem Cell, Dalian Medical University; Institute of Cancer Stem Cell, Institute of Cancer Stem Cell - First Affiliated Hospital Collaborative Innovation Center of Oncology
| | - Zi-Jie Long
- Department of Hematology, Third Affiliated Hospital, Sun Yat-sen University
| | - Zhi-Jie Hou
- Institute of Cancer Stem Cell, Institute of Cancer Stem Cell - First Affiliated Hospital Collaborative Innovation Center of Oncology
| | - Yu Luo
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou
| | - Ling-Zhi Xu
- Institute of Cancer Stem Cell, Institute of Cancer Stem Cell - First Affiliated Hospital Collaborative Innovation Center of Oncology
| | - Jiang-Long Xia
- Institute of Cancer Stem Cell, Institute of Cancer Stem Cell - First Affiliated Hospital Collaborative Innovation Center of Oncology
| | - Xiao-Ju Lai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine; Institute of Cancer Stem Cell, Dalian Medical University
| | - Ji-Wei Liu
- Institute of Cancer Stem Cell, Institute of Cancer Stem Cell - First Affiliated Hospital Collaborative Innovation Center of Oncology
| | - Xi Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine; Institute of Cancer Stem Cell, Dalian Medical University
| | - Muhammad Kamran
- Institute of Cancer Stem Cell, Institute of Cancer Stem Cell - First Affiliated Hospital Collaborative Innovation Center of Oncology
| | - Min Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine; Institute of Cancer Stem Cell, Dalian Medical University
| | - Shu-Juan Shao
- Department of Histology and Embryology, Dalian Medical University, Dalian, China; and
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College London, London, United Kingdom
| | - Shao-Wu Wang
- Institute of Cancer Stem Cell, Institute of Cancer Stem Cell - First Affiliated Hospital Collaborative Innovation Center of Oncology
| | - Gui Lu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou;
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine; Institute of Cancer Stem Cell, Dalian Medical University; Department of Hematology, Third Affiliated Hospital, Sun Yat-sen University; Institute of Cancer Stem Cell, Institute of Cancer Stem Cell - First Affiliated Hospital Collaborative Innovation Center of Oncology;
| |
Collapse
|
757
|
Gabano E, Ravera M, Osella D. Pros and cons of bifunctional platinum(IV) antitumor prodrugs: two are (not always) better than one. Dalton Trans 2014; 43:9813-20. [PMID: 24874896 DOI: 10.1039/c4dt00911h] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article evaluates the efficacy and applicability of bifunctional prodrugs consisting of a six-coordinate Pt(iv) octahedral core and one or more bioactive molecules. The platinum(iv) complexes release upon reduction the corresponding cytotoxic Pt(ii) agents and the bioactive molecules, able to inhibit some biochemical mechanisms of cancer growth and/or prevent the deactivation of the Pt(ii) metabolites.
Collapse
Affiliation(s)
- Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale Teresa Michel 11, 15121 Alessandria, Italy.
| | | | | |
Collapse
|
758
|
Jiang JX, Gao S, Pan YZ, Yu C, Sun CY. Overexpression of microRNA-125b sensitizes human hepatocellular carcinoma cells to 5-fluorouracil through inhibition of glycolysis by targeting hexokinase II. Mol Med Rep 2014; 10:995-1002. [PMID: 24865963 DOI: 10.3892/mmr.2014.2271] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/02/2014] [Indexed: 11/06/2022] Open
Abstract
5-fluorouracil (5-FU)-based chemotherapy is widely used in the treatment of human hepatocellular carcinoma. However, despite impressive initial clinical responses, the majority of patients eventually develop resistance to 5-FU. The microRNA (miR)-125 family has been implicated in a variety of carcinomas as either a tumor suppressor or promoter. In the present study, the role of miR-125b in acquired 5-FU resistance in multiple human hepatocellular carcinoma cell lines was investigated using transfection of miR-125b. Compared with 5-FU?sensitive cells, 5?FU?resistant cells exhibited reduced expression levels of miR?125b. Furthermore, transfection of pre?miR-125b into liver cancer cells resulted in sensitization of 5-FU?resistant cells to 5-FU. In addition, the glucose uptake and lactate production in 5-FU?resistant liver cancer cells were demonstrated to be significantly increased compared with 5?FU?sensitive cells (P<0.05), indicating that targeting glycolytic pathways may overcome chemoresistance in human liver cancer cells. Notably, miR-125 was found to downregulate glucose metabolism by directly targeting hexokinase II. Since drug resistance is a common phenotype of malignant cancer cells, the finding that miR-125b expression levels are negatively correlated with 5-FU resistance in hepatocellular carcinoma cells is consistent with the reported functions of miR-125b. In conclusion, the present study identified miR-125b as a tumor suppressor-like microRNA, which exhibits great potential as a diagnostic and prognostic biomarker in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jian-Xin Jiang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Shan Gao
- Department of Digestive Internal Medicine, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Yao-Zhen Pan
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Chao Yu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Cheng-Yi Sun
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
759
|
Everts B, Pearce EJ. Metabolic control of dendritic cell activation and function: recent advances and clinical implications. Front Immunol 2014; 5:203. [PMID: 24847328 PMCID: PMC4021118 DOI: 10.3389/fimmu.2014.00203] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/24/2014] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) are key regulators of both immunity and tolerance by controlling activation and polarization of effector T helper cell and regulatory T cell responses. Therefore, there is a major focus on developing approaches to manipulate DC function for immunotherapy. It is well known that changes in cellular activation are coupled to profound changes in cellular metabolism. Over the past decade there is a growing appreciation that these metabolic changes also underlie the capacity of immune cells to perform particular functions. This has led to the concept that the manipulation of cellular metabolism can be used to shape innate and adaptive immune responses. While most of our understanding in this area has been gained from studies with T cells and macrophages, evidence is emerging that the activation and function of DCs are also dictated by the type of metabolism these cells commit to. We here discuss these new insights and explore whether targeting of metabolic pathways in DCs could hold promise as a novel approach to manipulate the functional properties of DCs for clinical purposes.
Collapse
Affiliation(s)
- Bart Everts
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO , USA ; Department of Parasitology, Leiden University Medical Center , Leiden , Netherlands
| | - Edward J Pearce
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO , USA
| |
Collapse
|
760
|
Lim JH, Luo C, Vazquez F, Puigserver P. Targeting Mitochondrial Oxidative Metabolism in Melanoma Causes Metabolic Compensation through Glucose and Glutamine Utilization. Cancer Res 2014; 74:3535-45. [DOI: 10.1158/0008-5472.can-13-2893-t] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
761
|
Lennon FE, Salgia R. Mitochondrial dynamics: biology and therapy in lung cancer. Expert Opin Investig Drugs 2014; 23:675-92. [PMID: 24654596 DOI: 10.1517/13543784.2014.899350] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Lung cancer mortality rates remain at unacceptably high levels. Although mitochondrial dysfunction is a characteristic of most tumor types, mitochondrial dynamics are often overlooked. Altered rates of mitochondrial fission and fusion are observed in lung cancer and can influence metabolic function, proliferation and cell survival. AREAS COVERED In this review, the authors outline the mechanisms of mitochondrial fission and fusion. They also identify key regulatory proteins and highlight the roles of fission and fusion in metabolism and other cellular functions (e.g., proliferation, apoptosis) with an emphasis on lung cancer and the interaction with known cancer biomarkers. They also examine the current therapeutic strategies reported as altering mitochondrial dynamics and review emerging mitochondria-targeted therapies. EXPERT OPINION Mitochondrial dynamics are an attractive target for therapeutic intervention in lung cancer. Mitochondrial dysfunction, despite its molecular heterogeneity, is a common abnormality of lung cancer. Targeting mitochondrial dynamics can alter mitochondrial metabolism, and many current therapies already non-specifically affect mitochondrial dynamics. A better understanding of mitochondrial dynamics and their interaction with currently identified cancer 'drivers' such as Kirsten-Rat Sarcoma Viral Oncogene homolog will lead to the development of novel therapeutics.
Collapse
Affiliation(s)
- Frances E Lennon
- University of Chicago, Department of Medicine, Section of Hematology/Oncology , 5841 S. Maryland Avenue, MC 2115 Chicago, IL 60637 , USA +1 773 702 4399 ; +1 773 834 1798 ;
| | | |
Collapse
|
762
|
Swierczynski J, Hebanowska A, Sledzinski T. Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World J Gastroenterol 2014; 20:2279-303. [PMID: 24605027 PMCID: PMC3942833 DOI: 10.3748/wjg.v20.i9.2279] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/25/2013] [Accepted: 01/03/2014] [Indexed: 02/07/2023] Open
Abstract
There is growing evidence that metabolic alterations play an important role in cancer development and progression. The metabolism of cancer cells is reprogrammed in order to support their rapid proliferation. Elevated fatty acid synthesis is one of the most important aberrations of cancer cell metabolism. An enhancement of fatty acids synthesis is required both for carcinogenesis and cancer cell survival, as inhibition of key lipogenic enzymes slows down the growth of tumor cells and impairs their survival. Based on the data that serum fatty acid synthase (FASN), also known as oncoantigen 519, is elevated in patients with certain types of cancer, its serum level was proposed as a marker of neoplasia. This review aims to demonstrate the changes in lipid metabolism and other metabolic processes associated with lipid metabolism in pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic neoplasm, characterized by high mortality. We also addressed the influence of some oncogenic factors and tumor suppressors on pancreatic cancer cell metabolism. Additionally the review discusses the potential role of elevated lipid synthesis in diagnosis and treatment of pancreatic cancer. In particular, FASN is a viable candidate for indicator of pathologic state, marker of neoplasia, as well as, pharmacological treatment target in pancreatic cancer. Recent research showed that, in addition to lipogenesis, certain cancer cells can use fatty acids from circulation, derived from diet (chylomicrons), synthesized in liver, or released from adipose tissue for their growth. Thus, the interactions between de novo lipogenesis and uptake of fatty acids from circulation by PDAC cells require further investigation.
Collapse
|
763
|
Zhou Q, Wang W, He X, Zhu X, Shen Y, Yu Z, Wang X, Qi X, Zhang X, Fan M, Dai Y, Yang S, Yan Q. Mechanistic study on the nuclear modifier gene MSS1 mutation suppressing neomycin sensitivity of the mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae. PLoS One 2014; 9:e90336. [PMID: 24595024 PMCID: PMC3940847 DOI: 10.1371/journal.pone.0090336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/30/2014] [Indexed: 12/31/2022] Open
Abstract
The phenotypic manifestation of mitochondrial DNA (mtDNA) mutations can be modulated by nuclear genes and environmental factors. However, neither the interaction among these factors nor their underlying mechanisms are well understood. The yeast Saccharomyces cerevisiae mtDNA 15S rRNA C1477G mutation (PR) corresponds to the human 12S rRNA A1555G mutation. Here we report that a nuclear modifier gene mss1 mutation suppresses the neomycin-sensitivity phenotype of a yeast C1477G mutant in fermentable YPD medium. Functional assays show that the mitochondrial function of the yeast C1477G mutant was impaired severely in YPD medium with neomycin. Moreover, the mss1 mutation led to a significant increase in the steady-state level of HAP5 (heme activated protein), which greatly up-regulated the expression of glycolytic transcription factors RAP1, GCR1, and GCR2 and thus stimulated glycolysis. Furthermore, the high expression of the key glycolytic enzyme genes HXK2, PFK1 and PYK1 indicated that enhanced glycolysis not only compensated for the ATP reduction from oxidative phosphorylation (OXPHOS) in mitochondria, but also ensured the growth of the mss1(PR) mutant in YPD medium with neomycin. This study advances our understanding of the phenotypic manifestation of mtDNA mutations.
Collapse
Affiliation(s)
- Qiyin Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wei Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiangyu He
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoyu Zhu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yaoyao Shen
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhe Yu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xuexiang Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xuchen Qi
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuan Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Mingjie Fan
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yu Dai
- College of Life Sciences, Zhejiang University, Hangzhou, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuxu Yang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfeng Yan
- College of Life Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
764
|
Quantitative proteomics in resected renal cancer tissue for biomarker discovery and profiling. Br J Cancer 2014; 110:1622-33. [PMID: 24548857 PMCID: PMC3960606 DOI: 10.1038/bjc.2014.24] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/27/2013] [Accepted: 01/07/2014] [Indexed: 02/06/2023] Open
Abstract
Background: Proteomics-based approaches for biomarker discovery are promising strategies used in cancer research. We present state-of-art label-free quantitative proteomics method to assess proteome of renal cell carcinoma (RCC) compared with noncancer renal tissues. Methods: Fresh frozen tissue samples from eight primary RCC lesions and autologous adjacent normal renal tissues were obtained from surgically resected tumour-bearing kidneys. Proteins were extracted by complete solubilisation of tissues using filter-aided sample preparation (FASP) method. Trypsin digested proteins were analysed using quantitative label-free proteomics approach followed by data interpretation and pathways analysis. Results: A total of 1761 proteins were identified and quantified with high confidence (MASCOT ion score threshold of 35 and P-value <0.05). Of these, 596 proteins were identified as differentially expressed between cancer and noncancer tissues. Two upregulated proteins in tumour samples (adipose differentiation-related protein and Coronin 1A) were further validated by immunohistochemistry. Pathway analysis using IPA, KOBAS 2.0, DAVID functional annotation and FLink tools showed enrichment of many cancer-related biological processes and pathways such as oxidative phosphorylation, glycolysis and amino acid synthetic pathways. Conclusions: Our study identified a number of differentially expressed proteins and pathways using label-free proteomics approach in RCC compared with normal tissue samples. Two proteins validated in this study are the focus of on-going research in a large cohort of patients.
Collapse
|
765
|
Oliveras-Ferraros C, Vazquez-Martin A, Cuyàs E, Corominas-Faja B, Rodríguez-Gallego E, Fernández-Arroyo S, Martin-Castillo B, Joven J, Menendez JA. Acquired resistance to metformin in breast cancer cells triggers transcriptome reprogramming toward a degradome-related metastatic stem-like profile. Cell Cycle 2014; 13:1132-44. [PMID: 24553122 DOI: 10.4161/cc.27982] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Therapeutic interventions based on metabolic inhibitor-based therapies are expected to be less prone to acquired resistance. However, there has not been any study assessing the possibility that the targeting of the tumor cell metabolism may result in unforeseeable resistance. We recently established a pre-clinical model of estrogen-dependent MCF-7 breast cancer cells that were chronically adapted to grow (> 10 months) in the presence of graded, millimolar concentrations of the anti-diabetic biguanide metformin, an AMPK agonist/mTOR inhibitor that has been evaluated in multiple in vitro and in vivo cancer studies and is now being tested in clinical trials. To assess what impact the phenomenon of resistance might have on the metformin-like "dirty" drugs that are able to simultaneously hit several metabolic pathways, we employed the ingenuity pathway analysis (IPA) software to functionally interpret the data from Agilent whole-human genome arrays in the context of biological processes, networks, and pathways. Our findings establish, for the first time, that a "global" targeting of metabolic reprogramming using metformin certainly imposes a great selective pressure for the emergence of new breast cancer cellular states. Intriguingly, acquired resistance to metformin appears to trigger a transcriptome reprogramming toward a metastatic stem-like profile, as many genes encoding the components of the degradome (KLK11, CTSF, FREM1, BACE-2, CASP, TMPRSS4, MMP16, HTRA1), cancer cell migration and invasion factors (TP63, WISP2, GAS3, DKK1, BCAR3, PABPC1, MUC1, SPARCL1, SEMA3B, SEMA6A), stem cell markers (DCLK1, FAK), and key pro-metastatic lipases (MAGL and Cpla2) were included in the signature. Because this convergent activation of pathways underlying tumor microenvironment interactions occurred in low-proliferative cancer cells exhibiting a notable downregulation of the G 2/M DNA damage checkpoint regulators that maintain genome stability (CCNB1, CCNB2, CDC20, CDC25C, AURKA, AURKB, BUB1, CENP-A, CENP-M) and pro-autophagic features (i.e., TRAIL upregulation and BCL-2 downregulation), it appears that the unique mechanism of acquired resistance to metformin has opposing roles in growth and metastatic dissemination. While refractoriness to metformin limits breast cancer cell growth, likely due to aberrant mitotic/cytokinetic machinery and accelerated autophagy, it notably increases the potential of metastatic dissemination by amplifying the number of pro-migratory and stemness inputs via the activation of a significant number of proteases and EMT regulators. Future studies should elucidate whether our findings using supra-physiological concentrations of metformin mechanistically mimic the ultimate processes that could paradoxically occur in a polyploid, senescent-autophagic scenario triggered by the chronic metabolic stresses that occur during cancer development and after treatment with cancer drugs.
Collapse
Affiliation(s)
- Cristina Oliveras-Ferraros
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain; Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| | - Alejandro Vazquez-Martin
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain; Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| | - Elisabet Cuyàs
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain; Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| | - Bruna Corominas-Faja
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain; Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| | - Esther Rodríguez-Gallego
- Unitat de Recerca Biomèdica; Hospital Universitari Sant Joan and Hospital Universitari Joan XXIII; Institut d'Investigació Sanitària Pere Virgili; Universitat Rovira i Virgili; Reus, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica; Hospital Universitari Sant Joan and Hospital Universitari Joan XXIII; Institut d'Investigació Sanitària Pere Virgili; Universitat Rovira i Virgili; Reus, Spain
| | - Begoña Martin-Castillo
- Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain; Unit of Clinical Research; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica; Hospital Universitari Sant Joan and Hospital Universitari Joan XXIII; Institut d'Investigació Sanitària Pere Virgili; Universitat Rovira i Virgili; Reus, Spain
| | - Javier A Menendez
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain; Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| |
Collapse
|
766
|
Zeng W, Liu P, Pan W, Singh SR, Wei Y. Hypoxia and hypoxia inducible factors in tumor metabolism. Cancer Lett 2014; 356:263-7. [PMID: 24508030 DOI: 10.1016/j.canlet.2014.01.032] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 01/01/2023]
Abstract
Because of the abnormal vasculature, most growing solid tumors contain regions that experience either acute or chronic hypoxia. However, tumor cells can maintain a high glycolytic rate even when there is enough oxygen supply. Hypoxia-inducible factors (HIFs) play crucial role in the response of tumor cells to this distinct microenvironment by shifting energy production from mitochondria towards glycolysis. In this review, we focus on the metabolism of tumor cell survival in hypoxic microenvironments. Furthermore, we also emphasize the mechanisms by which hypoxia and HIFs regulate tumor metabolism.
Collapse
Affiliation(s)
- Wen Zeng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 20025, China; Department of Joint and Bone Disease Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Peiyi Liu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 20025, China; Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 20025, China
| | - Weimin Pan
- Department of Human Movement Studies, Xi'an Physical Education University, Xi'an 710068, China
| | - Shree Ram Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Institutes of Health, National Cancer Institute, Frederick, MD 21702, USA.
| | - Yiyong Wei
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 20025, China; Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 20025, China.
| |
Collapse
|
767
|
Morandi A, Chiarugi P. Metabolic implication of tumor:stroma crosstalk in breast cancer. J Mol Med (Berl) 2014; 92:117-26. [PMID: 24458539 DOI: 10.1007/s00109-014-1124-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/10/2014] [Indexed: 12/14/2022]
Abstract
The metabolic properties of cancer cells significantly differ from those of normal cells. In particular, cancer cells are largely dependent on aerobic glycolysis, a phenomenon that has been exploited clinically by using labelled glucose for positron emission tomography imaging. Importantly, cancer-associated alterations in metabolism are not merely due to the resulting response to cell proliferation and survival. Indeed, direct metabolic regulation could be driven by tumor oncogenes and/or suppressors, as demonstrated in several solid tumors, including breast cancer. Despite the fact that most breast cancer studies have focused on the intrinsic characteristics of breast tumor cells, it is now widely accepted that tumor microenvironment plays an important role in defining and reprogramming cancer cell metabolism. Tumor:stroma crosstalk, as well as inflammatory cues, concurs to outlining the cancer metabolism, impact on cancer aggressiveness and ultimately on patient survival and therapeutic responses. The aim of this review is to (i) gather the most recent data regarding the metabolic alterations in breast cancer, (ii) describe the role of tumor microenvironment in breast cancer cell metabolic reprogramming, and (iii) contemplate how targeting metabolic pathways aberrantly activated in breast cancer could help current therapeutic regimens.
Collapse
Affiliation(s)
- Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, viale GB Morgagni 50, Florence, I-50134, Italy
| | | |
Collapse
|
768
|
Máximo V, Rios E, Sobrinho-Simões M. Oncocytic Lesions of the Thyroid, Kidney, Salivary Glands, Adrenal Cortex, and Parathyroid Glands. Int J Surg Pathol 2014; 22:33-6. [DOI: 10.1177/1066896913517938] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oncocytic cell represents a special phenotype of neoplastic cells reflecting a unique biologic process characterized by the huge proliferation of morphologically abnormal mitochondria in the cytoplasm of neoplastic cells. This phenotype is driven by quite specific molecular mechanisms that interfere with mitochondrial function and metabolism. The oncocytic phenotype is more common in tumors arising in tissues presenting low proliferative rate, such as thyroid, kidney, salivary glands, adrenal cortex, and parathyroid glands, and it is superimposed on the genotypic and conventional histologic features of the tumors. In this short review, we address the similarity of the molecular alterations and of the biological features of the neoplastic cells in the oncocytic tumors of the different organs. We also discuss the differential diagnosis of benign and malignant oncocytic tumors as well as the prognosis of the malignant ones. We conclude that this rather unique phenotype, which is observed in tumors from different organs, indicates common metabolic alterations that may represent a useful target for therapeutic purposes.
Collapse
Affiliation(s)
- Valdemar Máximo
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Medical Faculty of the University of Porto, Porto, Portugal
| | - Elisabete Rios
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Medical Faculty of the University of Porto, Porto, Portugal
- Centro Hospitalar S. João, Porto, Portugal
| | - Manuel Sobrinho-Simões
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Medical Faculty of the University of Porto, Porto, Portugal
- Centro Hospitalar S. João, Porto, Portugal
| |
Collapse
|
769
|
|
770
|
Sipieter F, Ladik M, Vandenabeele P, Riquet F. Shining light on cell death processes - a novel biosensor for necroptosis, a newly described cell death program. Biotechnol J 2014; 9:224-40. [DOI: 10.1002/biot.201300200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/03/2013] [Accepted: 11/20/2013] [Indexed: 12/24/2022]
|
771
|
Guillaumond F, Iovanna JL, Vasseur S. Pancreatic tumor cell metabolism: focus on glycolysis and its connected metabolic pathways. Arch Biochem Biophys 2014; 545:69-73. [PMID: 24393743 DOI: 10.1016/j.abb.2013.12.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 12/17/2022]
Abstract
Because of lack of effective treatment, pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of death by cancer in Western countries, with a very weak improvement of survival rate over the last 40years. Defeat of numerous conventional therapies to cure this cancer makes urgent to develop new tools usable by clinicians for a better management of the disease. Aggressiveness of pancreatic cancer relies on its own hallmarks: a low vascular network as well as a prominent stromal compartment (desmoplasia), which creates a severe hypoxic environment impeding correct oxygen and nutrients diffusion to the tumoral cells. To survive and proliferate in those conditions, pancreatic cancer cells set up specific metabolic pathways to meet their tremendous energetic and biomass demands. However, as PDAC is a heterogenous tumor, a complex reprogramming of metabolic processes is engaged by cancer cells according to their level of oxygenation and nutrients supply. In this review, we focus on the glycolytic activity of PDAC and the glucose-connected metabolic pathways which contribute to the progression and dissemination of this disease. We also discuss possible therapeutic strategies targeting these pathways in order to cure this disease which still until now is resistant to numerous conventional treatments.
Collapse
Affiliation(s)
- Fabienne Guillaumond
- INSERM U1068, Centre de Recherche en Cancérologie de Marseille, France; Institut Paoli-Calmettes, France; CNRS, UMR7258, F-13009 Marseille, France; Université Aix-Marseille, F-13284 Marseille, France
| | - Juan Lucio Iovanna
- INSERM U1068, Centre de Recherche en Cancérologie de Marseille, France; Institut Paoli-Calmettes, France; CNRS, UMR7258, F-13009 Marseille, France; Université Aix-Marseille, F-13284 Marseille, France
| | - Sophie Vasseur
- INSERM U1068, Centre de Recherche en Cancérologie de Marseille, France; Institut Paoli-Calmettes, France; CNRS, UMR7258, F-13009 Marseille, France; Université Aix-Marseille, F-13284 Marseille, France.
| |
Collapse
|
772
|
Zheng W, Huang Y. The chemistry and biology of the α-ketoglutarate-dependent histone Nε-methyl-lysine demethylases. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00325f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This review describes the current knowledge of the chemistry and biology of the physiologically and therapeutically important histone/protein Nε-methyl-lysine demethylation reactions catalyzed by the JMJD2 and JARID1 families of the α-ketoglutarate-dependent demethylases.
Collapse
Affiliation(s)
- Weiping Zheng
- School of Pharmacy
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yajun Huang
- School of Pharmacy
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
773
|
Abstract
Oncogenesis and tumor progression are associated with significant alterations in cellular metabolism. One metabolic pathway that is commonly deregulated in malignant cells is de novo lipogenesis. Lipogenesis is indeed highly upregulated in several types of cancer, a phenomenon that is linked to tumor progression and poor prognosis. Steroid hormones play an essential role in the growth of a variety of cancers and have been shown to increase the expression and activity of several lipogenic factors, including fatty acid synthase and sterol regulatory element-binding proteins. Such an altered gene expression profile promotes lipid biogenesis and may result in the accumulation of neutral lipids, which become visible as cytoplasmic lipid droplets. By using breast and prostate cancer cells exposed to steroid hormones as a model, here we describe methods for the direct qualitative and quantitative assessment of neutral lipid accumulation in malignant cells.
Collapse
Affiliation(s)
| | - Yang Jin
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
774
|
Ciavardelli D, Bellomo M, Crescimanno C, Vella V. Type 3 deiodinase: role in cancer growth, stemness, and metabolism. Front Endocrinol (Lausanne) 2014; 5:215. [PMID: 25566187 PMCID: PMC4269192 DOI: 10.3389/fendo.2014.00215] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/27/2014] [Indexed: 12/17/2022] Open
Abstract
Deiodinases are selenoenzymes that catalyze thyroid hormones (THs) activation (type 1 and type 2, D1 and D2, respectively) or inactivation (type 3, D3). THs are essential for proper body development and cellular differentiation. Their intra- and extra-cellular concentrations are tightly regulated by deiodinases with a pre-receptorial control thus generating active or inactive form of THs. Changes in deiodinases expression are anatomically and temporally regulated and influence the downstream TH signaling. D3 overexpression is a feature of proliferative tissues such as embryo or cancer tissues. The enhanced TH degradation by D3 induces a local hypothyroidism, thus inhibiting THs transcriptional activity. Of note, overexpression of D3 is a feature of several highly proliferative cancers. In this paper, we review recent advances in the role of D3 in cancer growth, stemness, and metabolic phenotype. In particular, we focus on the main signaling pathways that result in the overexpression of D3 in cancer cells and are known to be relevant to cancer development, progression, and recurrence. We also discuss the potential role of D3 in cancer stem cells metabolic phenotype, an emerging topic in cancer research.
Collapse
Affiliation(s)
- Domenico Ciavardelli
- School of Human and Social Science, University “Kore” of Enna, Enna, Italy
- Center of Excellence on Aging (CeS.I.), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Maria Bellomo
- School of Human and Social Science, University “Kore” of Enna, Enna, Italy
| | | | - Veronica Vella
- School of Human and Social Science, University “Kore” of Enna, Enna, Italy
- Department of Clinical and Molecular Bio-Medicine, Endocrinology Unit, University of Catania, Garibaldi-Nesima Medical Center, Catania, Italy
- *Correspondence: Veronica Vella, School of Human and Social Sciences, University “Kore” of Enna, via delle Olimpiadi, Enna 94100, Italy e-mail:
| |
Collapse
|
775
|
Nandy A, Gangopadhyay S, Mukhopadhyay A. Individualizing breast cancer treatment—The dawn of personalized medicine. Exp Cell Res 2014; 320:1-11. [DOI: 10.1016/j.yexcr.2013.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 12/19/2022]
|
776
|
Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci 2013; 71:2577-604. [PMID: 24363178 PMCID: PMC4059968 DOI: 10.1007/s00018-013-1539-2] [Citation(s) in RCA: 601] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 11/24/2013] [Accepted: 12/02/2013] [Indexed: 12/31/2022]
Abstract
Pyruvate is a keystone molecule critical for numerous aspects of eukaryotic and human metabolism. Pyruvate is the end-product of glycolysis, is derived from additional sources in the cellular cytoplasm, and is ultimately destined for transport into mitochondria as a master fuel input undergirding citric acid cycle carbon flux. In mitochondria, pyruvate drives ATP production by oxidative phosphorylation and multiple biosynthetic pathways intersecting the citric acid cycle. Mitochondrial pyruvate metabolism is regulated by many enzymes, including the recently discovered mitochondria pyruvate carrier, pyruvate dehydrogenase, and pyruvate carboxylase, to modulate overall pyruvate carbon flux. Mutations in any of the genes encoding for proteins regulating pyruvate metabolism may lead to disease. Numerous cases have been described. Aberrant pyruvate metabolism plays an especially prominent role in cancer, heart failure, and neurodegeneration. Because most major diseases involve aberrant metabolism, understanding and exploiting pyruvate carbon flux may yield novel treatments that enhance human health.
Collapse
Affiliation(s)
- Lawrence R Gray
- Department of Biochemistry, Fraternal Order of the Eagles Diabetes Research Center, and François M. Abboud Cardiovascular Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd, 4-403 BSB, Iowa City, IA, 52242, USA
| | | | | |
Collapse
|
777
|
Ganapathy-Kanniappan S, Geschwind JFH. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer 2013; 12:152. [PMID: 24298908 PMCID: PMC4223729 DOI: 10.1186/1476-4598-12-152] [Citation(s) in RCA: 925] [Impact Index Per Article: 77.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/21/2013] [Indexed: 12/15/2022] Open
Abstract
Altered energy metabolism is a biochemical fingerprint of cancer cells that represents one of the “hallmarks of cancer”. This metabolic phenotype is characterized by preferential dependence on glycolysis (the process of conversion of glucose into pyruvate followed by lactate production) for energy production in an oxygen-independent manner. Although glycolysis is less efficient than oxidative phosphorylation in the net yield of adenosine triphosphate (ATP), cancer cells adapt to this mathematical disadvantage by increased glucose up-take, which in turn facilitates a higher rate of glycolysis. Apart from providing cellular energy, the metabolic intermediates of glycolysis also play a pivotal role in macromolecular biosynthesis, thus conferring selective advantage to cancer cells under diminished nutrient supply. Accumulating data also indicate that intracellular ATP is a critical determinant of chemoresistance. Under hypoxic conditions where glycolysis remains the predominant energy producing pathway sensitizing cancer cells would require intracellular depletion of ATP by inhibition of glycolysis. Together, the oncogenic regulation of glycolysis and multifaceted roles of glycolytic components underscore the biological significance of tumor glycolysis. Thus targeting glycolysis remains attractive for therapeutic intervention. Several preclinical investigations have indeed demonstrated the effectiveness of this therapeutic approach thereby supporting its scientific rationale. Recent reviews have provided a wealth of information on the biochemical targets of glycolysis and their inhibitors. The objective of this review is to present the most recent research on the cancer-specific role of glycolytic enzymes including their non-glycolytic functions in order to explore the potential for therapeutic opportunities. Further, we discuss the translational potential of emerging drug candidates in light of technical advances in treatment modalities such as image-guided targeted delivery of cancer therapeutics.
Collapse
Affiliation(s)
- Shanmugasundaram Ganapathy-Kanniappan
- Russell H Morgan Department of Radiology & Radiological Sciences, Division of Interventional Radiology, Johns Hopkins University School of Medicine, 600 N, Wolfe Street, Blalock Building 340, 21287 Baltimore, MD, USA.
| | | |
Collapse
|
778
|
Christensen CE, Karlsson M, Winther JR, Jensen PR, Lerche MH. Non-invasive in-cell determination of free cytosolic [NAD+]/[NADH] ratios using hyperpolarized glucose show large variations in metabolic phenotypes. J Biol Chem 2013; 289:2344-52. [PMID: 24302737 DOI: 10.1074/jbc.m113.498626] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Accumulating evidence suggest that the pyridine nucleotide NAD has far wider biological functions than its classical role in energy metabolism. NAD is used by hundreds of enzymes that catalyze substrate oxidation and, as such, it plays a key role in various biological processes such as aging, cell death, and oxidative stress. It has been suggested that changes in the ratio of free cytosolic [NAD(+)]/[NADH] reflects metabolic alterations leading to, or correlating with, pathological states. We have designed an isotopically labeled metabolic bioprobe of free cytosolic [NAD(+)]/[NADH] by combining a magnetic enhancement technique (hyperpolarization) with cellular glycolytic activity. The bioprobe reports free cytosolic [NAD(+)]/[NADH] ratios based on dynamically measured in-cell [pyruvate]/[lactate] ratios. We demonstrate its utility in breast and prostate cancer cells. The free cytosolic [NAD(+)]/[NADH] ratio determined in prostate cancer cells was 4 times higher than in breast cancer cells. This higher ratio reflects a distinct metabolic phenotype of prostate cancer cells consistent with previously reported alterations in the energy metabolism of these cells. As a reporter on free cytosolic [NAD(+)]/[NADH] ratio, the bioprobe will enable better understanding of the origin of diverse pathological states of the cell as well as monitor cellular consequences of diseases and/or treatments.
Collapse
|
779
|
Abstract
Tumour cells thrive in environments that would be hostile to their normal cell counterparts. Survival depends on the selection of cell lines that harbour modifications of both, gene regulation that shifts the balance between the cell cycle and apoptosis and those that involve the plasticity of the metabolic machinery. With regards to metabolism, the selected phenotypes usually display enhanced anaerobic glycolysis even in the presence of oxygen, the so-called Warburg effect, and anabolic pathways that provide precursors for the synthesis of lipids, proteins and DNA. The review will discuss the original ideas of Otto Warburg and how they initially led to the notion that mitochondria of tumour cells were dysfunctional. Data will be presented to show that not only the organelles are viable and respiring, but that they are key players in tumorigenesis and metastasis. Likewise, interconnecting pathways that stand out in the tumour phenotype and that require intact mitochondria such as glutaminolysis will be addressed. Furthermore, comments will be made as to how the peculiarities of the biochemistry of tumour cells renders them amenable to new forms of treatment by highlighting possible targets for inhibitors. In this respect, a case study describing the effect of a metabolite analogue, the alkylating agent 3BP (3-bromopyruvate), on glycolytic enzyme targets will be presented.
Collapse
|
780
|
Tedeschi PM, Markert EK, Gounder M, Lin H, Dvorzhinski D, Dolfi SC, Chan LLY, Qiu J, DiPaola RS, Hirshfield KM, Boros LG, Bertino JR, Oltvai ZN, Vazquez A. Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Cell Death Dis 2013; 4:e877. [PMID: 24157871 PMCID: PMC3920946 DOI: 10.1038/cddis.2013.393] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 01/02/2023]
Abstract
Recent observations on cancer cell metabolism indicate increased serine synthesis from glucose as a marker of poor prognosis. We have predicted that a fraction of the synthesized serine is routed to a pathway for ATP production. The pathway is composed by reactions from serine synthesis, one-carbon (folate) metabolism and the glycine cleavage system (SOG pathway). Here we show that the SOG pathway is upregulated at the level of gene expression in a subset of human tumors and that its level of expression correlates with gene signatures of cell proliferation and Myc target activation. We have also estimated the SOG pathway metabolic flux in the NCI60 tumor-derived cell lines, using previously reported exchange fluxes and a personalized model of cell metabolism. We find that the estimated rates of reactions in the SOG pathway are highly correlated with the proliferation rates of these cell lines. We also observe that the SOG pathway contributes significantly to the energy requirements of biosynthesis, to the NADPH requirement for fatty acid synthesis and to the synthesis of purines. Finally, when the PC-3 prostate cancer cell line is treated with the antifolate methotrexate, we observe a decrease in the ATP levels, AMP kinase activation and a decrease in ribonucleotides and fatty acids synthesized from [1,2-13C2]-D-glucose as the single tracer. Taken together our results indicate that the SOG pathway activity increases with the rate of cell proliferation and it contributes to the biosynthetic requirements of purines, ATP and NADPH of cancer cells.
Collapse
Affiliation(s)
- P M Tedeschi
- 1] Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA [2] Department of Pharmacology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
781
|
Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C. Advances in Copper Complexes as Anticancer Agents. Chem Rev 2013; 114:815-62. [DOI: 10.1021/cr400135x] [Citation(s) in RCA: 1290] [Impact Index Per Article: 107.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Carlo Santini
- Scuola
di Scienze e Tecnologie−Sez. Chimica, Università di Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Maura Pellei
- Scuola
di Scienze e Tecnologie−Sez. Chimica, Università di Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Valentina Gandin
- Dipartimento
di Scienze del Farmaco, Università di Padova, via Marzolo
5, 35131 Padova, Italy
| | | | | | - Cristina Marzano
- Dipartimento
di Scienze del Farmaco, Università di Padova, via Marzolo
5, 35131 Padova, Italy
| |
Collapse
|
782
|
Cancer cell metabolism: implications for therapeutic targets. Exp Mol Med 2013; 45:e45. [PMID: 24091747 PMCID: PMC3809361 DOI: 10.1038/emm.2013.85] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/04/2013] [Accepted: 07/10/2013] [Indexed: 12/20/2022] Open
Abstract
Cancer cell metabolism is characterized by an enhanced uptake and utilization of glucose, a phenomenon known as the Warburg effect. The persistent activation of aerobic glycolysis in cancer cells can be linked to activation of oncogenes or loss of tumor suppressors, thereby fundamentally advancing cancer progression. In this respect, inhibition of glycolytic capacity may contribute to an anticancer effect on malignant cells. Understanding the mechanisms of aerobic glycolysis may present a new basis for cancer treatment. Accordingly, interrupting lactate fermentation and/or other cancer-promoting metabolic sites may provide a promising strategy to halt tumor development. In this review, we will discuss dysregulated and reprogrammed cancer metabolism followed by clinical relevance of the metabolic enzymes, such as hexokinase, phosphofructokinase, pyruvate kinase M2, lactate dehydrogenase, pyruvate dehydrogenase kinase and glutaminase. The proper intervention of these metabolic sites may provide a therapeutic advantage that can help overcome resistance to chemotherapy or radiotherapy.
Collapse
|
783
|
Kumar A, Kant S, Singh SM. Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: a role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation. Toxicol Appl Pharmacol 2013; 273:196-208. [PMID: 24051182 DOI: 10.1016/j.taap.2013.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/06/2013] [Accepted: 09/08/2013] [Indexed: 02/06/2023]
Abstract
Targeting of tumor metabolism is emerging as a novel therapeutic strategy against cancer. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), has been shown to exert a potent tumoricidal action against a variety of tumor cells. The main mode of its antineoplastic action implicates a shift of glycolysis to oxidative metabolism of glucose, leading to generation of cytotoxic reactive oxygen intermediates. However, the effect of DCA on tumor microenvironment, which in turn regulates tumor cell survival; remains speculative to a large extent. It is also unclear if DCA can exert any modulatory effect on the process of hematopoiesis, which is in a compromised state in tumor-bearing hosts undergoing chemotherapy. In view of these lacunas, the present study was undertaken to investigate the so far unexplored aspects with respect to the molecular mechanisms of DCA-dependent tumor growth retardation and chemosensitization. BALB/c mice were transplanted with Dalton's lymphoma (DL) cells, a T cell lymphoma of spontaneous origin, followed by administration of DCA with or without cisplatin. DCA-dependent tumor regression and chemosensitization to cisplatin was found to be associated with altered repertoire of key cell survival regulatory molecules, modulated glucose metabolism, accompanying reconstituted tumor microenvironment with respect to pH homeostasis, cytokine balance and alternatively activated TAM. Moreover, DCA administration also led to an alteration in the MDR phenotype of tumor cells and myelopoietic differentiation of macrophages. The findings of this study shed a new light with respect to some of the novel mechanisms underlying the antitumor action of DCA and thus may have immense clinical applications.
Collapse
Affiliation(s)
- Ajay Kumar
- School of Biotechnology, Banaras Hindu University, Varanasi 221005, India
| | | | | |
Collapse
|
784
|
Lee CJ, Lee MH, Lee JY, Song JH, Lee HS, Cho YY. RSK2-induced stress tolerance enhances cell survival signals mediated by inhibition of GSK3β activity. Biochem Biophys Res Commun 2013; 440:112-8. [PMID: 24055036 DOI: 10.1016/j.bbrc.2013.09.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/07/2013] [Indexed: 12/30/2022]
Abstract
Our previous studies demonstrated that RSK2 plays a key role in cell proliferation and transformation induced by tumor promoters such as epidermal growth factor (EGF) in mouse and human skin cells. However, no direct evidence has been found regarding the relationship of RSK2 and cell survival. In this study, we found that RSK2 interacted and phosphorylated GSK3β at Ser9. Notably, GSK3β phosphorylation at Ser9 was suppressed in RSK2(-/-) MEFs compared with RSK2(+/+) MEFs by stimulation of EGF and calcium ionophore A23187, a cellular calcium stressor. In proliferation, we found that RSK2 deficiency suppressed cell proliferation compared with RSK2(+/+) MEFs. In contrast, GSK3β(-/-) MEFs induced the cell proliferation compared with GSK3β(+/+) MEFs. Importantly, RSK2(-/-) MEFs were induced severe cellular morphology change by A23187 and enhanced G1/G0 and sub-G1 accumulation of the cell cycle phase compared with RSK2(+/+) MEFs. The sub-G1 induction in RSK2(-/-) MEFs by A23187 was correlated with increase of cytochrome c release, caspase-3 cleavage and apoptotic DNA fragmentation compared with RSK2(+/+) MEFs. Notably, return back of RSK2 into RSK2(-/-) MEFs restored A23187-induced morphological change, and decreased apoptosis, apoptotic DNA fragmentation and caspase-3 induction compared with RSK2(-/-)/mock MEFs. Taken together, our results demonstrated that RSK2 plays an important role in stress-tolerance and cell survival, resulting in cell proliferation and cancer development.
Collapse
Affiliation(s)
- Cheol-Jung Lee
- Integrated Research Institute of Pharmaceutical Sciencies, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | | | | | | | | | | |
Collapse
|
785
|
Li J, Zhao S, Zhou X, Zhang T, Zhao L, Miao P, Song S, Sun X, Liu J, Zhao X, Huang G. Inhibition of lipolysis by mercaptoacetate and etomoxir specifically sensitize drug-resistant lung adenocarcinoma cell to paclitaxel. PLoS One 2013; 8:e74623. [PMID: 24040298 PMCID: PMC3770579 DOI: 10.1371/journal.pone.0074623] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/05/2013] [Indexed: 11/29/2022] Open
Abstract
Chemoresistance is a major cause of treatment failure in patients with lung cancer. Although the extensive efforts have been made in overcoming chemoresistance, the underlying mechanisms are still elusive. Cancer cells reprogram cellular metabolism to satisfy the demands of malignant phenotype. To reveal roles of cancer metabolism in regulating chemoresistance, we profiled the metabolic characteristics in paclitaxel-resistant lung cancer cells by flux assay. Glucose and oleate metabolism were significantly different between resistant and non-resistant cells. In addition, targeting metabolism as a strategy to overcome drug resistance was investigated using specific metabolic inhibitors. Inhibition of glycolysis and oxidative phosphorylation by 2-deoxyglucose and malonate, respectively, potentiated the effects of paclitaxel on nonresistant lung adenocarcinoma cells but not paclitaxel-resistant cells. By contrast, inhibition of lipolysis by mercaptoacetate or etomoxir synergistically inhibited drug-resistant lung adenocarcinoma cell proliferation. We conclude that lipolysis inhibition potentially be a therapeutic strategy to overcome drug resistance in lung cancer.
Collapse
Affiliation(s)
- Jiajin Li
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyan Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Zhou
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Teng Zhang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Miao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shaoli Song
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoguang Sun
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
786
|
Yadav UP, Singh T, Kumar P, Sharma P, Kaur H, Sharma S, Singh S, Kumar S, Mehta K. [Morbidity in primary medical services in the jurisdiction of Huamantla, Tlaxcala]. SALUD PUBLICA DE MEXICO 1982; 10:1010. [PMID: 32670883 PMCID: PMC7330710 DOI: 10.3389/fonc.2020.01010] [Citation(s) in RCA: 81] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Umesh Prasad Yadav
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Tashvinder Singh
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Pramit Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| | - Praveen Sharma
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Harsimrat Kaur
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
- Desh Bhagat Dental College, Mandi Gobindgarh, India
| | - Sadhana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| | - Sandeep Singh
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Santosh Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| | - Kapil Mehta
- Department of Experimental Therapeutics, MD Anderson Cancer Centre, The University of Texas, Houston, TX, United States
| |
Collapse
|
787
|
Degeneration and regeneration of the nerves of the heart after transplantation. Transplantation 1973; 5:e1336. [PMID: 25032859 PMCID: PMC4123079 DOI: 10.1038/cddis.2014.285] [Citation(s) in RCA: 213] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/21/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022]
Abstract
A number of studies suggest that cancer stem cells are essential for tumour growth, and failure to target these cells can result in tumour relapse. As this population of cells has been shown to be resistant to radiation and chemotherapy, it is essential to understand their biology and identify new therapeutic approaches. Targeting cancer metabolism is a potential alternative strategy to counteract tumour growth and recurrence. Here we applied a proteomic and targeted metabolomic analysis in order to point out the main metabolic differences between breast cancer cells grown as spheres and thus enriched in cancer stem cells were compared with the same cells grown in adherent differentiating conditions. This integrated approach allowed us to identify a metabolic phenotype associated with the stem-like condition and shows that breast cancer stem cells (BCSCs) shift from mitochondrial oxidative phosphorylation towards fermentative glycolysis. Functional validation of proteomic and metabolic data provide evidences for increased activities of key enzymes of anaerobic glucose fate such as pyruvate kinase M2 isoform, lactate dehydrogenase and glucose 6-phopshate dehydrogenase in cancer stem cells as well as different redox status. Moreover, we show that treatment with 2-deoxyglucose, a well known inhibitor of glycolysis, inhibits BCSC proliferation when used alone and shows a synergic effect when used in combination with doxorubicin. In conclusion, we suggest that inhibition of glycolysis may be a potentially effective strategy to target BCSCs.
Collapse
|
788
|
Long-lasting supersensitivity of the rat vas deferens to norepinephrine after chronic guanethidine administration. J Pharmacol Exp Ther 1973; 5:571-600. [PMID: 26437434 PMCID: PMC4693186 DOI: 10.3390/metabo5040571] [Citation(s) in RCA: 118] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/25/2022] Open
Abstract
Metabolic alterations, driven by genetic and epigenetic factors, have long been known to be associated with the etiology of cancer. Furthermore, accumulating evidence suggest that cancer metabolism is intimately linked to drug resistance, which is currently one of the most important challenges in cancer treatment. Altered metabolic pathways help cancer cells to proliferate at a rate higher than normal, adapt to nutrient limited conditions, and develop drug resistance phenotypes. Application of systems biology, boosted by recent advancement of novel high-throughput technologies to obtain cancer-associated, transcriptomic, proteomic and metabolomic data, is expected to make a significant contribution to our understanding of metabolic properties related to malignancy. Indeed, despite being at a very early stage, quantitative data obtained from the omics platforms and through applications of 13C metabolic flux analysis (MFA) in in vitro studies, researchers have already began to gain insight into the complex metabolic mechanisms of cancer, paving the way for selection of molecular targets for therapeutic interventions. In this review, we discuss some of the major findings associated with the metabolic pathways in cancer cells and also discuss new evidences and achievements on specific metabolic enzyme targets and target-directed small molecules that can potentially be used as anti-cancer drugs.
Collapse
|
789
|
|
790
|
Joven JC, Mabilangan LM, Santos-Jesalva PM. Clinical trials with bephenium hydroxy naphthoate in intestinal parasitism. Oncogene 1966; 37:1062-1074. [PMID: 29106390 PMCID: PMC5851116 DOI: 10.1038/onc.2017.368] [Citation(s) in RCA: 184] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 08/24/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
Glycolysis is critical for cancer stem cell reprogramming; however, the underlying regulatory mechanisms remain elusive. Here, we show that pyruvate dehydrogenase kinase 1 (PDK1) is enriched in breast cancer stem cells (BCSCs), whereas depletion of PDK1 remarkably diminishes ALDH+ subpopulations, decreases stemness-related transcriptional factor expression, and inhibits sphere-formation ability and tumor growth. Conversely, high levels of PDK1 enhance BCSC properties and are correlated with poor overall survival. In mouse xenograft tumor, PDK1 is accumulated in hypoxic regions and activates glycolysis to promote stem-like traits. Moreover, through screening hypoxia-related long non-coding RNAs (lncRNAs) in PDK1-positive tissue, we find that lncRNA H19 is responsible for glycolysis and BCSC maintenance. Furthermore, H19 knockdown decreases PDK1 expression in hypoxia, and ablation of PDK1 counteracts H19-mediated glycolysis and self-renewal ability in vitro and in vivo. Accordingly, H19 and PDK1 expression exhibits strong correlations in primary breast carcinomas. H19 acting as a competitive endogenous RNA sequesters miRNA let-7 to release Hypoxia-inducible factor 1α, leading to an increase in PDK1 expression. Lastly, aspirin markedly attenuates glycolysis and cancer stem-like characteristics by suppressing both H19 and PDK1. Thus, these novel findings demonstrate that the glycolysis gatekeeper PDK1 has a critical role in BCSC reprogramming and provides a potential therapeutic strategy for breast malignancy.
Collapse
|