751
|
Feng K, Xu ZS, Que F, Liu JX, Wang F, Xiong AS. An R2R3-MYB transcription factor, OjMYB1, functions in anthocyanin biosynthesis in Oenanthe javanica. PLANTA 2018; 247:301-315. [PMID: 28965159 DOI: 10.1007/s00425-017-2783-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
This study showed that an R2R3-MYB transcription factor, OjMYB1, is involved in anthocyanin biosynthesis and accumulation in Oenanthe javanica. Anthocyanins can be used as safe natural food colorants, obtained from many plants. R2R3-MYB transcription factors (TFs) play important roles in anthocyanins biosynthesis during plant development. Oenanthe javanica is a popular vegetable with high nutritional values and numerous medical functions. O. javanica has purple petioles that are mainly due to anthocyanins accumulation. In the present study, the gene encoding an R2R3-MYB TF, OjMYB1, was isolated from purple O. javanica. Sequencing results showed that OjMYB1 contained a 912-bp open reading frame encoding 303 amino acids. Sequence alignments revealed that OjMYB1 contained bHLH-interaction motif ([DE]Lx2[RK]x3Lx6Lx3R) and ANDV motif ([A/G]NDV). Phylogenetic analysis indicated that the OjMYB1 classified into the anthocyanins biosynthesis clade. Subcellular localization assay showed that OjMYB1 was a nuclear protein in vivo. The heterologous expression of OjMYB1 in Arabidopsis could enhance the anthocyanins content and up-regulate the expression levels of the structural genes-related anthocyanins biosynthesis. Yeast two-hybrid assay indicated that OjMYB1 could interact with AtTT8 and AtEGL3 proteins. Enzymatic analysis revealed that overexpression of OjMYB1 gene up-regulated the enzyme activity of 3-O-glycosyltransferase encoded by AtUGT78D2 in transgenic Arabidopsis. Our results provided a comprehensive understanding of the structure and function of OjMYB1 TF in O. javanica.
Collapse
Affiliation(s)
- Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
752
|
Fu W, Chen D, Pan Q, Li F, Zhao Z, Ge X, Li Z. Production of red-flowered oilseed rape via the ectopic expression of Orychophragmus violaceus OvPAP2. PLANT BIOTECHNOLOGY JOURNAL 2018; 16. [PMID: 28640973 PMCID: PMC5787836 DOI: 10.1111/pbi.12777] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Oilseed rape (Brassica napus L.), which has yellow flowers, is both an important oil crop and a traditional tourism resource in China, whereas the Orychophragmus violaceus, which has purple flowers, likely possesses a candidate gene or genes to alter the flower colour of oilseed rape. A previously established B. napus line has a particular pair of O. violaceus chromosomes (M4) and exhibits slightly red petals. In this study, the transcriptomic analysis of M4, B. napus (H3), and O. violaceus with purple petals (OvP) and with white petals (OvW) revealed that most anthocyanin biosynthesis genes were up-regulated in both M4 and OvP. Read assembly and sequence alignment identified a homolog of AtPAP2 in M4, which produced the O. violaceus transcript (OvPAP2). The overexpression of OvPAP2 via the CaMV35S promoter in Arabidopsis thaliana led to different levels of anthocyanin accumulation in most organs, including the petals. However, the B. napus overexpression plants showed anthocyanin accumulation primarily in the anthers, but not the petals. However, when OvPAP2 was driven by the petal-specific promoter XY355, the transgenic B. napus plants produced red anthers and red petals. The results of metabolomic experiments showed that specific anthocyanins accumulated to high levels in the red petals. This study illustrates the feasibility of producing red-flowered oilseed rape, thereby enhancing its ornamental value, via the ectopic expression of the OvPAP2 gene. Moreover, the practical application of this study for insect pest management in the crop is discussed.
Collapse
Affiliation(s)
- Wenqin Fu
- National Key Laboratory of Crop Genetic ImprovementNational Center of Oil Crop Improvement (Wuhan)College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Daozong Chen
- National Key Laboratory of Crop Genetic ImprovementNational Center of Oil Crop Improvement (Wuhan)College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Qi Pan
- National Key Laboratory of Crop Genetic ImprovementNational Center of Oil Crop Improvement (Wuhan)College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Fengfeng Li
- National Key Laboratory of Crop Genetic ImprovementNational Center of Oil Crop Improvement (Wuhan)College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zhigang Zhao
- Qinghai Academy of Agricultural and Forestry SciencesQinghai UniversityXiningChina
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic ImprovementNational Center of Oil Crop Improvement (Wuhan)College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic ImprovementNational Center of Oil Crop Improvement (Wuhan)College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
753
|
Zhang X, Zhao L, Xu Z, Yu X. Transcriptome sequencing of Paeonia suffruticosa 'Shima Nishiki' to identify differentially expressed genes mediating double-color formation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:114-124. [PMID: 29227950 DOI: 10.1016/j.plaphy.2017.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/14/2017] [Accepted: 12/04/2017] [Indexed: 05/21/2023]
Abstract
Paeonia suffruticosa 'Shima Nishiki' is one of extremely rare double-color cultivars in the world. It usually shows the two beautiful colors of red and white in the same flower, and this trait undoubtedly makes the flowers more charming for the ornamental market. However, few studies have been done to unravel the molecular mechanisms of double-color formation in P. suffruticosa 'Shima Nishiki'. In this study, we measured the anthocyanin composition and concentration, and sequenced the transcriptomes of the red and white petals. We found that the total content of Pg-based glycosides was at a significantly higher level in the red petals. Furthermore, we assembled and annotated 92,671 unigenes. Comparative analyses of the two transcriptomes showed 227 differentially expressed genes (DEGs), among which 57 were up-regulated, and 170 were down-regulated in the red petals. Subsequently, we identified 3 DEGs and the other 6 structural genes in the anthocyanin biosynthetic pathway including PsCHS, PsCHI, PsF3H, PsF3'H, PsDFR, PsANS, PsAOMT, PsMYB, and PsWD40. Among them, PsDFR and PsMYB expressed at a significantly higher level and showed positive correlations between their expression and anthocyanin concentration in the red petals. However, PsWD40 expressed at a significantly lower level and exhibited an inverse relationship in the red petals. Furthermore, we further confirmed the relative expression of the 9 candidate genes using quantitative real-time PCR. Based on the above results, we concluded that the significant differential expression of PsDFR, PsMYB and PsWD40 may play a key role in anthocyanin concentration in the red and white petals, thereby mediating double-color formation. These data will provide a valuable resource to better understand the molecular mechanisms of double-color formation of P. suffruticosa 'Shima Nishiki'.
Collapse
Affiliation(s)
- Xinpeng Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Lanyong Zhao
- College of Forestry, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China.
| | - Zongda Xu
- College of Forestry, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China.
| | - Xiaoyan Yu
- College of Forestry, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| |
Collapse
|
754
|
Jezek M, Zörb C, Merkt N, Geilfus CM. Anthocyanin Management in Fruits by Fertilization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:753-764. [PMID: 29297687 DOI: 10.1021/acs.jafc.7b03813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Anthocyanins are water-soluble vacuolar plant pigments that are mainly synthesized in epidermal layers and the flesh of fruits such as apples, cherries, grapes, and other berries. Because of their attractive red to purple coloration and their health-promoting potential, anthocyanins are significant determinants for the quality and market value of fruits and fruit-derived products. In crops, anthocyanin accumulation in leaves can be caused by nutrient deficiency which is usually ascribed to insufficient nitrogen or phosphorus fertilization. However, it is a little-known fact that the plant's nutrient status also impacts anthocyanin synthesis in fruits. Hence, strategic nutrient supply can be a powerful tool to modify the anthocyanin content and consequently the quality and market value of important agricultural commodities. Here we summarize the current knowledge of the influence of plant nutrients on anthocyanin synthesis in fruits of major global market value and discuss the underlying cellular processes that integrate nutrient signaling with fruit anthocyanin formation. It is highlighted that fertilization that is finely tuned in amount and timing has the potential to positively influence the fruit quality by regulating anthocyanin levels. We outline new approaches to enrich plant based foods with health-promoting anthocyanins.
Collapse
Affiliation(s)
- Mareike Jezek
- Laboratory of Plant Physiology and Biophysics, University of Glasgow , Glasgow G12 8QQ, United Kingdom
| | - Christian Zörb
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim , Emil-Wolff-Straße 25, 70599 Stuttgart, Germany
| | - Nikolaus Merkt
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim , Emil-Wolff-Straße 25, 70599 Stuttgart, Germany
| | - Christoph-Martin Geilfus
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin , Albrecht-Thaer-Weg 1, 14195 Berlin, Germany
| |
Collapse
|
755
|
Identification of JAZ-interacting MYC transcription factors involved in latex drainage in Hevea brasiliensis. Sci Rep 2018; 8:909. [PMID: 29343866 PMCID: PMC5772448 DOI: 10.1038/s41598-018-19206-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/27/2017] [Indexed: 11/25/2022] Open
Abstract
Hevea brasiliensis Müll. Arg. is one of the most frequently wounded plants worldwide. Expelling latex upon mechanical injury is a wound response of rubber trees. However, JA-mediated wound responses in rubber trees are not well documented. In this work, three JAZ-interacting MYC transcription factors of H. brasiliensis (termed HbMYC2/3/4) were identified by yeast two-hybrid screening. HbMYC2/3/4 each showed specific interaction profiles with HbJAZs. HbMYC2/3/4 each localized in the nucleus and exhibited strong transcriptional activity. To identify the target genes potentially regulated by HbMYC2/3/4, cis-elements interacting with HbMYC2/3/4 were first screened by yeast one-hybrid assays; the results indicated that HbMYC2/3/4 each could bind G-box elements. Additional analysis confirmed that HbMYC2/3/4 bound the HbPIP2;1 promoter, which contains five G-box cis-elements, and regulated the expression of reporter genes in yeast cells and in planta. HbMYC2/3/4 were induced by exogenous JA treatment but suppressed by ethylene (ET) treatment; in contrast, HbPIP2;1 was positively regulated by ET but negatively regulated by JA treatment. Given that HbPIP2;1 is involved in latex drainage, it could be proposed that HbMYC2/3/4 are involved in the regulation of HbPIP2;1 expression as well as latex drainage, both of which are coordinated by the JA and ET signalling pathways.
Collapse
|
756
|
Noble TJ, Tao Y, Mace ES, Williams B, Jordan DR, Douglas CA, Mundree SG. Characterization of Linkage Disequilibrium and Population Structure in a Mungbean Diversity Panel. FRONTIERS IN PLANT SCIENCE 2018; 8:2102. [PMID: 29375590 PMCID: PMC5770403 DOI: 10.3389/fpls.2017.02102] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/27/2017] [Indexed: 05/28/2023]
Abstract
Mungbean [Vigna radiata (L.) R. Wilczek var. radiata] is an important grain legume globally, providing a high-quality plant protein source largely produced and consumed in South and East Asia. This study aimed to characterize a mungbean diversity panel consisting of 466 cultivated accessions and demonstrate its utility by conducting a pilot genome-wide association study of seed coat color. In addition 16 wild accessions were genotyped for comparison and in total over 22,000 polymorphic genome-wide SNPs were identified and used to analyze the genetic diversity, population structure, linkage disequilibrium (LD) of mungbean. Polymorphism was lower in the cultivated accessions in comparison to the wild accessions, with average polymorphism information content values 0.174, versus 0.305 in wild mungbean. LD decayed in ∼100 kb in cultivated lines, a distance higher than the linkage decay of ∼60 kb estimated in wild mungbean. Four distinct subgroups were identified within the cultivated lines, which broadly corresponded to geographic origin and seed characteristics. In a pilot genome-wide association mapping study of seed coat color, five genomic regions associated were identified, two of which were close to seed coat color genes in other species. This mungbean diversity panel constitutes a valuable resource for genetic dissection of important agronomical traits to accelerate mungbean breeding.
Collapse
Affiliation(s)
- Thomas J. Noble
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yongfu Tao
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Warwick, QLD, Australia
| | - Emma S. Mace
- Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, Australia
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - David R. Jordan
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Warwick, QLD, Australia
| | - Colin A. Douglas
- Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, Australia
| | - Sagadevan G. Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
757
|
Isolation and Characterization of Key Genes that Promote Flavonoid Accumulation in Purple-leaf Tea (Camellia sinensis L.). Sci Rep 2018; 8:130. [PMID: 29317677 PMCID: PMC5760735 DOI: 10.1038/s41598-017-18133-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/06/2017] [Indexed: 01/27/2023] Open
Abstract
There were several high concentrations of flavonoid components in tea leaves that present health benefits. A novel purple-leaf tea variety, 'Mooma1', was obtained from the natural hybrid population of Longjing 43 variety. The buds and young leaves of 'Mooma1' were displayed in bright red. HPLC and LC-MS analysis showed that anthocyanins and O-Glycosylated flavonols were remarkably accumulated in the leaves of 'Mooma1', while the total amount of catechins in purple-leaf leaves was slightly decreased compared with the control. A R2R3-MYB transcription factor (CsMYB6A) and a novel UGT gene (CsUGT72AM1), that were highly expressed in purple leaf were isolated and identified by transcriptome sequencing. The over-expression of transgenic tobacco confirmed that CsMYB6A can activate the expression of flavonoid-related structural genes, especially CHS and 3GT, controlling the accumulation of anthocyanins in the leaf of transgenic tobacco. Enzymatic assays in vitro confirmed that CsUGT72AM1 has catalytic activity as a flavonol 3-O-glucosyltransferase, and displayed broad substrate specificity. The results were useful for further elucidating the molecular mechanisms of the flavonoid metabolic fluxes in the tea plant.
Collapse
|
758
|
Wen J, Li Y, Qi T, Gao H, Liu B, Zhang M, Huang H, Song S. The C-terminal domains of Arabidopsis GL3/EGL3/TT8 interact with JAZ proteins and mediate dimeric interactions. PLANT SIGNALING & BEHAVIOR 2018; 13:e1422460. [PMID: 29293407 PMCID: PMC5790409 DOI: 10.1080/15592324.2017.1422460] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The phytohormone jasmonates (JAs) regulate plant development, growth, secondary metabolism, and defense responses. JAs act through CORONATINE INSENSITIVE1 (COI1) to induce the degradation of JA ZIM-domain (JAZ) proteins, and activate JAZ-repressed transcription factors to regulate plant response. We previously showed that the basic helix-loop-helix (bHLH) and MYB members of the WD-repeat/bHLH/MYB complex interacted with JAZs and mediated JA-induced anthocyanin accumulation and trichome initiation. In this study, we showed that the C-terminal domain of the bHLH members (GLABRA3 [GL3], ENHANCER OF GLABRA3 [EGL3] and TRANSPARENT TESTA8 [TT8]) interacted with JAZs in yeast and plant, and mediated dimerizations between the bHLH members. Our study provides further understanding of the bHLH members of the WD-repeat/bHLH/MYB complex in JA pathway.
Collapse
Affiliation(s)
- Jiangfeng Wen
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yang Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Tiancong Qi
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Hua Gao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Bei Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Min Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Huang Huang
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, College of Biological Sciences and Engineering, Beijing University of Agriculture, Beijing, China
- CONTACT Huang Huang No.7 Beinong Road, Changping District, Beijing 102206, China
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
- Susheng Song Ph.D, Professor College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
759
|
Gao C, Guo Y, Wang J, Li D, Liu K, Qi S, Jin C, Duan S, Gong J, Li Z, Chen M. Brassica napusGLABRA3-1 promotes anthocyanin biosynthesis and trichome formation in true leaves when expressed in Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:3-9. [PMID: 28940939 DOI: 10.1111/plb.12633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Previous studies have shown that GLABRA3 (AtGL3), a bHLH transcription factor, plays essential roles in anthocyanin biosynthesis and trichome formation in Arabidopsis thaliana. However, there have been no such studies of a homologue, BnGL3, from the closely related crop, Brassica napus. Here, we analysed the BnGL3-1 coding domain sequence from the B. napus cultivar QINYOU Seven, identified conserved protein domains and performed a phylogenetic analysis to elucidate its relationship with homologues form a range of plant species. When expressed in tobacco leaves as a fusion protein with green fluorescent protein, BnGL3-1 accumulated in the nucleus, consistent with its predicted function as a transcription factor. Ectopic expression of the BnGL3-1 gene in the A. thaliana gl3-3 mutant resulted in levels of anthocyanins and numbers of trichomes in true leaves that were higher than in wild-type plants. Moreover, overexpression of BnGL3-1 in gl3-3 compensated for the promotion and repression of genes involved in anthocyanin biosynthesis and trichome formation, respectively, that has been reported in gl3-3 young shoots and expanding true leaves. This study provides new insights into GL3 function in anthocyanin biosynthesis and trichome formation in crucifers, and represents a promising target for genetic manipulation of B. napus.
Collapse
Affiliation(s)
- C Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Y Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - J Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - D Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - K Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - S Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - C Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - S Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - J Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Z Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - M Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
760
|
Sengupta A, Hileman LC. Novel Traits, Flower Symmetry, and Transcriptional Autoregulation: New Hypotheses From Bioinformatic and Experimental Data. FRONTIERS IN PLANT SCIENCE 2018; 9:1561. [PMID: 30416508 PMCID: PMC6212560 DOI: 10.3389/fpls.2018.01561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/05/2018] [Indexed: 05/18/2023]
Abstract
A common feature in developmental networks is the autoregulation of transcription factors which, in turn, positively or negatively regulate additional genes critical for developmental patterning. When a transcription factor regulates its own expression by binding to cis-regulatory sites in its gene, the regulation is direct transcriptional autoregulation (DTA). Indirect transcriptional autoregulation (ITA) involves regulation by proteins expressed downstream of the target transcription factor. We review evidence for a hypothesized role of DTA in the evolution and development of novel flowering plant phenotypes. We additionally provide new bioinformatic and experimental analyses that support a role for transcriptional autoregulation in the evolution of flower symmetry. We find that 5' upstream non-coding regions are significantly enriched for predicted autoregulatory sites in Lamiales CYCLOIDEA genes-an upstream regulator of flower monosymmetry. This suggests a possible correlation between autoregulation of CYCLOIDEA and the origin of monosymmetric flowers near the base of Lamiales, a pattern that may be correlated with independently derived monosymmetry across eudicot lineages. We find additional evidence for transcriptional autoregulation in the flower symmetry program, and report that Antirrhinum DRIF2 may undergo ITA. In light of existing data and new data presented here, we hypothesize how cis-acting autoregulatory sites originate, and find evidence that such sites (and DTA) can arise subsequent to the evolution of a novel phenotype.
Collapse
|
761
|
Wang N, Jiang S, Zhang Z, Fang H, Xu H, Wang Y, Chen X. Malus sieversii: the origin, flavonoid synthesis mechanism, and breeding of red-skinned and red-fleshed apples. HORTICULTURE RESEARCH 2018; 5:70. [PMID: 30345062 PMCID: PMC6186759 DOI: 10.1038/s41438-018-0084-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 05/08/2023]
Abstract
Flavonoids play essential roles in human health. Apple (Malus domestica Borkh.), one of the most widely produced and economically important fruit crops in temperate regions, is a significant source of flavonoids in the human diet and is among the top nutritionally rated and most widely consumed fruits worldwide. Epidemiological studies have shown that the consumption of apples, which are rich in a variety of free and easily absorbable flavonoids, is associated with a decreased risk of various diseases. However, apple production is challenged by serious inbreeding problems. The narrowing of the hereditary base has resulted in apples with poor nutritional quality and low flavonoid contents. Recently, there have been advances in our understanding of the roles that Malus sieversii (Ledeb.) M.Roem has played in the process of apple domestication and breeding. In this study, we review the origin of cultivated apples and red-fleshed apples, and discuss the genetic diversity and construction of the core collections of M. sieversii. We also discuss current research progress and breeding programs on red-skinned and red-fleshed apples and summarize the exploitation and utilization of M. sieversii in the breeding of high-flavonoid, and red-fleshed apples. This study highlights a valuable pattern of horticultural crop breeding using wild germplasm resources. The future challenges and directions of research on the molecular mechanisms of flavonoid accumulation and high-flavonoid apple breeding are discussed.
Collapse
Affiliation(s)
- Nan Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271018 Shandong China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai’an, 271000 Shandong China
| | - Shenghui Jiang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271018 Shandong China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai’an, 271000 Shandong China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271018 Shandong China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai’an, 271000 Shandong China
| | - Hongcheng Fang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271018 Shandong China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai’an, 271000 Shandong China
| | - Haifeng Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271018 Shandong China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai’an, 271000 Shandong China
| | - Yicheng Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271018 Shandong China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai’an, 271000 Shandong China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271018 Shandong China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai’an, 271000 Shandong China
| |
Collapse
|
762
|
Li Y, Shan X, Zhou L, Gao R, Yang S, Wang S, Wang L, Gao X. The R2R3-MYB Factor FhMYB5 From Freesia hybrida Contributes to the Regulation of Anthocyanin and Proanthocyanidin Biosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1935. [PMID: 30666265 PMCID: PMC6330306 DOI: 10.3389/fpls.2018.01935] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/12/2018] [Indexed: 05/05/2023]
Abstract
The flavonoids are important and nourishing compounds for plants and human. The transcription regulation of anthocyanin and proanthocyanidin (PA) biosynthesis was extensively studied in dicot compared with monocot plants. In this study, we characterized the functionality of an R2R3-MYB gene FhMYB5 from the monocotyledonous flowering plant of Iridaceae, Freesia hybrida. Multiple sequence alignment and phylogenetic analysis implied that FhMYB5 was clustered into grapevine VvMYB5b subclade. Correlation analysis indicated that the spatio-temporal expression patterns of FhMYB5 coincided well with anthocyanin and PA accumulations in Freesia per se. Furthermore, transient transfection assays in Freesia protoplasts revealed that the late flavonoid biosynthetic genes (e.g., DFR and LDOX) were slightly up-regulated by FhMYB5 alone, whereas both early and late biosynthetic genes were significantly activated when FhMYB5 were co-infected with either of the two IIIf clade bHLH genes, FhTT8L and FhGL3L. Moreover, these results were further confirmed by co-transfection of FhMYB5 with either of the bHLH genes aforementioned into protoplasts expressing GUS reporter gene driven by Freesia promoters. In addition, the overexpression of FhMYB5 in tobacco and Arabidopsis could also significantly up-regulate the expression of genes participating in the general flavonoid pathway. In conclusion, FhMYB5 was proved to function in the general flavonoid pathway in Freesia. The results implied a function conservation of flavonoid biosynthesis related MYB regulators in angiosperm plants.
Collapse
Affiliation(s)
- Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
| | - Xiaotong Shan
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
| | - Liudi Zhou
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
| | - Ruifang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
| | - Song Yang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
- *Correspondence: Li Wang, Xiang Gao,
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
- National Demonstration Center for Experimental Biology Education, Northeast Normal University, Changchun, China
- *Correspondence: Li Wang, Xiang Gao,
| |
Collapse
|
763
|
Zhang B, Schrader A. TRANSPARENT TESTA GLABRA 1-Dependent Regulation of Flavonoid Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2017; 6:E65. [PMID: 29261137 PMCID: PMC5750641 DOI: 10.3390/plants6040065] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/02/2017] [Accepted: 12/16/2017] [Indexed: 12/25/2022]
Abstract
The flavonoid composition of various tissues throughout plant development is of biological relevance and particular interest for breeding. Arabidopsis thaliana TRANSPARENT TESTA GLABRA 1 (AtTTG1) is an essential regulator of late structural genes in flavonoid biosynthesis. Here, we provide a review of the regulation of the pathway's core enzymes through AtTTG1-containing R2R3-MYELOBLASTOSIS-basic HELIX-LOOP-HELIX-WD40 repeat (MBW(AtTTG1)) complexes embedded in an evolutionary context. We present a comprehensive collection of A. thalianattg1 mutants and AtTTG1 orthologs. A plethora of MBW(AtTTG1) mechanisms in regulating the five major TTG1-dependent traits is highlighted.
Collapse
Affiliation(s)
- Bipei Zhang
- Botanical Institute, University of Cologne, Zuelpicher Str 47B, 50674 Cologne, Germany.
| | - Andrea Schrader
- Botanical Institute, University of Cologne, Zuelpicher Str 47B, 50674 Cologne, Germany.
| |
Collapse
|
764
|
An ubiquitin-like protein SDE2 negatively affects sucrose-induced anthocyanin biosynthesis in Arabidopsis. Sci Bull (Beijing) 2017; 62:1585-1592. [PMID: 36659476 DOI: 10.1016/j.scib.2017.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 01/21/2023]
Abstract
Anthocyanin biosynthesis is regulated by a conserved transcriptional MBW complex composed of MYB, bHLH and WD40 subunits. However, molecular mechanisms underlying transcriptional regulation of these MBW subunits remain largely elusive. In this study, we isolated an Arabidopsis mutant that displays a constitutive red color in aboveground tissues with retarded growth phenotypes. In the presence of sucrose, the mutant accumulates more than 3-fold anthocyanins of the wild type (WT), but cannot produce anthocyanins as WT in the absence of sucrose. Map-based cloning results demonstrated that the mutation occurs in the locus At4G01000, which encodes a conserved nuclear-localized ubiquitin-like (UBL) superfamily protein, silencing defective 2 (SDE2), in eukaryotes. SDE2 is ubiquitously expressed in various tissues. In the sucrose-induced anthocyanin biosynthesis, SDE2 expression was not responded to sucrose treatment at the early stage but was enhanced at the late stage. SDE2 mutations result in up-regulation of anthocyanin biosynthetic and regulatory genes. Yeast-two hybrid analysis indicated that SDE2 has no direct interaction with the MYB transcription factor PAP1 and bHLH factor TT8, indicating that SDE2 is a indirect factor to affect anthocyanin accumulation. Taking together, our data suggest that SDE2 may play a role in finely coordinating anthocyanin biosynthesis with other biological processes.
Collapse
|
765
|
Tian J, Chen MC, Zhang J, Li KT, Song TT, Zhang X, Yao YC. Characteristics of dihydroflavonol 4-reductase gene promoters from different leaf colored Malus crabapple cultivars. HORTICULTURE RESEARCH 2017; 4:17070. [PMID: 29263792 PMCID: PMC5727492 DOI: 10.1038/hortres.2017.70] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/06/2017] [Accepted: 11/11/2017] [Indexed: 05/08/2023]
Abstract
Anthocyanins are secondary metabolites in land plants that contribute to the colors of leaves and flowers, and are nutritionally valuable components of the human diet. The DFR gene plays an important role in the anthocyanin biosynthetic pathway. In this study, we investigated the regulation of DFR expression and in different Malus crabapple cultivars that show distinct patterns of leaf coloration, and how it influences leaf anthocyanin accumulation and coloration. Specifically, we studied the ever-red leaved cultivar 'Royalty', the ever-green leaved cultivar 'Flame' and the spring-red leaved cultivar 'Radiant'. RT-PCR analysis showed that the expression of McDFR1 correlated with the expression of a MYB transcription factor, McMYB10, and with anthocyanin accumulation. We isolated five McDFR1 promoter fragments from the three cultivars and identified four different fragments (F1-4) that were present either in several cultivars, or only in one. Yeast one-hybrid and electrophoretic mobility shift assay analyses showed that McMYB10 could bind to all the McDFR1 promoters, except McDFR1-Ra2. The F1, F2 and F3 fragments did not affect McMYB10 binding to the McDFR1 promoters; however, we found evidence that the F4 fragment suppressed binding, and that the MYBGAHV amino-acid sequence maybe an important cis-element for McMYB10 protein binding. This information has potential value for strategies to modify plant color through genetic transformation.
Collapse
Affiliation(s)
- Ji Tian
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing 102206, China
| | - Meng-chen Chen
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing 102206, China
| | - Jie Zhang
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing 102206, China
| | - Ke-ting Li
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing 102206, China
| | - Ting-ting Song
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing 102206, China
| | - Xi Zhang
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing 102206, China
| | - Yun-cong Yao
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing 102206, China
| |
Collapse
|
766
|
Jin SW, Rahim MA, Kim HT, Park JI, Kang JG, Nou IS. Molecular analysis of anthocyanin-related genes in ornamental cabbage. Genome 2017; 61:111-120. [PMID: 29232522 DOI: 10.1139/gen-2017-0098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ornamental cabbage (Brassica oleracea var. acephala) is a winter-grown and important decorative plant of the family Brassicaceae, which displays an exceptional coloration in the central leaves of the rosette. Anthocyanins are the key determinant of the red, purple, and blue colors of vegetative and reproductive parts of many plant species including ornamental cabbage. Total anthocyanin content was measured spectrophotometrically, and the highest anthocyanin content was detected in the red followed by light-red and white ornamental cabbage lines. Anthocyanin biosynthesis is controlled by members of three different transcription factor (TF) families, such as MYB, basic helix-loop-helix (bHLH), and WD40 repeats (WDR), which function as a MBW complex. We identified three MYB, six bHLH, and one WDR TFs that regulate anthocyanin biosynthesis in ornamental cabbage. The expression of the regulatory and biosynthetic genes for anthocyanin synthesis was determined by qPCR. The tested structural genes of the anthocyanin pathway were shown to be up-regulated in the red followed by light-red ornamental cabbage lines; however, the expression levels of the late biosynthetic genes were barely detected in the white ornamental cabbage lines. Among the regulatory genes, BoPAP2 (MYB), BoTT8, BoEGL3.1, and BoMYC1.2 (bHLH), and BoTTG1 (WDR) were identified as candidates for the regulation of anthocyanin biosynthesis. This work could be useful for the breeding of novel colorful ornamental cabbage cultivars.
Collapse
Affiliation(s)
- Si-Won Jin
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Md Abdur Rahim
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hoy-Taek Kim
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jong-Goo Kang
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
767
|
Fu J, Wu H, Ma S, Xiang D, Liu R, Xiong L. OsJAZ1 Attenuates Drought Resistance by Regulating JA and ABA Signaling in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:2108. [PMID: 29312378 PMCID: PMC5733117 DOI: 10.3389/fpls.2017.02108] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/27/2017] [Indexed: 05/19/2023]
Abstract
Jasmonates (JAs) and abscisic acid (ABA) are phytohormones known play important roles in plant response and adaptation to various abiotic stresses including salinity, drought, wounding, and cold. JAZ (JASMONATE ZIM-domain) proteins have been reported to play negative roles in JA signaling. However, direct evidence is still lacking that JAZ proteins regulate drought resistance. In this study, OsJAZ1 was investigated for its role in drought resistance in rice. Expression of OsJAZ1 was strongly responsive to JA treatment, and it was slightly responsive to ABA, salicylic acid, and abiotic stresses including drought, salinity, and cold. The OsJAZ1-overexpression rice plants were more sensitive to drought stress treatment than the wild-type (WT) rice Zhonghua 11 (ZH11) at both the seedling and reproductive stages, while the jaz1 T-DNA insertion mutant plants showed increased drought tolerance compared to the WT plants. The OsJAZ1-overexpression plants were hyposensitive to MeJA and ABA, whereas the jaz1 mutant plants were hypersensitive to MeJA and ABA. In addition, there were significant differences in shoot and root length between the OsJAZ1 transgenic and WT plants under the MeJA and ABA treatments. A subcellular localization assay indicated that OsJAZ1 was localized in both the nucleus and cytoplasm. Transcriptome profiling analysis by RNA-seq revealed that the expression levels of many genes in the ABA and JA signaling pathways exhibited significant differences between the OsJAZ1-overexpression plants and WT ZH11 under drought stress treatment. Quantitative real-time PCR confirmed the expression profiles of some of the differentially expressed genes, including OsNCED4, OsLEA3, RAB21, OsbHLH006, OsbHLH148, OsDREB1A, OsDREB1B, SNAC1, and OsCCD1. These results together suggest that OsJAZ1 plays a role in regulating the drought resistance of rice partially via the ABA and JA pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
768
|
Li J, Ren L, Gao Z, Jiang M, Liu Y, Zhou L, He Y, Chen H. Combined transcriptomic and proteomic analysis constructs a new model for light-induced anthocyanin biosynthesis in eggplant (Solanum melongena L.). PLANT, CELL & ENVIRONMENT 2017; 40:3069-3087. [PMID: 28940206 DOI: 10.1111/pce.13074] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 05/20/2023]
Abstract
Light is a key environmental factor affecting anthocyanin biosynthesis. Our previous study demonstrated that "Lanshan Hexian" is a light-sensitive eggplant cultivar, but its regulatory mechanism is unknown. Here, delphinidin-3-[4-(cis-p-coumaroyl)-rhamnosyl-glucopyranoside]-5-glucopyranoside and delphinidin-3-[4-(trans-p-coumaroyl)-rhamnosyl-glucopyranoside]-5-glucopyranoside were identified as the main anthocyanin components in Lanshan Hexian by ultra-performance liquid chromatography-tandem mass spectrometry. Three time points of anthocyanin accumulation, including the start point (0 day), fastest point (5 days), and highest point (12 day), were investigated by using ribonucleic acid sequencing and iTRAQ technology. The corresponding correlation coefficients of differentially expressed genes, and differentially expressed proteins were 0.6936, 0.2332, and 0.6672. Anthocyanin biosynthesis was a significantly enriched pathway, and CHI, F3H, 3GT, 5GT, and HY5 were regulated at both transcriptional and translational levels. Moreover, some transcription factors and photoreceptors may participate in light-induced anthocyanin biosynthesis like the known transcription factors MYB113 and TT8. The transient expression assay indicated that SmMYB35, SmMYB44, and a SmMYB86 isoform might involve in the light-induced anthocyanin biosynthesis pathway. Finally, a regulatory model for light-induced anthocyanin biosynthesis in eggplant was constructed. Our work provides a new direction for the study of the molecular mechanisms of light-induced anthocyanin biosynthesis in eggplant.
Collapse
Affiliation(s)
- Jing Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Li Ren
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Zhen Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Mingmin Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Lu Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Yongjun He
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| |
Collapse
|
769
|
Han X, Yin Q, Liu J, Jiang W, Di S, Pang Y. GmMYB58 and GmMYB205 are seed-specific activators for isoflavonoid biosynthesis in Glycine max. PLANT CELL REPORTS 2017; 36:1889-1902. [PMID: 28905215 DOI: 10.1007/s00299-017-2203-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/05/2017] [Indexed: 05/24/2023]
Abstract
GmMYB58 and GmMYB205 are key positive regulators that are involved in isoflavonoid biosynthesis in seeds of Glycine max, and they activate the expression of several structural genes in the isoflavonoid pathway. MYB transcription factors (TFs) are major regulators involved in flavonoid/isoflavonoid biosynthesis in many plant species. However, functions of most MYB TFs remain unknown in flavonoid/isoflavonoid pathway in Glycine max. In this study, we identified 321 MYB TFs by genome-wide searching, and further isolated and functionally characterized two MYB TFs, GmMYB58 and GmMYB205. The deduced GmMYB58 and GmMYB205 proteins contain highly conserved R2R3 repeat domain at the N-terminal region that is the signature motif of R2R3-type MYB TFs. GmMYB58 and GmMYB205 were highly expressed in early seed development stages than in the other tested organs. GmMYB58 and GmMYB205 GFP fusion proteins were found to be localized in the nucleus when they were transiently expressed in Arabidopsis thaliana mesophyll protoplast. Both GmMYB58 and GmMYB205 can activate the promoter activities of GmCHS, GmIFS2, and GmHID in the transient trans-activation assays, and the activation of GmHID by both GmMYB58 and GmMYB205 was further confirmed by yeast one-hybrid assay. In addition, over-expression of GmMYB58 and GmMYB205 resulted in significant increases in expression levels of several pathway genes in soybean hairy roots, in particular, IFS2 by more than fivefolds in GmMYB205-over-expressing lines. Moreover, isoflavonoid contents were remarkably enhanced in the GmMYB58 and GmMYB205 over-expressing hairy roots than in the control. Our results suggest that GmMYB58 and GmMYB205 are seed-specific TFs, and they can enhance isoflavonoid biosynthesis mainly through the regulation of GmIFS2 and GmHID in G. max.
Collapse
Affiliation(s)
- Xiaoyan Han
- The Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinggang Yin
- The Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinyue Liu
- The Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenbo Jiang
- The Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Shaokang Di
- The Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Yongzhen Pang
- The Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
770
|
Yin J, Li X, Zhan Y, Li Y, Qu Z, Sun L, Wang S, Yang J, Xiao J. Cloning and expression of BpMYC4 and BpbHLH9 genes and the role of BpbHLH9 in triterpenoid synthesis in birch. BMC PLANT BIOLOGY 2017; 17:214. [PMID: 29162040 PMCID: PMC5698961 DOI: 10.1186/s12870-017-1150-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 11/02/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Birch (Betula platyphylla Suk.) contains triterpenoids with anti-HIV and anti-tumor pharmacological activities. However, the natural abundance of these triterpenoids is low, and their chemical synthesis is costly. Transcription factors have the ability to regulate the metabolite pathways of triterpenoids via multi-gene control, thereby improving metabolite yield. Thus, transcription factors have the potential to facilitate the production of birch triterpenoids. Plant bHLH (basic helix-loop-helix) transcription factors play important roles in stress response and secondary metabolism. RESULTS In this study, we cloned two genes, BpMYC4 and BpbHLH9, that encode bHLH transcription factors in Betula platyphylla Suk. The open reading frame (ORF) of BpMYC4 was 1452 bp and encoded 483 amino acids, while the ORF of BpbHLH9 was 1140 bp and encoded 379 amino acids. The proteins of BpMYC4 and BpbHLH9 were localized in the cell membrane and nucleus. The tissue-specific expression patterns revealed that BpMYC4 expression in leaves was similar to that in the stem and higher than in the roots. The expression of BpbHLH9 was higher in the leaves than in the root and stem. The expressions of BpMYC4 and BpbHLH9 increased after treatment with abscisic acid, methyl jasmonate, and gibberellin and decreased after treatment with ethephon. The promoters of BpMYC4 and BpbHLH9 were isolated using a genome walking approach, and 900-bp and 1064-bp promoter sequences were obtained for BpMYC4 and BpbHLH9, respectively. The ORF of BpbHLH9 was ligated into yeast expression plasmid pYES3 and introduced into INVScl and INVScl1-pYES2-SS yeast strains. The squalene and total triterpenoid contents in the different INVScl1 transformants decreased in the following order INVScl1-pYES-SS-bHLH9 > INVScl1-pYES3-bHLH9 > INVScl1-pYES2- BpSS > INVScl-pYES2. In BpbHLH9 transgenic birch, the relative expression of the genes that encodes for enzymes critical for triterpenoid synthesis showed a different level of up-regulation compair with wild birch(control), and the contents of betulinic acid, oleanolic acid and betulin in bHLH9-8 transgenic birch were increased by 11.35%, 88.34% and 23.02% compared to in wild birch, respectively. CONCLUSIONS Our results showed that the modulation of BpbHLH9 by different hormones affected triterpenoid synthesis and triterpenoid contents. This is the first report of the cloning of BpbHLH9, and the findings are important for understanding the regulatory role of BpbHLH9 in the synthesis of birch triterpenoids.
Collapse
Affiliation(s)
- Jing Yin
- College of Life Science, Northeast Forestry University, Harbin, 150040 China
- State Key Laboratory of Tree Genetic Breeding, Northeast Forestry University, Harbin, 150040 China
| | - Xin Li
- College of Life Science, Northeast Forestry University, Harbin, 150040 China
| | - Yaguang Zhan
- College of Life Science, Northeast Forestry University, Harbin, 150040 China
- State Key Laboratory of Tree Genetic Breeding, Northeast Forestry University, Harbin, 150040 China
| | - Ying Li
- College of Life Science, Northeast Forestry University, Harbin, 150040 China
| | - Ziyue Qu
- College of Life Science, Northeast Forestry University, Harbin, 150040 China
| | - Lu Sun
- College of Life Science, Northeast Forestry University, Harbin, 150040 China
| | - Siyao Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040 China
| | - Jie Yang
- College of Life Science, Northeast Forestry University, Harbin, 150040 China
| | - Jialei Xiao
- College of Agriculture, Northeast Agriculture University, Harbin, 150010 China
| |
Collapse
|
771
|
Ohmiya A, Sasaki K, Nashima K, Oda-Yamamizo C, Hirashima M, Sumitomo K. Transcriptome analysis in petals and leaves of chrysanthemums with different chlorophyll levels. BMC PLANT BIOLOGY 2017; 17:202. [PMID: 29141585 PMCID: PMC5688696 DOI: 10.1186/s12870-017-1156-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/08/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Chlorophylls (Chls) are magnesium-containing tetrapyrrole macromolecules responsible for the green color in plants. The Chl metabolic pathway has been intensively studied and nearly all the enzymes involved in the pathway have been identified and characterized. Synthesis and activity of these enzymes are tightly regulated in tissue- and developmental stage-specific manners. Leaves contain substantial amounts of Chls because Chls are indispensable for photosynthesis. In contrast, petals generally contain only trace amounts of Chls, which if present would mask the bright petal color. Limited information is available about the mechanisms that control such tissue-specific accumulation of Chls. RESULTS To identify the regulatory steps that control Chl accumulation, we compared gene expression in petals and leaves of chrysanthemum cultivars with different Chl levels. Microarray and quantitative real-time PCR analyses showed that the expression levels of Chl biosynthesis genes encoding glutamyl-tRNA reductase, Mg-protoporphyrin IX chelatase, Mg-protoporphyrin IX monomethylester cyclase, and protochlorophyllide oxidoreductase were well associated with Chl content: their expression levels were lower in white petals than in green petals, and were highest in leaves. Among Chl catabolic genes, expression of STAY-GREEN, encoding Mg-dechelatase, which is a key enzyme controlling Chl degradation, was considerably higher in white and green petals than in leaves. We searched for transcription factor genes whose expression was well related to Chl level in petals and leaves and found three such genes encoding MYB113, CONSTANS-like 16, and DREB and EAR motif protein. CONCLUSIONS From our transcriptome analysis, we assume that a low rate of Chl biosynthesis and a high rate of Chl degradation lead to the absence of Chls in white chrysanthemum petals. We identified several candidate transcription factors that might affect Chl accumulation in chrysanthemum petals. Functional analysis of these transcription factors will provide a basis for future molecular studies of tissue-specific Chl accumulation.
Collapse
Affiliation(s)
- Akemi Ohmiya
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, Fujimoto 2-1, Tsukuba, Ibaraki 305-0852 Japan
| | - Katsutomo Sasaki
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, Fujimoto 2-1, Tsukuba, Ibaraki 305-0852 Japan
| | - Kenji Nashima
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Fujimoto 2-1, Tsukuba, Ibaraki 305-8605 Japan
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880 Japan
| | - Chihiro Oda-Yamamizo
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, Fujimoto 2-1, Tsukuba, Ibaraki 305-0852 Japan
| | - Masumi Hirashima
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, Fujimoto 2-1, Tsukuba, Ibaraki 305-0852 Japan
| | - Katsuhiko Sumitomo
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, Fujimoto 2-1, Tsukuba, Ibaraki 305-0852 Japan
| |
Collapse
|
772
|
Huang H, Xia EH, Zhang HB, Yao QY, Gao LZ. De novo transcriptome sequencing of Camellia sasanqua and the analysis of major candidate genes related to floral traits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 120:103-111. [PMID: 28992542 DOI: 10.1016/j.plaphy.2017.08.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
Camellia sasanqua is one of the most famous horticultural plants in Camellia (Theaceae) due to its aesthetic appeal as landscape plant. Knowledge regarding the genetic basis of flowering time, floral aroma and color in C. sasanqua is limited, but is essential to breed new varieties with desired floral traits. Here, we described the de novo transcriptome of young leaves, flower buds and flowers of C. sasanqua. A total of 60,127 unigenes were functionally annotated based on the sequence similarity. After analysis, we found that two floral integrator genes, SOC1 and AP1, in flowering time pathway showed evidence of gene family expansion. Compared with 1-deoxy-D-xylulose-5-phosphate pathway, some genes in the mevalonate pathway were most highly expressed, suggesting that this might represent the major pathway for terpenoid biosynthesis related to floral aroma in C. sasanqua. In flavonoid biosynthesis pathway, PAL, CHI, DFR and ANS showing significantly higher expression levels in flowers and flower buds might have important role in regulation of floral color. The top five most transcription factors (TFs) families in C. sasanqua transcriptome were MYB, MIKC, C3H, FAR1 and HD-ZIP, many of which have a direct relationship with floral traits. In addition, we also identified 33,540 simple sequence repeats (SSRs) in the C. sasanqua transcriptome. Collectively, the C. sasanqua transcriptome dataset generated from this study along with the SSR markers provide a new resource for the identification of novel regulatory transcripts and will accelerate the genetic improvement of C. sasanqua breeding programs.
Collapse
Affiliation(s)
- Hui Huang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - En-Hua Xia
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hai-Bin Zhang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Qiu-Yang Yao
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Li-Zhi Gao
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
773
|
An JP, Liu X, Li HH, You CX, Wang XF, Hao YJ. Apple RING E3 ligase MdMIEL1 inhibits anthocyanin accumulation by ubiquitinating and degrading MdMYB1 protein. PLANT & CELL PHYSIOLOGY 2017; 58:1953-1962. [PMID: 29016961 DOI: 10.1093/pcp/pcx129] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 08/23/2017] [Indexed: 05/08/2023]
Abstract
MdMYB1 is an important regulator for anthocyanin accumulation in apple (Malus × domestica). Here, an apple RING E3 ligase, MdMIEL1, was screened out as a partner of MdMYB1 with a yeast two-hybrid approach. Pull-down, bimolecular fluorescence complementation and coimmunoprecipitation assays further verified the interaction between MdMIEL1 and MdMYB1 proteins. Subsequently, in vitro and in vivo experiments indicated that MdMIEL1 functioned as a ubiquitin E3 ligase to ubiquitinate MdMYB1 protein, followed by degradation through a 26S proteasome pathway. Furthermore, transgenic studies in apple calli and Arabidopsis demonstrated that MdMIEL1 negatively regulated anthocyanin accumulation by modulating the degradation of MdMYB1 protein. Taken together, our findings provide a new insight into the molecular mechanism by which MdMIEL1 negatively regulates anthocyanin biosynthesis by ubiquitinating and degrading MdMYB1 protein.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xin Liu
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hao-Hao Li
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| |
Collapse
|
774
|
Zhou M, Sun Z, Ding M, Logacheva MD, Kreft I, Wang D, Yan M, Shao J, Tang Y, Wu Y, Zhu X. FtSAD2 and FtJAZ1 regulate activity of the FtMYB11 transcription repressor of the phenylpropanoid pathway in Fagopyrum tataricum. THE NEW PHYTOLOGIST 2017; 216:814-828. [PMID: 28722263 DOI: 10.1111/nph.14692] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/06/2017] [Indexed: 05/21/2023]
Abstract
Little is known about the molecular mechanism of the R2R3-MYB transcriptional repressors involved in plant phenylpropanoid metabolism. Here, we describe one R2R3-type MYB repressor, FtMYB11 from Fagopyrum tataricum. It contains the SID-like motif GGDFNFDL and it is regulated by both the importin protein 'Sensitive to ABA and Drought 2' (SAD2) and the jasmonates signalling cascade repressor JAZ protein. Yeast two hybrid and bimolecular fluorescence complementation assays demonstrated that FtMYB11 interacts with SAD2 and FtJAZ1. Protoplast transactivation assays demonstrated that FtMYB11 acts synergistically with FtSAD2 or FtJAZ1 and directly represses its target genes via the MYB-core element AATAGTT. Changing the Asp122 residue to Asn in the SID-like motif results in cytoplasmic localization of FtMYB11 because of loss of interaction with SAD2, while changing the Asp126 residue to Asn results in the loss of interaction with FtJAZ1. Overexpression of FtMYB11or FtMYB11D126N in F. tataricum hairy roots resulted in reduced accumulation of rutin, while overexpression of FtMYB11D122N in hairy roots did not lead to such a change. The results indicate that FtMYB11 acts as a regulator via interacting with FtSAD2 or FtJAZ1 to repress phenylpropanoid biosynthesis, and this repression depends on two conserved Asp residues of its SID-like motif.
Collapse
Affiliation(s)
- Meiliang Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhanmin Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mengqi Ding
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Maria D Logacheva
- Department of Evolutionary Biochemistry, AN Belozersky Institute of Physico-Chemical Biology, MV Lomonosov, Moscow State University, Moscow, Russia
| | - Ivan Kreft
- Nutrition Institute, Tržaška 40, SI-1000, Ljubljana, Slovenia
| | - Dan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mingli Yan
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Jirong Shao
- College of Life Sciences, Sichuan Agricultural University, Yaan, 625014, Sichuan, China
| | - Yixiong Tang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanmin Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuemei Zhu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
775
|
Kong X, Liu D, Liao X, Zheng J, Diao Y, Liu Y, Zhou R. Comparative Analysis of the Cytology and Transcriptomes of the Cytoplasmic Male Sterility Line H276A and Its Maintainer Line H276B of Cotton (Gossypium barbadense L.). Int J Mol Sci 2017; 18:ijms18112240. [PMID: 29068396 PMCID: PMC5713210 DOI: 10.3390/ijms18112240] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/05/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022] Open
Abstract
In this study, the tetrad stage of microspore development in a new cotton (Gossypium barbadense L.) cytoplasmic male sterility (CMS) line, H276A, was identified using paraffin sections at the abortion stage. To explore the molecular mechanism underlying CMS in cotton, a comparative transcriptome analysis between the CMS line H276A and its maintainer line H276B at the tetrad stage was conducted using an Illumina HiSeq 4000 platform. The comparison of H276A with H276B revealed a total of 64,675 genes, which consisted of 59,255 known and 5420 novel genes. An analysis of the two libraries with a given threshold yielded a total of 3603 differentially expressed genes (DEGs), which included 1363 up- and 2240 down-regulated genes. Gene Ontology (GO) annotation showed that 2171 DEGs were distributed into 38 categories, and a Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that 2683 DEGs were classified into 127 groups. Thirteen DEGs were randomly selected and detected by quantitative reverse-transcribed PCR (qRT-PCR), and the results indicated that the transcriptome sequencing results were reliable. The bioinformatic analysis results in conjunction with previously reported data revealed key DEGs that might be associated with the male sterility features of H276A. Our results provide a comprehensive foundation for understanding anther development and will accelerate the study of the molecular mechanisms of CMS in cotton.
Collapse
Affiliation(s)
- Xiangjun Kong
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530006, China.
| | - Dongmei Liu
- Key Laboratory of Plant-Microbe Interactions, Department of Life Science and Food, Shangqiu Normal University, Shangqiu 476000, China.
| | - Xiaofang Liao
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530006, China.
| | - Jie Zheng
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530006, China.
| | - Yong Diao
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530006, China.
| | - Yiding Liu
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530006, China.
| | - Ruiyang Zhou
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530006, China.
| |
Collapse
|
776
|
Identification and Characterization of Anthocyanin Biosynthesis-Related Genes in Kohlrabi. Appl Biochem Biotechnol 2017; 184:1120-1141. [PMID: 28965308 DOI: 10.1007/s12010-017-2613-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
Kohlrabi (Brassica oleracea var. gongylodes L.) is an important vegetable of the Brassicaceae family. The main edible part of kohlrabi is the swollen stem. The purple cultivars make anthocyanin mainly in the peel of the swollen stem, while in the leaf, it is limited to the midrib, but green cultivars do not. Anthocyanins are advantageous for both plants as well as humans. Two anthocyanin compounds were detected by high pressure liquid chromatography (HPLC) only in the peel of the purple kohlrabi cultivar. Three MYBs, three bHLHs, and one WD40 TF were identified as the candidate regulatory genes in kohlrabi. There was an abundance of transcript levels for the late biosynthetic genes more specifically for BoF3'H, BoDFR, BoLDOX, and BoGST in the purple peel while scarcely detectable in other tissues for both cultivars. The expression of BoPAP2 and BoTT8 was higher in the peel of the purple cultivar than the green cultivar. The expression of BoMYBL2.2 orthologue of Arabidopsis MYBL2, a negative regulator of anthocyanins, was dramatically decreased in the purple peel. The expression of BoACO1, a key gene for ethylene biosynthesis, and BoNCED3, an important gene of the ABA pathway, was down- and upregulated, respectively, in the peel of purple kohlrabi.
Collapse
|
777
|
Zhang H, Tian H, Chen M, Xiong J, Cai H, Liu Y. Transcriptome analysis reveals potential genes involved in flower pigmentation in a red-flowered mutant of white clover (Trifolium repens L.). Genomics 2017; 110:191-200. [PMID: 28966045 DOI: 10.1016/j.ygeno.2017.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 11/29/2022]
Abstract
White clover (Trifolium repens L.) has been cultivated for ornamental use because of its flowers, leaf marks and creeping habit. Although a mutation in flower color is very infrequent in this species, the red-flowered mutant of white clover was a novel germplasm for ornamental white clover breeding. The mechanism of flower pigmentation in white clover is still limited because of the rarity of mutation materials and the lack of genomic data. In this study, two cDNA libraries from red-flowered white clover mutant between sunlight-exposed plants and shade-treated plants, respectively, were used for transcriptome sequencing. A total of 157,964 unigenes with an average length of 728bp and a median length of 1346bp were isolated. A large number of differentially expressed genes (6282) that were potentially involved in multiple biological and metabolic pathways, including anthocyanin flavonoid biosynthetic pathway and flavonoid biosynthetic pathway, were obtained, 70 of which could be identified as putative homologues of color-related genes. Furthermore, eight key candidate genes (CHS, F3'H, F3'5'H, UFGT, FLS, LAR, ANS, and DFR) in flavonoid biological synthesis pathway were identified by quantitative real-time PCR (qRT-PCR). Mass sequence data obtained by RNA-Seq of white clover and its red-flowered mutant provided basic sequence information and a platform for future molecular biological research on the red flower trait.
Collapse
Affiliation(s)
- Heshan Zhang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hong Tian
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Mingxin Chen
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Junbo Xiong
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hua Cai
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yang Liu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
778
|
Wang R, Ming M, Li J, Shi D, Qiao X, Li L, Zhang S, Wu J. Genome-wide identification of the MADS-box transcription factor family in pear ( Pyrus bretschneideri) reveals evolution and functional divergence. PeerJ 2017; 5:e3776. [PMID: 28924499 PMCID: PMC5598432 DOI: 10.7717/peerj.3776] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/17/2017] [Indexed: 11/21/2022] Open
Abstract
MADS-box transcription factors play significant roles in plant developmental processes such as floral organ conformation, flowering time, and fruit development. Pear (Pyrus), as the third-most crucial temperate fruit crop, has been fully sequenced. However, there is limited information about the MADS family and its functional divergence in pear. In this study, a total of 95 MADS-box genes were identified in the pear genome, and classified into two types by phylogenetic analysis. Type I MADS-box genes were divided into three subfamilies and type II genes into 14 subfamilies. Synteny analysis suggested that whole-genome duplications have played key roles in the expansion of the MADS family, followed by rearrangement events. Purifying selection was the primary force driving MADS-box gene evolution in pear, and one gene pairs presented three codon sites under positive selection. Full-scale expression information for PbrMADS genes in vegetative and reproductive organs was provided and proved by transcriptional and reverse transcription PCR analysis. Furthermore, the PbrMADS11(12) gene, together with partners PbMYB10 and PbbHLH3 was confirmed to activate the promoters of the structural genes in anthocyanin pathway of red pear through dual luciferase assay. In addition, the PbrMADS11 and PbrMADS12 were deduced involving in the regulation of anthocyanin synthesis response to light and temperature changes. These results provide a solid foundation for future functional analysis of PbrMADS genes in different biological processes, especially of pigmentation in pear.
Collapse
Affiliation(s)
- Runze Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Meiling Ming
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jiaming Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Dongqing Shi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xin Qiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Leiting Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jun Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
779
|
Zhao Y, Dong W, Wang K, Zhang B, Allan AC, Lin-Wang K, Chen K, Xu C. Differential Sensitivity of Fruit Pigmentation to Ultraviolet Light between Two Peach Cultivars. FRONTIERS IN PLANT SCIENCE 2017; 8:1552. [PMID: 28943881 PMCID: PMC5596067 DOI: 10.3389/fpls.2017.01552] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/24/2017] [Indexed: 05/23/2023]
Abstract
Anthocyanins provide nutritional benefits and are responsible for red coloration in many fruits. Light affects anthocyanin biosynthesis in peach (Prunus persica). However, some cultivars show differential sensitivity to light. In the present study, 'Hujingmilu (HJ),' a naturally deeply colored cultivar, and 'Yulu (YL),' showing low pigmentation, were used to study the mechanism underlying UV-light-induced anthocyanin biosynthesis. Both UVA and UVB induced fruit pigmentation of 'HJ,' but 'YL' was only sensitive to UVB. Transcriptomic analyses showed over 5000 genes were differentially expressed by pairwise comparisons of RNA libraries isolated from tissue of each cultivar treated with darkness, UVA and UVB. Twenty-three genes related to anthocyanin biosynthesis were identified from the transcriptome data, which were coordinately up-regulated during accumulation of anthocyanins, and down-regulated in the dark. Altered expression of several light receptors, as well as CONSTITUTIVE PHOTOMORPHOGENIC10 (COP10) and ELONGATED HYPOCOTYL 5 homolog (HYH), and a specific anthocyanin transporter glutathione S-transferase (GST), in 'YL' fruit appears to be responsible for the insensitivity to UVA of this cultivar. Expression profiles of several transcription factors of the families MYB, bHLH, bZIP and NAC were highly correlated with those of the anthocyanin biosynthesis genes. The study provides a valuable overview of the underlying molecular mechanisms of UV-light induced anthocyanin response using peach cultivars with differing light sensitivities.
Collapse
Affiliation(s)
- Yun Zhao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang UniversityHangzhou, China
| | - Weiqi Dong
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang UniversityHangzhou, China
| | - Ke Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang UniversityHangzhou, China
| | - Bo Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang UniversityHangzhou, China
| | - Andrew C. Allan
- Plant and Food ResearchAuckland, New Zealand
- School of Biological Sciences, University of AucklandAuckland, New Zealand
| | | | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang UniversityHangzhou, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang UniversityHangzhou, China
| |
Collapse
|
780
|
Liu Y, Zhou B, Qi Y, Chen X, Liu C, Liu Z, Ren X. Expression Differences of Pigment Structural Genes and Transcription Factors Explain Flesh Coloration in Three Contrasting Kiwifruit Cultivars. FRONTIERS IN PLANT SCIENCE 2017; 8:1507. [PMID: 28919902 PMCID: PMC5586210 DOI: 10.3389/fpls.2017.01507] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/15/2017] [Indexed: 05/25/2023]
Abstract
Fruits of kiwifruit cultivars (Actinidia chinensis and A. deliciosa) generally have green or yellow flesh when ripe. A small number of genotypes have red flesh but this coloration is usually restricted to the inner pericarp. Three kiwifruit cultivars having red ('Hongyang'), or yellow ('Jinnong-2'), or green ('Hayward') flesh were investigated for their color characteristics and pigment contents during development and ripening. The results show the yellow of the 'Jinnong-2' fruit is due to the combined effects of chlorophyll degradation and of beta-carotene accumulation. The red inner pericarps of 'Hongyang' fruit are due to anthocyanin accumulation. Expression differences of the pathway genes in the inner pericarps of the three different kiwifruits suggest that stay-green (SGR) controls the degradation of chlorophylls, while lycopene beta-cyclase (LCY-β) controls the biosynthesis of beta-carotene. The abundance of anthocyanin in the inner pericarps of the 'Hongyang' fruit is the results of high expressions of UDP flavonoid glycosyltransferases (UFGT). At the same time, expressions of anthocyanin transcription factors show that AcMYBF110 expression parallels changes in anthocyanin concentration, so seems to be a key R2R3 MYB, regulating anthocyanin biosynthesis. Further, transient color assays reveal that AcMYBF110 can autonomously induce anthocyanin accumulation in Nicotiana tabacum leaves by activating the transcription of dihydroflavonol 4-reductase (NtDFR), anthocyanidin synthase (NtANS) and NtUFGT. For basic helix-loop-helix proteins (bHLHs) and WD-repeat proteins (WD40s), expression differences show these may depend on AcMYBF110 forming a MYB-bHLH-WD40 complex to regulate anthocyanin biosynthesis, instead of it having a direct involvement.
Collapse
Affiliation(s)
- Yanfei Liu
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Bin Zhou
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Yingwei Qi
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Xin Chen
- Shaanxi Fruit Industry GroupYangling, China
| | - Cuihua Liu
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F UniversityYangling, China
| |
Collapse
|
781
|
Lloyd A, Brockman A, Aguirre L, Campbell A, Bean A, Cantero A, Gonzalez A. Advances in the MYB-bHLH-WD Repeat (MBW) Pigment Regulatory Model: Addition of a WRKY Factor and Co-option of an Anthocyanin MYB for Betalain Regulation. PLANT & CELL PHYSIOLOGY 2017; 58:1431-1441. [PMID: 28575507 PMCID: PMC5914458 DOI: 10.1093/pcp/pcx075] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/11/2017] [Indexed: 05/19/2023]
Abstract
Flavonoids are secondary metabolites derived from the general phenylpropanoid pathway and are widespread throughout the plant kingdom. The functions of flavonoids are diverse, including defense against phytopathogens, protection against UV light damage and oxidative stress, regulation of auxin transport and allelopathy. One of the most conspicuous functions of flavonoids has long attracted the attention of pollinators and scientist alike: the vivid shades of red, pink, orange, blue and purple on display in the flowers of angiosperms. Thus, flavonoid pigments have perhaps been the most intensely studied phenylpropanoids. From Mendel to McClintock and up to the present, studies centered on flavonoid pigments have resulted in some of the most important scientific discoveries of the last 150 years, including the first examples of transcriptional regulation in plants. Here we focus on the highly conserved MYB-bHLH-WD repeat (MBW) transcriptional complex model for the regulation of the flavonoid pigment pathway. We will survey the history of the MBW model spanning the last three decades, highlighting the major findings that have contributed to our current understanding. In particular, recent discoveries regarding WRKY protein control of the flavonoid pigment pathway and its relationship to the MBW complex will be emphasized. In addition, we will discuss recent findings about the regulation of the beet betalain pigment pathway, and how a MYB member of the MBW complex was co-opted to regulate this chemically unrelated but functionally equivalent pathway.
Collapse
Affiliation(s)
- Alan Lloyd
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Austen Brockman
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lyndsey Aguirre
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Annabelle Campbell
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Alex Bean
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Araceli Cantero
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Antonio Gonzalez
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
782
|
Qin G, Xu C, Ming R, Tang H, Guyot R, Kramer EM, Hu Y, Yi X, Qi Y, Xu X, Gao Z, Pan H, Jian J, Tian Y, Yue Z, Xu Y. The pomegranate (Punica granatum L.) genome and the genomics of punicalagin biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:1108-1128. [PMID: 28654223 DOI: 10.1111/tpj.13625] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 06/15/2017] [Accepted: 06/21/2017] [Indexed: 05/21/2023]
Abstract
Pomegranate (Punica granatum L.) is a perennial fruit crop grown since ancient times that has been planted worldwide and is known for its functional metabolites, particularly punicalagins. We have sequenced and assembled the pomegranate genome with 328 Mb anchored into nine pseudo-chromosomes and annotated 29 229 gene models. A Myrtales lineage-specific whole-genome duplication event was detected that occurred in the common ancestor before the divergence of pomegranate and Eucalyptus. Repetitive sequences accounted for 46.1% of the assembled genome. We found that the integument development gene INNER NO OUTER (INO) was under positive selection and potentially contributed to the development of the fleshy outer layer of the seed coat, an edible part of pomegranate fruit. The genes encoding the enzymes for synthesis and degradation of lignin, hemicelluloses and cellulose were also differentially expressed between soft- and hard-seeded varieties, reflecting differences in their accumulation in cultivars differing in seed hardness. Candidate genes for punicalagin biosynthesis were identified and their expression patterns indicated that gallic acid synthesis in tissues could follow different biochemical pathways. The genome sequence of pomegranate provides a valuable resource for the dissection of many biological and biochemical traits and also provides important insights for the acceleration of breeding. Elucidation of the biochemical pathway(s) involved in punicalagin biosynthesis could assist breeding efforts to increase production of this bioactive compound.
Collapse
Affiliation(s)
- Gaihua Qin
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, Anhui Province, 230031, China
| | - Chunyan Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Ray Ming
- Fujian Agriculture and Forestry University and University of Illinois at Urbana-Champaign School of Integrative Biology Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61822, USA
| | - Haibao Tang
- Fujian Agriculture and Forestry University and University of Illinois at Urbana-Champaign School of Integrative Biology Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Romain Guyot
- Institut de Recherche pour le Développement, Diversité, Adaptation et Développement des Plantes, Montpellier, 34394, France
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Yudong Hu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xingkai Yi
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, Anhui Province, 230031, China
| | - Yongjie Qi
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, Anhui Province, 230031, China
| | - Xiangyang Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhenghui Gao
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, Anhui Province, 230031, China
| | - Haifa Pan
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, Anhui Province, 230031, China
| | - Jianbo Jian
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yinping Tian
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhen Yue
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yiliu Xu
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, Anhui Province, 230031, China
| |
Collapse
|
783
|
Escaray FJ, Passeri V, Perea-García A, Antonelli CJ, Damiani F, Ruiz OA, Paolocci F. The R2R3-MYB TT2b and the bHLH TT8 genes are the major regulators of proanthocyanidin biosynthesis in the leaves of Lotus species. PLANTA 2017; 246:243-261. [PMID: 28429079 DOI: 10.1007/s00425-017-2696-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/12/2017] [Indexed: 05/26/2023]
Abstract
By exploiting interspecific hybrids and their progeny, we identified key regulatory and transporter genes intimately related to proanthocyanidin biosynthesis in leaves of Lotus spp. Proanthocyanidins (PAs), known as condensed tannins, are polymeric flavonoids enriching forage legumes of key nutritional value to prevent bloating in ruminant animals. Unfortunately, major forage legumes such as alfalfa and clovers lack PAs in edible tissues. Therefore, engineering the PA trait in herbage of forage legumes is paramount to improve both ecological and economical sustainability of cattle production system. Progresses on the understanding of genetic determinants controlling PA biosynthesis and accumulation have been mainly made studying mutants of Arabidopsis, Medicago truncatula and Lotus japonicus, model species unable to synthesize PAs in the leaves. Here, we exploited interspecific hybrids between Lotus corniculatus, with high levels of PAs in the leaves, and Lotus tenuis, with no PAs in these organs, and relative F2 progeny, to identify among candidate PA regulators and transporters the genes mainly affecting this trait. We found that the levels of leaf PAs significantly correlate with the expression of MATE1, the putative transporter of glycosylated PA monomers, and, among the candidate regulatory genes, with the expression of the MYB genes TT2a, TT2b and MYB14 and the bHLH gene TT8. The expression levels of TT2b and TT8 also correlated with those of all key structural genes of the PA pathways investigated, MATE1 included. Our study unveils a different involvement of the three Lotus TT2 paralogs to the PA trait and highlights differences in the regulation of this trait in our Lotus genotypes with respect to model species. This information opens new avenues for breeding bloat safe forage legumes.
Collapse
Affiliation(s)
- Francisco José Escaray
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECh) / Universidad Nacional de San Martín. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Valentina Passeri
- Institute of Biosciences and BioResources (CNR-IBBR), Perugia, Italy
| | - Ana Perea-García
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECh) / Universidad Nacional de San Martín. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Cristian Javier Antonelli
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECh) / Universidad Nacional de San Martín. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Francesco Damiani
- Institute of Biosciences and BioResources (CNR-IBBR), Perugia, Italy
| | - Oscar Adolfo Ruiz
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECh) / Universidad Nacional de San Martín. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | | |
Collapse
|
784
|
Xu Z, Mahmood K, Rothstein SJ. ROS Induces Anthocyanin Production Via Late Biosynthetic Genes and Anthocyanin Deficiency Confers the Hypersensitivity to ROS-Generating Stresses in Arabidopsis. PLANT & CELL PHYSIOLOGY 2017; 58:1364-1377. [PMID: 28586465 DOI: 10.1093/pcp/pcx073] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/10/2017] [Indexed: 05/21/2023]
Abstract
Anthocyanins are known to have antioxidant activities. Their accumulation can be triggered by many chemical and environmental factors, including reactive oxygen species (ROS). However, the mechanism of ROS-induced anthocyanin accumulation and the role of anthocyanins in the response of Arabidopsis (Arabidopsis thaliana) to different stresses are largely unknown. Here, we study the cross-regulation between ROS and anthocyanin production. Ten Arabidopsis mutants covering the main anthocyanin regulatory and biosynthetic genes are systematically analyzed under ROS-generating stresses. We find that ROS triggers anthocyanin accumulation by up-regulating the anthocyanin late biosynthetic and the corresponding regulatory genes. The anthocyanin-deficient mutants have more endogenous ROS and are more sensitive to ROS-generating stresses while having decreased antioxidant capacity. Supplementation with cyanidin makes them less susceptible to ROS, with increased anthocyanin and reduced ROS accumulation. In contrast, pap1-D, which overaccumulates anthocyanins, shows the opposite responses. Gene expression analysis reveals that photosynthetic capacity is more impaired in anthocyanin-deficient mutants under high-light stress. Expression levels of ROS-scavenging enzyme genes are not correlated with the radical-scavenging activity in different mutants. We conclude that ROS are an important source signal to induce anthocyanin accumulation by up-regulating late biosynthetic and the corresponding regulatory genes and, as a feed-back regulation, anthocyanins modulate the ROS level and the sensitivity to ROS-generating stresses in maintaining photosynthetic capacity.
Collapse
Affiliation(s)
- Zhenhua Xu
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kashif Mahmood
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Steven J Rothstein
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
785
|
Wu J, Liu W, Yuan L, Guan WQ, Brennan CS, Zhang YY, Zhang J, Wang ZD. The influence of postharvest UV-C treatment on anthocyanin biosynthesis in fresh-cut red cabbage. Sci Rep 2017; 7:5232. [PMID: 28701702 PMCID: PMC5507880 DOI: 10.1038/s41598-017-04778-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 05/22/2017] [Indexed: 01/23/2023] Open
Abstract
Red cabbage (Brassica oleracea L. var. capitata f. rubra DC.) is a fresh edible vegetable consumed globally that contains high levels of antioxidant compounds including anthocyanins. In this study, fresh-cut red cabbage was treated with different Ultraviolet-C (UV-C) dosages. Fifteen cyanidin derivatives were observed in UV-C treated fresh-cut red cabbage; four of these were anthocyanins absent in control samples. The optimum dose of UV-C for enhancing total anthocyanin content in fresh-cut red cabbage was 3.0 kJ/m2. Different UV-C irradiation doses resulted in miscellaneous responses for each of the anthocyanin compounds, and these alterations appeared to be dose-dependent. The expression of genes relating to anthocyanin metabolism was altered by UV-C irradiation. For example, genes for biosynthetic enzymes including glycosyltransferase and acyltransferase, as well as R2R3 MYB transcription factors (production of anthocyanin pigment 1 and MYB114), had strongly increased expression following UV-C treatment. These results are in accord with the roles of these gene products in anthocyanin metabolism. This is, to the authors’ knowledge, the first report demonstrating that UV-C treatment can increase the antioxidant activity in fresh-cut red cabbage in storage. Moreover, our detailed phytochemical and gene expression analysis establish specific roles for both anthocyanins and metabolism genes in this process.
Collapse
Affiliation(s)
- Jie Wu
- Key Laboratory of Agro-products Processing, Institute of Food Science and Technology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wen Liu
- College of Life Science, Lin Yi University, Linyi, 276000, China
| | - Li Yuan
- Key Laboratory of Agro-products Processing, Institute of Food Science and Technology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wen-Qiang Guan
- Tianjin Key Laboratory of Food Biotechnology and Food Sciences, Tianjin University of Commerce, Tianjin, 300134, China
| | - Charles S Brennan
- Centre for Food Research and Innovation, Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, 85084, New Zealand
| | - Yang-Yong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Zhang
- Key Laboratory of Agro-products Processing, Institute of Food Science and Technology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Zhi-Dong Wang
- Key Laboratory of Agro-products Processing, Institute of Food Science and Technology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
786
|
Ding K, Pei T, Bai Z, Jia Y, Ma P, Liang Z. SmMYB36, a Novel R2R3-MYB Transcription Factor, Enhances Tanshinone Accumulation and Decreases Phenolic Acid Content in Salvia miltiorrhiza Hairy Roots. Sci Rep 2017; 7:5104. [PMID: 28698552 PMCID: PMC5506036 DOI: 10.1038/s41598-017-04909-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/22/2017] [Indexed: 11/08/2022] Open
Abstract
Phenolic acids and tanshinones are two major bioactive components in Salvia miltiorrhiza Bunge. A novel endogenous R2R3-MYB transcription factor, SmMYB36, was identified in this research. This transcript factor can simultaneously influence the content of two types of components in SmMYB36 overexpression hairy roots. SmMYB36 was mainly localized in the nucleus of onion epidermis and it has transactivation activity. The overexpression of SmMYB36 promoted tanshinone accumulation but inhibited phenolic acid and flavonoid biosynthesis in Salvia miltiorrhiza hairy roots. The altered metabolite content was due to changed metabolic flow which was regulated by transcript expression of metabolic pathway genes. The gene transcription levels of the phenylpropanoid general pathway, tyrosine derived pathway, methylerythritol phosphate pathway and downstream tanshinone biosynthetic pathway changed significantly due to the overexpression of SmMYB36. The wide distribution of MYB binding elements (MBS, MRE, MBSI and MBSII) and electrophoretic mobility shift assay results indicated that SmMYB36 may be an effective tool to regulate metabolic flux shifts.
Collapse
Affiliation(s)
- Kai Ding
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Tianlin Pei
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhengqing Bai
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanyan Jia
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| | - Zongsuo Liang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
787
|
Matus JT, Cavallini E, Loyola R, Höll J, Finezzo L, Dal Santo S, Vialet S, Commisso M, Roman F, Schubert A, Alcalde JA, Bogs J, Ageorges A, Tornielli GB, Arce-Johnson P. A group of grapevine MYBA transcription factors located in chromosome 14 control anthocyanin synthesis in vegetative organs with different specificities compared with the berry color locus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:220-236. [PMID: 28370629 DOI: 10.1111/tpj.13558] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 05/19/2023]
Abstract
Grapevine organs accumulate anthocyanins in a cultivar-specific and environmentally induced manner. The MYBA1-A2 genes within the berry color locus in chromosome 2 represent the major genetic determinants of fruit color. The simultaneous occurrence of transposon insertions and point mutations in these genes is responsible for most white-skinned phenotypes; however, the red pigmentation found in vegetative organs suggests the presence of additional regulators. This work describes a genomic region of chromosome 14 containing three closely related R2R3-MYB genes, named MYBA5, MYBA6 and MYBA7. Ectopic expression of the latter two genes in grapevine hairy roots promoted anthocyanin accumulation without affecting other phenylpropanoids. Transcriptomic profiling of hairy roots expressing MYBA1, MYBA6 and MYBA7 showed that these regulators share the activation of late biosynthetic and modification/transport-related genes, but differ in the activation of the FLAVONOID-3'5'-HYDROXYLASE (F3'5'H) family. An alternatively spliced MYBA6 variant was incapable of activating anthocyanin synthesis, however, because of the lack of an MYC1 interaction domain. MYBA1, MYBA6.1 and MYBA7 activated the promoters of UDP-GLUCOSE:FLAVONOID 3-O-GLUCOSYLTRANSFERASE (UFGT) and ANTHOCYANIN 3-O-GLUCOSIDE-6″-O-ACYLTRANSFERASE (3AT), but only MYBA1 induced F3'5'H in concordance with the low proportion of tri-hydroxylated anthocyanins found in MYBA6-A7 hairy roots. This putative new color locus is related to the red/cyanidic pigmentation of vegetative organs in black- and white-skinned cultivars, and forms part of the UV-B radiation response pathway orchestrated by ELONGATED HYPOCOTYL 5 (HY5). These results demonstrate the involvement of additional anthocyanin regulators in grapevine and suggest an evolutionary divergence between the two grape color loci for controlling additional targets of the flavonoid pathway.
Collapse
Affiliation(s)
- José Tomás Matus
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Erika Cavallini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Rodrigo Loyola
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Fruticultura y Enología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Janine Höll
- Centre for Organismal Studies Heidelberg (COS Heidelberg), Im Neuenheimer Feld 360, Heidelberg, 69120, Germany
| | - Laura Finezzo
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Silvia Dal Santo
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Sandrine Vialet
- INRA, UMR1083 SPO, 2 place Viala, Montpellier, F-34060, France
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Federica Roman
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095, Italy
| | - Andrea Schubert
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095, Italy
| | - José Antonio Alcalde
- Departamento de Fruticultura y Enología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jochen Bogs
- Centre for Organismal Studies Heidelberg (COS Heidelberg), Im Neuenheimer Feld 360, Heidelberg, 69120, Germany
- Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, Viticulture and Enology group, Neustadt/W, D-67435, Germany
- Fachhochschule Bingen, Berlinstr. 109, Bingen am Rhein, D-55411, Germany
| | - Agnès Ageorges
- INRA, UMR1083 SPO, 2 place Viala, Montpellier, F-34060, France
| | | | - Patricio Arce-Johnson
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
788
|
A Study on the Expression of Genes Involved in Carotenoids and Anthocyanins During Ripening in Fruit Peel of Green, Yellow, and Red Colored Mango Cultivars. Appl Biochem Biotechnol 2017. [PMID: 28643121 DOI: 10.1007/s12010-017-2529-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mango (Mangiferaindica L.) fruits are generally classified based on peel color into green, yellow, and red types. Mango peel turns from green to yellow or red or retain green colors during ripening. The carotenoids and anthocyanins are the important pigments responsible for the colors of fruits. In the present study, peels of different colored cultivars at three ripening stages were characterized for pigments, colors, and gene expression analysis. The yellow colored cultivar "Arka Anmol" showed higher carotenoid content, wherein β-carotene followed by violaxanthin were the major carotenoid compounds that increased during ripening. The red colored cultivars were characterized with higher anthocyanins with cyanidin-3-O-monoglucosides and peonidin-3-O-glucosides as the major anthocyanins. The gene expression analysis by qRT-PCR showed the higher expression of carotenoid biosynthetic genes viz. lycopene-β-cyclase and violaxanthin-de-epoxidase in yellow colored cv. Arka Anmol, and the expression was found to increase during ripening. However, in red colored cv. "Janardhan Pasand," there is increased regulation of all anthocyanin biosynthetic genes including transcription factors MYB and basic helix loop. This indicated the regulation of the anthocyanins by these genes in red mango peel. The results showed that the accumulation pattern of particular pigments and higher expression of specific biosynthetic genes in mango peel impart different colors.
Collapse
|
789
|
Yang JF, Chen YZ, Kawabata S, Li YH, Wang Y. Identification of Light-Independent Anthocyanin Biosynthesis Mutants Induced by Ethyl Methane Sulfonate in Turnip "Tsuda" (Brassica rapa). Int J Mol Sci 2017. [PMID: 28640193 PMCID: PMC5535824 DOI: 10.3390/ijms18071288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The epidermis of swollen storage roots in purple cultivars of turnip “Tsuda” (Brassica rapa) accumulates anthocyanin in a light-dependent manner, especially in response to UV-A light, of which the mechanism is unclear. In this study, we mutagenized 15,000 seeds by 0.5% (v/v) ethyl methane sulfonate (EMS) and obtained 14 mutants with abnormal anthocyanin production in their epidermis of swollen storage roots. These mutants were classified into two groups: the red mutants with constitutive anthocyanin accumulation in their epidermis of storage roots even in underground parts in darkness and the white mutants without anthocyanin accumulation in the epidermis of storage roots in aboveground parts exposed to sunlight. Test cross analysis demonstrated that w9, w68, w204, r15, r21, r30 and r57 contained different mutations responsible for their phenotypic variations. Further genetic analysis of four target mutants (w9, w68, w204 and r15) indicated that each of them was controlled by a different recessive gene. Intriguingly, the expression profiles of anthocyanin biosynthesis genes, including structural and regulatory genes, coincided with their anthocyanin levels in the epidermis of storage roots in the four target mutants. We proposed that potential genes responsible for the mutations should be upstream factors of the anthocyanin biosynthesis pathway in turnips, which provided resources to further investigate the mechanisms of light-induced anthocyanin accumulation.
Collapse
Affiliation(s)
- Jian-Fei Yang
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Yun-Zhu Chen
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Saneyuki Kawabata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo Tokyo 113-8654, Japan.
| | - Yu-Hua Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| | - Yu Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
790
|
Chen K, Liu H, Lou Q, Liu Y. Ectopic Expression of the Grape Hyacinth ( Muscari armeniacum) R2R3-MYB Transcription Factor Gene, MaAN2, Induces Anthocyanin Accumulation in Tobacco. FRONTIERS IN PLANT SCIENCE 2017; 8:965. [PMID: 28642775 PMCID: PMC5462982 DOI: 10.3389/fpls.2017.00965] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/22/2017] [Indexed: 05/21/2023]
Abstract
Anthocyanins are responsible for the different colors of ornamental plants. Grape hyacinth (Muscari armeniacum), a monocot plant with bulbous flowers, is popular for its fascinating blue color. In the present study, we functionally characterized an R2R3-MYB transcription factor gene MaAN2 from M. armeniacum. Our results indicated that MaAN2 participates in controlling anthocyanin biosynthesis. Sequence alignment and phylogenetic analysis suggested that MaAN2 belonged to the R2R3-MYB family AN2 subgroup. The anthocyanin accumulation of grape hyacinth flowers was positively correlated with the expression of MaAN2. And the transcriptional expression of MaAN2 was also consistent with that of M. armeniacum dihydroflavonol 4-reductase (MaDFR) and M. armeniacum anthocyanidin synthase (MaANS) in flowers. A dual luciferase transient expression assay indicated that when MaAN2 was co-inflitrated with Arabidopsis thaliana TRANSPARENT TESTA8 (AtTT8), it strongly activated the promoters of MaDFR and MaANS, but not the promoters of M. armeniacum chalcone synthase (MaCHS), M. armeniacum chalcone isomerase (MaCHI), and M. armeniacum flavanone 3-hydroxylase (MaF3H). Bimolecular fluorescence complementation assay confirmed that MaAN2 interacted with AtTT8 in vivo. The ectopic expression of MaAN2 in Nicotiana tabacum resulted in obvious red coloration of the leaves and much redder flowers. Almost all anthocyanin biosynthetic genes were remarkably upregulated in the leaves and flowers of the transgenic tobacco, and NtAn1a and NtAn1b (two basic helix-loop-helix anthocyanin regulatory genes) were highly expressed in the transformed leaves, compared to the empty vector transformants. Collectively, our results suggest that MaAN2 plays a role in anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Kaili Chen
- College of Landscape Architecture and Arts, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
| | - Hongli Liu
- College of Landscape Architecture and Arts, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
| | - Qian Lou
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Yali Liu
- College of Landscape Architecture and Arts, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
| |
Collapse
|
791
|
Mondal SK, Roy S. Genome-wide sequential, evolutionary, organizational and expression analyses of phenylpropanoid biosynthesis associated MYB domain transcription factors in Arabidopsis. J Biomol Struct Dyn 2017; 36:1577-1601. [PMID: 28490275 DOI: 10.1080/07391102.2017.1329099] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The MYB gene family represents one of the largest groups of transcription factors in plants. Recent evidences have also demonstrated key role of MYB transcription factors in regulating the expression of major genes involved in the biosynthesis of phenylpropanoid compounds which confer biotic and abiotic stress tolerance in plant species. However, no comprehensive genome-wide analysis of the phenylpropanoid pathway-associated MYB transcription factors has been reported thus far. In this study, 11 Arabidopsis MYB proteins, such as MYB3, MYB4, MYB7, MYB11, MYB12, MYB32, MYB75, MYB90, MYB111, MYB113, and MYB114 were initially identified considering their reported regulatory function in phenylpropanoid biosynthesis pathway. Subsequent genome-wide analysis have identified the corresponding homologues from Glycine max, Vigna radiata, Oryza sativa, and Zea mays, while homologous of Arabidopsis MYB75, MYB90, MYB113, and MYB114 were not detected in rice and maize genomes. The identified MYB proteins were classified into three groups (I-III) based on phylogeny. Sequence and domain analysis revealed presence of two conserved DNA binding MYB domains in the selected MYB proteins. Promoter analysis indicated presence of cis-regulatory elements related to light signaling, development, and stress response. Expression analysis of selected Arabidopsis MYB genes revealed their function in plant development and abiotic stress response, consistent with gene ontology annotations. Together, these results provide a useful framework for further experimental studies for the functional characterization of the target MYB genes in the context of regulation of phenylpropanoid biosynthesis and plant stress response.
Collapse
Affiliation(s)
- Sunil Kanti Mondal
- a Department of Biotechnology , The University of Burdwan , Burdwan , 713104 , West Bengal , India
| | - Sujit Roy
- b Department of Botany, UGC Centre of Advanced Studies , The University of Burdwan , Burdwan , 713104 , West Bengal , India
| |
Collapse
|
792
|
Zhang Y, Zhao G, Li Y, Zhang J, Shi M, Muhammad T, Liang Y. Transcriptome Profiling of Tomato Uncovers an Involvement of Cytochrome P450s and Peroxidases in Stigma Color Formation. FRONTIERS IN PLANT SCIENCE 2017; 8:897. [PMID: 28620401 PMCID: PMC5449478 DOI: 10.3389/fpls.2017.00897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/12/2017] [Indexed: 05/23/2023]
Abstract
Stigma is a crucial structure of female reproductive organ in plants. Stigma color is usually regarded as an important trait in variety identification in some species, but the molecular mechanism of stigma color formation remains elusive. Here, we characterized a tomato mutant, yellow stigma (ys), that shows yellow rather than typical green color in the stigma. Analysis of pigment contents revealed that the level of flavonoid naringenin chalcone was increased in the ys stigma, possibly as a result of higher accumulation of p-coumaric acid, suggesting that naringenin chalcone might play a vital role in yellow color control in tomato stigma. To understand the genes and gene networks that regulate tomato stigma color, RNA-sequencing (RNA-Seq) analyses were performed to compare the transcriptomes of stigmas between ys mutant and wild-type (WT). We obtained 507 differentially expressed genes, in which, 84 and 423 genes were significantly up-regulated and down-regulated in the ys mutant, respectively. Two cytochrome P450 genes, SlC3H1 and SlC3H2 which encode p-coumarate 3-hydroxylases, and six peroxidase genes were identified to be dramatically inhibited in the yellow stigma. Further bioinformatic and biochemical analyses implied that the repression of the two SlC3Hs and six PODs may indirectly lead to higher naringenin chalcone level through inhibiting lignin biosynthesis, thereby contributing to yellow coloration in tomato stigma. Thus, our data suggest that two SlC3Hs and six PODs are involved in yellow stigma formation. This study provides valuable information for dissecting the molecular mechanism of stigma color control in tomato. Statement: This study reveals that two cytochrome P450s (SlC3H1 and SlC3H2) and six peroxidases potentially regulate the yellow stigma formation by indirectly enhancing biosynthesis of yellow-colored naringenin chalcone in the stigma of tomato.
Collapse
Affiliation(s)
- Yan Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Guiye Zhao
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Yushun Li
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Jie Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Meijing Shi
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Tayeb Muhammad
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Yan Liang
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| |
Collapse
|
793
|
Matías-Hernández L, Jiang W, Yang K, Tang K, Brodelius PE, Pelaz S. AaMYB1 and its orthologue AtMYB61 affect terpene metabolism and trichome development in Artemisia annua and Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:520-534. [PMID: 28207974 DOI: 10.1111/tpj.13509] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 05/20/2023]
Abstract
The effective anti-malarial drug artemisinin (AN) isolated from Artemisia annua is relatively expensive due to the low AN content in the plant as AN is only synthesized within the glandular trichomes. Therefore, genetic engineering of A. annua is one of the most promising approaches for improving the yield of AN. In this work, the AaMYB1 transcription factor has been identified and characterized. When AaMYB1 is overexpressed in A. annua, either exclusively in trichomes or in the whole plant, essential AN biosynthetic genes are also overexpressed and consequently the amount of AN is significantly increased. Artemisia AaMYB1 constitutively overexpressing plants displayed a greater number of trichomes. In order to study the role of AaMYB1 on trichome development and other possibly connected biological processes, AaMYB1 was overexpressed in Arabidopsis thaliana. To support our findings in Arabidopsis thaliana, an AaMYB1 orthologue from this model plant, AtMYB61, was identified and atmyb61 mutants characterized. Both AaMYB1 and AtMYB61 affected trichome initiation, root development and stomatal aperture in A. thaliana. Molecular analyses indicated that two crucial trichome activator genes are misexpressed in atmyb61 mutant plants and in plants overexpressing AaMYB1. Furthermore, AaMYB1 and AtMYB61 are also essential for gibberellin (GA) biosynthesis and degradation in both species by positively affecting the expression of the enzymes that convert GA9 into the bioactive GA4 as well as the enzymes involved in the degradation of GA4 . Overall, these results identify AaMYB1/AtMYB61 as a key component of the molecular network that connects important biosynthetic processes, and reveal its potential value for AN production through genetic engineering.
Collapse
Affiliation(s)
- Luis Matías-Hernández
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain
- Sequentia Biotech, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Weimin Jiang
- Shanghai Jiao Tong University Plant Biotechnology Research Center, Shanghai, China
| | - Ke Yang
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Kexuan Tang
- Shanghai Jiao Tong University Plant Biotechnology Research Center, Shanghai, China
| | - Peter E Brodelius
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
794
|
Zhang Y, Liu Z, Liu J, Lin S, Wang J, Lin W, Xu W. GA-DELLA pathway is involved in regulation of nitrogen deficiency-induced anthocyanin accumulation. PLANT CELL REPORTS 2017; 36:557-569. [PMID: 28275852 DOI: 10.1007/s00299-017-2102-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/03/2017] [Indexed: 05/22/2023]
Abstract
DELLA proteins positively regulate nitrogen deficiency-induced anthocyanin accumulation through directly interaction with PAP1 to enhance its transcriptional activity on anthocyanin biosynthetic gene expressions. Plants can survive a limiting nitrogen supply by undergoing adaptive responses, including induction of anthocyanin production. However, the detailed mechanism is still unclear. In this study, we found that this process was impaired and enhanced, respectively, by exogenous GA3 (an active form of GAs) and paclobutrazol (PAC, a specific GA biosynthesis inhibitor) in Arabidopsis seedlings. Consistently, the nitrogen deficiency-induced transcript levels of several key genes involved in anthocyanin biosynthesis, including F3'H, DFR, LDOX, and UF3GT, were decreased and enhanced by exogenous GA3 and PAC, respectively. Moreover, the nitrogen deficiency-induced anthocyanin accumulation and biosynthesis gene expressions were impaired in the loss-of-function mutant gai-t6/rga-t2/rgl1-1/rgl2-1/rgl3-1 (della) but enhanced in the GA-insensitive mutant gai, suggesting that DELLA proteins, known as repressors of GA signaling, are necessary for fully induction of nitrogen deficiency-driven anthocyanin biosynthesis. Using yeast two-hybrid (Y2H) assay, pull-down assay, and luciferase complementation assay, it was found that RGA, a DELLA of Arabidopsis, could strongly interact with PAP1, a known regulatory transcription factor positively involved in anthocyanin biosynthesis. Furthermore, transient expression assays indicated that RGA and GAI could enhance the transcriptional activities of PAP1 on its downstream genes, including F3'H and DFR. Taken together, this study suggests that DELLAs are necessary regulators for nitrogen deficiency-induced anthocyanin accumulation through interaction with PAP1 and enhancement of PAP1's transcriptional activity on its target genes. GA-DELLA-involved anthocyanin accumulation is important for plant adaptation to nitrogen deficiency.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zhongjuan Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Jianping Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Sheng Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Jianfeng Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| | - Weifeng Xu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
795
|
Xu ZS, Feng K, Que F, Wang F, Xiong AS. A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots. Sci Rep 2017; 7:45324. [PMID: 28345675 PMCID: PMC5366895 DOI: 10.1038/srep45324] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/23/2017] [Indexed: 11/09/2022] Open
Abstract
Carrots are widely grown and enjoyed around the world. Purple carrots accumulate rich anthocyanins in the taproots, while orange, yellow, and red carrots accumulate rich carotenoids in the taproots. Our previous studies indicated that variation in the activity of regulatory genes may be responsible for variations in anthocyanin production among various carrot cultivars. In this study, an R2R3-type MYB gene, designated as DcMYB6, was isolated from a purple carrot cultivar. In a phylogenetic analysis, DcMYB6 was grouped into an anthocyanin biosynthesis-related MYB clade. Sequence analyses revealed that DcMYB6 contained the conserved bHLH-interaction motif and two atypical motifs of anthocyanin regulators. The expression pattern of DcMYB6 was correlated with anthocyanin production. DcMYB6 transcripts were detected at high levels in three purple carrot cultivars but at much lower levels in six non-purple carrot cultivars. Overexpression of DcMYB6 in Arabidopsis led to enhanced anthocyanin accumulation in both vegetative and reproductive tissues and upregulated transcript levels of all seven tested anthocyanin-related structural genes. Together, these results show that DcMYB6 is involved in regulating anthocyanin biosynthesis in purple carrots. Our results provide new insights into the regulation of anthocyanin synthesis in purple carrot cultivars.
Collapse
Affiliation(s)
- Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
796
|
Xu L, Yang P, Feng Y, Xu H, Cao Y, Tang Y, Yuan S, Liu X, Ming J. Spatiotemporal Transcriptome Analysis Provides Insights into Bicolor Tepal Development in Lilium "Tiny Padhye". FRONTIERS IN PLANT SCIENCE 2017; 8:398. [PMID: 28392796 PMCID: PMC5364178 DOI: 10.3389/fpls.2017.00398] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/08/2017] [Indexed: 05/24/2023]
Abstract
The bicolor Asiatic hybrid lily cultivar "Tiny Padhye" is an attractive variety because of its unique color pattern. During its bicolor tepal development, the upper tepals undergo a rapid color change from green to white, while the tepal bases change from green to purple. However, the molecular mechanisms underlying these changes remain largely uncharacterized. To systematically investigate the dynamics of the lily bicolor tepal transcriptome during development, we generated 15 RNA-seq libraries from the upper tepals (S2-U) and basal tepals (S1-D, S2-D, S3-D, and S4-D) of Lilium "Tiny Padhye." Utilizing the Illumina platform, a total of 295,787 unigenes were obtained from 713.12 million high-quality paired-end reads. A total of 16,182 unigenes were identified as differentially expressed genes during tepal development. Using Kyoto Encyclopedia of Genes and Genomes pathway analysis, candidate genes involved in the anthocyanin biosynthetic pathway (61 unigenes), and chlorophyll metabolic pathway (106 unigenes) were identified. Further analyses showed that most anthocyanin biosynthesis genes were transcribed coordinately in the tepal bases, but not in the upper tepals, suggesting that the bicolor trait of "Tiny Padhye" tepals is caused by the transcriptional regulation of anthocyanin biosynthetic genes. Meanwhile, the high expression level of chlorophyll degradation genes and low expression level of chlorophyll biosynthetic genes resulted in the absence of chlorophylls from "Tiny Padhye" tepals after flowering. Transcription factors putatively involved in the anthocyanin biosynthetic pathway and chlorophyll metabolism in lilies were identified using a weighted gene co-expression network analysis and their possible roles in lily bicolor tepal development were discussed. In conclusion, these extensive transcriptome data provide a platform for elucidating the molecular mechanisms of bicolor tepals in lilies and provide a basis for similar research in other closely related species.
Collapse
Affiliation(s)
- Leifeng Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Panpan Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
- Department of Ornamental Plants, College of Landscape Architecture, Nanjing Forestry UniversityNanjing, China
| | - Yayan Feng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Hua Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yuwei Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yuchao Tang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Suxia Yuan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xinyan Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jun Ming
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
797
|
Stracke R, Turgut-Kara N, Weisshaar B. The AtMYB12 activation domain maps to a short C-terminal region of the transcription factor. ACTA ACUST UNITED AC 2017; 72:251-257. [DOI: 10.1515/znc-2016-0221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 02/05/2017] [Indexed: 01/14/2023]
Abstract
Abstract
The Arabidopsis thaliana R2R3-MYB transcription factor MYB12 is a light-inducible, flavonol-specific activator of flavonoid biosynthesis. The transactivation activity of the AtMYB12 protein was analyzed using a C-terminal deletion series in a transient A. thaliana protoplast assay with the goal of mapping the activation domain (AD). Although the deletion of the last 46 C-terminal amino acids did not affect the activation capacity, the deletion of the last 98 amino acids almost totally abolished transactivation of two different target promoters. A domain swap experiment using the yeast GAL4 DNA-binding domain revealed that the region from positions 282 to 328 of AtMYB12 was sufficient for transactivation. In contrast to the R2R3-MYB ADs known thus far, that of AtMYB12 is not located at the rearmost C-terminal end of the protein. The AtMYB12 AD is conserved in other experimentally proven R2R3-MYB flavonol regulators from different species.
Collapse
Affiliation(s)
- Ralf Stracke
- Bielefeld University , Chair of Genome Research , 33615 Bielefeld , Germany
| | - Neslihan Turgut-Kara
- Istanbul University, Faculty of Science , Department of Molecular Biology and Genetics , 34134 Vezneciler , Istanbul , Turkey
| | - Bernd Weisshaar
- Bielefeld University , Chair of Genome Research , 33615 Bielefeld , Germany
| |
Collapse
|
798
|
Zou B, Wan D, Li R, Han X, Li G, Wang R. Calmodulin-binding protein CBP60g functions as a negative regulator in Arabidopsis anthocyanin accumulation. PLoS One 2017; 12:e0173129. [PMID: 28253311 PMCID: PMC5333885 DOI: 10.1371/journal.pone.0173129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/15/2017] [Indexed: 11/18/2022] Open
Abstract
Anthocyanins, a kind of flavonoid, normally accumulate in the flowers and fruits and make them colorful. Anthocyanin accumulation is regulated via the different temporal and spatial expression of anthocyanin regulatory and biosynthetic genes. CBP60g, a calmodulin binding protein, has previously been shown to have a role in pathogen resistance, drought tolerance and ABA sensitivity. In this study, we found that CBP60g repressed anthocyanin accumulation induced by drought, sucrose and kinetin. The expression pattern of CBP60g was in accordance with the anthocyanin accumulation tissues. Real-time qPCR analysis revealed that the anthocyanin biosynthetic genes CHS, CHI and DFR, as well as two members of MBW complex, PAP1, a MYB transcription factor, and TT8, a bHLH transcription factor, were down regulated by CBP60g.
Collapse
Affiliation(s)
- Bo Zou
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, P. R. China
| | - Dongli Wan
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, P. R. China
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, P. R. China
| | - Ruili Li
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, P. R. China
- Wulanchabu Center for Disease Control and Prevention, Jining, P. R. China
| | - Xiaomin Han
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, P. R. China
- Department of Histology and Embryology, Baotou Medical College, Baotou, P. R. China
| | - Guojing Li
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, P. R. China
| | - Ruigang Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, P. R. China
- * E-mail:
| |
Collapse
|
799
|
Wen CH, Chu FH. A R2R3-MYB Gene LfMYB113 is Responsible for Autumn Leaf Coloration in Formosan sweet gum (Liquidambar formosana Hance). PLANT & CELL PHYSIOLOGY 2017; 58:508-521. [PMID: 28115495 DOI: 10.1093/pcp/pcw228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
The regulation of autumn leaf coloration in deciduous trees has long been an enigma. Due to the fact that different coloration phenotypes may be considered when planting, more understanding of the regulation mechanism is needed. In this study, a R2R3-MYB transcription factor gene LfMYB113 was identified from a subtropical deciduous tree species Formosan sweet gum (Liquidambar formosana Hance). The expression patterns of LfMYB113 in four selected phenotypes were different and were positively correlated with leaf anthocyanin content. In a 35S::LfMYB113 transgenic Nicotiana tabacum plant, both the early and late genes in the anthocyanin biosynthetic pathway were shown to be up-regulated. It was also shown that LfMYB113 can activate the promoter sequence of LfDFR1 and LfDFR2. Transient overexpression of LfMYB113 in Nicotiana benthamiana showed strong anthocyanin accumulation and pre-senescence; the latter was confirmed by up-regulation of senescence-associated genes. In addition, the activation of proLfSGR::YFP by LfMYB113 in transient experiments indicated that LfMYB113 may have a role in regulation of Chl degradation. To our knowledge, this is the first time a R2R3-MYB transcription factor has been functionally identified as one of the key regulators of autumn leaf coloration and autumn leaf senescence.
Collapse
Affiliation(s)
- Chi-Hsiang Wen
- School of Forestry and Resource Conservation, National Taiwan University, Taiwan
| | - Fang-Hua Chu
- School of Forestry and Resource Conservation, National Taiwan University, Taiwan
- Experimental Forest, National Taiwan University, Taiwan
| |
Collapse
|
800
|
Genome-wide identification of GLABRA3 downstream genes for anthocyanin biosynthesis and trichome formation in Arabidopsis. Biochem Biophys Res Commun 2017; 485:360-365. [PMID: 28216162 DOI: 10.1016/j.bbrc.2017.02.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 01/03/2023]
Abstract
GLABRA3 (GL3), a bHLH transcription factor, has previously proved to be involved in anthocyanin biosynthesis and trichome formation in Arabidopsis, however, its downstream targeted genes are still largely unknown. Here, we found that GL3 was widely present in Arabidopsis vegetative and reproductive organs. New downstream targeted genes of GL3 for anthocyanin biosynthesis and trichome formation were identified in young shoots and expanding true leaves by RNA sequencing. GL3-mediated gene expression was tissue specific in the two biological processes. This study provides new clues to further understand the GL3-mediated regulatory network of anthocyanin biosynthesis and trichome formation in Arabidopsis.
Collapse
|