751
|
Lewis VO, Ozawa MG, Deavers MT, Wang G, Shintani T, Arap W, Pasqualini R. The Interleukin-11 Receptor α as a Candidate Ligand-Directed Target in Osteosarcoma: Consistent Data from Cell Lines, Orthotopic Models, and Human Tumor Samples. Cancer Res 2009; 69:1995-9. [DOI: 10.1158/0008-5472.can-08-4845] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
752
|
Taverna G, Colombo P, Grizzi F, Franceschini B, Ceva-Grimaldi G, Seveso M, Giusti G, Piccinelli A, Graziotti P. Fractal analysis of two-dimensional vascularity in primary prostate cancer and surrounding non-tumoral parenchyma. Pathol Res Pract 2009; 205:438-444. [PMID: 19232838 DOI: 10.1016/j.prp.2008.12.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 10/10/2008] [Accepted: 12/17/2008] [Indexed: 11/15/2022]
Abstract
Prostate cancer is the fifth most frequent cancer in the world. However, none of the actual prognostic factors provide a valid index for predicting patient outcome. Here, we evaluate the two-dimensional vascularity in primary prostate tumors and surrounding non-tumoral parenchyma by means of fractal geometry, and assess any correlations between the results and some clinical and pathological parameters of prostate carcinoma. Prostate sections from 27 carcinoma patients were treated with CD34 antibodies. Two >10mm(2) areas of tumoral and surrounding non-tumoral parenchyma were digitized using an image analysis system that automatically quantified the fractal dimension of the vascular surface. Data were correlated with patient's age, PSA level, clinical and pathological stage, Gleason score, tumor volume, vascular invasion, surgical margins, and biochemical relapse. Two groups of patients were distinguished on the basis of whether the fractal dimension of their tumoral vascular surface was higher (group 1) or lower (group 2) than that of the surrounding non-tumoral parenchyma. Statistically significant between-group differences were found in terms of serum PSA levels (p=0.0061), tumor volume (p=0.0017), and biochemical relapse (p=0.031). The patients in group 2 had a poorer outcome. Our findings suggest a group of prostate cancer patients with a poor outcome, and the vascular surface fractal dimension as a helpful geometrical index in clinical practice.
Collapse
Affiliation(s)
- Gianluigi Taverna
- Department of Urology, Istituto Clinico Humanitas IRCCS, 20089 Rozzano, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
753
|
The Effects of Activated Protein C on the Septic Endothelium. Intensive Care Med 2009. [DOI: 10.1007/978-0-387-77383-4_67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
754
|
Marmon S, Hinchey J, Oh P, Cammer M, de Almeida CJ, Gunther L, Raine CS, Lisanti MP. Caveolin-1 expression determines the route of neutrophil extravasation through skin microvasculature. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:684-92. [PMID: 19164603 DOI: 10.2353/ajpath.2009.080091] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interleukin-8 plays a key role in the acute inflammatory response by mediating recruitment of neutrophils through vessel walls into affected tissues. During this process, molecular signals guide circulating blood neutrophils to target specific vessels for extravasation and to migrate through such vessels via particular routes. Our results show that levels of endothelial caveolin-1, the protein responsible for the induction of the membrane domains known as caveolae, are critical to each of these processes. We demonstrate that, in response to the intradermal injection of interleukin-8, neutrophils are preferentially recruited to a unique subset of venules that express high levels of intercellular adhesion molecule-1 and low levels of caveolin-1. Our results show that neutrophils traverse human dermal microvascular endothelial cells using one of two pathways: a transcellular route directly through the cell or a paracellular route through cellular junctions. Caveolin-1 expression appears to favor the transcellular path while down-regulation of caveolin-1 promotes the paracellular route.
Collapse
Affiliation(s)
- Shana Marmon
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
755
|
Kelly KA, Shaw SY, Nahrendorf M, Kristoff K, Aikawa E, Schreiber SL, Clemons PA, Weissleder R. Unbiased discovery of in vivo imaging probes through in vitro profiling of nanoparticle libraries. Integr Biol (Camb) 2009; 1:311-7. [PMID: 20023731 DOI: 10.1039/b821775k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vivo imaging reveals how proteins and cells function as part of complex regulatory networks in intact organisms, and thereby contributes to a systems-level understanding of biological processes. However, the development of novel in vivo imaging probes remains challenging. Most probes are directed against a limited number of pre-specified protein targets; cell-based screens for imaging probes have shown promise, but raise concerns over whether in vitro surrogate cell models recapitulate in vivo phenotypes. Here, we rapidly profile the in vitro binding of nanoparticle imaging probes in multiple samples of defined target vs. background cell types, using primary cell isolates. This approach selects for nanoparticles that show desired targeting effects across all tested members of a class of cells, and decreases the likelihood that an idiosyncratic cell line will unduly skew screening results. To adjust for multiple hypothesis testing, we use permutation methods to identify nanoparticles that best differentiate between the target and background cell classes. (This approach is conceptually analogous to one used for high-dimensionality datasets of genome-wide gene expression, e.g. to identify gene expression signatures that discriminate subclasses of cancer.) We apply this approach to the identification of nanoparticle imaging probes that bind endothelial cells, and validate our in vitro findings in human arterial samples, and by in vivo intravital microscopy in mice. Overall, this work presents a generalizable approach to the unbiased discovery of in vivo imaging probes, and may guide the further development of novel endothelial imaging probes.
Collapse
Affiliation(s)
- Kimberly A Kelly
- Center for Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St., Rm 5420, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|
756
|
Abstract
The pulmonary circulation represents a unique vascular bed, receiving 100% of the cardiac output while maintaining low blood pressure. Multiple different cell types, including endothelium, smooth muscle, and fibroblasts, contribute to normal vascular function, and to the vascular response to injury. Our understanding of the basic cell biology of these various cell types, and the roles they play in vascular homeostasis and disease, remains quite limited despite several decades of study. Recent advances in approaches that enable the mapping of cell origin and the study of the molecular basis of structure and function have resulted in a rapid accumulation of new information that is essential to vascular biology. A recent National Institutes of Health workshop was held to discuss emerging concepts in lung vascular biology. The findings of this workshop are summarized in this article.
Collapse
|
757
|
Marmon S, Cammer M, Raine CS, Lisanti MP. Transcellular migration of neutrophils is a quantitatively significant pathway across dermal microvascular endothelial cells. Exp Dermatol 2009; 18:88-90. [DOI: 10.1111/j.1600-0625.2008.00796.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
758
|
|
759
|
Hanjaya-Putra D, Gerecht S. Vascular engineering using human embryonic stem cells. Biotechnol Prog 2009; 25:2-9. [DOI: 10.1002/btpr.129] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
760
|
Wittchen ES. Endothelial signaling in paracellular and transcellular leukocyte transmigration. Front Biosci (Landmark Ed) 2009; 14:2522-45. [PMID: 19273217 DOI: 10.2741/3395] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the primary physical barrier between blood and tissue compartments within the body, blood vessel endothelial cells and integrity of the cell junctions connecting them must be carefully regulated to support leukocyte transendothelial migration only when necessary. Leukocytes utilize two independent routes across the endothelium: the paracellular route involves migration in-between adjacent endothelial cells and requires the transient disassembly of endothelial cell junctions, while the transcellular route occurs directly through an individual endothelial cell, likely requiring the formation of a channel or pore. In this review, I will first summarize the signaling events that are transduced by leukocyte engagement of endothelial cell-surface receptors like ICAM-1 and VCAM-1. Some of these signals include activation of GTPases, production of reactive oxygen species, and phosphorylation of target proteins. These signaling pathways converge to cause junctional disruption, cytoskeletal remodeling, and/or the membrane fusion events that are associated with leukocyte transendothelial migration. The review will conclude with a detailed discussion of the newly characterized transmigratory cup structure, and the recent advances made towards understanding the mechanisms of transcellular transendothelial migration.
Collapse
Affiliation(s)
- Erika S Wittchen
- Department of Cell and Developmental Biology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7295, USA.
| |
Collapse
|
761
|
A requirement for thioredoxin in redox-sensitive modulation of T-cadherin expression in endothelial cells. Biochem J 2008; 416:271-80. [PMID: 18627351 DOI: 10.1042/bj20080765] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
T-cad (T-cadherin), a glycosylphosphatidylinositol-anchored cadherin superfamily member, is expressed widely in the brain and cardiovascular system, and absent, decreased, or even increased, in cancers. Mechanisms controlling T-cad expression are poorly understood. The present study investigated transcriptional regulation of T-cad in ECs (endothelial cells). Conditions of oxidative stress (serum-deprivation or presence of H(2)O(2)) elevate T-cad mRNA and protein levels in ECs. Reporter gene analysis, using serially deleted T-cad promoter stretches ranging from -99 to -2304 bp, located the minimal promoter region of T-cad within -285 bp from the translation start site. Reporter activity in ECs transfected with the -285 bp construct increased under conditions of oxidative stress, and this was normalized by antioxidant N-acetylcysteine. An electrophoretic-mobility-shift assay revealed a specific nucleoprotein complex unique to -156 to -203 bp, which increased when nuclear extracts from oxidatively stressed ECs were used, suggesting the presence of redox-sensitive binding element(s). MS analysis of the nucleoprotein complex unique to -156 to -203 bp after streptavidin-agarose pull-down detected the presence of the redox-active protein thioredoxin. The presence of thioredoxin-1 in a nuclear extract from oxidatively stressed ECs was demonstrated after immunoprecipitation and immunoblotting. Transfection of ECs with thioredoxin-1 small interfering RNA abrogated oxidative-stress-induced up-regulation of T-cad transcripts and protein. We conclude that thioredoxin-1 is an important determinant of redox-sensitive transcriptional up-regulation of T-cad in ECs.
Collapse
|
762
|
Strell C, Entschladen F. Extravasation of leukocytes in comparison to tumor cells. Cell Commun Signal 2008; 6:10. [PMID: 19055814 PMCID: PMC2627905 DOI: 10.1186/1478-811x-6-10] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 12/04/2008] [Indexed: 12/15/2022] Open
Abstract
The multi-step process of the emigration of cells from the blood stream through the vascular endothelium into the tissue has been termed extravasation. The extravasation of leukocytes is fairly well characterized down to the molecular level, and has been reviewed in several aspects. Comparatively little is known about the extravasation of tumor cells, which is part of the hematogenic metastasis formation. Although the steps of the process are basically the same in leukocytes and tumor cells, i.e. rolling, adhesion, transmigration (diapedesis), the molecules that are involved are different. A further important difference is that leukocyte interaction with the endothelium changes the endothelial integrity only temporarily, whereas tumor cell interaction leads to an irreversible damage of the endothelial architecture. Moreover, tumor cells utilize leukocytes for their extravasation as linkers to the endothelium. Thus, metastasis formation is indirectly susceptible to localization signals that are literally specific for the immune system. We herein compare the extravasation of leukocytes and tumor cells with regard to the involved receptors and the localization signals that direct the cells to certain organs and sites of the body.
Collapse
Affiliation(s)
- Carina Strell
- Institute of Immunology, Witten/Herdecke University, Stockumer Str, 10, 58448 Witten, Germany.
| | | |
Collapse
|
763
|
Prasain N, Stevens T. The actin cytoskeleton in endothelial cell phenotypes. Microvasc Res 2008; 77:53-63. [PMID: 19028505 DOI: 10.1016/j.mvr.2008.09.012] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 09/26/2008] [Indexed: 10/21/2022]
Abstract
Endothelium forms a semi-permeable barrier that separates blood from the underlying tissue. Barrier function is largely determined by cell-cell and cell-matrix adhesions that define the limits of cell borders. Yet, such cell-cell and cell-matrix tethering is critically reliant upon the nature of adherence within the cell itself. Indeed, the actin cytoskeleton fulfills this essential function, to provide a strong, dynamic intracellular scaffold that organizes integral membrane proteins with the cell's interior, and responds to environmental cues to orchestrate appropriate cell shape. The actin cytoskeleton is comprised of three distinct, but inter-related structures, including actin cross-linking of spectrin within the membrane skeleton, the cortical actin rim, and actomyosin-based stress fibers. This review addresses each of these actin-based structures, and discusses cellular signals that control the disposition of actin in different endothelial cell phenotypes.
Collapse
Affiliation(s)
- Nutan Prasain
- Department of Molecular and Cellular Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | | |
Collapse
|
764
|
Schwarz MA, Caldwell L, Cafasso D, Zheng H. Emerging pulmonary vasculature lacks fate specification. Am J Physiol Lung Cell Mol Physiol 2008; 296:L71-81. [PMID: 18952755 DOI: 10.1152/ajplung.90452.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung morphogenesis requires precise coordination between branching morphogenesis and vascularization to generate distal airways capable of supporting respiration at the cell-cell interface. The specific origins and types of blood vessels that initially form in the lung, however, remain obscure. Herein, we definitively show that during the early phases of lung development [i.e., embryonic day (E) 11.5], functional vessels, replete with blood flow, are restricted to the mesenchyme, distal to the epithelium. However, by day E14.5, and in response to epithelial-derived VEGF signals, functional vessels extend from the mesenchyme to the epithelial interface. Moreover, these vessels reside adjacent to multipotent mesenchymal stromal cells that likely play a regulatory role in this process. As well as and distinct from the systemic vasculature, immunostaining for EphrinB2 and EphB4 revealed that arterial and venous identity is not distinguishable in emergent pulmonary vasculature. Collectively, this study provides evidence that lung vascularization initially originates in the mesenchyme, distal to the epithelium, and that arterial-venous specification does not exist in the early lung. At a mechanistic level, we show that basilar epithelial VEGF prompts endothelial cells to move toward the epithelium where they undergo morphogenesis during the proliferative, canalicular stage. Thus our findings challenge existing notions of vascular origin and identity during development.
Collapse
Affiliation(s)
- Margaret A Schwarz
- UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA.
| | | | | | | |
Collapse
|
765
|
Bakker W, Eringa EC, Sipkema P, van Hinsbergh VWM. Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res 2008; 335:165-89. [PMID: 18941783 DOI: 10.1007/s00441-008-0685-6] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Accepted: 08/22/2008] [Indexed: 12/19/2022]
Abstract
Endothelial dysfunction comprises a number of functional alterations in the vascular endothelium that are associated with diabetes and cardiovascular disease, including changes in vasoregulation, enhanced generation of reactive oxygen intermediates, inflammatory activation, and altered barrier function. Hyperglycemia is a characteristic feature of type 1 and type 2 diabetes and plays a pivotal role in diabetes-associated microvascular complications. Although hyperglycemia also contributes to the occurrence and progression of macrovascular disease (the major cause of death in type 2 diabetes), other factors such as dyslipidemia, hyperinsulinemia, and adipose-tissue-derived factors play a more dominant role. A mutual interaction between these factors and endothelial dysfunction occurs during the progression of the disease. We pay special attention to the possible involvement of endoplasmic reticulum stress (ER stress) and the role of obesity and adipose-derived adipokines as contributors to endothelial dysfunction in type 2 diabetes. The close interaction of adipocytes of perivascular adipose tissue with arteries and arterioles facilitates the exposure of their endothelial cells to adipokines, particularly if inflammation activates the adipose tissue and thus affects vasoregulation and capillary recruitment in skeletal muscle. Hence, an initial dysfunction of endothelial cells underlies metabolic and vascular alterations that contribute to the development of type 2 diabetes.
Collapse
Affiliation(s)
- Wineke Bakker
- Laboratory of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
766
|
Zhang J, Burridge KA, Friedman MH. In vivo differences between endothelial transcriptional profiles of coronary and iliac arteries revealed by microarray analysis. Am J Physiol Heart Circ Physiol 2008; 295:H1556-61. [PMID: 18689496 PMCID: PMC2593512 DOI: 10.1152/ajpheart.00540.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 08/04/2008] [Indexed: 12/21/2022]
Abstract
Endothelial cells (ECs) from different vascular beds display a remarkable heterogeneity in both structure and function. Phenotypic heterogeneity among arterial ECs is particularly relevant to atherosclerosis since the disease occurs predominantly in major arteries, which vary in their atherosusceptibility. To explore EC heterogeneity between typical atheroprone and atheroresistant arteries, we used DNA microarrays to compare gene expression profiles of freshly harvested porcine coronary (CECs) and iliac artery (IECs) ECs. Statistical analysis revealed 51 genes that were differentially expressed in CECs relative to IECs at a false discovery rate of 5%. Seventeen of these genes are known to be involved in atherogenesis. Consistent with coronary arteries being more atherosusceptible, almost all putative atherogenic genes were overexpressed in CECs, whereas all atheroprotective genes were downregulated, relative to IECs. A subset of the identified genes was validated by quantitative polymerase chain reaction (PCR). PCR results suggest that the differences in expression levels between CECs and IECs for the HOXA10 and HOXA9 genes were >100-fold. Gene ontology (GO) and biological pathway analysis revealed a global expression difference between CECs and IECs. Genes in twelve GO categories, including complement immune activation, immunoglobulin-mediated response, and system development, were significantly upregulated in CECs. CECs also overexpressed genes involved in several inflammatory pathways, including the classical pathway of complement activation and the IGF-1-mediated pathway. The in vivo transcriptional differences between CECs and IECs found in this study may provide new insights into the factors responsible for coronary artery atherosusceptibility.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
767
|
Jelic S, Le Jemtel TH. Inflammation, Oxidative Stress, and the Vascular Endothelium in Obstructive Sleep Apnea. Trends Cardiovasc Med 2008; 18:253-60. [DOI: 10.1016/j.tcm.2008.11.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 11/19/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
|
768
|
Loufrani L, Henrion D. Role of the cytoskeleton in flow (shear stress)-induced dilation and remodeling in resistance arteries. Med Biol Eng Comput 2008; 46:451-60. [PMID: 18246377 DOI: 10.1007/s11517-008-0306-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 01/10/2008] [Indexed: 11/28/2022]
Abstract
Cytoskeletal proteins determine cell shape and integrity and membrane-bound structures connected to extracellular components allow tissue integrity. These structural elements have an active role in the interaction of blood vessels with their environment. Shear stress due to blood flow is the most important force stimulating the endothelium. The role of cytoskeletal proteins in endothelial responses to flow has been studied in resistance arteries using pharmacological tools and transgenic models. Shear stress activates extracellular "flow sensing" elements associated with a thick glycocalyx communicating the signal to membrane-bound complexes (integrins and/or dystrophin-dystroglycans) and to eNOS through a pathway involving the intermediate filament vimentin, the microtubule network and actin. When blood flow increases chronically the endothelium triggers diameter enlargement and medial hypertrophy. This is facilitated by the genetic absence of the intermediate filaments, vimentin and desmin suggesting that these elements oppose the process.
Collapse
Affiliation(s)
- Laurent Loufrani
- Department of Integrated Neurovascular Biology, INSERM, CNRS, CHU d'Angers, France
| | | |
Collapse
|
769
|
Endothelial cells support persistent gammaherpesvirus 68 infection. PLoS Pathog 2008; 4:e1000152. [PMID: 18787698 PMCID: PMC2526176 DOI: 10.1371/journal.ppat.1000152] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 08/12/2008] [Indexed: 12/24/2022] Open
Abstract
A variety of human diseases are associated with gammaherpesviruses, including neoplasms of lymphocytes (e.g. Burkitt's lymphoma) and endothelial cells (e.g. Kaposi's sarcoma). Gammaherpesvirus infections usually result in either a productive lytic infection, characterized by expression of all viral genes and rapid cell lysis, or latent infection, characterized by limited viral gene expression and no cell lysis. Here, we report characterization of endothelial cell infection with murine gammaherpesvirus 68 (γHV68), a virus phylogenetically related and biologically similar to the human gammaherpesviruses. Endothelial cells supported γHV68 replication in vitro, but were unique in that a significant proportion of the cells escaped lysis, proliferated, and remained viable in culture for an extended time. Upon infection, endothelial cells became non-adherent and altered in size, complexity, and cell-surface protein expression. These cells were uniformly infected and expressed the lytic transcription program based on detection of abundant viral gene transcripts, GFP fluorescence from the viral genome, and viral surface protein expression. Additionally, endothelial cells continued to produce new infectious virions as late as 30 days post-infection. The outcome of this long-term infection was promoted by the γHV68 v-cyclin, because in the absence of the v-cyclin, viability was significantly reduced following infection. Importantly, infected primary endothelial cells also demonstrated increased viability relative to infected primary fibroblasts, and this increased viability was dependent on the v-cyclin. Finally, we provide evidence for infection of endothelial cells in vivo in immune-deficient mice. The extended viability and virus production of infected endothelial cells indicated that endothelial cells provided a source of prolonged virus production and identify a cell-type specific adaptation of gammaherpesvirus replication. While infected endothelial cells would likely be cleared in a healthy individual, persistently infected endothelial cells could provide a source of continued virus replication in immune-compromised individuals, a context in which gammaherpesvirus-associated pathology frequently occurs. Various human diseases are associated with gammaherpesvirus infections, including neoplasms of lymphocytes (e.g. Burkitt's lymphoma) and endothelial cells (e.g. Kaposi's sarcoma). Gammaherpesvirus infection of cells usually results in either productive infection that is characterized by new virus production and rapid destruction of the host cell, or latent infection that is characterized by long-term carriage of viral DNA in intact cells that do not produce virus. Here, we characterize endothelial cell infection using a small animal model of gammaherpesvirus infection and disease. While infection of endothelial cells resulted in virus production as most cells do, infection of this cell type was unique in that cells remained intact and continued to proliferate. These intact, infected endothelial cells were significantly altered in appearance and gene expression compared to uninfected cells, changes predicted to impact endothelial cell growth and function. Endothelial cells were unique in their ability to support this type of persistent infection. These data demonstrate an additional mechanism, beyond latency, by which gammaherpesviruses may achieve long-term propagation, particularly in conditions of immune suppression. Our results suggest persistently infected cells as a therapeutic target for prevention/treatment of chronic disease, and may provide a mouse model for future testing.
Collapse
|
770
|
Coleman DA, Hoyer LL. Interactions between pathogenic fungi and human epithelial and endothelial surfaces. CURRENT FUNGAL INFECTION REPORTS 2008. [DOI: 10.1007/s12281-008-0024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
771
|
Aird WC. Molecular heterogeneity of tumor endothelium. Cell Tissue Res 2008; 335:271-81. [PMID: 18726119 DOI: 10.1007/s00441-008-0672-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 07/16/2008] [Indexed: 12/30/2022]
Abstract
Tumors depend on a vascular supply for their growth. Tumor blood vessels, which are derived from normal tissue vasculature, display a markedly abnormal phenotype. Tumor endothelial properties are highly varied in space and time. An important goal is to delineate the range of phenotypes in tumor endothelium and to identify tumor endothelial-specific molecular signatures. This information should lead to a more complete understanding of the mechanisms of tumor growth, the discovery of new therapeutic targets, and the development of biomarkers for diagnosis and surveillance. The goals of this review are to outline recent advances in dissecting tumor endothelial-cell-specific gene expression, to address mechanisms of phenotypic heterogeneity in tumor vascular beds, and to discuss the therapeutic implications of these findings.
Collapse
Affiliation(s)
- William C Aird
- The Center for Vascular Biology Research and Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, RW-663, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
772
|
Shetty S, Lalor PF, Adams DH. Lymphocyte recruitment to the liver: molecular insights into the pathogenesis of liver injury and hepatitis. Toxicology 2008; 254:136-46. [PMID: 18775762 DOI: 10.1016/j.tox.2008.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/04/2008] [Accepted: 08/05/2008] [Indexed: 12/11/2022]
Abstract
Recirculation of blood lymphocytes through the liver occurs under normal conditions as part of the process of immune surveillance. In response to injury or infection recruitment from blood increases and the nature and distribution of the infiltrate will determine the type and outcome of the resulting hepatitis. Recruitment from blood occurs via the hepatic sinusoids and is controlled by interactions between circulating lymphocytes and the highly specialised sinusoidal endothelial cells. This is a low flow vascular bed and the molecular basis of recruitment differs from other tissues. In this review we outline the molecular basis of lymphocyte recruitment to the liver and the effect on it of the local tissue microenvironment and how dysregulation of these processes can lead to uncontrolled inflammation and liver damage.
Collapse
Affiliation(s)
- Shishir Shetty
- Liver Research Group, MRC centre for immune regulation, 5th Floor, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
773
|
Newcomer SC, Taylor JC, McAllister RM, Laughlin MH. Effects of chronic nitric oxide synthase inhibition on endothelium-dependent and -independent relaxation in arteries that perfuse skeletal muscle of swine. ACTA ACUST UNITED AC 2008; 15:17-31. [PMID: 18568942 DOI: 10.1080/10623320802092211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The purpose of this investigation was to test the hypothesis that chronic N(G)-nitro-l-arginine methyl ester (l-NAME) treatment produces differential effects on conduit artery and resistance arteriole relaxation responses to endothelium-dependent and -independent vasodilators in arteries that perfuse skeletal muscle of swine. To test this hypothesis, conduit skeletal muscle arteries and second-order skeletal muscle (2A) arterioles were harvested from 14 Yucatan swine that were chronically administered l-NAME and from 16 controls. In vitro assessments of vasorelaxation to increasing doses of acetylcholine (ACH), bradykinin (BK), and sodium nitroprusside (SNP) were performed in both conduit and 2A arterioles. l-NAME treatment produced a significant reduction in both BK and ACH relaxation responses in the conduit arteries. In contrast, the relaxation response and/or sensitivity to SNP were significantly greater in the intact, but not denuded, conduit arterial rings from chronically l-NAME-treated swine. There were no significant effects of chronic l-NAME treatment on vasodilation of skeletal muscle arterioles. These findings suggest (1) that unlike arterioles, skeletal muscle conduit arteries do not functionally compensate for a lack of NO through the upregulation of alternative vasodilator pathways; (2) that the greater relaxation response in conduit arteries of chronically l-NAME-treated swine to SNP can be explained by alterations to the endothelium.
Collapse
Affiliation(s)
- S C Newcomer
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | | | | | | |
Collapse
|
774
|
Maniatis NA, Kotanidou A, Catravas JD, Orfanos SE. Endothelial pathomechanisms in acute lung injury. Vascul Pharmacol 2008; 49:119-33. [PMID: 18722553 PMCID: PMC7110599 DOI: 10.1016/j.vph.2008.06.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 06/09/2008] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) and its most severe extreme the acute respiratory distress syndrome (ARDS) refer to increased-permeability pulmonary edema caused by a variety of pulmonary or systemic insults. ALI and in particular ARDS, are usually accompanied by refractory hypoxemia and the need for mechanical ventilation. In most cases, an exaggerated inflammatory and pro-thrombotic reaction to an initial stimulus, such as systemic infection, elicits disruption of the alveolo-capillary membrane and vascular fluid leak. The pulmonary endothelium is a major metabolic organ promoting adequate pulmonary and systemic vascular homeostasis, and a main target of circulating cells and humoral mediators under injury; pulmonary endothelium is therefore critically involved in the pathogenesis of ALI. In this review we will discuss mechanisms of pulmonary endothelial dysfunction and edema generation in the lung with special emphasis on the interplay between the endothelium, the immune and hemostatic systems, and highlight how these principles apply in the context of defined disorders and specific insults implicated in ALI pathogenesis.
Collapse
Affiliation(s)
| | - Anastasia Kotanidou
- “M. Simou” Laboratory, University of Athens Medical School, Athens, Greece
- 1st Department of Critical Care, Evangelismos Hospital, University of Athens Medical School, Athens, Greece
| | - John D. Catravas
- Vascular Biology Center, Medical College of Georgia, Augusta, GA, United States
| | - Stylianos E. Orfanos
- “M. Simou” Laboratory, University of Athens Medical School, Athens, Greece
- 2nd Department of Critical Care, Attikon Hospital, University of Athens Medical School, Athens, Greece
- Corresponding author. 2nd Department of Critical Care, Attikon Hospital, 1, Rimini St., 124 62, Haidari, Athens, Greece. Tel.: +30 210 7235521; fax: +30 210 7239127.
| |
Collapse
|
775
|
Macdonald JA, Murugesan N, Pachter JS. Validation of immuno-laser capture microdissection coupled with quantitative RT-PCR to probe blood-brain barrier gene expression in situ. J Neurosci Methods 2008; 174:219-26. [PMID: 18692089 DOI: 10.1016/j.jneumeth.2008.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/08/2008] [Accepted: 07/15/2008] [Indexed: 11/28/2022]
Abstract
Laser capture microdissection (LCM) holds great potential for analyzing gene expression profiles in situ. Most recently, this laboratory employed a novel immunostain-based LCM protocol (immuno-LCM) to selectively retrieve brain microvascular endothelial cells (BMEC) from intimately associated perivascular cells. However, before this protocol can be confidently coupled to downstream analytical platforms, it must be demonstrated that any variability associated with it is minimal, so as not to obscure data interpretation. As various factors could contribute to variability, this study focused on determining whether technical inconsistency and/or biological diversity of sample populations, played such a role. Specifically, two separate immuno-LCM-derived BMEC samples derived from adjacent tissue sections of a single mouse (to detect only technical variability), and from analogous tissue sections of three different mice (to detect technical and biological variability) were compared for their relative expression of 16 genes, using quantitative-RT-PCR (qRT-PCR). Both significant linear and rank-order correlations were observed between different sections from the same animal, underscoring lack of technical variability in this LCM application. Furthermore, a three-dimensional scatter plot of gene expression profiles from the three animals was linear, and ANOVA showed absence of statistically significant differences between any of the animals, confirming lack of biological variability. These findings argue that immuno-LCM coupled to qRT-PCR affords a reproducible means to assay gene expression in situ.
Collapse
Affiliation(s)
- Jennifer A Macdonald
- Blood-Brain Barrier Laboratory, Center for Vascular Biology and Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3505, USA
| | | | | |
Collapse
|
776
|
Carman CV, Springer TA. Trans-cellular migration: cell-cell contacts get intimate. Curr Opin Cell Biol 2008; 20:533-40. [PMID: 18595683 DOI: 10.1016/j.ceb.2008.05.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 05/12/2008] [Accepted: 05/19/2008] [Indexed: 12/31/2022]
Abstract
Trans-cellular migration, the movement of one cell directly through another, seems an unlikely, counterintuitive, and even bizarre process. Trans-cellular migration has been reported for nearly half a century in leukocyte transendothelial migration in vivo, but is not well enough accepted to widely feature in textbook accounts of diapedesis. Recently, the first in vitro and additional in vivo observations of trans-cellular diapedesis have been reported. Mechanisms by which this occurs are just beginning to be elucidated and point to podosome-like protrusive activities in leukocytes and specific fusogenic functions in endothelial cells. Emerging evidence for a quantitatively significant contribution of trans-cellular migration to leukocyte trafficking in increasingly diverse settings suggests that this phenomenon represents an important and physiologic cell biological process.
Collapse
Affiliation(s)
- Christopher V Carman
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.
| | | |
Collapse
|
777
|
Kim S, von Recum H. Endothelial stem cells and precursors for tissue engineering: cell source, differentiation, selection, and application. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:133-47. [PMID: 18454639 DOI: 10.1089/teb.2007.0304] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endothelial cells are of great interest because of their potential in cell therapy for vascular diseases and ischemic tissue, tissue engineering for vascular grafts and vascularized tissue beds, and modeling for pharmaceutical transport across endothelial barriers. However, limited availability and proliferation capability of mature endothelial cells hampers development of these applications. Recent advances in stem cell technology have enabled researchers to derive endothelial or endothelial-like cells from stem cells or other precursor populations. The current state of these cell sources and their in vitro differentiation, selection, and applications are discussed in this review.
Collapse
Affiliation(s)
- Saejeong Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
778
|
Abstract
PURPOSE OF REVIEW Since pulmonary edema from increased endothelial permeability is the hallmark of acute lung injury, a frequently encountered entity in critical care medicine, the study of endothelial responses in this setting is crucial to the development of effective endothelial-targeted treatments. RECENT FINDINGS From the enormous amount of research in the field of endothelial pathophysiology, we have focused on work delineating endothelial alterations elicited by noxious stimuli implicated in acute lung injury. The bulk of the material covered deals with molecular and cellular aspects of the pathogenesis, reflecting current trends in the published literature. We initially discuss pathways of endothelial dysfunction in acute lung injury and then cover the mechanisms of endothelial protection. Several experimental treatments in animal models are presented, which aid in the understanding of the disease pathogenesis and provide evidence for potentially useful therapies. SUMMARY Mechanistic studies have delivered several interventions, which are effective in preventing and treating experimental acute lung injury and have thus provided objectives for translational studies. Some of these modalities may evolve into clinically useful tools in the treatment of this devastating illness.
Collapse
|
779
|
Yang XF, Yin Y, Wang H. VASCULAR INFLAMMATION AND ATHEROGENESIS ARE ACTIVATED VIA RECEPTORS FOR PAMPs AND SUPPRESSED BY REGULATORY T CELLS. ACTA ACUST UNITED AC 2008; 5:125-142. [PMID: 19578482 DOI: 10.1016/j.ddstr.2008.11.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite significant advances in identifying the risk factors and elucidating atherosclerotic pathology, atherosclerosis remains the leading cause of morbidity and mortality in industrialized society. These risk factors independently or synergistically lead to chronic vascular inflammation, which is an essential requirement for the progression of atherosclerosis in patients. However, the mechanisms underlying the pathogenic link between the risk factors and atherosclerotic inflammation remain poorly defined. Significant progress has been made in two major areas, which are determination of the roles of the receptors for pathogen-associated molecular patterns (PAMPs) in initiation of vascular inflammation and atherosclerosis, and characterization of the roles of regulatory T cells in suppression of vascular inflammation and atherosclerosis. In this review, we focus on three related issues: (1) examining the recent progress in endothelial cell pathology, inflammation and their roles in atherosclerosis; (2) analyzing the roles of the receptors for pathogen-associated molecular patterns (PAMPs) in initiation of vascular inflammation and atherosclerosis; and (3) analyzing the advances in our understanding of suppression of vascular inflammation and atherosclerosis by regulatory T cells. Continuous improvement of our understanding of the risk factors involved in initiation and promotion of artherogenesis, will lead to the development of novel therapeutics for ischemic stroke and cardiovascular diseases.
Collapse
Affiliation(s)
- Xiao-Feng Yang
- Department of Pharmacology and Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140
| | | | | |
Collapse
|
780
|
Miller DS, Bauer B, Hartz AMS. Modulation of P-glycoprotein at the blood-brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev 2008; 60:196-209. [PMID: 18560012 PMCID: PMC2634288 DOI: 10.1124/pr.107.07109] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Pharmacotherapy of central nervous system (CNS) disorders (e.g., neurodegenerative diseases, epilepsy, brain cancer, and neuro-AIDS) is limited by the blood-brain barrier. P-glycoprotein, an ATP-driven, drug efflux transporter, is a critical element of that barrier. High level of expression, luminal membrane location, multispecificity, and high transport potency make P-glycoprotein a selective gatekeeper of the blood-brain barrier and thus a primary obstacle to drug delivery into the brain. As such, P-glycoprotein limits entry into the CNS for a large number of prescribed drugs, contributes to the poor success rate of CNS drug candidates, and probably contributes to patient-to-patient variability in response to CNS pharmacotherapy. Modulating P-glycoprotein could therefore improve drug delivery into the brain. Here we review the current understanding of signaling mechanisms responsible for the modulation of P-glycoprotein activity/expression at the blood-brain barrier with an emphasis on recent studies from our laboratories. Using intact brain capillaries from rats and mice, we have identified multiple extracellular and intracellular signals that regulate this transporter; several signaling pathways have been mapped. Three pathways are triggered by elements of the brain's innate immune response, one by glutamate, one by xenobiotic-nuclear receptor (pregnane X receptor) interactions, and one by elevated beta-amyloid levels. Signaling is complex, with several pathways sharing common signaling elements [tumor necrosis factor (TNF) receptor 1, endothelin (ET) B receptor, protein kinase C, and nitric-oxide synthase), suggesting a regulatory network. Several pathways include autocrine/paracrine elements, involving release of the proinflammatory cytokine, TNF-alpha, and the polypeptide hormone, ET-1. Finally, several steps in signaling are potential therapeutic targets that could be used to modulate P-glycoprotein activity in the clinic.
Collapse
Affiliation(s)
- David S Miller
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
781
|
Kim H, Lee JM, Park JS, Jo SA, Kim YO, Kim CW, Jo I. Dexamethasone coordinately regulates angiopoietin-1 and VEGF: a mechanism of glucocorticoid-induced stabilization of blood-brain barrier. Biochem Biophys Res Commun 2008; 372:243-8. [PMID: 18485896 DOI: 10.1016/j.bbrc.2008.05.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 05/07/2008] [Indexed: 11/26/2022]
Abstract
Glucocorticoids stabilize the blood-brain barrier (BBB), leading to attenuation of vasogenic brain edema. However, the action mechanism of glucocorticoids has been poorly elucidated. To elucidate the mechanism, we investigated whether dexamethasone (Dex), a synthetic glucocorticoid hormone, regulates the levels of key permeability regulating factors such as angiopoietin-1, angiopoietin-2, and vascular endothelial growth factor (VEGF) in the three types of cells comprising BBB. Dex increased the level of angiopoietin-1 mRNA and protein and decreased VEGF mRNA and protein in brain astrocytes and pericytes, but not in endothelial cells. The mRNA and protein of angiopoietin-2 were detected only in endothelial cells and not regulated by Dex. The Dex-induced regulation of angiopoietin-1 and VEGF was inhibited by RU486, suggestive of glucocorticoid receptor mediation. The mRNA stability of angiopoietin-1 and VEGF was not changed by Dex treatment, implying that Dex increases angiopoietin-1 and decreases VEGF through transcriptional regulation. This is the first study showing the coordinate regulation of angiopoietin-1 and VEGF by glucocorticoids, suggesting a novel mechanism underlying glucocorticoids-induced stabilization of BBB.
Collapse
Affiliation(s)
- Hyongbum Kim
- Department of Biomedical Sciences, National Institute of Health, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
782
|
Metcalf DJ, Nightingale TD, Zenner HL, Lui-Roberts WW, Cutler DF. Formation and function of Weibel-Palade bodies. J Cell Sci 2008; 121:19-27. [PMID: 18096688 DOI: 10.1242/jcs.03494] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Weibel-Palade bodies (WPBs) are secretory organelles used for post-synthesis storage in endothelial cells that can, very rapidly, be triggered to release their contents. They carry a variety of bioactive molecules that are needed to mount a rapid response to the complex environment of cells that line blood vessels. They store factors that are essential to haemostasis and inflammation, as well as factors that modulate vascular tonicity and angiogenesis. The number of WPBs and their precise content vary between endothelial tissues, reflecting their differing physiological circumstances. The particular functional demands of the highly multimerised haemostatic protein von Willebrand Factor (VWF), which is stored in WPBs as tubules until release, are responsible for the cigar shape of these granules. How VWF tubules drive the formation of these uniquely shaped organelles, and how WPB density increases during maturation, has recently been revealed by EM analysis using high-pressure freezing and freeze substitution. In addition, an AP1/clathrin coat has been found to be essential to WPB formation. Following recruitment of cargo at the TGN, there is a second wave of recruitment that delivers integral and peripheral membrane proteins to WPBs, some of which is AP3 dependent.
Collapse
Affiliation(s)
- Daniel J Metcalf
- MRC Laboratory of Molecular Cell Biology, Cell Biology Unit, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
783
|
Dudas M, Wysocki A, Gelpi B, Tuan TL. Memory encoded throughout our bodies: molecular and cellular basis of tissue regeneration. Pediatr Res 2008; 63:502-12. [PMID: 18427295 DOI: 10.1203/pdr.0b013e31816a7453] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
When a sheep loses its tail, it cannot regenerate it in the manner of lizards. On the other hand, it is possible to clone mammals from somatic cells, showing that a complete developmental program is intact in a wounded sheep's tail the same way it is in a lizard. Thus, there is a requirement for more than only the presence of the entire genetic code in somatic cells for regenerative abilities. Thoughts like this have motivated us to assemble more than just a factographic synopsis on tissue regeneration. As a model, we review skin wound healing in chronological order, and when possible, we use that overview as a framework to point out possible mechanisms of how damaged tissues can restore their original structure. This article postulates the existence of tissue structural memory as a complex distributed homeostatic mechanism. We support such an idea by referring to an extremely fragmented literature base, trying to synthesize a broad picture of important principles of how tissues and organs may store information about their own structure for the purposes of regeneration. Selected developmental, surgical, and tissue engineering aspects are presented and discussed in the light of recent findings in the field. When a sheep loses its tail, it cannot regenerate it in the manner of lizards. On the other hand, it is possible to clone mammals from somatic cells, showing that a complete developmental program is intact in a wounded sheep's tail the same way it is in a lizard. Thus, there is a requirement for more than only the presence of the entire genetic code in somatic cells for regenerative abilities. Thoughts like this have motivated us to assemble more than just a factographic synopsis on tissue regeneration. As a model, we review skin wound healing in chronological order, and when possible, we use that overview as a framework to point out possible mechanisms of how damaged tissues can restore their original structure. This article postulates the existence of tissue structural memory as a complex distributed homeostatic mechanism. We support such an idea by referring to an extremely fragmented literature base, trying to synthesize a broad picture of important principles of how tissues and organs may store information about their own structure for the purposes of regeneration. Selected developmental, surgical, and tissue engineering aspects are presented and discussed in the light of recent findings in the field.
Collapse
Affiliation(s)
- Marek Dudas
- Developmental Biology Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | |
Collapse
|
784
|
Seguin C, Kassis J, Busque L, Bestawros A, Theodoropoulos J, Alonso ML, Harvey EJ. Non-traumatic necrosis of bone (osteonecrosis) is associated with endothelial cell activation but not thrombophilia. Rheumatology (Oxford) 2008; 47:1151-5. [DOI: 10.1093/rheumatology/ken206] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
785
|
Jelic S, Padeletti M, Kawut SM, Higgins C, Canfield SM, Onat D, Colombo PC, Basner RC, Factor P, LeJemtel TH. Inflammation, oxidative stress, and repair capacity of the vascular endothelium in obstructive sleep apnea. Circulation 2008; 117:2270-8. [PMID: 18413499 DOI: 10.1161/circulationaha.107.741512] [Citation(s) in RCA: 410] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Indirect evidence implicates endothelial dysfunction in the pathogenesis of vascular diseases associated with obstructive sleep apnea (OSA). We investigated directly whether dysfunction and inflammation occur in vivo in the vascular endothelium of patients with OSA. The effects of continuous positive airway pressure (CPAP) therapy on endothelial function and repair capacity were assessed. METHODS AND RESULTS Thirty-two patients with newly diagnosed OSA and 15 control subjects were studied. Proteins that regulate basal endothelial nitric oxide (NO) production (endothelial NO synthase [eNOS] and phosphorylated eNOS) and inflammation (cyclooxygenase-2 and inducible NOS) and markers of oxidative stress (nitrotyrosine) were quantified by immunofluorescence in freshly harvested venous endothelial cells before and after 4 weeks of CPAP therapy. Vascular reactivity was measured by flow-mediated dilation. Circulating endothelial progenitor cell levels were quantified to assess endothelial repair capacity. Baseline endothelial expression of eNOS and phosphorylated eNOS was reduced by 59% and 94%, respectively, in patients with OSA compared with control subjects. Expression of both nitrotyrosine and cyclooxygenase-2 was 5-fold greater in patients with OSA than in control subjects, whereas inducible NOS expression was 56% greater. Expression of eNOS and phosphorylated eNOS significantly increased, whereas expression of nitrotyrosine, cyclooxygenase-2, and inducible NOS significantly decreased in patients who adhered to CPAP > or = 4 hours daily. Baseline flow-mediated dilation and endothelial progenitor cell levels were lower in patients than in control subjects, and both significantly increased in patients who adhered to CPAP > or = 4 hours daily. CONCLUSIONS OSA directly affects the vascular endothelium by promoting inflammation and oxidative stress while decreasing NO availability and repair capacity. Effective CPAP therapy is associated with the reversal of these alterations.
Collapse
Affiliation(s)
- Sanja Jelic
- Columbia University College of Physicians and Surgeons, Division of Pulmonary, Allergy, and Critical Care Medicine, PH8 Center, Room 840, 630 W 168th St, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
786
|
|
787
|
Abstract
The ability of tumor cells to metastasize is associated with a poor prognosis for cancer. During the process of metastasis, tumor cells circulating in the blood or lymph vessels can adhere to, and potentially transmigrate through, the endothelium and invade the connective tissue. We studied the effectiveness of the endothelium as a barrier against the invasion of 51 tumor cell lines into a three-dimensional collagen matrix. Only nine tumor cell lines showed attenuated invasion in the presence of an endothelial cell monolayer, whereas 17 cell lines became invasive or showed a significantly increased invasion. Endothelial cells cocultured with invasive tumor cells increased chemokine gene expression of IL-8 and Gro-β. Expression of the IL-8 and Gro-β receptor, CXCR2, was upregulated in invasive tumor cells. Addition of IL-8 or Gro-β increased tumor cell invasiveness by more than twofold. Tumor cell variants selected for high CXCR2 expression were fourfold more invasive in the presence of an endothelial cell layer, whereas CXCR2 siRNA knock-down cells were fivefold less invasive. We demonstrate that Gro-β and IL-8 secreted by endothelial cells, together with CXCR2 receptor expression on invasive tumor cells, contribute to the breakdown of the endothelial barrier by enhancing tumor cell force generation and cytoskeletal remodeling dynamics.
Collapse
|
788
|
Alvarez DF, Huang L, King JA, ElZarrad MK, Yoder MC, Stevens T. Lung microvascular endothelium is enriched with progenitor cells that exhibit vasculogenic capacity. Am J Physiol Lung Cell Mol Physiol 2007; 294:L419-30. [PMID: 18065657 DOI: 10.1152/ajplung.00314.2007] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial progenitor cells (EPCs) have been isolated postnatally from bone marrow, blood, and both the intima and adventitia of conduit vessels. However, it is unknown whether EPCs can be isolated from the lung microcirculation. Thus we sought to determine whether the microvasculature possesses EPCs capable of de novo vasculogenesis. Rat pulmonary artery (PAEC) and microvascular (PMVEC) endothelial cells were isolated and selected by using a single-cell clonogenic assay. Whereas the majority of PAECs (approximately 60%) were fully differentiated, the majority of PMVECs (approximately 75%) divided, with approximately 50% of the single cells giving rise to large colonies (>2,000 cells/colony). These highly proliferative cells exhibited the capacity to reconstitute the entire proliferative hierarchy of PMVECs, unveiling the existence of resident microvascular endothelial progenitor cells (RMEPCs). RMEPCs expressed endothelial cell markers (CD31, CD144, endothelial nitric oxide synthase, and von Willenbrand factor) and progenitor cell antigens (CD34 and CD309) but did not express the leukocyte marker CD45. Consistent with their origin, RMEPCs interacted with Griffonia simplicifolia and displayed restrictive barrier properties. In vitro and in vivo Matrigel assays revealed that RMEPCs possess vasculogenic capacity, forming ultrastructurally normal de novo vessels. Thus the pulmonary microcirculation is enriched with EPCs that display vasculogenic competence while maintaining functional endothelial microvascular specificity.
Collapse
Affiliation(s)
- Diego F Alvarez
- Department of Pharmacology, Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | | | |
Collapse
|
789
|
Kleinschmidt AM, Nassiri M, Stitt MS, Wasserloos K, Watkins SC, Pitt BR, Jahroudi N. Sequences in intron 51 of the von Willebrand factor gene target promoter activation to a subset of lung endothelial cells in transgenic mice. J Biol Chem 2007; 283:2741-50. [PMID: 18048367 DOI: 10.1074/jbc.m705466200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vivo analyses of the VWF promoter previously demonstrated that a fragment spanning sequences -487 to +247 targets promoter activation to brain vascular endothelial cells, whereas a longer fragment including 2182 bp of the 5'-flanking sequences, the first exon, and the first intron activated expression in endothelial cells of the heart and muscles as well as the brain of transgenic mice. These results suggested that additional VWF gene sequences were required for expression in other vascular endothelial cells in vivo. We have now identified a region within intron 51 of the VWF gene that is DNase I-hypersensitive (HSS) specifically in non-endothelial cells and interacts with endothelial and non-endothelial specific complexes that contain YY1. We demonstrate that beta-actin is associated with YY1 specifically in the nucleus of non-endothelial cells and is a component of the nuclear protein complexes that interact with the DNase I-hypersensitive region. In vitro transfection analyses demonstrated that HSS sequences containing this YY1-binding site do not significantly affect VWF promoter activity. However, in vivo analyses demonstrated that addition of these sequences to the VWF promoter (-487 to +247) results in promoter activation in lung and brain vascular endothelial cells. These results demonstrate that the HSS sequences in intron 51 of the VWF gene contain cis-acting elements that are necessary for the VWF gene transcription in a subset of lung endothelial cells in vivo.
Collapse
|
790
|
Clark J, Alvarez DF, Alexeyev M, King JAC, Huang L, Yoder MC, Stevens T. Regulatory role for nucleosome assembly protein-1 in the proliferative and vasculogenic phenotype of pulmonary endothelium. Am J Physiol Lung Cell Mol Physiol 2007; 294:L431-9. [PMID: 17981956 DOI: 10.1152/ajplung.00316.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary microvascular endothelial cells (PMVECs) are enriched with progenitor cells that underlie their rapid proliferation and vasculogenic capacity. However, the molecular basis for such an enhanced growth potential is unknown. Nucleosome assembly protein-1 (NAP1), and its related family of proteins, have been incriminated in control of cell growth in a range of species. We therefore sought to determine whether NAP1 contributes to the rapid proliferation and vasculogenesis that is observed in PMVECs. NAP1 was expressed at a high level in two fast-growing cell types, including PMVECs and resident microvascular endothelial progenitor cells that were selected from PMVECs, whereas it was expressed at a low level in slow-growing pulmonary artery endothelial cells (PAECs). Heterologous NAP1 expression increased the growth potential of PAECs, whereas inhibiting NAP1 expression reduced the growth potential of PMVECs. Despite its impact on endothelial cell growth, NAP1 did not influence the expression of endothelial cell-selective markers (PECAM-1, VE-cadherin, von Willebrand factor), and it did not influence cell type-specific lectin binding criterion; PMVECs interact with Griffonia simplicifolia lectin, whereas PAECs interact with Helix pomatia lectin. PMVECs possess a higher basal transelectrical resistance than do PAECs, indicative of their more restrictive barrier property. Changing NAP1 expression did not normalize this basal barrier function between PMVECs and PAECs. To examine whether the growth-promoting actions of NAP1 influence blood vessel formation, endothelial cells were mixed into Matrigel and subcutaneously implanted. PMVECs generated eightfold more blood vessels than did PAECs over a 10-day time course. Heterologous NAP1 expression in PAECs increased the number of blood vessels formed by this cell type, where blood vessel growth approached that seen with PMVECs. Thus, our findings indicate that NAP1 functions as an important regulator of the proliferative and vasculogenic endothelial cell phenotype without globally impacting endothelial cell phenotype specification.
Collapse
Affiliation(s)
- Jennifer Clark
- Department of Pharmacology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA
| | | | | | | | | | | | | |
Collapse
|
791
|
Wallez Y, Huber P. Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:794-809. [PMID: 17961505 DOI: 10.1016/j.bbamem.2007.09.003] [Citation(s) in RCA: 338] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 09/03/2007] [Accepted: 09/05/2007] [Indexed: 11/25/2022]
Abstract
Endothelial cells lining the vessel wall are connected by adherens, tight and gap junctions. These junctional complexes are related to those found at epithelial junctions but with notable changes in terms of specific molecules and organization. Endothelial junctional proteins play important roles in tissue integrity but also in vascular permeability, leukocyte extravasation and angiogenesis. In this review, we will focus on specific mechanisms of endothelial tight and adherens junctions.
Collapse
Affiliation(s)
- Yann Wallez
- Vascular Pathophysiology Laboratory, Inserm U882 38054 Grenoble, France
| | | |
Collapse
|
792
|
Kiszel P, Makó V, Prohászka Z, Cervenak L. Interleukin-6 -174 promoter polymorphism does not influence IL-6 production after LPS and IL-1 beta stimulation in human umbilical cord vein endothelial cells. Cytokine 2007; 40:17-22. [PMID: 17869127 DOI: 10.1016/j.cyto.2007.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 07/10/2007] [Accepted: 08/03/2007] [Indexed: 01/08/2023]
Abstract
The IL-6 is a typical pleiotropic cytokine, which regulates T cell response, B cell differentiation and immunoglobulin production. Endothelial cells can produce large amounts of IL-6. SNP at position -174 (G/C) in the IL-6 promoter region was found to be associated with a series of complex diseases. In this study we analyzed whether IL-6 -174 G/C polymorphism has any effect on IL-6 production of in vitro cultured HUVECs. Thirty-three fresh umbilical cords were recruited from healthy pregnancies. The endothelial cells isolated from human umbilical cords were genotyped for IL-6 -174 SNP. C allele frequency was 0.379. The IL-6 production of each primary HUVEC line was measured after IL-1beta or LPS treatment by ELISA. Serial dilutions of the stimulating agents were applied and maximum amount of produced IL-6 (R(max)) and stimulator concentrations at half-maximal IL-6 response (MR(50)) were calculated for each of the cell lines. IL-6 production was not associated with IL-6 -174 SNP genotypes or with presence of C allele. Our results showed that IL-6 production of HUVEC after proinflammatory stimulation was not influenced by IL-6 -174 SNP. Further functional studies are required to compare differences and similarities in IL-6 -174 SNP dependent expression of IL-6 among various cell types.
Collapse
Affiliation(s)
- Petra Kiszel
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | | | | | | |
Collapse
|
793
|
Chen YH, Guh JY, Chuang TD, Chen HC, Chiou SJ, Huang JS, Yang YL, Chuang LY. High glucose decreases endothelial cell proliferation via the extracellular signal regulated kinase/p15INK4b pathway. Arch Biochem Biophys 2007; 465:164-71. [PMID: 17597576 DOI: 10.1016/j.abb.2007.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 05/17/2007] [Accepted: 05/18/2007] [Indexed: 01/07/2023]
Abstract
High glucose inhibits endothelial cell proliferation. Thus, we studied cyclin-dependent kinase inhibitor p15(INK4b) in high glucose-induced effects in human umbilical endothelial cells at 24h. High glucose decreased cell proliferation while arresting cells in G(0)/G(1) phase of the cell cycle. High glucose increased phospho-extracellular signal regulated kinase (ERK)1/2, p15(INK4b) protein and mRNA expression. High glucose-inhibited cell proliferation was attenuated by antisense p15(INK4b) oligonucleotide. Moreover, PD98059 attenuated high glucose-induced p15(INK4b) protein expression. High glucose increased transforming growth factor-beta (TGF-beta) gene transcriptional activity and mRNA expression. However, neither SB431542 (type I TGF-beta receptor blocker) nor TGF-beta1 antibody affected high glucose-induced p15(INK4b) protein expression. Additionally, N-acetylcysteine (an antioxidant) attenuated high glucose-induced growth arrest and p15(INK4b) protein expression. Thus, high glucose-induced growth arrest is dependent on p15(INK4b) and oxidative stress in endothelial cells. Moreover, high glucose-induced p15(INK4b) protein expression is dependent on ERK1/2 and oxidative stress.
Collapse
Affiliation(s)
- Yen-Hui Chen
- Graduate Institute of Medicine, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
794
|
Carreras E. I03 Endothelium and haematopoietic stem cell transplantation. Blood Rev 2007. [DOI: 10.1016/s0268-960x(07)70004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
795
|
Abstract
Hemostasis represents a finely tuned balance between procoagulant and anticoagulant forces. An imbalance of these forces may lead to clinically significant disease, including arterial, venous and/or microvascular thrombosis. The vast majority of hypercoagulable states are associated with local thrombus formation. The goal of this review is to discuss the mechanisms underlying site-specific thrombosis.
Collapse
Affiliation(s)
- W C Aird
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|