801
|
Sudarikova AV, Chubinsky-Nadezhdin VI, Negulyaev YA, Morachevskaya EA. Functional properties of sodium channels in cholesterol-depleted K562 cells. ACTA ACUST UNITED AC 2009. [DOI: 10.1134/s1990519x09050095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
802
|
Yamaguchi H, Takeo Y, Yoshida S, Kouchi Z, Nakamura Y, Fukami K. Lipid rafts and caveolin-1 are required for invadopodia formation and extracellular matrix degradation by human breast cancer cells. Cancer Res 2009; 69:8594-602. [PMID: 19887621 DOI: 10.1158/0008-5472.can-09-2305] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Invadopodia are ventral membrane protrusions through which invasive cancer cells degrade the extracellular matrix. They are thought to function in the migration of cancer cells through tissue barriers, which is necessary for cancer invasion and metastasis. Although many protein components of invadopodia have been identified, the organization and the role of membrane lipids in invadopodia are not well understood. In this study, the role of lipid rafts, which are cholesterol-enriched membrane microdomains, in the assembly and function of invadopodia in human breast cancer cells was investigated. Lipid rafts are enriched, internalized, and dynamically trafficked at invadopodia sites. Perturbation of lipid raft formation due to depleting or sequestering membrane cholesterol blocked the invadopodia-mediated degradation of the gelatin matrix. Caveolin-1 (Cav-1), a resident protein of lipid rafts and caveolae, accumulates at invadopodia and colocalizes with the internalized lipid raft membranes. Membrane type 1 matrix metalloproteinase (MT1-MMP), a matrix proteinase associated with invadopodia, is localized at lipid raft-enriched membrane fractions and cotrafficked and colocalized with Cav-1 at invadopodia. The small interfering RNA-mediated silencing of Cav-1 inhibited the invadopodia-mediated and MT1-MMP-dependent degradation of the gelatin matrix. Furthermore, Cav-1 and MT1-MMP are coexpressed in invasive human breast cancer cell lines that have an ability to form invadopodia. These results indicate that invadopodia are the sites where enrichment and trafficking of lipid rafts occur and that Cav-1 is an essential regulator of MT1-MMP function and invadopodia-mediated breast cancer cell invasion.
Collapse
Affiliation(s)
- Hideki Yamaguchi
- Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
803
|
Prasad R, Paila YD, Jafurulla M, Chattopadhyay A. Membrane cholesterol depletion from live cells enhances the function of human serotonin1A receptors. Biochem Biophys Res Commun 2009; 389:333-7. [DOI: 10.1016/j.bbrc.2009.08.148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 08/25/2009] [Indexed: 10/20/2022]
|
804
|
Urokinase-receptor-mediated phenotypic changes in vascular smooth muscle cells require the involvement of membrane rafts. Biochem J 2009; 423:343-51. [PMID: 19691446 DOI: 10.1042/bj20090447] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cholesterol-enriched membrane microdomains lipid rafts play a key role in cell activation by recruiting and excluding specific signalling components of cell-surface receptors upon receptor engagement. Our previous studies have demonstrated that the GPI (glycosylphosphatidylinositol)-linked uPAR [uPA (urokinase-type plasminogen activator) receptor], which can be found in lipid rafts and in non-raft fractions, can mediate the differentiation of VSMCs (vascular smooth muscle cells) towards a pathophysiological de-differentiated phenotype. However, the mechanism by which uPAR and its ligand uPA regulate VSMC phenotypic changes is not known. In the present study, we provide evidence that the molecular machinery of uPAR-mediated VSMC differentiation employs lipid rafts. We show that the disruption of rafts in VSMCs by membrane cholesterol depletion using MCD (methyl-beta-cyclodextrin) or filipin leads to the up-regulation of uPAR and cell de-differentiation. uPAR silencing by means of interfering RNA resulted in an increased expression of contractile proteins. Consequently, disruption of lipid rafts impaired the expression of these proteins and transcriptional activity of related genes. We provide evidence that this effect was mediated by uPAR. Similar effects were observed in VSMCs isolated from Cav1Z(-/-) (caveolin-1-deficient) mice. Despite the level of uPAR being significantly higher after the disruption of the rafts, uPA/uPAR-dependent cell migration was impaired. However, caveolin-1 deficiency impaired only uPAR-dependent cell proliferation, whereas cell migration was strongly up-regulated in these cells. Our results provide evidence that rafts are required in the regulation of uPAR-mediated VSMC phenotypic modulations. These findings suggest further that, in the context of uPA/uPAR-dependent processes, caveolae-associated and non-associated rafts represent different signalling membrane domains.
Collapse
|
805
|
Distinct modes of molecular regulation of CCL3 induced calcium flux in monocytic cells. Biochem Pharmacol 2009; 78:974-82. [DOI: 10.1016/j.bcp.2009.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 05/30/2009] [Accepted: 06/02/2009] [Indexed: 11/19/2022]
|
806
|
Lam RS, Nahirney D, Duszyk M. Cholesterol-dependent regulation of adenosine A2A receptor-mediated anion secretion in colon epithelial cells. Exp Cell Res 2009; 315:3028-35. [DOI: 10.1016/j.yexcr.2009.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 11/29/2022]
|
807
|
Gibson NJ, Tolbert LP, Oland LA. Roles of specific membrane lipid domains in EGF receptor activation and cell adhesion molecule stabilization in a developing olfactory system. PLoS One 2009; 4:e7222. [PMID: 19787046 PMCID: PMC2746287 DOI: 10.1371/journal.pone.0007222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 09/06/2009] [Indexed: 11/18/2022] Open
Abstract
Background Reciprocal interactions between glial cells and olfactory receptor neurons (ORNs) cause ORN axons entering the brain to sort, to fasciculate into bundles destined for specific glomeruli, and to form stable protoglomeruli in the developing olfactory system of an experimentally advantageous animal species, the moth Manduca sexta. Epidermal growth factor receptors (EGFRs) and the cell adhesion molecules (IgCAMs) neuroglian and fasciclin II are known to be important players in these processes. Methodology/Principal Findings We report in situ and cell-culture studies that suggest a role for glycosphingolipid-rich membrane subdomains in neuron-glia interactions. Disruption of these subdomains by the use of methyl-β-cyclodextrin results in loss of EGFR activation, depletion of fasciclin II in ORN axons, and loss of neuroglian stabilization in the membrane. At the cellular level, disruption leads to aberrant ORN axon trajectories, small antennal lobes, abnormal arrays of olfactory glomerul, and loss of normal glial cell migration. Conclusions/Significance We propose that glycosphingolipid-rich membrane subdomains (possible membrane rafts or platforms) are essential for IgCAM-mediated EGFR activation and for anchoring of neuroglian to the cytoskeleton, both required for normal extension and sorting of ORN axons.
Collapse
Affiliation(s)
- Nicholas J Gibson
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona, United States of America.
| | | | | |
Collapse
|
808
|
Prasad R, Paila YD, Chattopadhyay A. Membrane cholesterol depletion enhances ligand binding function of human serotonin1A receptors in neuronal cells. Biochem Biophys Res Commun 2009; 390:93-6. [PMID: 19781522 DOI: 10.1016/j.bbrc.2009.09.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 09/16/2009] [Indexed: 12/16/2022]
Abstract
Membrane lipid composition of cells in the nervous system is unique and displays remarkable diversity. Cholesterol metabolism and homeostasis in the central nervous system and their role in neuronal function represent important determinants in neuropathogenesis. The serotonin(1A) receptor is an important member of the G-protein coupled receptor superfamily, and is involved in a variety of cognitive, behavioral, and developmental functions. We report here, for the first time, that the ligand binding function of human serotonin(1A) receptors exhibits an increase in membranes isolated from cholesterol-depleted neuronal cells. Our results gain pharmacological significance in view of the recently described structural evidence of specific cholesterol binding site(s) in GPCRs, and could be useful in designing better therapeutic strategies for neurodegenerative diseases associated with GPCRs.
Collapse
Affiliation(s)
- Rajesh Prasad
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India
| | | | | |
Collapse
|
809
|
Abstract
Exocytosis is a highly conserved and essential process. Although numerous proteins are involved throughout the exocytotic process, the defining membrane fusion step appears to occur through a lipid-dominated mechanism. Here we review and integrate the current literature on protein and lipid roles in exocytosis, with emphasis on the multiple roles of cholesterol in exocytosis and membrane fusion, in an effort to promote a more molecular systems-level view of the as yet poorly understood process of Ca2+-triggered membrane mergers.
Collapse
|
810
|
Davidson CD, Ali NF, Micsenyi MC, Stephney G, Renault S, Dobrenis K, Ory DS, Vanier MT, Walkley SU. Chronic cyclodextrin treatment of murine Niemann-Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS One 2009; 4:e6951. [PMID: 19750228 PMCID: PMC2736622 DOI: 10.1371/journal.pone.0006951] [Citation(s) in RCA: 365] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 08/06/2009] [Indexed: 11/25/2022] Open
Abstract
Background Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder caused most commonly by a defect in the NPC1 protein and characterized by widespread intracellular accumulation of unesterified cholesterol and glycosphingolipids (GSLs). While current treatment therapies are limited, a few drugs tested in Npc1−/− mice have shown partial benefit. During a combination treatment trial using two such compounds, N-butyldeoxynojirimycin (NB-DNJ) and allopregnanolone, we noted increased lifespan for Npc1−/− mice receiving only 2-hydroxypropyl-β-cyclodextrin (CD), the vehicle for allopregnanolone. This finding suggested that administration of CD alone, but with greater frequency, might provide additional benefit. Methodology/Principal Findings Administration of CD to Npc1−/− mice beginning at either P7 or P21 and continuing every other day delayed clinical onset, reduced intraneuronal cholesterol and GSL storage as well as free sphingosine accumulation, reduced markers of neurodegeneration, and led to longer survival than any previous treatment regime. We reasoned that other lysosomal diseases characterized by cholesterol and GSL accumulation, including NPC disease due to NPC2 deficiency, GM1 gangliosidosis and mucopolysaccharidosis (MPS) type IIIA, might likewise benefit from CD treatment. Treated Npc2−/− mice showed benefits similar to NPC1 disease, however, mice with GM1 gangliosidosis or MPS IIIA failed to show reduction in storage. Conclusions/Significance Treatment with CD delayed clinical disease onset, reduced intraneuronal storage and secondary markers of neurodegeneration, and significantly increased lifespan of both Npc1−/− and Npc2−/− mice. In contrast, CD failed to ameliorate cholesterol or glycosphingolipid storage in GM1 gangliosidosis and MPS IIIA disease. Understanding the mechanism(s) by which CD leads to reduced neuronal storage may provide important new opportunities for treatment of NPC and related neurodegenerative diseases characterized by cholesterol dyshomeostasis.
Collapse
Affiliation(s)
- Cristin D Davidson
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
811
|
Gonzalez LJ, Gibbons E, Bailey RW, Fairbourn J, Nguyen T, Smith SK, Best KB, Nelson J, Judd AM, Bell JD. The influence of membrane physical properties on microvesicle release in human erythrocytes. PMC BIOPHYSICS 2009; 2:7. [PMID: 19703298 PMCID: PMC2739839 DOI: 10.1186/1757-5036-2-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 08/24/2009] [Indexed: 11/30/2022]
Abstract
Exposure of human erythrocytes to elevated intracellular calcium causes fragments of the cell membrane to be shed as microvesicles. This study tested the hypothesis that microvesicle release depends on microscopic membrane physical properties such as lipid order, fluidity, and composition. Membrane properties were manipulated by varying the experimental temperature, membrane cholesterol content, and the activity of the trans-membrane phospholipid transporter, scramblase. Microvesicle release was enhanced by increasing the experimental temperature. Reduction in membrane cholesterol content by treatment with methyl-β-cyclodextrin also facilitated vesicle shedding. Inhibition of scramblase with R5421 impaired vesicle release. These data were interpreted in the context of membrane characteristics assessed previously by fluorescence spectroscopy with environment-sensitive probes such as laurdan, diphenylhexatriene, and merocyanine 540. The observations supported the following conclusions: 1) calcium-induced microvesicle shedding in erythrocytes relates more to membrane properties detected by diphenylhexatriene than by the other probes; 2) loss of trans-membrane phospholipid asymmetry is required for microvesicle release. PACS Codes: 87.16.dj, 87.16.dt
Collapse
Affiliation(s)
- Laurie J Gonzalez
- Department of Physiology and Developmental Biology, Brigham Young University Provo, Utah 84602, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
812
|
Rufini S, Grossi D, Luly P, Tancredi V, Frank C, D'Arcangelo G. Cholesterol depletion inhibits electrophysiological changes induced by anoxia in CA1 region of rat hippocampal slices. Brain Res 2009; 1298:178-85. [PMID: 19699721 DOI: 10.1016/j.brainres.2009.08.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 08/02/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
Abstract
The hyper-activation of glutamate receptors is a key event in the degenerative processes triggered by ischemia in the brain. Several types of these receptors reside in cholesterol-sphingomyelin rich domains of post-synaptic plasma membranes and have been described to be sensitive to cholesterol depletion. Hence we investigated, by extracellular recordings, the effect of cholesterol depletion on population spikes (PS) during ischemia-like conditions in the CA1 region of rat hippocampal slices using the cholesterol-depleting agent methyl-beta-cyclodextrin (MbetaCD). Results obtained demonstrate that MbetaCD prevents the changes induced by anoxic insult, i.e., depression of the population spike amplitude and insurgence of ischemic long-term potentiation. Furthermore cholesterol depletion prevents the disappearance of population spike induced by anoxia/aglycemia during kainate perfusion. Our data suggest a possible role of MbetaCD in preventing the pathological changes in synaptic activity induced by ischemia and indicate that manipulation of lipid components of membrane rafts might provide a new approach for the treatment of ischemia.
Collapse
Affiliation(s)
- Stefano Rufini
- Department of Biology, Università degli Studi di Roma Tor Vergata, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
813
|
Oh H, Mohler ER, Tian A, Baumgart T, Diamond SL. Membrane cholesterol is a biomechanical regulator of neutrophil adhesion. Arterioscler Thromb Vasc Biol 2009; 29:1290-7. [PMID: 19667108 DOI: 10.1161/atvbaha.109.189571] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the role of membrane cholesterol on human neutrophil and HL-60 biomechanics, capture, rolling, and arrest to P-selectin- or IL-1-activated endothelium. METHODS AND RESULTS Methyl-beta-cyclodextrin (MbetaCD) removed up to 73% and 45% of membrane cholesterol from HL-60 cells and neutrophils, whereas MbetaCD/cholesterol complexes resulted in maximum enrichment of 65% and 40%, respectively, above control levels. Cells were perfused at a venous wall shear rate of 100 s(-1) over adherent P-selectin-coated 1-microm diameter beads, uncoated 10-mum diameter beads, P-selectin-coated surfaces, or activated endothelium. Elevated cholesterol enhanced capture efficiency to 1-microm beads and increased membrane tether growth rate by 1.5- to 2-fold, whereas cholesterol depletion greatly reduced tether formation. Elevated cholesterol levels increased tether lifetime by 17% in neutrophils and adhesion lifetime by 63% in HL-60 cells. Deformation of cholesterol-enriched neutrophils increased the contact time with 10-mum beads by 32% and the contact area by 7-fold. On both P-selectin surfaces and endothelial-cell monolayers, cholesterol-enriched neutrophils rolled more slowly, more stably, and were more likely to firmly arrest. Cholesterol depletion resulted in opposite effects. CONCLUSIONS Increasing membrane cholesterol enhanced membrane tether formation and whole cell deformability, contributing to slower, more stable rolling on P-selectin and increased firm arrest on activated endothelium.
Collapse
Affiliation(s)
- Hana Oh
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | |
Collapse
|
814
|
Dzikovski B, Tipikin D, Livshits V, Earle K, Freed J. Multifrequency ESR study of spin-labeled molecules in inclusion compounds with cyclodextrins. Phys Chem Chem Phys 2009; 11:6676-88. [PMID: 19639141 DOI: 10.1039/b903490k] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular dynamics of spin-labeled compounds included into the solid phase of cyclodextrins (CDs) has been studied using conventional (X-band) ESR at 9 GHz and high-field high-frequency (HFHF) ESR at 240 and 170 GHz. The patterns of axial rotation at these higher frequencies are clear just by inspection of the spectrum, unlike the case for 9 GHz spectra. That is HFHF ESR is sensitive to molecular motion about the diffusion axis collinear with the X, Y or Z-direction of the magnetic g- and A-tensors of the nitroxide moiety (referred to, respectively, as X, Y or Z-rotation). For doxyl stearic acids (Z-rotation) and TEMPOyl caprylate (X-rotation) included in beta- and gamma-CDs we were able to determine the rate of molecular motion and the corresponding potential barriers. We emphasize that determining the rate of Z-rotation by ESR is feasible only using HFHF ESR. For the X-rotation case we suggest that the motion of the nitroxide moiety consists of fast small-angle librations about the magnetic X-axis superimposed by rotational diffusion about the same axis. The potential barrier of 1.7 Kcal mol(-1) for this rotational diffusion is unusually low. A fascinating feature of TEMPO derivatives included in beta-CD is the detectable molecular motion at temperatures below 77 K. For the other CD-spin probe systems, we used multifrequency analysis to assign the conformations of spin-labeled molecules. A dramatic spectral change for 16-sasl in beta- and gamma-CDs at approximately 260 K corresponds to a tilting of the position of the nitroxide moiety on the rotating molecule relative to the long diffusion axis, while for TEMPO derivatives in gamma-cyclodextrin below 200 K, we observe a rapid transition from fast to very slow rotational motion. More complex features are best studied by means of multifrequency ESR experiments. The visual clarity and the simplicity of analysis of the ESR spectra shown in this work should provide a benchmark for future studies of molecular motion by HFHF ESR.
Collapse
Affiliation(s)
- Boris Dzikovski
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
815
|
Lei B, Morris DP, Smith MP, Schwinn DA. Lipid rafts constrain basal alpha(1A)-adrenergic receptor signaling by maintaining receptor in an inactive conformation. Cell Signal 2009; 21:1532-9. [PMID: 19520158 DOI: 10.1016/j.cellsig.2009.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 05/20/2009] [Accepted: 06/01/2009] [Indexed: 12/16/2022]
Abstract
We have reported that the alpha(1A)-adrenergic receptor (alpha(1A)AR) in rat-1 fibroblasts is a lipid raft protein. Here we examined whether disrupting lipid rafts by methyl-beta-cyclodextrin (MCD) sequestration of cholesterol affects alpha(1A)AR signaling. Unexpectedly, MCD increased alpha(1A)AR-dependent basal inositol phosphate formation and p38 mitogen-activated protein kinase activation in a cholesterol-dependent manner. It also initiated internalization of surface alpha(1A)AR, which was partially blocked by receptor inhibition. Binding assays revealed MCD-mediated increases in receptor agonist affinity as well as reciprocal decreases in inverse agonist affinity, a behavior that is usually interpreted as a shift toward the active receptor conformation. In untreated cells a fraction of the receptor was found to be present in preassociated receptor/G protein complexes, which rapidly dissociate upon receptor stimulation. Consistent with MCD-induced signaling, raft disruption resulted in an increase in receptor/G protein complexes. These results strongly suggest that lipid rafts constrain basal alpha(1A)AR activity; however, preassembled receptor/G protein complexes could still provide a mechanism for accelerating alpha(1A)AR signaling following stimulation.
Collapse
Affiliation(s)
- Beilei Lei
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
816
|
Patel HH, Insel PA. Lipid rafts and caveolae and their role in compartmentation of redox signaling. Antioxid Redox Signal 2009; 11:1357-72. [PMID: 19061440 PMCID: PMC2757136 DOI: 10.1089/ars.2008.2365] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Membrane (lipid) rafts and caveolae, a subset of rafts, are cellular domains that concentrate plasma membrane proteins and lipids involved in the regulation of cell function. In addition to providing signaling platforms for G-protein-coupled receptors and certain tyrosine kinase receptors, rafts/caveolae can influence redox signaling. This review discusses molecular characteristics of and methods to study rafts/caveolae, determinants that contribute to the localization of molecules in these entities, an overview of signaling molecules that show such localization, and the contribution of rafts/caveolae to redox signaling. Of particular note is the evidence that endothelial nitric oxide synthase (eNOS), NADPH oxygenase, and heme oxygenase, along with other less well-studied redox systems, localize in rafts and caveolae. The precise basis for this localization and the contribution of raft/caveolae-localized redox components to physiology and disease are important issues for future studies.
Collapse
Affiliation(s)
- Hemal H Patel
- Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093-0636, USA
| | | |
Collapse
|
817
|
DiPilato LM, Zhang J. The role of membrane microdomains in shaping beta2-adrenergic receptor-mediated cAMP dynamics. MOLECULAR BIOSYSTEMS 2009; 5:832-7. [PMID: 19603118 DOI: 10.1039/b823243a] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recently, membrane rafts and caveolae have received much attention for their role as signaling platforms, particularly due to their involvement in the pathogenesis of a number of diseases, including HIV as well as neurological and cardiovascular conditions. Signaling mediated by the beta-adrenergic receptor (beta-AR), a member of the large family of G-protein coupled receptors (GPCRs) that transduce extracellular messages via the ubiquitous second messenger, cAMP, has been a focus of raft studies since multiple components of the pathway are compartmentalized by these membrane microdomains. However, how these membrane rafts behave and regulate signaling dynamics in a cellular context is poorly understood. Here, we describe a live-cell assay based on single-cell, real-time fluorescence imaging, via an improved FRET-based cAMP biosensor, to monitor raft regulation of second messenger dynamics. Upon cholesterol depletion with methyl-beta-cyclodextrin (MbetaCD), beta(2)-AR-mediated cAMP accumulation was enhanced and prolonged in HEK-293 cells, demonstrating that membrane raft integrity helps shape beta-AR signaling. Single-cell imaging in parallel with fractionation studies reveal that the enhancement and change of dynamics are mediated by the receptor and correlated with its redistribution. Finally, the effect of cholesterol depletion is receptor-type specific as MbetaCD treatment did not show the same effect when the raft-excluded prostaglandin E receptor was stimulated. This study highlights the potential of a live-cell, real-time imaging assay for studying membrane rafts, including high sensitivity and spatiotemporal resolution, to achieve a better understanding of the nuances of membrane microdomains in both healthy and diseased states.
Collapse
Affiliation(s)
- Lisa M DiPilato
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Maryland, USA
| | | |
Collapse
|
818
|
Low concentration thresholds of plasma membranes for rapid energy-independent translocation of a cell-penetrating peptide. Biochem J 2009; 420:179-89. [DOI: 10.1042/bj20090042] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The exact mechanisms by which cell-penetrating peptides such as oligo-arginines and penetratin cross biological membranes has yet to be elucidated, but this is required if they are to reach their full potential as cellular delivery vectors. In the present study, qualitative and quantitative analysis of the influence of temperature, peptide concentration and plasma membrane cholesterol on the uptake and subcellular distribution of the model cell-penetrating peptide octa-arginine was performed in a number of suspension and adherent cell lines. When experiments were performed on ice, the peptide at 2 μM extracellular concentration efficiently entered and uniformly labelled the cytoplasm of all the suspension cells studied, but a 10-fold higher concentration was required to observe similar results in adherent cells. At 37 °C and at higher peptide concentrations, time-lapse microscopy experiments showed that the peptide rapidly penetrated the entire plasma membrane of suspension cells, with no evidence of a requirement for nucleation zones to promote this effect. Cholesterol depletion with methyl-β-cyclodextrin enhanced translocation of octa-arginine across the plasma membrane of suspension cells at 37 °C, but decreased overall peptide accumulation. Under the same conditions in adherent cells this agent had no effect on peptide uptake or distribution. Cholesterol depletion increased the overall accumulation of the peptide at 4 °C in KG1a cells, but this effect could be reversed by re-addition of cholesterol as methyl-β-cyclodextrin–cholesterol complexes. The results highlight the relatively high porosity of the plasma membrane of suspension cells to this peptide, especially at low temperatures, suggesting that this feature could be exploited for delivering bioactive entities.
Collapse
|
819
|
Glycine transporter 1 associates with cholesterol-rich membrane raft microdomains. Biochem Biophys Res Commun 2009; 384:530-4. [PMID: 19427831 DOI: 10.1016/j.bbrc.2009.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 11/21/2022]
Abstract
Membrane rafts, the highly-ordered, cholesterol-rich microdomains of the plasma membrane play important roles in cellular functions. In this study, GLYT1-CFP and GLYT2-CFP were constructed, followed by investigation of whether the tagged transporters associate with a fluorescence probe that labels membrane rafts (DilC16) by using Fluorescence Resonance Energy Transfer. A close association was observed between DiIC16 and GLYT1-CFP, but not for GLYT2-CFP. The glycine transport ability of GLYT1 is also highly dependent on the integrity of this area. Together, the results suggest that GLYT1 and membrane rafts are co-localized in the membrane, and that this influences the rate of glycine transport.
Collapse
|
820
|
Hegedűs C, Szakács G, Homolya L, Orbán TI, Telbisz Á, Jani M, Sarkadi B. Ins and outs of the ABCG2 multidrug transporter: an update on in vitro functional assays. Adv Drug Deliv Rev 2009; 61:47-56. [PMID: 19135105 DOI: 10.1016/j.addr.2008.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 09/03/2008] [Indexed: 02/07/2023]
Abstract
The major aim of this chapter is to provide a critical overview of the in vitro methods available for studying the function of the ABCG2 multidrug transporter protein. When describing the most applicable assay systems, in each case we present a short overview relevant to ABC multidrug transporters in general, and then we concentrate on the tools applicable to analysis of substrate-drug interactions, the effects of potential activators and inhibitors, and the role of polymorphisms of the ABCG2 transporter. Throughout this chapter we focus on recently developed assay systems, which may provide new possibilities for analyzing the pharmacological aspects of this medically important protein.
Collapse
|
821
|
Kim W, Fan YY, Barhoumi R, Smith R, McMurray DN, Chapkin RS. n-3 polyunsaturated fatty acids suppress the localization and activation of signaling proteins at the immunological synapse in murine CD4+ T cells by affecting lipid raft formation. THE JOURNAL OF IMMUNOLOGY 2009; 181:6236-43. [PMID: 18941214 DOI: 10.4049/jimmunol.181.9.6236] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The molecular properties of immunosuppressive n-3 polyunsaturated fatty acids (PUFA) have not been fully elucidated. Using CD4(+) T cells from wild-type control and fat-1 transgenic mice (enriched in n-3 PUFA), we show that membrane raft accumulation assessed by Laurdan (6-dodecanoyl-2-dimethyl aminonaphthalene) labeling was enhanced in fat-1 cells following immunological synapse (IS) formation by CD3-specific Ab expressing hybridoma cells. However, the localization of protein kinase Ctheta, phospholipase Cgamma-1, and F-actin into the IS was suppressed. In addition, both the phosphorylation status of phospholipase Cgamma-1 at the IS and cell proliferation as assessed by CFSE labeling and [(3)H]thymidine incorporation were suppressed in fat-1 cells. These data imply that lipid rafts may be targets for the development of dietary agents for the treatment of autoimmune and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Wooki Kim
- Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
822
|
Zarubica A, Plazzo AP, Stöckl M, Trombik T, Hamon Y, Müller P, Pomorski T, Herrmann A, Chimini G. Functional implications of the influence of ABCA1 on lipid microenvironment at the plasma membrane: a biophysical study. FASEB J 2009; 23:1775-85. [PMID: 19151332 DOI: 10.1096/fj.08-122192] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ABCA1 transporter orchestrates cellular lipid homeostasis by promoting the release of cholesterol to plasmatic acceptors. The molecular mechanism is, however, unknown. We report here on the biophysical analysis in living HeLa cells of the ABCA1 lipid microenvironment at the plasma membrane. The modifications of membrane attributes induced by ABCA1 were assessed at both the outer and inner leaflet by monitoring either the lifetime of membrane inserted fluorescent lipid analogues by fluorescence lifetime imaging microscopy (FLIM) or, respectively, the membrane translocation of cationic sensors. Analysis of the partitioning of dedicated probes in plasma membrane blebs vesiculated from these cells allowed visualization of ABCA1 partitioning into the liquid disordered-like phase and corroborated the idea that ABCA1 destabilizes the lipid arrangement at the membrane. Specificity was demonstrated by comparison with cells expressing an inactive transporter. The physiological relevance of these modifications was finally demonstrated by the reduced membrane mobility and function of transferrin receptors under the influence of an active ABCA1. Collectively, these data assess that the control of both transversal and lateral lipid distribution at the membrane is the primary function of ABCA1 and positions the effluxes of cholesterol from cell membranes downstream to the redistribution of the sterol into readily extractable membrane pools.
Collapse
Affiliation(s)
- Ana Zarubica
- Centre d'Immunologie de Marseille Luminy, Institut National de la Santè et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de la Méditerranée, Parc Scientifique de Luminy case 906, 13288 Marseille, Cedex 09 France
| | | | | | | | | | | | | | | | | |
Collapse
|
823
|
Musse AA, Gao W, Rangaraj G, Boggs JM, Harauz G. Myelin basic protein co-distributes with other PI(4,5)P2-sequestering proteins in Triton X-100 detergent-resistant membrane microdomains. Neurosci Lett 2009; 450:32-6. [DOI: 10.1016/j.neulet.2008.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/06/2008] [Accepted: 11/09/2008] [Indexed: 10/21/2022]
|
824
|
Melzak KA, Gizeli E. Relative activity of cholesterol in OPPC/cholesterol/sphingomyelin mixtures measured with an acoustic sensor. Analyst 2009; 134:609-14. [DOI: 10.1039/b813047g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
825
|
Day CA, Kenworthy AK. Tracking microdomain dynamics in cell membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1788:245-53. [PMID: 19041847 PMCID: PMC2792115 DOI: 10.1016/j.bbamem.2008.10.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 10/30/2008] [Accepted: 10/31/2008] [Indexed: 12/01/2022]
Abstract
Studies of the diffusion of proteins and lipids in the plasma membrane of cells have long pointed to the presence of membrane domains. A major challenge in the field of membrane biology has been to characterize the various cellular structures and mechanisms that impede free diffusion in cell membranes and determine the consequences that membrane compartmentalization has on cellular biology. In this review, we will provide a brief summary of the classes of domains that have been characterized to date, focusing on recent efforts to identify the properties of lipid rafts in cells through measurements of protein and lipid diffusion.
Collapse
Affiliation(s)
- Charles A. Day
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Anne K. Kenworthy
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
826
|
Kierszniowska S, Seiwert B, Schulze WX. Definition of Arabidopsis sterol-rich membrane microdomains by differential treatment with methyl-beta-cyclodextrin and quantitative proteomics. Mol Cell Proteomics 2008; 8:612-23. [PMID: 19036721 PMCID: PMC2667346 DOI: 10.1074/mcp.m800346-mcp200] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Plasma membranes are dynamic compartments with key functions in solute transport, cell shape, and communication between cells and the environment. In mammalian cells and yeast, the plasma membrane has been shown to be compartmented into so-called lipid rafts, which are defined by their resistance to treatment with non-ionic detergents. In plants, the existence of lipid rafts has been postulated, but the precise composition of this membrane compartment is still under debate. Here we were able to experimentally clearly distinguish (i) true sterol-dependent “raft proteins” and (ii) sterol-independent “non-raft” proteins and co-purifying “contaminants” in plant detergent-resistant membranes. We used quantitative proteomics techniques involving 15N metabolic labeling and specific disruption of sterol-rich membrane domains by methyl-β-cyclodextrin. Among the sterol-dependent proteins we found an over-representation of glycosylphosphatidylinositol-anchored proteins. A large fraction of these proteins has functions in cell wall anchoring. We were able to distinguish constant and variable components of plant sterol-rich membrane microdomains based on their responsiveness to the drug methyl-β-cyclodextrin. Predominantly proteins with signaling functions, such as receptor kinases, G-proteins, and calcium signaling proteins, were identified as variable members in plant lipid rafts, whereas cell wall-related proteins and specific proteins with unknown functions make up a core set of sterol-dependent plant plasma membrane proteins. This allows the plant to maintain a balance between static anchoring of cell shape forming elements and variable adjustment to changing external conditions.
Collapse
Affiliation(s)
- Sylwia Kierszniowska
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany
| | | | | |
Collapse
|
827
|
Solubilization of lipid bilayers by myristyl sucrose ester: effect of cholesterol and phospholipid head group size. Chem Phys Lipids 2008; 157:104-12. [PMID: 19071100 DOI: 10.1016/j.chemphyslip.2008.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 11/10/2008] [Accepted: 11/11/2008] [Indexed: 11/24/2022]
Abstract
The solubilization of biological membranes by detergents has been used as a major method for the isolation and purification of membrane proteins and other constituents. Considerable interest in this field has resulted from the finding that different components can be solubilized selectively. Certain membrane constituents are incorporated into small micelles, whereas others remain in the so-called detergent-resistant membrane domains that are large enough to be separated by centrifugation. The detergent-resistant fractions contain an elevated percentage of cholesterol, and thus its interaction with specific lipids and proteins may be key for membrane organization and regulation of cellular signaling events. This report focuses on the solubilization process induced by the sucrose monoester of myristic acid, beta-D-fructofuranosyl-6-O-myristyl-alpha-D-glucopyranoside (MMS), a nonionic detergent. We studied the effect of the head group and the cholesterol content on the process. 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and dioctadecyl-dimethyl-ammonium chloride (DODAC) vesicles were used, and the solubilization process was followed using Laurdan (6-dodecanoyl-2-dimethylaminonaphthalene) generalized polarization (GP) measurements, carried out in the cuvette and in the 2-photon microscope. Our results indicate that: (i) localization of the MMS moieties in the lipid bilayer depends on the characteristics of the lipid polar head group and influences the solubilization process. (ii) Insertion of cholesterol molecules into the lipid bilayer protects it from solubilizaton and (iii) the microscopic mechanism of solubilization by MMS implies the decrease in size of the individual liposomes.
Collapse
|
828
|
Bremer CM, Bung C, Kott N, Hardt M, Glebe D. Hepatitis B virus infection is dependent on cholesterol in the viral envelope. Cell Microbiol 2008; 11:249-60. [PMID: 19016777 DOI: 10.1111/j.1462-5822.2008.01250.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The viral and cellular determinants leading to binding and entry of hepatitis B virus (HBV) are still not fully understood. We found that HBV infection of primary hepatocyte cultures is dependent on the presence of cholesterol in the viral envelope. Extraction of cholesterol from HBV purified from plasma of HBV-infected patients with methyl-beta-cyclodextrin (MbetaCD) leads to a strongly reduced level of infection. The cholesterol-depleted virions showed higher buoyant density (1.23 versus 1.17 g ml(-1)), a smaller diameter (39 versus 48 nm), but maintained particle integrity, antigenicity and ability to bind to hepatocytes. Although addition of exogenous cholesterol and cholesterol analogues restored the physical appearance of cholesterol-depleted virions, infectivity was only regained by cholesterol add-back. Infectivity of HBV produced from cell culture in the presence of inhibitors of cholesterol-synthesis is severely impaired. Interestingly, cholesterol extraction from cellular membranes, incubation with filipin and the protein tyrosine kinase inhibitor genistein showed no effect on HBV infection, excluding a role of lipid rafts for the infection process of HBV. In summary, presence of cholesterol within the viral envelope is not important for viral binding, but indispensable for the entry process of HBV and might be important for a later step in viral uptake, e.g. fusion in a yet unknown compartment.
Collapse
Affiliation(s)
- Corinna M Bremer
- Institute of Medical Virology, Justus Liebig University, Frankfurter Str. 107, 35392, Giessen, Germany
| | | | | | | | | |
Collapse
|
829
|
Roche Y, Gerbeau-Pissot P, Buhot B, Thomas D, Bonneau L, Gresti J, Mongrand S, Perrier-Cornet JM, Simon-Plas F. Depletion of phytosterols from the plant plasma membrane provides evidence for disruption of lipid rafts. FASEB J 2008; 22:3980-91. [PMID: 18676403 DOI: 10.1096/fj.08-111070] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Involvement of sterols in membrane structural properties has been extensively studied in model systems but rarely assessed in natural membranes and never investigated for the plant plasma membrane (PM). Here, we address the question of the role of phytosterols in the organization of the plant PM. The sterol composition of tobacco BY-2 cell PM was determined by gas chromatography. The cyclic oligosaccharide methyl-beta-cyclodextrin, commonly used in animal cells to decrease cholesterol levels, caused a drastic reduction (50%) in the PM total free sterol content of the plant material, without modification in amounts of steryl-conjugates. Fluorescence spectroscopy experiments using DPH, TMA-DPH, Laurdan, and di-4-ANEPPDHQ indicated that such a depletion in sterol content increased lipid acyl chain disorder and reduced the overall liquid-phase heterogeneity in correlation with the disruption of phytosterol-rich domains. Methyl-beta-cyclodextrin also prevented isolation of a PM fraction resistant to solubilization by nonionic detergents, previously characterized in tobacco, and induced redistribution of the proteic marker of this fraction, NtrbohD, within the membrane. Altogether, our results support the role of phytosterols in the lateral structuring of the PM of higher plant cells and suggest that they are key compounds for the formation of plant PM microdomains.
Collapse
Affiliation(s)
- Yann Roche
- Laboratoire Plantes-Microbe-Environnement, UMR INRA 1088/CNRS 5184/Université de Bourgogne, 17 rue Sully, BP 86510, 21065 Dijon cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
830
|
Methyl-beta-cyclodextrin directly binds methylene blue and blocks both its cell staining and glucose uptake stimulatory effects. Biochimie 2008; 91:271-6. [PMID: 18983887 DOI: 10.1016/j.biochi.2008.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
Abstract
GLUT1, the most ubiquitously expressed member of the GLUT family of glucose transporters, can be acutely activated by a variety of cell stresses. Methylene blue activates glucose transport activity of GLUT1 in L929 fibroblast cells presumably by a redox cycling of MB, which generates an oxidative stress. Data shown here reveal that methyl-beta-cyclodextrin (MCD) blocks both the staining of cells and activation of glucose uptake by directly binding to MB. MCD binding to MB was qualitatively demonstrated by a significantly slower dialysis rate of MB in the presence of MCD. Analysis of the complete spectra of aqueous MB solutions and MB plus MCD solutions by a factor analysis program called SIVVU indicated that these equilibria can be modeled by three species: MB monomer, MB dimer, and MCD-MB inclusion complex. The molar extinction coefficients for each species from 500 to 700nm were determined. The equilibrium association constant (K(a)) for MB dimer formation was measured at 5846+/-30M(-1) and the K(a) for formation of the MCD-MB complex was 310+/-10M(-1). MCD also dramatically enhances the destaining rate of MB-stained cells. The loss of MB from the cell is tightly correlated with the loss of activated glucose uptake. This suggests that the MB activation of glucose uptake is likely not caused by its redox cycling, but more likely the result of a specific interaction between MB and a protein directly involved in the activation of GLUT1.
Collapse
|
831
|
Kenworthy AK. Have we become overly reliant on lipid rafts? Talking Point on the involvement of lipid rafts in T-cell activation. EMBO Rep 2008; 9:531-5. [PMID: 18516088 DOI: 10.1038/embor.2008.92] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 04/25/2008] [Indexed: 01/11/2023] Open
Abstract
During the past decade, the lipid-raft hypothesis has focused attention on the role of membrane domains in controlling cellular functions. Among the best-studied roles of lipid rafts is the regulation of T-cell signalling. In particular, a model has emerged in which lipid rafts regulate protein-protein interactions during signalling in a cholesterol-dependent manner. Does this model provide the best description of what is happening in living cell membranes? Alternatively, has our ability to evaluate this question critically become compromised by the influential nature of the lipid-raft model itself? Here, this issue is explored in the context of two of the major tenets of the lipid-raft model.
Collapse
Affiliation(s)
- Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| |
Collapse
|
832
|
Melzak KA, Bender F, Tsortos A, Gizeli E. Probing mechanical properties of liposomes using acoustic sensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:9172-9180. [PMID: 18642856 DOI: 10.1021/la800730s] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Acoustic devices were employed to characterize variations in the mechanical properties (density and viscoelasticity) of liposomes composed of 1-oleoyl-2-palmitoyl- sn-glycero-3-phosphocholine (POPC) and cholesterol. Liposome properties were modified in three ways. In some experiments, the POPC/cholesterol ratio was varied prior to deposition on the device surface. Alternatively, the ratio was changed in situ via either insertion of cholesterol or removal of cholesterol with beta-cyclodextrin. This was done for liposomes adsorbed directly on the device surface and for liposomes attached via a biotin-terminated poly(ethylene glycol) linker. The acoustic measurements make use of two simultaneous time-resolved signals: one signal is related to the velocity of the acoustic wave, while the second is related to dissipation of acoustic energy. Together, they provide information not only about the mass (or density) of the probed medium but also about its viscoelastic properties. The cholesterol-induced increase in the surface density of the lipid bilayer was indeed observed in the acoustic data, but the resulting change in signal was larger than expected from the change in surface density. In addition, increasing the bilayer resistance to stretching was found to lead to a greater dissipation of the acoustic energy. The acoustic response is assessed in terms of the possible distortions of the liposomes and the known effects of cholesterol on the mechanical properties of the lipid bilayer that encloses the aqueous core of the liposome. To aid the interpretation of the acoustic response, it is discussed how the above changes in the lipid bilayer will affect the effective viscoelastic properties of the entire liposome/solvent film on the scale of the acoustic wavelength. It was found that the acoustic device is very sensitive to the mechanical properties of lipid vesicles; the response of the acoustic device is explained, and the basic underlying mechanisms of interaction are identified.
Collapse
Affiliation(s)
- Kathryn A Melzak
- Institute of Molecular Biology and Biotechnology, FORTH, Vassilika Vouton, Heraklion/Crete, Greece
| | | | | | | |
Collapse
|
833
|
Stöckl M, Plazzo AP, Korte T, Herrmann A. Detection of lipid domains in model and cell membranes by fluorescence lifetime imaging microscopy of fluorescent lipid analogues. J Biol Chem 2008; 283:30828-37. [PMID: 18708353 DOI: 10.1074/jbc.m801418200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence of lipid domains in cellular membranes and their characteristic features are still an issue of dividing discussion. Several recent studies implicate lipid domains in plasma membranes of mammalian cells as short lived and in the submicron range. Measuring the fluorescence lifetime of appropriate lipid analogues is a proper approach to detect domains with such properties. Here, the sensitivity of the fluorescence lifetime of1-palmitoyl-2-[6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]-hexanoyl]-sn-glycero-3-phospholipid (C6-NBD-phospholipid) analogues has been employed to characterize lipid domains in giant unilamellar vesicles (GUVs) and the plasma membrane of mammalian cells by fluorescence lifetime imaging (FLIM). Fluorescence decay of C6-NBD-phosphatidylcholine is characterized by a short and long lifetime. For GUVs forming microscopically visible lipid domains the longer lifetime in the liquid disordered (ld) and the liquid ordered (lo) phase was clearly distinct, being approximately 7 ns and 11 ns, respectively. Lifetimes were not sensitive to variation of cholesterol concentration of domain-forming GUVs indicating that the lipid composition and physical properties of those lipid domains are well defined entities. Even the existence of submicroscopic domains can be detected by FLIM as demonstrated for GUVs of palmitoyloleoyl phosphatidylcholine/N-palmitoyl-d-sphingomyelin/cholesterol mixtures. A broad distribution of the long lifetime was found for C6-NBD-phosphatidylcholine inserted in the plasma membrane of HepG2 and HeLa cells centered around 11 ns. FLIM studies on lipid domains forming giant vesicles derived from the plasma membrane of HeLa cells may suggest that a variety of submicroscopic lipid domains exists in the plasma membrane of intact cells.
Collapse
Affiliation(s)
- Martin Stöckl
- Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Institut für Biologie/Biophysik, Invalidenstrasse 42, Berlin D-10115, Germany
| | | | | | | |
Collapse
|
834
|
Quinn PJ, Wolf C. The liquid-ordered phase in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:33-46. [PMID: 18775411 DOI: 10.1016/j.bbamem.2008.08.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 12/11/2022]
Abstract
A range of physiological processes has been imputed to lateral domain formation in biological membranes. However the molecular mechanisms of these functions and the details of how domain structures mediate these processes remain largely speculative. That domains exist in biomembranes and can be modeled in relatively simple lipid systems has contributed to our understanding of the principles governing phase behaviour in membranes. A presentation of these principles is the subject of this review. The condensing effect of sterols on phospholipids spread as monomolecular films at the air-water interface is described in terms of the dependence of the effect on sterol and phospholipid structure. The thermodynamics of sphingomyelin-cholesterol interactions are considered from calorimetric, densitometry and equilibrium cholesterol exchange measurements. Biophysical characterisation of the structure of liquid-ordered phase and its relationship with liquid-disordered phase is described from spectroscopic and X-ray scattering studies. Finally, the properties of liquid-ordered phase in the context of membrane physiology and permeability barrier properties are considered.
Collapse
Affiliation(s)
- Peter J Quinn
- Department of Biochemistry, King's College London, London, UK.
| | | |
Collapse
|
835
|
Gao X, Zhang J. Spatiotemporal analysis of differential Akt regulation in plasma membrane microdomains. Mol Biol Cell 2008; 19:4366-73. [PMID: 18701703 DOI: 10.1091/mbc.e08-05-0449] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
As a central kinase in the phosphatidylinositol 3-kinase pathway, Akt has been the subject of extensive research; yet, spatiotemporal regulation of Akt in different membrane microdomains remains largely unknown. To examine dynamic Akt activity in membrane microdomains in living cells, we developed a specific and sensitive fluorescence resonance energy transfer-based Akt activity reporter, AktAR, through systematic testing of different substrates and fluorescent proteins. Targeted AktAR reported higher Akt activity with faster activation kinetics within lipid rafts compared with nonraft regions of plasma membrane. Disruption of rafts attenuated platelet-derived growth factor (PDGF)-stimulated Akt activity in rafts without affecting that in nonraft regions. However, in insulin-like growth factor-1 (IGF)-1 stimulation, Akt signaling in nonraft regions is dependent on that in raft regions. As a result, cholesterol depletion diminishes Akt activity in both regions. Thus, Akt activities are differentially regulated in different membrane microdomains, and the overall activity of this oncogenic pathway is dependent on raft function. Given the increased abundance of lipid rafts in some cancer cells, the distinct Akt-activating characteristics of PDGF and IGF-1, in terms of both effectiveness and raft dependence, demonstrate the capabilities of different growth factor signaling pathways to transduce differential oncogenic signals across plasma membrane.
Collapse
Affiliation(s)
- Xinxin Gao
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
836
|
Lebreton S, Paladino S, Zurzolo C. Selective roles for cholesterol and actin in compartmentalization of different proteins in the Golgi and plasma membrane of polarized cells. J Biol Chem 2008; 283:29545-53. [PMID: 18701450 DOI: 10.1074/jbc.m803819200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To determine the roles of cholesterol and the actin cytoskeleton in apical and basolateral protein organization and sorting, we have performed comprehensive confocal fluorescence recovery after photobleaching analyses of apical and basolateral and raft- and non-raft-associated proteins, both at the plasma membrane and in the Golgi apparatus of polarized MDCK cells. We show that at both the apical and basolateral plasma membrane domains, raft-associated proteins diffuse faster than non-raft-associated proteins and that, different from the latter, they become restricted upon depletion of cholesterol. Furthermore, only transmembrane apical proteins are restricted by the actin network. This indicates that cholesterol-dependent domains exist both at the apical and basolateral membranes of polarized cells and that the actin cytoskeleton has a predominant role in the organization of transmembrane proteins independent of their association with rafts at the apical membrane. In the Golgi apparatus apical proteins appear to be segregated from the basolateral ones in a compartment that is sensitive both to cholesterol depletion and actin rearrangements. Furthermore, consistent with the role of actin rearrangements in apical protein sorting, we found that apical proteins exhibit a differential sensitivity to actin depolymerization in the Golgi of polarized and nonpolarized cells.
Collapse
Affiliation(s)
- Stéphanie Lebreton
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | | | | |
Collapse
|
837
|
Frank C, Rufini S, Tancredi V, Forcina R, Grossi D, D'Arcangelo G. Cholesterol depletion inhibits synaptic transmission and synaptic plasticity in rat hippocampus. Exp Neurol 2008; 212:407-14. [DOI: 10.1016/j.expneurol.2008.04.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/07/2008] [Accepted: 04/17/2008] [Indexed: 01/20/2023]
|
838
|
Kowalsky GB, Byfield FJ, Levitan I. oxLDL facilitates flow-induced realignment of aortic endothelial cells. Am J Physiol Cell Physiol 2008; 295:C332-40. [PMID: 18562483 DOI: 10.1152/ajpcell.00335.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alignment of vascular endothelial cells (ECs) in the direction of the flow is considered a key factor in maintaining endothelial integrity in an active hemodynamic environment. Our recent studies showed that exposure to oxidized LDL (oxLDL), one of the major proatherogenic lipoproteins, significantly increases the stiffness of human aortic ECs, suggesting that oxLDL may have a significant impact on the sensitivity of ECs to mechanical stimuli. In this study, we show that oxLDL strongly enhances the ability of ECs to realign in the direction of the flow and facilitates the formation of F-actin stress fibers under static and flow conditions. The impact of oxLDL on the flow-induced realignment is observed on whole cell and single-fiber levels. We also show that, similar to the effect of oxLDL on endothelial stiffness, the impact of oxLDL on flow-induced realignment can be simulated by methyl-beta-cyclodextrin-induced cholesterol depletion, supporting the hypothesis that oxLDL acts as cholesterol acceptor, rather than cholesterol donor, for ECs. Finally, we propose that oxLDL/cholesterol depletion-induced sensitization of ECs to flow may be a result of an increase in cellular stiffness and a respective increase in membrane-cytoskeleton tension.
Collapse
Affiliation(s)
- Gregory B Kowalsky
- Section of Pulmonary, Critical Care, and Sleep Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | |
Collapse
|
839
|
Tekpli X, Huc L, Lacroix J, Rissel M, Poët M, Noël J, Dimanche-Boitrel MT, Counillon L, Lagadic-Gossmann D. Regulation of Na+/H+ exchanger 1 allosteric balance by its localization in cholesterol- and caveolin-rich membrane microdomains. J Cell Physiol 2008; 216:207-20. [PMID: 18264982 DOI: 10.1002/jcp.21395] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Na+/H+ exchanger 1, which plays an essential role in intracellular pH regulation in most tissues, is also known to be a key actor in both proliferative and apoptotic processes. Its activation by H+ is best described by the Monod-Wyman-Changeux model: the dimeric NHE-1 oscillates between a low and a high affinity conformation, the balance between the two forms being defined by the allosteric constant L(0). In this study, influence of cholesterol- and caveolin-rich microdomains on NHE-1 activity was examined by using cholesterol depleting agents, including methyl-beta-cyclodextrin (MBCD). These agents activated NHE-1 by modulating its L(0) parameter, which was reverted by cholesterol repletion. This activation was associated with NHE-1 relocation outside microdomains, and was distinct from NHE-1 mitogenic and hormonal stimulation; indeed MBCD and serum treatments were additive, and serum alone did not change NHE-1 localization. Besides, MBCD activated a serum-insensitive, constitutively active mutated NHE-1 ((625)KDKEEEIRK(635) into KNKQQQIRK). Finally, the membrane-dependent NHE-1 regulation occurred independently of Mitogen Activated Protein Kinases, especially Extracellular Regulated Kinase activation, although this kinase was activated by MBCD. In conclusion, localization of NHE-1 in membrane cholesterol- and caveolin-rich microdomains constitutes a novel physiological negative regulator of NHE-1 activity.
Collapse
Affiliation(s)
- Xavier Tekpli
- INSERM U620, Equipe Labellisée Ligue contre Le Cancer, Rennes Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
840
|
Inhibition of Bufo arenarum oocyte maturation induced by cholesterol depletion by methyl-β-cyclodextrin. Role of low-density caveolae-like membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1398-406. [DOI: 10.1016/j.bbamem.2008.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 03/04/2008] [Accepted: 03/10/2008] [Indexed: 12/11/2022]
|
841
|
West Nile virus entry requires cholesterol-rich membrane microdomains and is independent of alphavbeta3 integrin. J Virol 2008; 82:5212-9. [PMID: 18385233 DOI: 10.1128/jvi.00008-08] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
West Nile virus (WNV) has been the leading cause of viral encephalitis in the United States since 1999. The endocytic processes involved in the internalization of infectious WNV by various cell types are not well characterized, and the involvement of cholesterol-rich membrane microdomains, or lipid rafts, in the life cycle of WNV has not been investigated previously. In this study, we found that the depletion of cellular cholesterol levels by brief treatment with methyl-beta-cyclodextrin resulted in a 100-fold reduction of the titers of infectious WNV released into the culture supernatant, as well as a reduction in the number of WNV genome copies in the cholesterol-depleted cells. The addition of exogenous cholesterol to cholesterol-depleted cells reversed this effect. Cholesterol depletion postinfection did not affect WNV growth, suggesting that the effect occurs at the level of WNV entry. We also showed that while WNV entry did not require alphavbeta3 integrin and focal adhesion kinase, WNV particles failed to be internalized by cholesterol-depleted cells. Finally, we showed the colocalization of the WNV envelope protein and cholera toxin B, which is internalized in a lipid raft-dependent pathway, in microdomain clusters at the plasma membrane. These data suggest that WNV utilizes lipid rafts during initial stages of internalization and that the lipid rafts may contain a factor(s) that may enhance WNV endocytosis.
Collapse
|
842
|
Korade Z, Kenworthy AK. Lipid rafts, cholesterol, and the brain. Neuropharmacology 2008; 55:1265-73. [PMID: 18402986 DOI: 10.1016/j.neuropharm.2008.02.019] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 02/15/2008] [Accepted: 02/26/2008] [Indexed: 01/11/2023]
Abstract
Lipid rafts are specialized membrane microdomains that serve as organizing centers for assembly of signaling molecules, influence membrane fluidity and trafficking of membrane proteins, and regulate different cellular processes such as neurotransmission and receptor trafficking. In this article, we provide an overview of current methods for studying lipid rafts and models for how lipid rafts might form and function. Next, we propose a potential mechanism for regulating lipid rafts in the brain via local control of cholesterol biosynthesis by neurotrophins and their receptors. Finally, we discuss evidence that altered cholesterol metabolism and/or lipid rafts play a critical role in the pathophysiology of multiple CNS disorders, including Smith-Lemli-Opitz syndrome, Huntington's, Alzheimer's, and Niemann-Pick Type C diseases.
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
843
|
Novel sugar-cholestanols as anticancer agents against peritoneal dissemination of tumor cells. Glycoconj J 2008; 25:531-44. [PMID: 18327639 DOI: 10.1007/s10719-008-9108-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 12/08/2007] [Accepted: 01/09/2008] [Indexed: 12/21/2022]
Abstract
Chemically synthesized sugar-cholestanols with mono-, di-, and tri-saccharides attached to cholestanol showed strong inhibiting activity against the proliferation of colorectal and gastric cancer cells. In contrast, cholestanol without sugar moieties was totally ineffective. Furthermore, when cancer cells were exposed to GlcNAcRbetacholestanol (R=(-) or beta1-3Gal), the compound was rapidly taken up via the lipid rafts/microdomains on the cell surface. The uptake of sugar-cholestanol in mitochondria increased gradually and was followed by the release of cytochrome c from mitochondria and the activation of apoptotic signals through the mitochondrial pathway and the caspase cascade, leading to apoptotic cell death, characterized by DNA ladder formation and nuclear fragmentation. Additionally, the examination of GlcNAcRbetacholestanol in a mouse model of peritoneal dissemination showed a dramatic reduction of tumor growth (P < 0.003) and prolonged mouse survival time (P<0.0001). Based on these observations, we believe that the sugar-cholestanols described here have clinical potential as novel anticancer agents.
Collapse
|
844
|
Abstract
The combined effects of cholesterol, a major cell membrane component, and the lipid second messenger diacylglycerol on the activity of protein kinase C (PK-C) and the structure of phosphatidylcholine/phosphatidylserine bilayers were investigated using specific PK-C assays and (2)H NMR. Whereas the classical activation of PK-C was observed as an effect of diacylglycerol, in the absence of this second messenger, cholesterol did not affect PK-C activity. A novel effect of amplified PK-C activation was observed in the presence of both cholesterol and diacylglycerol concentrations within the physiological range of each of these components. (2)H NMR results suggest that this phenomenon is due to cholesterol- and diacylglycerol-induced increased propensity of the lipids to adopt nonbilayer phases, effectively destabilizing the bilayer structure. The magnitude of the effect was a function of cholesterol concentration, implying that laterally separated cell membrane domains with distinct cholesterol concentrations have the capacity to differ in their sensitivity to extracellular stimuli.
Collapse
|
845
|
Robin E, Cognié J, Foulon-Gauze F, Fontaine J, Cayla X. Disruption of lipid rafts induces gonadotropin release in ovine pituitary and LbetaT2 gonadotroph cells. Biol Reprod 2008; 79:17-25. [PMID: 18322272 DOI: 10.1095/biolreprod.107.064881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In order to better understand the cellular mechanisms underlying LH and FSH secretion, we have addressed the contribution of lipid rafts to the secretion of gonadotropins. We used methyl-beta-cyclodextrin (MbetaCD), a cholesterol-sequestering agent, on an LbetaT2 murine gonadotroph cell line and on primary cultures of ovine pituitary cells. We found that in both systems, cholesterol depletion by MbetaCD induced a fast and substantial release of LH in the absence of natural stimulation by GnRH. In ovine pituitary cells, MbetaCD-mediated LH release was shown to be independent of protein synthesis. Twenty-four hours after MbetaCD treatment, there was no loss of cell viability and full recovery of LH secretory capabilities, as determined by GnRH or MbetaCD treatment. In addition, our data suggest the existence of a pool of LH that is not released by GnRH treatment but that is released by MbetaCD treatment. Finally, in ovine pituitary cells, MbetaCD treatment induced FSH secretion. Importantly, these in vitro data are supported by in vivo studies, because MbetaCD injected into the pituitary glands of anaesthetized sheep reproducibly induced a peak of LH release.
Collapse
Affiliation(s)
- E Robin
- UMR Physiologie de la Reproduction et des Comportements, INRA/CNRS/Université Tours/Haras Nationaux, 37380 Nouzilly, France
| | | | | | | | | |
Collapse
|
846
|
Mahammad S, Parmryd I. Cholesterol homeostasis in T cells. Methyl-beta-cyclodextrin treatment results in equal loss of cholesterol from Triton X-100 soluble and insoluble fractions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1251-8. [PMID: 18373974 DOI: 10.1016/j.bbamem.2008.02.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 02/05/2008] [Accepted: 02/25/2008] [Indexed: 01/17/2023]
Abstract
Methyl-beta-cyclodextrin (MBCD) is frequently used to acutely deplete cells of cholesterol. A widespread assumption is that MBCD preferentially targets cholesterol in lipid rafts and that sensitivity to MBCD is proof of lipid raft involvement in a cellular process. To analyse any MBCD preference systematically, progressive cholesterol depletion of Jurkat T cells was performed using MBCD and [3H]-cholesterol. It was found that at 37 degrees C, MBCD extracts similar proportions of cholesterol from the Triton X-100 resistant (lipid raft enriched) as it does from other cellular fractions and that the cells rapidly reestablish the relative differences in cholesterol concentration between different compartments. Moreover, cells restore the cholesterol level in the plasma membrane by mobilising cholesterol from intracellular cholesterol stores. Interestingly, mere incubation at 0 degrees C caused a loss of plasma membrane cholesterol with a concomitant increase in cholesteryl esters and adiposomes. Moreover, only 35% of total cholesterol could be extracted by MBCD at 0 degrees C and was accompanied by a complete loss of plasma membrane and endocytotic recycling centre filipin staining. This study clearly shows that MBCD does not specifically extract cholesterol from any cellular fraction, that cholesterol redistributes upon temperature changes and that intracellular cholesterol stores can be used to replenish plasma membrane cholesterol.
Collapse
Affiliation(s)
- Saleemulla Mahammad
- Department of Cell Biology, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | | |
Collapse
|
847
|
Stott BM, Vu MP, McLemore CO, Lund MS, Gibbons E, Brueseke TJ, Wilson-Ashworth HA, Bell JD. Use of fluorescence to determine the effects of cholesterol on lipid behavior in sphingomyelin liposomes and erythrocyte membranes. J Lipid Res 2008; 49:1202-15. [PMID: 18299615 DOI: 10.1194/jlr.m700479-jlr200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The purpose of this study was to generate the equivalent of a cholesterol/temperature phase map for a biological membrane using fluorescence spectroscopy. The pseudo-phase map was created using human erythrocytes treated with various concentrations of methyl-beta-cyclodextrin to remove defined amounts of cholesterol and a trio of fluorescent probes that assess different membrane properties (laurdan, diphenylhexatriene, and merocyanine 540). Parallel experiments with two-photon microscopy suggested that changes in cellular cholesterol content affected the entire membrane rather than being localized to specific macroscopic domains. The various regions of the composite erythrocyte pseudo-phase map were interpreted using analogous data acquired from multilamellar vesicles that served as simplified models of cholesterol-dependent phases. The vesicles consisted of various concentrations of cholesterol (0 to 50 mol%) with either palmitoyl sphingomyelin, 1:1 dipalmitoylphosphatidylcholine and dioleoylphosphatidylcholine, or phospholipid mixtures intended to simulate either the inner or outer leaflet of erythrocyte membranes. Four distinguishable regions were observed in sphingomyelin phase maps corresponding to the traditional solid-ordered and liquid-disordered phases and two types of liquid-ordered behavior. Physical properties were less diverse in the mixed phospholipid vesicles, as expected, based on previous studies. Erythrocytes displayed five regions of different combinations of membrane properties along the phase map. Some of the observations identified similarities between the cells and liquid-ordered behavior observed in the various types of liposomes as well as some interesting differences.
Collapse
Affiliation(s)
- Brian M Stott
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | | | | | | | | |
Collapse
|
848
|
Cheema TA, Fisher SK. Cholesterol regulates volume-sensitive osmolyte efflux from human SH-SY5Y neuroblastoma cells following receptor activation. J Pharmacol Exp Ther 2008; 324:648-57. [PMID: 17991810 DOI: 10.1124/jpet.107.131110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The ability of cholesterol to modulate receptor-mediated increases in the volume-dependent release of the organic osmolyte, taurine, has been examined. Depletion of cholesterol from SH-SY5Y neuroblastoma by preincubation of the cells with 5 mM methyl-beta-cyclodextrin (CD) for 10 min resulted in a 40 to 50% reduction in cholesterol and an enhancement of the ability of proteinase-activated receptor (PAR) 1, muscarinic cholinergic receptor (mAChR), and sphingosine 1-phosphate receptor to stimulate taurine efflux, when monitored under hypoosmotic conditions. Basal (swelling-induced) release of taurine was also enhanced by cholesterol depletion, but less markedly. Both basal- and receptor-mediated increases in taurine efflux were mediated via a volume-sensitive organic osmolyte and anion channel in control and cholesterol-depleted cells. Studies with the PAR-1 and mAChR receptor subtypes indicated that the stimulatory effect of CD pretreatment could be reversed by incubation of the cells with either CD/cholesterol or CD/5-cholesten-3alpha-ol donor complexes and that cholesterol depletion increased agonist efficacy, but not potency. The ability of cholesterol depletion to promote the PAR-1 receptor-mediated stimulation of osmolyte release was most pronounced under conditions of isotonicity or mild hypotonicity. In contrast to CD pretreatment, preincubation of the cells with cholesterol oxidase, a condition under which lipid microdomains are also disrupted, had no effect on either basal- or receptor-stimulated taurine efflux. Taken together, the results suggest that cholesterol regulates receptor-mediated osmolyte release via its effects on the biophysical properties of the plasma membrane, rather than its presence in lipid microdomains.
Collapse
Affiliation(s)
- Tooba A Cheema
- University of Michigan, Molecular and Behavioral Neuroscience Institute, 5039 Biomedical Science Research Building, Ann Arbor, MI 48109-2200, USA
| | | |
Collapse
|
849
|
Effects of cholesterol on physical properties of human erythrocyte membranes: impact on susceptibility to hydrolysis by secretory phospholipase A2. Biophys J 2008; 94:3084-93. [PMID: 18192373 DOI: 10.1529/biophysj.107.118356] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of secretory phospholipase A(2) (sPLA(2)) to hydrolyze cell membranes is highly dependent on the physical properties of the membrane. The effects of cholesterol on these properties have been characterized in artificial bilayers and found to alter sPLA(2) activity significantly. It is hypothesized that the natural difference in cholesterol content between erythrocytes and leukocytes is in part responsible for their differing susceptibility to hydrolysis by sPLA(2). To test this hypothesis, defined amounts of cholesterol were removed from erythrocyte membranes using methyl-beta-cyclodextrin. Treatment of cells with methyl-beta-cyclodextrin increased the hydrolysis rate and total substrate hydrolyzed by sPLA(2). In general, this effect of cholesterol removal was more pronounced at higher temperatures. Comparison of the level of membrane order (assessed with the fluorescent probe laurdan) with hydrolysis rate revealed that sPLA(2) activity was greatly enhanced upon significant reductions in lipid order. Additional treatment of the cells with calcium ionophore further enhanced the hydrolysis rate and altered the relationship with membrane order. These data demonstrated that interactions with sPLA(2) observed in artificial bilayers apply to biological membranes. It is also proposed that the high level of cholesterol in erythrocyte membranes is a protective mechanism to guard against hydrolytic enzymes.
Collapse
|
850
|
Beales PA, Vanderlick TK. Specific Binding of Different Vesicle Populations by the Hybridization of Membrane-Anchored DNA. J Phys Chem A 2007; 111:12372-80. [DOI: 10.1021/jp075792z] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paul A. Beales
- Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544
| | - T. Kyle Vanderlick
- Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|