851
|
Reversal of the Detrimental Effects of Post-Stroke Social Isolation by Pair-Housing is Mediated by Activation of BDNF-MAPK/ERK in Aged Mice. Sci Rep 2016; 6:25176. [PMID: 27125783 PMCID: PMC4850427 DOI: 10.1038/srep25176] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/11/2016] [Indexed: 01/07/2023] Open
Abstract
Social isolation (SI) increases stroke-related mortality and morbidity in clinical populations. The detrimental effects of SI have been successfully modeled in the laboratory using young animals. Mechanistically, the negative effects of SI in young animals are primarily mediated by an enhanced inflammatory response to injury and a reduction in neurotrophic factors. However, the response to brain injury differs considerably in the aged. Given that SI is more prevalent in aged populations, we hypothesized that isolation, even when initiated after stroke, would delay recovery in aged mice. We found that aged isolated male mice had significantly increased infarct volume, neurological deficits, and serum IL-6 levels three days after stroke compared to pair housed (PH) mice. Using RT2 Profiler PCR Array and real-time quantitative PCR we found several important synaptic plasticity genes were differentially expressed in post-stroke SI mice. Furthermore, paired mice showed improved memory and neurobehavioral recovery four weeks after injury. Mechanistic and histological studies showed that the beneficial effects of pair housing are partially mediated by BDNF via downstream MAPK/ERK signaling and restoration of axonal basic myelin protein levels.
Collapse
|
852
|
Loganathan S, Rathinasamy S. Alteration in Memory and Electroencephalogram Waves with Sub-acute Noise Stress in Albino Rats and Safeguarded by Scoparia dulcis. Pharmacogn Mag 2016; 12:S7-S13. [PMID: 27041862 PMCID: PMC4792003 DOI: 10.4103/0973-1296.176119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background: Noise stress has different effects on memory and novelty and the link between them with an electroencephalogram (EEG) has not yet been reported. Objective: To find the effect of sub-acute noise stress on the memory and novelty along with EEG and neurotransmitter changes. Materials and Methods: Eight-arm maze (EAM) and Y-maze to analyze the memory and novelty by novel object test. Four groups of rats were used: Control, control treated with Scoparia dulcis extract, noise exposed, and noise exposed which received Scoparia extract. Results: The results showed no marked difference observed between control and control treated with Scoparia extract on EAM, Y-maze, novel object test, and EEG in both prefrontal and occipital region, however, noise stress exposed rats showed significant increase in the reference memory and working memory error in EAM and latency delay, triad errors in Y-maze, and prefrontal and occipital EEG frequency rate with the corresponding increase in plasma corticosterone and epinephrine, and significant reduction in the novelty test, and significant reduction in the novelty test, amplitude of prefrontal, occipital EEG, and acetylcholine. Conclusion: These noise stress induced changes in EAM, Y-maze, novel object test, and neurotransmitters were significantly prevented when treated with Scoparia extract and these changes may be due to the normalizing action of Scoparia extract on the brain, which altered due to noise stress. SUMMARY Noise stress exposure causes EEG, behavior, and neurotransmitter alteration in the frontoparietal and occipital regions mainly involved in planning and recognition memory Only the noise stress exposed animals showed the significant alteration in the EEG, behavior, and neurotransmitters However, these noise stress induced changes in EEG behavior and neurotransmitters were significantly prevented when treated with Scoparia extract These changes may be due to the normalizing action of Scoparia dulcis (adoptogen) on the brain which altered by noise stress.
Abbreviations used: EEG: Electroencephalogram, dB: Decibel, EPI: Epinephrine, ACH: Acetylcholine, EAM: Eight-arm maze
Collapse
Affiliation(s)
- Sundareswaran Loganathan
- Department of Physiology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - Sheeladevi Rathinasamy
- Department of Physiology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
853
|
Ali MRAA, Abo-Youssef AMH, Messiha BAS, Khattab MM. Tempol and perindopril protect against lipopolysaccharide-induced cognition impairment and amyloidogenesis by modulating brain-derived neurotropic factor, neuroinflammation and oxido-nitrosative stress. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:637-56. [DOI: 10.1007/s00210-016-1234-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 03/21/2016] [Indexed: 01/01/2023]
|
854
|
Karlsson SA, Studer E, Kettunen P, Westberg L. Neural Androgen Receptors Modulate Gene Expression and Social Recognition But Not Social Investigation. Front Behav Neurosci 2016; 10:41. [PMID: 27014003 PMCID: PMC4792870 DOI: 10.3389/fnbeh.2016.00041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/22/2016] [Indexed: 12/02/2022] Open
Abstract
The role of sex and androgen receptors (ARs) for social preference and social memory is rather unknown. In this study of mice we compared males, females and males lacking ARs specifically in the nervous system, ARNesDel, with respect to social preference, assessed with the three-chambered apparatus test, and social recognition, assessed with the social discrimination procedure. In the social discrimination test we also evaluated the tentative importance of the sex of the stimulus animal. Novel object recognition and olfaction were investigated to complement the results from the social tests. Gene expression analysis was performed to reveal molecules involved in the effects of sex and androgens on social behaviors. All three test groups showed social preference in the three-chambered apparatus test. In both social tests an AR-independent sexual dimorphism was seen in the persistence of social investigation of female conspecifics, whereas the social interest toward male stimuli mice was similar in all groups. Male and female controls recognized conspecifics independent of their sex, whereas ARNesDel males recognized female but not male stimuli mice. Moreover, the non-social behaviors were not affected by AR deficiency. The gene expression analyses of hypothalamus and amygdala indicated that Oxtr, Cd38, Esr1, Cyp19a1, Ucn3, Crh, and Gtf2i were differentially expressed between the three groups. In conclusion, our results suggest that ARs are required for recognition of male but not female conspecifics, while being dispensable for social investigation toward both sexes. In addition, the AR seems to regulate genes related to oxytocin, estrogen and William’s syndrome.
Collapse
Affiliation(s)
- Sara A Karlsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Erik Studer
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| |
Collapse
|
855
|
Shih YH, Tsai SF, Huang SH, Chiang YT, Hughes MW, Wu SY, Lee CW, Yang TT, Kuo YM. Hypertension impairs hippocampus-related adult neurogenesis, CA1 neuron dendritic arborization and long-term memory. Neuroscience 2016; 322:346-57. [PMID: 26921651 DOI: 10.1016/j.neuroscience.2016.02.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/02/2016] [Accepted: 02/18/2016] [Indexed: 02/07/2023]
Abstract
Hypertension is associated with neurodegenerative diseases and cognitive impairment. Several studies using spontaneous hypertensive rats to study the effect of hypertension on memory performance and adult hippocampal neurogenesis have reached inconsistent conclusions. The contradictory findings may be related to the genetic variability of spontaneous hypertensive rats due to the conventional breeding practices. The objective of this study is to examine the effect of hypertension on hippocampal structure and function in isogenic mice. Hypertension was induced by the '2 kidneys, 1 clip' method (2K1C) which constricted one of the two renal arteries. The blood pressures of 2K1C mice were higher than the sham group on post-operation day 7 and remained high up to day 28. Mice with 2K1C-induced hypertension had impaired long-term, but not short-term, memory. Dendritic complexity of CA1 neurons and hippocampal neurogenesis were reduced by 2K1C-induced hypertension on post-operation day 28. Furthermore, 2K1C decreased the levels of hippocampal brain-derived neurotrophic factor, while blood vessel density and activation status of astrocytes and microglia were not affected. In conclusion, hypertension impairs hippocampus-associated long-term memory, dendritic arborization and neurogenesis, which may be caused by down-regulation of brain-derived neurotrophic factor signaling pathways.
Collapse
Affiliation(s)
- Y-H Shih
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - S-F Tsai
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - S-H Huang
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | - Y-T Chiang
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | - M W Hughes
- International Research Center of Wound Repair & Regeneration, Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
| | - S-Y Wu
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - C-W Lee
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - T-T Yang
- Department of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Y-M Kuo
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan; Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
856
|
Darcet F, Gardier AM, Gaillard R, David DJ, Guilloux JP. Cognitive Dysfunction in Major Depressive Disorder. A Translational Review in Animal Models of the Disease. Pharmaceuticals (Basel) 2016; 9:ph9010009. [PMID: 26901205 PMCID: PMC4812373 DOI: 10.3390/ph9010009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
Major Depressive Disorder (MDD) is the most common psychiatric disease, affecting millions of people worldwide. In addition to the well-defined depressive symptoms, patients suffering from MDD consistently complain about cognitive disturbances, significantly exacerbating the burden of this illness. Among cognitive symptoms, impairments in attention, working memory, learning and memory or executive functions are often reported. However, available data about the heterogeneity of MDD patients and magnitude of cognitive symptoms through the different phases of MDD remain difficult to summarize. Thus, the first part of this review briefly overviewed clinical studies, focusing on the cognitive dysfunctions depending on the MDD type. As animal models are essential translational tools for underpinning the mechanisms of cognitive deficits in MDD, the second part of this review synthetized preclinical studies observing cognitive deficits in different rodent models of anxiety/depression. For each cognitive domain, we determined whether deficits could be shared across models. Particularly, we established whether specific stress-related procedures or unspecific criteria (such as species, sex or age) could segregate common cognitive alteration across models. Finally, the role of adult hippocampal neurogenesis in rodents in cognitive dysfunctions during MDD state was also discussed.
Collapse
Affiliation(s)
- Flavie Darcet
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| | - Alain M Gardier
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| | - Raphael Gaillard
- Laboratoire de "Physiopathologie des maladies Psychiatriques", Centre de Psychiatrie et Neurosciences U894, INSERM, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.
- Service de Psychiatrie, Centre Hospitalier Sainte-Anne, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.
- Human Histopathology and Animal Models, Infection and Epidemiology Department, Institut Pasteur, Paris 75015, France.
| | - Denis J David
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| | - Jean-Philippe Guilloux
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| |
Collapse
|
857
|
Lueptow LM, Zhan CG, O'Donnell JM. Cyclic GMP-mediated memory enhancement in the object recognition test by inhibitors of phosphodiesterase-2 in mice. Psychopharmacology (Berl) 2016; 233:447-56. [PMID: 26525565 DOI: 10.1007/s00213-015-4129-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/14/2015] [Indexed: 12/24/2022]
Abstract
RATIONALE AND OBJECTIVES Cyclic nucleotide phosphodiesterase-2 (PDE2) is a potential therapeutic target for the treatment of cognitive dysfunction. Using the object recognition test (ORT), this study assessed the effects of two PDE2 inhibitors, Bay 60-7550 and ND7001, on learning and memory, and examined underlying mechanisms. METHODS To assess the role of PDE2 inhibition on phases of memory, Bay 60-7550 (3 mg/kg) was administered: 30 min prior to training; 0, 1, or 3 h after training; or 30 min prior to recall testing. To assess cyclic nucleotide involvement in PDE2 inhibitor-enhanced memory consolidation, either the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 20 mg/kg; intraperitoneal (IP)), soluble guanylyl cyclase inhibitor 1H-[-1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ; 20 mg/kg; IP), protein kinase G inhibitor KT5823 (2.5 μg; intracerebroventricular (ICV)), or protein kinase A inhibitor H89 (1 μg; ICV) was administered 30 min prior to the PDE2 inhibitor Bay 60-7550 (3 mg/kg) or ND7001 (3 mg/kg). Changes in the phosphorylation of 3'5'-cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) at Ser-133 and vasodilator-stimulated phosphoprotein (VASP) at Ser-239 were determined to confirm activation of cAMP and 3'5'-cyclic guanosine monophosphate (cGMP) signaling. RESULTS Bay 60-7550 (3 mg/kg) enhanced memory of mice in the ORT when given 30 min prior to training, immediately after training, or 30 min prior to recall. Inhibitors of the cGMP pathway blocked the memory-enhancing effects of both Bay 60-7550 (3 mg/kg) and ND7001 (3 mg/kg) on early consolidation processes. Bay 60-7550 (3 mg/kg) enhanced phosphorylation of CREB and VASP, both targets of cGMP-dependent protein kinase (PKG). CONCLUSIONS These results confirm a potential of PDE2, or components of its signaling pathway, as a therapeutic target for drug discovery focused on restoring memory function.
Collapse
Affiliation(s)
- Lindsay M Lueptow
- Neuroscience Graduate Program, West Virginia University Health Sciences Center, Morgantown, WV, USA.
- West Virginia University, 1 Medical Center Drive, PO Box 9128, Morgantown, WV, USA.
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, USA
| | - James M O'Donnell
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
858
|
Huperzine A Alleviates Mechanical Allodynia but Not Spontaneous Pain via Muscarinic Acetylcholine Receptors in Mice. Neural Plast 2015; 2015:453170. [PMID: 26697233 PMCID: PMC4678084 DOI: 10.1155/2015/453170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/13/2015] [Accepted: 09/14/2015] [Indexed: 12/13/2022] Open
Abstract
Chronic pain is a major health issue and most patients suffer from spontaneous pain. Previous studies suggest that Huperzine A (Hup A), an alkaloid isolated from the Chinese herb Huperzia serrata, is a potent analgesic with few side effects. However, whether it alleviates spontaneous pain is unclear. We evaluated the effects of Hup A on spontaneous pain in mice using the conditioned place preference (CPP) behavioral assay and found that application of Hup A attenuated the mechanical allodynia induced by peripheral nerve injury or inflammation. This effect was blocked by atropine. However, clonidine but not Hup A induced preference for the drug-paired chamber in CPP. The same effects occurred when Hup A was infused into the anterior cingulate cortex. Furthermore, ambenonium chloride, a competitive inhibitor of acetylcholinesterase, also increased the paw-withdrawal threshold but failed to induce place preference in CPP. Therefore, our data suggest that acetylcholinesterase in both the peripheral and central nervous systems is involved in the regulation of mechanical allodynia but not the spontaneous pain.
Collapse
|
859
|
Jangra A, Kasbe P, Pandey SN, Dwivedi S, Gurjar SS, Kwatra M, Mishra M, Venu AK, Sulakhiya K, Gogoi R, Sarma N, Bezbaruah BK, Lahkar M. Hesperidin and Silibinin Ameliorate Aluminum-Induced Neurotoxicity: Modulation of Antioxidants and Inflammatory Cytokines Level in Mice Hippocampus. Biol Trace Elem Res 2015; 168:462-71. [PMID: 26018497 DOI: 10.1007/s12011-015-0375-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/18/2015] [Indexed: 01/14/2023]
Abstract
Mounting evidence suggests that long-term aluminum exposure results in severe toxic effects, including neurobehavioral and neurochemical anomalies. The present study was performed to examine the neuroprotective potential of hesperidin and silibinin against aluminum chloride (AlCl3)-induced neurotoxicity in mice. AlCl3 (100 mg/kg/day) was injected daily through oral gavage for 42 days. Concomitantly, hesperidin (50 and 100 mg/kg/day, p.o.) and silibinin (100 and 200 mg/kg/day, p.o.) was administered for 42 days in different groups. The extent of cognitive impairment was assessed by Morris water maze and novel object recognition test on the 43rd day. Neurotoxicity was assessed by measuring oxido-nitrosative stress and proinflammatory cytokines in the hippocampus of mice. Six weeks treatment with AlCl3 caused cognitive impairment as indicated by an increase in the retention latency time and reduction in the percentage of recognition index. AlCl3-treated group showed oxido-nitrosative stress as indicated by increase in the level of lipid peroxidation, nitrite and depleted reduced glutathione, catalase activity in the hippocampus. Moreover, the chronic AlCl3 administration raised the proinflammatory cytokines (interleukin-1β and tumor necrosis factor-α) level and increased acetylcholinesterase activity and reduced the BDNF content in the hippocampus of AlCl3-treated animals. However, chronic treatment with hesperidin and silibinin at higher doses significantly ameliorated the AlCl3-induced cognitive impairment and hippocampal biochemical anomalies. The present study clearly indicated that hesperidin and silibinin exert neuroprotective effects against AlCl3-induced cognitive impairment and neurochemical changes. Amelioration of cognitive impairment may be attributed to the impediment of oxido-nitrosative stress and inflammation in the hippocampus.
Collapse
Affiliation(s)
- Ashok Jangra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781032, India.
| | - Prajapati Kasbe
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781032, India
| | - Surya Narayan Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781032, India
| | - Shubham Dwivedi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781032, India
| | - Satendra S Gurjar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781032, India
| | - Mohit Kwatra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781032, India
| | - Murli Mishra
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY, 40576, USA
| | - Athira K Venu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781032, India
| | - Kunjbihari Sulakhiya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781032, India
| | - Ranadeep Gogoi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781032, India
| | - Nitul Sarma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781032, India
| | - Babul K Bezbaruah
- Department of Pharmacology, Gauhati Medical College, Guwahati, Assam, 781032, India
| | - Mangala Lahkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781032, India.
- Department of Pharmacology, Gauhati Medical College, Guwahati, Assam, 781032, India.
| |
Collapse
|
860
|
Jangra A, Dwivedi S, Sriram CS, Gurjar SS, Kwatra M, Sulakhiya K, Baruah CC, Lahkar M. Honokiol abrogates chronic restraint stress-induced cognitive impairment and depressive-like behaviour by blocking endoplasmic reticulum stress in the hippocampus of mice. Eur J Pharmacol 2015; 770:25-32. [PMID: 26638996 DOI: 10.1016/j.ejphar.2015.11.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/08/2015] [Accepted: 11/25/2015] [Indexed: 01/10/2023]
Abstract
The primary objective of our study is to investigate the neuroprotective efficacy of honokiol and imipramine against restraint stress (RS)-induced cognitive impairment and depressive-like behaviour in mice. We examined whether the neuroprotective activity of honokiol and imipramine mediates through the inhibition of endoplasmic reticulum stress. Adult Swiss albino mice were restrained for 6h/day for 28 days. Honokiol (3 and 10mg/kg) and Imipramine (10 and 30mg/kg) were administered for last 7 days to the different groups. Cognitive function was assessed by Morris water maze and novel object recognition test. Forced swimming test and tail suspension test were performed to evaluate the restraint stress-induced depressive-like behaviour. Proinflammatory cytokines, brain-derived neurotrophic factor, and ER stress markers i.e. 78-kDa glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP) were quantified in the hippocampus. We observed cognitive impairment and depressive-like behaviour in RS-exposed animals. Honokiol (10mg/kg) treated group depicted marked reduction in cognitive impairment and depressive-like behaviour. However, imipramine (10 and 30mg/kg) prevented the depressive-like behaviour but failed to prevent RS-induced cognitive impairment. Moreover, proinflammatory cytokines, GRP78 and CHOP were elevated in the hippocampus of stressed mice as compared to unstressed mice. Honokiol (10mg/kg) significantly prevented the RS-induced elevated levels of proinflammatory cytokines and endoplasmic reticulum stress markers. Our results clearly suggest the beneficial potential of honokiol in restraint stress through inhibition of proinflammatory cytokines and endoplasmic reticulum stress. Honokiol could be an intriguing therapeutic approach in endoplasmic reticulum stress related neuro-pathophysiological conditions.
Collapse
Affiliation(s)
- Ashok Jangra
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781032, India; Department of Pharmacology, Gauhati Medical College, Guwahati, Assam 781032, India
| | - Shubham Dwivedi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781032, India; Department of Pharmacology, Gauhati Medical College, Guwahati, Assam 781032, India
| | - Chandra Shaker Sriram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781032, India; Department of Pharmacology, Gauhati Medical College, Guwahati, Assam 781032, India
| | - Satendra Singh Gurjar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India; Department of Pharmacology, Gauhati Medical College, Guwahati, Assam 781032, India
| | - Mohit Kwatra
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781032, India; Department of Pharmacology, Gauhati Medical College, Guwahati, Assam 781032, India
| | - Kunjbihari Sulakhiya
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781032, India; Department of Pharmacology, Gauhati Medical College, Guwahati, Assam 781032, India
| | - Chandana C Baruah
- Department of Pharmacology and Toxicology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam 781022, India; Department of Pharmacology, Gauhati Medical College, Guwahati, Assam 781032, India
| | - Mangala Lahkar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781032, India; Department of Pharmacology and Toxicology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam 781022, India; Department of Pharmacology, Gauhati Medical College, Guwahati, Assam 781032, India.
| |
Collapse
|
861
|
Karlsson SA, Haziri K, Hansson E, Kettunen P, Westberg L. Effects of sex and gonadectomy on social investigation and social recognition in mice. BMC Neurosci 2015; 16:83. [PMID: 26608570 PMCID: PMC4660658 DOI: 10.1186/s12868-015-0221-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/17/2015] [Indexed: 01/02/2023] Open
Abstract
Background An individual’s ability to recognise and pay attention to others is crucial in order to behave appropriately in various social situations. Studies in humans have shown a sex bias in sociability as well as social memory, indicating that females have better face memory and gaze more at the eyes of others, but information about the factors that underpin these differences is sparse. Our aim was therefore to investigate if sociability and social recognition differ between female and male mice, and if so, to what extent gonadal hormones may be involved. Intact and gonadectomised male and female mice were assessed for sociability and social recognition using the three-chambered sociability paradigm, as well as the social discrimination test. Furthermore, we conducted a novel object recognition test, a locomotor activity test and an odour habituation/dishabituation test. Results The present study showed that the ability to recognise other individuals is intact in males with and without gonads, as well as in intact females, whereas it is hampered in gonadectomised females. Additionally, intact male mice displayed more persistent investigatory behaviour compared to the other groups, although the intact females showed elevated basal locomotor activity. In addition, all groups had intact object memory and habituated to odours. Conclusions Our results suggest that intact male mice investigate conspecifics more than females do, and these differences seem to depend upon circulating hormones released from the testis. As these results seem to contrast what is known from human studies, they should be taken into consideration when using the three-chambered apparatus, and similar paradigms as animal models of social deficits in e.g. autism. Other behavioural tests, and animal models, may be more suitable for translational studies between patients and experimental animals.
Collapse
Affiliation(s)
- Sara A Karlsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Kaltrina Haziri
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Evelyn Hansson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
862
|
MouseMove: an open source program for semi-automated analysis of movement and cognitive testing in rodents. Sci Rep 2015; 5:16171. [PMID: 26530459 PMCID: PMC4632026 DOI: 10.1038/srep16171] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/30/2015] [Indexed: 12/27/2022] Open
Abstract
The Open Field (OF) test is one of the most commonly used assays for assessing exploratory behaviour and generalised locomotor activity in rodents. Nevertheless, the vast majority of researchers still rely upon costly commercial systems for recording and analysing OF test results. Consequently, our aim was to design a freely available program for analysing the OF test and to provide an accompanying protocol that was minimally invasive, rapid, unbiased, without the need for specialised equipment or training. Similar to commercial systems, we show that our software—called MouseMove—accurately quantifies numerous parameters of movement including travel distance, speed, turning and curvature. To assess its utility, we used MouseMove to quantify unilateral locomotor deficits in mice following the filament-induced middle cerebral artery occlusion model of acute ischemic stroke. MouseMove can also monitor movement within defined regions-of-interest and is therefore suitable for analysing the Novel Object Recognition test and other field-related cognitive tests. To the best of our knowledge, MouseMove is the first open source software capable of providing qualitative and quantitative information on mouse locomotion in a semi-automated and high-throughput fashion, and hence MouseMove represents a sound alternative to commercial movement analysis systems.
Collapse
|
863
|
Sinadinos A, Young CNJ, Al-Khalidi R, Teti A, Kalinski P, Mohamad S, Floriot L, Henry T, Tozzi G, Jiang T, Wurtz O, Lefebvre A, Shugay M, Tong J, Vaudry D, Arkle S, doRego JC, Górecki DC. P2RX7 purinoceptor: a therapeutic target for ameliorating the symptoms of duchenne muscular dystrophy. PLoS Med 2015; 12:e1001888. [PMID: 26461208 PMCID: PMC4604078 DOI: 10.1371/journal.pmed.1001888] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/04/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is the most common inherited muscle disease, leading to severe disability and death in young men. Death is caused by the progressive degeneration of striated muscles aggravated by sterile inflammation. The pleiotropic effects of the mutant gene also include cognitive and behavioral impairments and low bone density. Current interventions in DMD are palliative only as no treatment improves the long-term outcome. Therefore, approaches with a translational potential should be investigated, and key abnormalities downstream from the absence of the DMD product, dystrophin, appear to be strong therapeutic targets. We and others have demonstrated that DMD mutations alter ATP signaling and have identified P2RX7 purinoceptor up-regulation as being responsible for the death of muscles in the mdx mouse model of DMD and human DMD lymphoblasts. Moreover, the ATP-P2RX7 axis, being a crucial activator of innate immune responses, can contribute to DMD pathology by stimulating chronic inflammation. We investigated whether ablation of P2RX7 attenuates the DMD model mouse phenotype to assess receptor suitability as a therapeutic target. METHODS AND FINDINGS Using a combination of molecular, histological, and biochemical methods and behavioral analyses in vivo we demonstrate, to our knowledge for the first time, that genetic ablation of P2RX7 in the DMD model mouse produces a widespread functional attenuation of both muscle and non-muscle symptoms. In dystrophic muscles at 4 wk there was an evident recovery in key functional and molecular parameters such as improved muscle structure (minimum Feret diameter, p < 0.001), increased muscle strength in vitro (p < 0.001) and in vivo (p = 0.012), and pro-fibrotic molecular signatures. Serum creatine kinase (CK) levels were lower (p = 0.025), and reduced cognitive impairment (p = 0.006) and bone structure alterations (p < 0.001) were also apparent. Reduction of inflammation and fibrosis persisted at 20 mo in leg (p = 0.038), diaphragm (p = 0.042), and heart muscles (p < 0.001). We show that the amelioration of symptoms was proportional to the extent of receptor depletion and that improvements were observed following administration of two P2RX7 antagonists (CK, p = 0.030 and p = 0.050) without any detectable side effects. However, approaches successful in animal models still need to be proved effective in clinical practice. CONCLUSIONS These results are, to our knowledge, the first to establish that a single treatment can improve muscle function both short and long term and also correct cognitive impairment and bone loss in DMD model mice. The wide-ranging improvements reflect the convergence of P2RX7 ablation on multiple disease mechanisms affecting skeletal and cardiac muscles, inflammatory cells, brain, and bone. Given the impact of P2RX7 blockade in the DMD mouse model, this receptor is an attractive target for translational research: existing drugs with established safety records could potentially be repurposed for treatment of this lethal disease.
Collapse
Affiliation(s)
- Anthony Sinadinos
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Christopher N. J. Young
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Rasha Al-Khalidi
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Paweł Kalinski
- Departments of Surgery, Immunology, and Bioengineering, School of Medicine, University of Pittsburgh, Pittsburg, Pennsylvania, United States of America
| | - Shafini Mohamad
- School of Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - Léonore Floriot
- Platform of Behavioural Analysis (SCAC), University of Rouen, Mont-Saint-Aignan,Rouen, France
| | - Tiphaine Henry
- Platform of Behavioural Analysis (SCAC), University of Rouen, Mont-Saint-Aignan,Rouen, France
| | - Gianluca Tozzi
- School of Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - Taiwen Jiang
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Olivier Wurtz
- INSERM U982, Plate-Forme d’Imagerie PRIMACEN, IRIB, University of Rouen, Mont-Saint-Aignan, France
| | - Alexis Lefebvre
- Platform of Behavioural Analysis (SCAC), University of Rouen, Mont-Saint-Aignan,Rouen, France
| | - Mikhail Shugay
- Genomics of Adaptive Immunity Lab, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry and Pirogov Russian National Research Medical University, Moscow, Russia
| | - Jie Tong
- School of Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - David Vaudry
- INSERM U982, Plate-Forme d’Imagerie PRIMACEN, IRIB, University of Rouen, Mont-Saint-Aignan, France
| | - Stephen Arkle
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Jean-Claude doRego
- Platform of Behavioural Analysis (SCAC), University of Rouen, Mont-Saint-Aignan,Rouen, France
- National Center of Scientific Research (CNRS), Caen, France
| | - Dariusz C. Górecki
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- * E-mail:
| |
Collapse
|
864
|
Affiliation(s)
- David M Cohen
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and VA Portland Health Care System, Portland, Oregon
| |
Collapse
|
865
|
Quiedeville A, Boulouard M, Hamidouche K, Da Silva Costa-Aze V, Nee G, Rochais C, Dallemagne P, Fabis F, Freret T, Bouet V. Chronic activation of 5-HT4 receptors or blockade of 5-HT6 receptors improve memory performances. Behav Brain Res 2015; 293:10-7. [PMID: 26187692 DOI: 10.1016/j.bbr.2015.07.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/30/2015] [Accepted: 07/04/2015] [Indexed: 12/12/2022]
Abstract
5-HT4 and 5-HT6 serotonergic receptors are located in brain structures involved in memory processes. Neurochemical and behavioural studies have demonstrated that acute activation of 5-HT4 receptors (5-HT4R) or blockade of 5-HT6 receptors (5-HT6R) improves memory. To evaluate the potential of these two receptors as targets in the treatment of memory disorders encountered in several situations (ageing, Alzheimer's disease, schizophrenia, etc.), it is necessary to assess whether their beneficial effects occur after chronic administration, and if such treatment induces adverse effects. The goal of this study was to assess the effects of chronic 5-HT4R or 5-HT6R modulation on recognition memory, and to observe the possible manifestation of side effects (modification of weight gain, locomotor activity or exploratory behaviour, etc.). Mice were treated for 14 days with a 5-HT4R partial agonist (RS-67333) or a 5-HT6R antagonist (SB-271046) at increasing doses. Memory performances, locomotor activity, and exploration were assessed. Both chronic 5-HT4R activation and 5-HT6R blockade extended memory traces in an object recognition test, and were not associated with any adverse effects in the parameters assessed. Chronic modulation of one or both of these receptors thus seems promising as a potential strategy for the treatment memory deficits.
Collapse
Affiliation(s)
- Anne Quiedeville
- Groupe Mémoire et Plasticité comportementale (GMPc), Université de Caen Basse-Normandie, EA 4259, F-14032 Caen, France.
| | - Michel Boulouard
- Groupe Mémoire et Plasticité comportementale (GMPc), Université de Caen Basse-Normandie, EA 4259, F-14032 Caen, France
| | - Katia Hamidouche
- Groupe Mémoire et Plasticité comportementale (GMPc), Université de Caen Basse-Normandie, EA 4259, F-14032 Caen, France
| | - Virginie Da Silva Costa-Aze
- Groupe Mémoire et Plasticité comportementale (GMPc), Université de Caen Basse-Normandie, EA 4259, F-14032 Caen, France
| | - Gerald Nee
- Groupe Mémoire et Plasticité comportementale (GMPc), Université de Caen Basse-Normandie, EA 4259, F-14032 Caen, France
| | - Christophe Rochais
- UFR des Sciences Pharmaceutiques, Université de Caen Basse-Normandie, EA 4258 CERMN, FR CNRS 3038 INC3 M, SF-4206 ICORE, Boulevard Becquerel, F-14032 Caen, France
| | - Patrick Dallemagne
- UFR des Sciences Pharmaceutiques, Université de Caen Basse-Normandie, EA 4258 CERMN, FR CNRS 3038 INC3 M, SF-4206 ICORE, Boulevard Becquerel, F-14032 Caen, France
| | - Frédéric Fabis
- UFR des Sciences Pharmaceutiques, Université de Caen Basse-Normandie, EA 4258 CERMN, FR CNRS 3038 INC3 M, SF-4206 ICORE, Boulevard Becquerel, F-14032 Caen, France
| | - Thomas Freret
- Groupe Mémoire et Plasticité comportementale (GMPc), Université de Caen Basse-Normandie, EA 4259, F-14032 Caen, France
| | - Valentine Bouet
- Groupe Mémoire et Plasticité comportementale (GMPc), Université de Caen Basse-Normandie, EA 4259, F-14032 Caen, France
| |
Collapse
|
866
|
Raber J. Novel images and novel locations of familiar images as sensitive translational cognitive tests in humans. Behav Brain Res 2015; 285:53-9. [DOI: 10.1016/j.bbr.2015.01.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 01/20/2023]
|
867
|
Perna JC, Wotjak CT, Stork O, Engelmann M. Timing of presentation and nature of stimuli determine retroactive interference with social recognition memory in mice. Physiol Behav 2015; 143:10-4. [DOI: 10.1016/j.physbeh.2015.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 01/09/2015] [Accepted: 02/19/2015] [Indexed: 12/23/2022]
|
868
|
Schmidt A, Diederich K, Strecker JK, Geng B, Hoppen M, Duning T, Schäbitz WR, Minnerup J. Progressive cognitive deficits in a mouse model of recurrent photothrombotic stroke. Stroke 2015; 46:1127-31. [PMID: 25744521 DOI: 10.1161/strokeaha.115.008905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE In spite of its high disease burden, there is no specific treatment for multi-infarct dementia. The preclinical evaluation of candidate drugs is limited because an appropriate animal model is lacking. Therefore, we aimed to evaluate whether a mouse model of recurrent photothrombotic stroke is suitable for the preclinical investigation of multi-infarct dementia. METHODS Recurrent photothrombotic cortical infarcts were induced in 25 adult C57BL/6 mice. Twenty-five sham-operated animals served as controls. The object recognition test and the Morris water maze test were performed >6 weeks to assess cognitive deficits. Afterward, histological analyses were performed to characterize histopathologic changes associated with recurrent photothrombotic infarcts. RESULTS After the first infarct, the object recognition test showed a trend toward an impaired formation of recognition memories (P=0.08), and the Morris Water Maze test revealed significantly impaired spatial learning and memory functions (P<0.05). After recurrent infarcts, the object recognition test showed significant recognition memory deficits (P<0.001) and the Morris water maze test demonstrated persisting spatial learning and memory deficits (P<0.05). Histological analyses revealed remote astrogliosis in the hippocampus. CONCLUSIONS Our results show progressive cognitive deficits in a mouse model of recurrent photothrombotic stroke. The presented model resembles the clinical features of human multi-infarct dementia and enables the investigation of its pathophysiological mechanisms and the evaluation of treatment strategies.
Collapse
Affiliation(s)
- Antje Schmidt
- From the Department of Neurology, University of Münster, Münster, Germany (A.S., K.D., J.-K.S., B.G., M.H., T.D., J.M.); and Department of Neurology, Bethel-EvKB, Bielefeld, Germany (W.-R.S.).
| | - Kai Diederich
- From the Department of Neurology, University of Münster, Münster, Germany (A.S., K.D., J.-K.S., B.G., M.H., T.D., J.M.); and Department of Neurology, Bethel-EvKB, Bielefeld, Germany (W.-R.S.)
| | - Jan-Kolja Strecker
- From the Department of Neurology, University of Münster, Münster, Germany (A.S., K.D., J.-K.S., B.G., M.H., T.D., J.M.); and Department of Neurology, Bethel-EvKB, Bielefeld, Germany (W.-R.S.)
| | - Birgit Geng
- From the Department of Neurology, University of Münster, Münster, Germany (A.S., K.D., J.-K.S., B.G., M.H., T.D., J.M.); and Department of Neurology, Bethel-EvKB, Bielefeld, Germany (W.-R.S.)
| | - Maike Hoppen
- From the Department of Neurology, University of Münster, Münster, Germany (A.S., K.D., J.-K.S., B.G., M.H., T.D., J.M.); and Department of Neurology, Bethel-EvKB, Bielefeld, Germany (W.-R.S.)
| | - Thomas Duning
- From the Department of Neurology, University of Münster, Münster, Germany (A.S., K.D., J.-K.S., B.G., M.H., T.D., J.M.); and Department of Neurology, Bethel-EvKB, Bielefeld, Germany (W.-R.S.)
| | - Wolf-Rüdiger Schäbitz
- From the Department of Neurology, University of Münster, Münster, Germany (A.S., K.D., J.-K.S., B.G., M.H., T.D., J.M.); and Department of Neurology, Bethel-EvKB, Bielefeld, Germany (W.-R.S.)
| | - Jens Minnerup
- From the Department of Neurology, University of Münster, Münster, Germany (A.S., K.D., J.-K.S., B.G., M.H., T.D., J.M.); and Department of Neurology, Bethel-EvKB, Bielefeld, Germany (W.-R.S.)
| |
Collapse
|
869
|
Kasbe P, Jangra A, Lahkar M. Mangiferin ameliorates aluminium chloride-induced cognitive dysfunction via alleviation of hippocampal oxido-nitrosative stress, proinflammatory cytokines and acetylcholinesterase level. J Trace Elem Med Biol 2015; 31:107-12. [PMID: 26004900 DOI: 10.1016/j.jtemb.2015.04.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 01/21/2023]
Abstract
Mangiferin is a phytochemical primarily present in the stem, leaves and bark of Mangifera indica. It offers neuroprotection mainly through inhibition of oxidative stress, and decreasing proinflammatory cytokines level in the brain. Aluminium has been reported to cause oxidative stress-associated damage in the brain. In the present investigation, protective effect of mangiferin against aluminium chloride (AlCl3)-induced neurotoxicity and cognitive impairment was studied in male Swiss albino mice. AlCl3 (100 mg/kg) was administered once daily through oral gavage for 42 days. Mangiferin (20 and 40 mg/kg, p.o.) was given to mice for last 21 days of the study. We found cognitive dysfunction in AlCl3-treated group, which was assessed by Morris water maze test, and novel object recognition test. AlCl3-treated group showed elevated level of oxidative stress markers, proinflammatory cytokines level and lowered hippocampal brain-derived neurotrophic factor (BDNF) content. Mangiferin (40 mg/kg) prevented the cognitive deficits, hippocampal BDNF depletion, and biochemical anomalies induced by AlCl3-treatment. In conclusion, our data demonstrated that mangiferin offers neuroprotection in AlCl3-induced neurotoxicity and it may be a potential therapeutic approach in the treatment of oxido-nitrosative stress and inflammation-associated neurotoxicity.
Collapse
Affiliation(s)
- Prajapati Kasbe
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781032, India
| | - Ashok Jangra
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781032, India.
| | - Mangala Lahkar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781032, India; Department of Pharmacology, Gauhati Medical College, Guwahati, Assam 781032, India.
| |
Collapse
|
870
|
Gascon E, Lynch K, Ruan H, Almeida S, Verheyden J, Seeley WW, Dickson DW, Petrucelli L, Sun D, Jiao J, Zhou H, Jakovcevski M, Akbarian S, Yao WD, Gao FB. Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nat Med 2014; 20:1444-51. [PMID: 25401692 PMCID: PMC4257887 DOI: 10.1038/nm.3717] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/11/2014] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases, such as frontotemporal dementia (FTD), are often associated with behavioral deficits, but the underlying anatomical and molecular causes remain poorly understood. Here we show that forebrain-specific expression of FTD-associated mutant CHMP2B in mice causes several age-dependent neurodegenerative phenotypes, including social behavioral impairments. The social deficits were accompanied by a change in AMPA receptor (AMPAR) composition, leading to an imbalance between Ca(2+)-permeable and Ca(2+)-impermeable AMPARs. Expression of most AMPAR subunits was regulated by the brain-enriched microRNA miR-124, whose abundance was markedly decreased in the superficial layers of the cerebral cortex of mice expressing the mutant CHMP2B. We found similar changes in miR-124 and AMPAR levels in the frontal cortex and induced pluripotent stem cell-derived neurons from subjects with behavioral variant FTD. Moreover, ectopic miR-124 expression in the medial prefrontal cortex of mutant mice decreased AMPAR levels and partially rescued behavioral deficits. Knockdown of the AMPAR subunit Gria2 also alleviated social impairments. Our results identify a previously undescribed mechanism involving miR-124 and AMPARs in regulating social behavior in FTD and suggest a potential therapeutic avenue.
Collapse
Affiliation(s)
- Eduardo Gascon
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605 USA
| | - Kelleen Lynch
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605 USA
| | - Hongyu Ruan
- Division of Neurosciences, New England Primate Research Center, Harvard Medical School, Southborough, MA, 01772 USA
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605 USA
| | - Jamie Verheyden
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 USA
| | - William W. Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Danqiong Sun
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 USA
| | - Jian Jiao
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 USA
| | - Hongru Zhou
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605 USA
| | - Mira Jakovcevski
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Schahram Akbarian
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Wei-Dong Yao
- Division of Neurosciences, New England Primate Research Center, Harvard Medical School, Southborough, MA, 01772 USA
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605 USA
| |
Collapse
|
871
|
Zhang K, Hill K, Labak S, Blatt G, Soghomonian JJ. Loss of glutamic acid decarboxylase (Gad67) in Gpr88-expressing neurons induces learning and social behavior deficits in mice. Neuroscience 2014; 275:238-47. [DOI: 10.1016/j.neuroscience.2014.06.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/16/2014] [Accepted: 06/06/2014] [Indexed: 01/08/2023]
|
872
|
Leger M, Paizanis E, Dzahini K, Quiedeville A, Bouet V, Cassel JC, Freret T, Schumann-Bard P, Boulouard M. Environmental Enrichment Duration Differentially Affects Behavior and Neuroplasticity in Adult Mice. Cereb Cortex 2014; 25:4048-61. [DOI: 10.1093/cercor/bhu119] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
873
|
Dihydromyricetin Ameliorates Behavioral Deficits and Reverses Neuropathology of Transgenic Mouse Models of Alzheimer’s Disease. Neurochem Res 2014; 39:1171-81. [DOI: 10.1007/s11064-014-1304-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 11/27/2022]
|