851
|
Sun H, Wang LH, Zhou Q, Huang XH. Effects of bisphenol A on ammonium assimilation in soybean roots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:8484-90. [PMID: 23649602 DOI: 10.1007/s11356-013-1771-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/24/2013] [Indexed: 06/02/2023]
Abstract
Bisphenol A (BPA), which is ubiquitous in the environment, is an example of an endocrine-disrupting compound (EDC). Ammonium assimilation has an important function in plant growth and development. However, insufficient information on the potential effect of BPA on ammonium assimilation in plants is available. In this study, the effects of BPA on ammonium assimilation in roots of soybean seedlings were investigated. During the stress period, 1.5 mg L(-1) of BPA improved glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle and glutamate dehydrogenase (GDH) pathway in ammonium assimilation. The amino acid and the soluble protein contents increased in the soybeans. At 17.2 and 50.0 mg L(-1) of BPA, the GS/GOGAT cycle was inhibited and the GDH pathway was promoted. The amino acid content increased and the soluble protein content decreased. During the recovery period, the GS/GOGAT cycle and the GDH pathway recovered at 1.5 and 17.2 mg L(-1) of BPA but not at 50.0 mg L(-1) of BPA. The amino acid content continuously increased and the soluble protein content decreased compared with those in the control treatment. In summary, BPA treatment could affect the contents of soluble protein and amino acid in the soybean roots by regulating ammonium assimilation.
Collapse
Affiliation(s)
- Hai Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | | | | | | |
Collapse
|
852
|
Luo J, Li H, Liu T, Polle A, Peng C, Luo ZB. Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4207-24. [PMID: 23963674 PMCID: PMC3808312 DOI: 10.1093/jxb/ert234] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To investigate N metabolism of two contrasting Populus species in acclimation to low N availability, saplings of slow-growing species (Populus popularis, Pp) and a fast-growing species (Populus alba × Populus glandulosa, Pg) were exposed to 10, 100, or 1000 μM NH4NO3. Despite greater root biomass and fine root surface area in Pp, lower net influxes of NH4(+) and NO3(-) at the root surface were detected in Pp compared to those in Pg, corresponding well to lower NH4(+) and NO3(-) content and total N concentration in Pp roots. Meanwhile, higher stable N isotope composition (δ(15)N) in roots and stronger responsiveness of transcriptional regulation of 18 genes involved in N metabolism were found in roots and leaves of Pp compared to those of Pg. These results indicate that the N metabolism of Pp is more sensitive to decreasing N availability than that of Pg. In both species, low N treatments decreased net influxes of NH4(+) and NO3(-), root NH4(+) and foliar NO3(-) content, root NR activities, total N concentration in roots and leaves, and transcript levels of most ammonium (AMTs) and nitrate (NRTs) transporter genes in leaves and genes involved in N assimilation in roots and leaves. Low N availability increased fine root surface area, foliar starch concentration, δ(15)N in roots and leaves, and transcript abundance of several AMTs (e.g. AMT1;2) and NRTs (e.g. NRT1;2 and NRT2;4B) in roots of both species. These data indicate that poplar species slow down processes of N acquisition and assimilation in acclimation to limiting N supply.
Collapse
Affiliation(s)
- Jie Luo
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Hong Li
- Key Laboratory of Applied Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Tongxian Liu
- Key Laboratory of Applied Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Andrea Polle
- Büsgen-Institute, Department of Forest Botany and Tree Physiology, Georg-August University, Büsgenweg 2, 37077 Göttingen, Germany
| | - Changhui Peng
- Key Laboratory of Environment and Ecology in Western China of Ministry of Education, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhi-Bin Luo
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- Key Laboratory of Environment and Ecology in Western China of Ministry of Education, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
853
|
Mohd-Radzman NA, Djordjevic MA, Imin N. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules. FRONTIERS IN PLANT SCIENCE 2013; 4:385. [PMID: 24098303 PMCID: PMC3787543 DOI: 10.3389/fpls.2013.00385] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/11/2013] [Indexed: 05/20/2023]
Abstract
Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.
Collapse
Affiliation(s)
| | | | - Nijat Imin
- *Correspondence: Nijat Imin, Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Linnaeus Building 134, Linnaeus Way, Canberra, ACT 0200, Australia e-mail:
| |
Collapse
|
854
|
Pereira PN, Purgatto E, Mercier H. Spatial division of phosphoenolpyruvate carboxylase and nitrate reductase activity and its regulation by cytokinins in CAM-induced leaves of Guzmania monostachia (Bromeliaceae). JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1067-74. [PMID: 23591079 DOI: 10.1016/j.jplph.2013.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 03/12/2013] [Accepted: 03/12/2013] [Indexed: 05/14/2023]
Abstract
Crassulacean acid metabolism (CAM) is a physiological adaptation of plants that live in stress environment conditions. A good model of CAM modulation is the epiphytic bromeliad, Guzmania monostachia, which switches between two photosynthetic pathways (C3-CAM) in response to different environmental conditions, such as light stress and water availability. Along the leaf length a gradient of acidity can be observed when G. monostachia plants are kept under water deficiency. Previous studies showed that the apical portions of the leaves present higher expression of CAM, while the basal regions exhibit lower expression of this photosynthetic pathway. The present study has demonstrated that it is possible to induce the CAM pathway in detached leaves of G. monostachia kept under water deficit for 7 d. Also, it was evaluated whether CAM expression can be modulated in detached leaves of Guzmania and whether some spatial separation between NO3(-) reduction and CO2 fixation occurs in basal and apical portions of the leaf. In addition, we analyzed the involvement of endogenous cytokinins (free and ribosylated forms) as possible signal modulating both NO3(-) reduction and CO2 fixation along the leaf blade of this bromeliad. Besides demonstrating a clear spatial and functional separation of carbon and nitrogen metabolism along G. monostachia leaves, the results obtained also indicated a probable negative correlation between endogenous free cytokinins - zeatin (Z) and isopentenyladenine (iP) - concentration and PEPC activity in the apical portions of G. monostachia leaves kept under water deficit. On the other hand, a possible positive correlation between endogenous Z and iP levels and NR activity in basal portions of drought-exposed and control leaves was verified. Together with the observations presented above, results obtained with exogenous cytokinins treatments, strongly suggest that free cytokinins might act as a stimulatory signal involved in NR activity regulation and as a negative regulator of PEPC activity in CAM-induced leaves of G. monostachia during a diel cycle.
Collapse
Affiliation(s)
- Paula Natália Pereira
- Department of Botany, Institute of Biosciences, University of São Paulo, CEP 05508-090 São Paulo, SP, Brazil
| | | | | |
Collapse
|
855
|
Mioto PT, Mercier H. Abscisic acid and nitric oxide signaling in two different portions of detached leaves of Guzmania monostachia with CAM up-regulated by drought. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:996-1002. [PMID: 23523467 DOI: 10.1016/j.jplph.2013.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 05/28/2023]
Abstract
Guzmania monostachia is an epiphyte tank bromeliad capable of up-regulating crassulacean acid metabolism (CAM) in response to several environmental stimuli, including drought and light stress. In other plant species, abscisic acid (ABA) and nitric oxide (NO) seem to be involved in CAM induction. Because the leaves of tank bromeliads perform different functions along their length, this study attempted to investigate whether ABA and NO are involved in regulation of CAM expression in this species by quantifying these compounds in apical and basal portions of the leaf, and whether there would be differences in this event for each leaf portion. Detached leaves exposed to a 30% polyethylene glycol solution showed a significant upregulation of CAM on the seventh day of treatment only in the apical portion, as indicated by nocturnal acid accumulation and phosphoenolpyruvate carboxylase (PEPC) activity. On the three days prior to CAM induction, ABA, NO and H₂O₂ were quantified. The amounts of ABA were higher in PEG-exposed leaves, along their entire length. NO, however, was higher only in the apical portion, precisely where CAM was up-regulated. H₂O₂ was higher only in the basal portion of PEG-exposed leaves. Our results suggest that ABA might be a systemic signal to drought, occurring in the entire leaf. NO and H₂O₂, however, may be signals restricted only to the apical or basal portions, respectively.
Collapse
Affiliation(s)
- Paulo Tamaso Mioto
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, CEP 05508-090 São Paulo, Brazil
| | | |
Collapse
|
856
|
Martínez-Andújar C, Ghanem ME, Albacete A, Pérez-Alfocea F. Response to nitrate/ammonium nutrition of tomato (Solanum lycopersicum L.) plants overexpressing a prokaryotic NH4(+)-dependent asparagine synthetase. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:676-87. [PMID: 23394787 DOI: 10.1016/j.jplph.2012.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 05/03/2023]
Abstract
Nitrogen availability is an important limiting factor for plant growth. Although NH4(+) assimilation is energetically more favorable than NO3(-), it is usually toxic for plants. In order to study if an improved ammonium assimilatory metabolism could increase the plant tolerance to ammonium nutrition, tomato (Solanum lycopersicum L. cv P-73) plants were transformed with an NH4(+)-dependent asparagine synthetase (AS-A) gene from Escherichia coli (asnA) under the control of a PCpea promoter (pea isolated constitutive promotor). Homozygous (Hom), azygous (Az) asnA and wild type (WT) plants were grown hydroponically for 6 weeks with normal Hoagland nutrition (NO3(-)/NH4(+)=6/0.5) and high ammonium nutrition (NO3(-)/NH4(+)=3.5/3). Under Hoagland's conditions, Hom plants produced 40-50% less biomass than WT and Az plants. However, under NO3(-)/NH4(+)=3.5/3 the biomass of Hom was not affected while it was reduced by 40-70% in WT and Az plants compared to Hoagland, respectively. The Hom plants accumulated 1.5-4 times more asparagine, glycine, serine and soluble proteins and registered higher glutamine synthetase (GS) and glutamate synthase (GOGAT) activities in the light-adapted leaves than the other genotypes, but had similar NH4(+) and NO3(-) levels in all conditions. In the dark-adapted leaves, a protein catabolism occurred in the Hom plants with a concomitant 25-40% increase in organic acid concentration, while asparagine accumulation registered the highest values. The aforementioned processes might be responsible for a positive energetic balance as regards the futile cycle of the transgenic protein synthesis and catabolism. This explains growth penalty under standard nutrition and growth stability under NO3(-)/NH4(+)=3.5/3, respectively.
Collapse
Affiliation(s)
- Cristina Martínez-Andújar
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, E-30100, Murcia, Spain.
| | | | | | | |
Collapse
|
857
|
Masakapalli SK, Kruger NJ, Ratcliffe RG. The metabolic flux phenotype of heterotrophic Arabidopsis cells reveals a complex response to changes in nitrogen supply. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:569-82. [PMID: 23406511 DOI: 10.1111/tpj.12142] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/31/2013] [Accepted: 02/03/2013] [Indexed: 05/25/2023]
Abstract
The extent to which individual plants utilise nitrate and ammonium, the two principal nitrogen sources in the rhizosphere, is variable and many species require a balance between the two forms for optimal growth. The effects of nitrate and ammonium on gene expression, enzyme activity and metabolite composition have been documented extensively with the aim of understanding the way in which plant cells respond to the different forms of nitrogen, but ultimately the impact of these changes on the organisation and operation of the central metabolic network can only be addressed by analysing the fluxes supported by the network. Accordingly steady-state metabolic flux analysis was used to define the metabolic phenotype of a heterotrophic Arabidopsis thaliana cell culture grown in Murashige and Skoog and ammonium-free media, treatments that influenced growth and biomass composition. Fluxes through the central metabolic network were deduced from the redistribution of label into metabolic intermediates and end products observed when cells were labelled with [1-(13) C]-, [2-(13) C]- or [(13) C6 ]glucose, in tandem with (14) C-measurements of the net accumulation of biomass. Analysis of the flux maps showed that: (i) flux through the oxidative pentose phosphate pathway varied independently of the reductant demand for biosynthesis, (ii) non-plastidic processes made a significant and variable contribution to the provision of reducing power for the plastid, and (iii) the inclusion of ammonium in the growth medium increased cell maintenance costs, in agreement with the futile cycling model of ammonium toxicity. These conclusions highlight the complexity of the metabolic response to a change in nitrogen nutrition.
Collapse
Affiliation(s)
- Shyam K Masakapalli
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | | | |
Collapse
|
858
|
Fang Z, Xia K, Yang X, Grotemeyer MS, Meier S, Rentsch D, Xu X, Zhang M. Altered expression of the PTR/NRT1 homologue OsPTR9 affects nitrogen utilization efficiency, growth and grain yield in rice. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:446-58. [PMID: 23231455 DOI: 10.1111/pbi.12031] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/05/2012] [Accepted: 11/07/2012] [Indexed: 05/22/2023]
Abstract
The plant PTR/NRT1 (peptide transporter/nitrate transporter 1) gene family comprises di/tripeptide and low-affinity nitrate transporters; some members also recognize other substrates such as carboxylates, phytohormones (auxin and abscisic acid), or defence compounds (glucosinolates). Little is known about the members of this gene family in rice (Oryza sativa L.). Here, we report the influence of altered OsPTR9 expression on nitrogen utilization efficiency, growth, and grain yield. OsPTR9 expression is regulated by exogenous nitrogen and by the day-night cycle. Elevated expression of OsPTR9 in transgenic rice plants resulted in enhanced ammonium uptake, promotion of lateral root formation and increased grain yield. On the other hand, down-regulation of OsPTR9 in a T-DNA insertion line (osptr9) and in OsPTR9-RNAi rice plants had the opposite effect. These results suggest that OsPTR9 might hold potential for improving nitrogen utilization efficiency and grain yield in rice breeding.
Collapse
Affiliation(s)
- Zhongming Fang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
859
|
Sulpice R, Nikoloski Z, Tschoep H, Antonio C, Kleessen S, Larhlimi A, Selbig J, Ishihara H, Gibon Y, Fernie AR, Stitt M. Impact of the carbon and nitrogen supply on relationships and connectivity between metabolism and biomass in a broad panel of Arabidopsis accessions. PLANT PHYSIOLOGY 2013; 162:347-63. [PMID: 23515278 PMCID: PMC3641214 DOI: 10.1104/pp.112.210104] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/11/2013] [Indexed: 05/18/2023]
Abstract
Natural genetic diversity provides a powerful tool to study the complex interrelationship between metabolism and growth. Profiling of metabolic traits combined with network-based and statistical analyses allow the comparison of conditions and identification of sets of traits that predict biomass. However, it often remains unclear why a particular set of metabolites is linked with biomass and to what extent the predictive model is applicable beyond a particular growth condition. A panel of 97 genetically diverse Arabidopsis (Arabidopsis thaliana) accessions was grown in near-optimal carbon and nitrogen supply, restricted carbon supply, and restricted nitrogen supply and analyzed for biomass and 54 metabolic traits. Correlation-based metabolic networks were generated from the genotype-dependent variation in each condition to reveal sets of metabolites that show coordinated changes across accessions. The networks were largely specific for a single growth condition. Partial least squares regression from metabolic traits allowed prediction of biomass within and, slightly more weakly, across conditions (cross-validated Pearson correlations in the range of 0.27-0.58 and 0.21-0.51 and P values in the range of <0.001-<0.13 and <0.001-<0.023, respectively). Metabolic traits that correlate with growth or have a high weighting in the partial least squares regression were mainly condition specific and often related to the resource that restricts growth under that condition. Linear mixed-model analysis using the combined metabolic traits from all growth conditions as an input indicated that inclusion of random effects for the conditions improves predictions of biomass. Thus, robust prediction of biomass across a range of conditions requires condition-specific measurement of metabolic traits to take account of environment-dependent changes of the underlying networks.
Collapse
|
860
|
Thomas H. Senescence, ageing and death of the whole plant. THE NEW PHYTOLOGIST 2013; 197:696-711. [PMID: 23176101 DOI: 10.1111/nph.12047] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/15/2012] [Indexed: 05/18/2023]
Abstract
UNLABELLED 696 I. 697 II. 697 III. 699 IV. 700 V. 703 VI. 704 VII. 707 708 References 708 SUMMARY This review considers the relationship between the lifespan of an individual plant and the longevity of its component cells, tissues and organs. It begins by defining the terms senescence, growth, development, turnover, ageing, death and program. Genetic and epigenetic mechanisms regulating phase change from juvenility to maturity influence directly the capacity for responding to senescence signals and factors determining reproduction-related patterns of deteriorative ageing and death. Senescence is responsive to communication between sources and sinks in which sugar signalling and hormonal regulation play central roles. Monocarpy and polycarpy represent contrasting outcomes of the balance between the determinacy of apical meristems and source-sink cross-talk. Even extremely long-lived perennials sustain a high degree of meristem integrity. Factors associated with deteriorative ageing in animals, such as somatic mutation, telomere attrition and the costs of repair and maintenance, do not seem to be particularly significant for plant lifespan, but autophagy-related regulatory networks integrated with nutrient signalling may have a part to play. Size is an important influence on physiological function and fitness of old trees. Self-control of modular structure allows trees to sustain viability over prolonged lifespans. Different turnover patterns of structural modules can account for the range of plant life histories and longevities.
Collapse
Affiliation(s)
- Howard Thomas
- IBERS, Aberystwyth University, Edward Llwyd Building, Aberystwyth, Ceredigion, SY23 3DA, UK
| |
Collapse
|
861
|
Liang C, Tian J, Liao H. Proteomics dissection of plant responses to mineral nutrient deficiency. Proteomics 2013. [PMID: 23193087 DOI: 10.1002/pmic.201200263] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Plants require at least 17 essential nutrients to complete their life cycle. Except for carbon, hydrogen, and oxygen, other essential nutrients are mineral nutrients, which are mainly acquired from soils by roots. In natural soils, the availability of most essential mineral nutrients is very low and hard to meet the demand of plants. Developing crops with high nutrient efficiency is essential for sustainable agriculture, which requires more understandings of crop responses to mineral nutrient deficiency. Proteomic techniques provide a crucial and complementary tool to dissect molecular mechanisms underlying crop adaptation to mineral nutrient deficiency in the rapidly processing postgenome era. This review gives a comparative overview about identification of mineral nutrient deficiency responsive proteins using proteomic analysis, and discusses the current status for crop proteomics and its challenges to be integrated into systems biology approaches for developing crops with high mineral nutrient efficiency.
Collapse
Affiliation(s)
- Cuiyue Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou, P. R. China
| | | | | |
Collapse
|
862
|
Tang Z, Fan X, Li Q, Feng H, Miller AJ, Shen Q, Xu G. Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. PLANT PHYSIOLOGY 2012; 160:2052-63. [PMID: 23093362 PMCID: PMC3510131 DOI: 10.1104/pp.112.204461] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/19/2012] [Indexed: 05/18/2023]
Abstract
Root nitrate uptake is well known to adjust to the plant's nitrogen demand for growth. Long-distance transport and/or root storage pools are thought to provide negative feedback signals regulating root uptake. We have characterized a vascular specific nitrate transporter belonging to the high-affinity Nitrate Transporter2 (NRT2) family, OsNRT2.3a, in rice (Oryza sativa ssp. japonica 'Nipponbare'). Localization analyses using protoplast expression, in planta promoter-β-glucuronidase assay, and in situ hybridization showed that OsNRT2.3a was located in the plasma membrane and mainly expressed in xylem parenchyma cells of the stele of nitrate-supplied roots. Knockdown expression of OsNRT2.3a by RNA interference (RNAi) had impaired xylem loading of nitrate and decreased plant growth at low (0.5 mm) nitrate supply. In comparison with the wild type, the RNAi lines contained both nitrate and total nitrogen significantly higher in the roots and lower in the shoots. The short-term [(15)N]NO(3)(-) influx (5 min) in entire roots and NO(3)(-) fluxes in root surfaces showed that the knockdown of OsNRT2.3a in comparison with the wild type did not affect nitrate uptake by roots. The RNAi plants showed no significant changes in the expression of some root nitrate transporters (OsNRT2.3b, OsNRT2.4, and OsNAR2.1), but transcripts for nia1 (nitrate reductase) had increased and OsNRT2.1 and OsNRT2.2 had decreased when the plants were supplied with nitrate. Taken together, the data demonstrate that OsNRT2.3a plays a key role in long-distance nitrate transport from root to shoot at low nitrate supply level in rice.
Collapse
Affiliation(s)
| | | | - Qing Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China (Z.T., X.F., Q.L., H.F., Q.S., G.X.); and Disease and Stress Biology Department, John Innes Center, Norwich NR4 7UH, United Kingdom (A.J.M.)
| | - Huimin Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China (Z.T., X.F., Q.L., H.F., Q.S., G.X.); and Disease and Stress Biology Department, John Innes Center, Norwich NR4 7UH, United Kingdom (A.J.M.)
| | - Anthony J. Miller
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China (Z.T., X.F., Q.L., H.F., Q.S., G.X.); and Disease and Stress Biology Department, John Innes Center, Norwich NR4 7UH, United Kingdom (A.J.M.)
| | - Qirong Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China (Z.T., X.F., Q.L., H.F., Q.S., G.X.); and Disease and Stress Biology Department, John Innes Center, Norwich NR4 7UH, United Kingdom (A.J.M.)
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China (Z.T., X.F., Q.L., H.F., Q.S., G.X.); and Disease and Stress Biology Department, John Innes Center, Norwich NR4 7UH, United Kingdom (A.J.M.)
| |
Collapse
|
863
|
Chapman N, Miller AJ, Lindsey K, Whalley WR. Roots, water, and nutrient acquisition: let's get physical. TRENDS IN PLANT SCIENCE 2012; 17:701-10. [PMID: 22947614 DOI: 10.1016/j.tplants.2012.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 07/27/2012] [Accepted: 08/01/2012] [Indexed: 05/03/2023]
Abstract
Improved root water and nutrient acquisition can increase fertiliser use efficiency and is important for securing food production. Root nutrient acquisition includes proliferation, transporter function, exudation, symbioses, and the delivery of dissolved nutrients from the bulk soil to the root surface via mass flow and diffusion. The widespread adoption of simplified experimental systems has restricted consideration of the influence of soil symbiotic organisms and physical properties on root acquisition. The soil physical properties can directly influence root growth and explain some of the disparities obtained from different experimental systems. Turning this to an advantage, comparing results obtained with the same model plant Arabidopsis (Arabidopsis thaliana) in different systems, we can tease apart the specific effects of soil physical properties.
Collapse
Affiliation(s)
- Nick Chapman
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | | | | | | |
Collapse
|
864
|
|
865
|
Bagchi R, Salehin M, Adeyemo OS, Salazar C, Shulaev V, Sherrier DJ, Dickstein R. Functional assessment of the Medicago truncatula NIP/LATD protein demonstrates that it is a high-affinity nitrate transporter. PLANT PHYSIOLOGY 2012; 160:906-16. [PMID: 22858636 PMCID: PMC3461564 DOI: 10.1104/pp.112.196444] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 08/01/2012] [Indexed: 05/18/2023]
Abstract
The Medicago truncatula NIP/LATD (for Numerous Infections and Polyphenolics/Lateral root-organ Defective) gene encodes a protein found in a clade of nitrate transporters within the large NRT1(PTR) family that also encodes transporters of dipeptides and tripeptides, dicarboxylates, auxin, and abscisic acid. Of the NRT1(PTR) members known to transport nitrate, most are low-affinity transporters. Here, we show that M. truncatula nip/latd mutants are more defective in their lateral root responses to nitrate provided at low (250 μm) concentrations than at higher (5 mm) concentrations; however, nitrate uptake experiments showed no discernible differences in uptake in the mutants. Heterologous expression experiments showed that MtNIP/LATD encodes a nitrate transporter: expression in Xenopus laevis oocytes conferred upon the oocytes the ability to take up nitrate from the medium with high affinity, and expression of MtNIP/LATD in an Arabidopsis chl1(nrt1.1) mutant rescued the chlorate susceptibility phenotype. X. laevis oocytes expressing mutant Mtnip-1 and Mtlatd were unable to take up nitrate from the medium, but oocytes expressing the less severe Mtnip-3 allele were proficient in nitrate transport. M. truncatula nip/latd mutants have pleiotropic defects in nodulation and root architecture. Expression of the Arabidopsis NRT1.1 gene in mutant Mtnip-1 roots partially rescued Mtnip-1 for root architecture defects but not for nodulation defects. This suggests that the spectrum of activities inherent in AtNRT1.1 is different from that possessed by MtNIP/LATD, but it could also reflect stability differences of each protein in M. truncatula. Collectively, the data show that MtNIP/LATD is a high-affinity nitrate transporter and suggest that it could have another function.
Collapse
Affiliation(s)
| | | | - O. Sarah Adeyemo
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 (R.B., M.S., O.S.A., C.S., V.S., R.D.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (D.J.S.)
| | - Carolina Salazar
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 (R.B., M.S., O.S.A., C.S., V.S., R.D.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (D.J.S.)
| | - Vladimir Shulaev
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 (R.B., M.S., O.S.A., C.S., V.S., R.D.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (D.J.S.)
| | - D. Janine Sherrier
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 (R.B., M.S., O.S.A., C.S., V.S., R.D.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (D.J.S.)
| | - Rebecca Dickstein
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 (R.B., M.S., O.S.A., C.S., V.S., R.D.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (D.J.S.)
| |
Collapse
|