Hoyt MA, Totis L, Roberts BT. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function.
Cell 1991;
66:507-17. [PMID:
1651171 DOI:
10.1016/0092-8674(81)90014-3]
[Citation(s) in RCA: 846] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have identified mutant strains of S. cerevisiae that fail to properly arrest their cell cycles at mitosis in response to the loss of microtubule function. New bud emergence and DNA replication (but not cytokinesis) occur with high efficiency in the mutants under conditions that inhibit these events in wild-type cells. The inability to halt cell cycle progression is specific for impaired microtubule function; the mutants respond normally to other cell cycle-blocking treatments. Under microtubule-disrupting conditions, the mutants neither achieve nor maintain the high level of histone H1 kinase activity characteristic of wild-type cells. Our studies have defined three genes required for normal cell cycle arrest. These findings are consistent with the existence of a surveillance system that halts the cell cycle in response to microtubule perturbation.
Collapse