901
|
Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inzé D, Van Breusegem F. Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. PLANT PHYSIOLOGY 2005; 139:806-21. [PMID: 16183842 PMCID: PMC1255997 DOI: 10.1104/pp.105.065896] [Citation(s) in RCA: 362] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 07/20/2005] [Accepted: 07/25/2005] [Indexed: 05/04/2023]
Abstract
In plants, reactive oxygen species and, more particularly, hydrogen peroxide (H(2)O(2)) play a dual role as toxic by-products of normal cell metabolism and as regulatory molecules in stress perception and signal transduction. Peroxisomal catalases are an important sink for photorespiratory H(2)O(2). Using ATH1 Affymetrix microarrays, expression profiles were compared between control and catalase-deficient Arabidopsis (Arabidopsis thaliana) plants. Reduced catalase levels already provoked differences in nuclear gene expression under ambient growth conditions, and these effects were amplified by high light exposure in a sun simulator for 3 and 8 h. This genome-wide expression analysis allowed us to reveal the expression characteristics of complete pathways and functional categories during H(2)O(2) stress. In total, 349 transcripts were significantly up-regulated by high light in catalase-deficient plants and 88 were down-regulated. From this data set, H(2)O(2) was inferred to play a key role in the transcriptional up-regulation of small heat shock proteins during high light stress. In addition, several transcription factors and candidate regulatory genes involved in H(2)O(2) transcriptional gene networks were identified. Comparisons with other publicly available transcriptome data sets of abiotically stressed Arabidopsis revealed an important intersection with H(2)O(2)-deregulated genes, positioning elevated H(2)O(2) levels as an important signal within abiotic stress-induced gene expression. Finally, analysis of transcriptional changes in a combination of a genetic (catalase deficiency) and an environmental (high light) perturbation identified a transcriptional cluster that was strongly and rapidly induced by high light in control plants, but impaired in catalase-deficient plants. This cluster comprises the complete known anthocyanin regulatory and biosynthetic pathway, together with genes encoding unknown proteins.
Collapse
Affiliation(s)
- Sandy Vanderauwera
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
902
|
McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K. Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. PLANT PHYSIOLOGY 2005; 139:949-59. [PMID: 16183832 PMCID: PMC1256008 DOI: 10.1104/pp.105.068544] [Citation(s) in RCA: 389] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To identify transcription factors (TFs) involved in jasmonate (JA) signaling and plant defense, we screened 1,534 Arabidopsis (Arabidopsis thaliana) TFs by real-time quantitative reverse transcription-PCR for their altered transcript at 6 h following either methyl JA treatment or inoculation with the incompatible pathogen Alternaria brassicicola. We identified 134 TFs that showed a significant change in expression, including many APETALA2/ethylene response factor (AP2/ERF), MYB, WRKY, and NAC TF genes with unknown functions. Twenty TF genes were induced by both the pathogen and methyl JA and these included 10 members of the AP2/ERF TF family, primarily from the B1a and B3 subclusters. Functional analysis of the B1a TF AtERF4 revealed that AtERF4 acts as a novel negative regulator of JA-responsive defense gene expression and resistance to the necrotrophic fungal pathogen Fusarium oxysporum and antagonizes JA inhibition of root elongation. In contrast, functional analysis of the B3 TF AtERF2 showed that AtERF2 is a positive regulator of JA-responsive defense genes and resistance to F. oxysporum and enhances JA inhibition of root elongation. Our results suggest that plants coordinately express multiple repressor- and activator-type AP2/ERFs during pathogen challenge to modulate defense gene expression and disease resistance.
Collapse
Affiliation(s)
- Ken C McGrath
- Cooperative Research Centre for Tropical Plant Protection, University of Queensland, St. Lucia, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
903
|
McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K. Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. PLANT PHYSIOLOGY 2005. [PMID: 16183832 DOI: 10.1104/pp.105.068544.2001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
To identify transcription factors (TFs) involved in jasmonate (JA) signaling and plant defense, we screened 1,534 Arabidopsis (Arabidopsis thaliana) TFs by real-time quantitative reverse transcription-PCR for their altered transcript at 6 h following either methyl JA treatment or inoculation with the incompatible pathogen Alternaria brassicicola. We identified 134 TFs that showed a significant change in expression, including many APETALA2/ethylene response factor (AP2/ERF), MYB, WRKY, and NAC TF genes with unknown functions. Twenty TF genes were induced by both the pathogen and methyl JA and these included 10 members of the AP2/ERF TF family, primarily from the B1a and B3 subclusters. Functional analysis of the B1a TF AtERF4 revealed that AtERF4 acts as a novel negative regulator of JA-responsive defense gene expression and resistance to the necrotrophic fungal pathogen Fusarium oxysporum and antagonizes JA inhibition of root elongation. In contrast, functional analysis of the B3 TF AtERF2 showed that AtERF2 is a positive regulator of JA-responsive defense genes and resistance to F. oxysporum and enhances JA inhibition of root elongation. Our results suggest that plants coordinately express multiple repressor- and activator-type AP2/ERFs during pathogen challenge to modulate defense gene expression and disease resistance.
Collapse
Affiliation(s)
- Ken C McGrath
- Cooperative Research Centre for Tropical Plant Protection, University of Queensland, St. Lucia, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
904
|
Lorenzo O, Solano R. Molecular players regulating the jasmonate signalling network. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:532-40. [PMID: 16039901 DOI: 10.1016/j.pbi.2005.07.003] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 07/12/2005] [Indexed: 05/03/2023]
Abstract
Many plant developmental and stress responses require the coordinated interaction of the jasmonate and other signalling pathways, such as those for ethylene, salicylic acid and abscisic acid. Recent research in Arabidopsis has uncovered several key players that regulate crosstalk between these signalling pathways and that shed light on the molecular mechanisms modulating this coordinated interaction. Genes that are involved in the regulation of protein stability through the ubiquitin-proteasome pathway (COI1, AXR1 and SGT1b), signalling proteins (MPK4) and transcription factors (AtMYC2, ERF1, NPR1 and WRKY70) form a regulatory network that allows the plant to fine-tune specific responses to different stimuli.
Collapse
Affiliation(s)
- Oscar Lorenzo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | |
Collapse
|
905
|
Mauch-Mani B, Mauch F. The role of abscisic acid in plant-pathogen interactions. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:409-14. [PMID: 15939661 DOI: 10.1016/j.pbi.2005.05.015] [Citation(s) in RCA: 434] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 05/19/2005] [Indexed: 05/02/2023]
Abstract
The effect of the abiotic stress hormone abscisic acid on plant disease resistance is a neglected field of research. With few exceptions, abscisic acid has been considered a negative regulator of disease resistance. This negative effect appears to be due to the interference of abscisic acid with biotic stress signaling that is regulated by salicylic acid, jasmonic acid and ethylene, and to an additional effect of ABA on shared components of stress signaling. However, recent research shows that abscisic acid can also be implicated in increasing the resistance of plants towards pathogens via its positive effect on callose deposition.
Collapse
Affiliation(s)
- Brigitte Mauch-Mani
- University of Neuchâtel, Faculty of Science, Institute of Botany, Biochemistry and Molecular Biology Laboratory, Rue Emile Argand 11, BP 2, 2007 Neuchâtel, Switzerland
| | | |
Collapse
|
906
|
Coego A, Ramirez V, Gil MJ, Flors V, Mauch-Mani B, Vera P. An Arabidopsis homeodomain transcription factor, OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, mediates resistance to infection by necrotrophic pathogens. THE PLANT CELL 2005; 17:2123-37. [PMID: 15923348 PMCID: PMC1167556 DOI: 10.1105/tpc.105.032375] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The mechanisms controlling plant resistance to necrotrophic fungal pathogens are poorly understood. We previously reported on Ep5C, a gene shown to be induced by the H(2)O(2) generated during a plant-pathogen interaction. To identify novel plant components operating in pathogen-induced signaling cascades, we initiated a large-scale screen using Arabidopsis thaliana plants carrying the beta-glucuronidase reporter gene under control of the H(2)O(2)-responsive Ep5C promoter. Here, we report the identification and characterization of a mutant, ocp3 (for overexpressor of cationic peroxidase 3), in which the reporter construct is constitutively expressed. Healthy ocp3 plants show increased accumulation of H(2)O(2) and express constitutively the Glutathione S-transferase1 and Plant Defensine 1.2 marker genes, but not the salicylic acid (SA)-dependent pathogenesis-related PR-1 gene. Strikingly, the ocp3 mutant shows enhanced resistance to the necrotrophic pathogens Botrytis cinerea and Plectosphaerella cucumerina. Conversely, resistance to virulent forms of the biotrophic oomycete Hyaloperonospora parasitica and the bacterial pathogen Pseudomonas syringae pv tomato DC3000 remains unaffected in ocp3 plants when compared with wild-type plants. Consistently with this, ocp3 plants are not affected in SA perception and express normal levels of PR genes after pathogen attack. To analyze signal transduction pathways where ocp3 operates, epistasis analyses between ocp3 and pad4, nahG, npr1, ein2, jin1, or coi1 were performed. These studies revealed that the resistance signaling to necrotrophic infection in ocp3 is fully dependent on appropriate perception of jasmonic acid through COI1 and does not require SA or ethylene perception through NPR1 or EIN2, respectively. The OCP3 gene encodes a homeodomain transcription factor that is constitutively expressed in healthy plants but repressed in response to infection by necrotrophic fungi. Together, these results suggest that OCP3 is an important factor for the COI1-dependent resistance of plants to infection by necrotrophic pathogens.
Collapse
Affiliation(s)
- Alberto Coego
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
907
|
Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. PLANT MOLECULAR BIOLOGY 2005; 58:585-96. [PMID: 16021341 DOI: 10.1007/s11103-005-7294-5] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Accepted: 05/12/2005] [Indexed: 05/03/2023]
Abstract
ERFs (ethylene-responsive element binding factors) belong to a large family of plant transcription factors that are found exclusively in plants. A small subfamily of ERF proteins can act as transcriptional repressors. The Arabidopsis genome contains eight ERF repressors, namely AtERF3, AtERF4, and AtERF7 to AtERF12. Members of ERF repressors show differential expression, suggesting that they may have different function. Using a transient expression system, we demonstrated that AtERF4, AtERF7, AtERF10, AtERF11 and AtERF12 can function as transcriptional repressors. The expression of AtERF4 can be induced by ethylene, jasmonic acid, and abscisic acid (ABA). By using green fluorescent protein fusion, we demonstrated that AtEFR4 accumulated in the nuclear bodies of Arabidopsis cells. Expression of 35S:AtERF4-GFP in transgenic Arabidopsis plants conferred an ethylene-insensitive phenotype and repressed the expression of Basic Chitinase and beta-1,3-Glucanase, the GCC-box-containing genes. In comparison with wild-type plants, 35S:AtERF4-GFP transgenic plants had decreased sensitivity to ABA and were hypersensitive to sodium chloride. The expression of the ABA responsive genes, ABI2, rd29B and rab18, was decreased in the 35S:AtERF4-GFP transgenic plants. Our study provides evidence that AtERF4 is a negative regulator capable of modulating ethylene and abscisic acid responses.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | | | |
Collapse
|
908
|
Devoto A, Ellis C, Magusin A, Chang HS, Chilcott C, Zhu T, Turner JG. Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. PLANT MOLECULAR BIOLOGY 2005; 58:497-513. [PMID: 16021335 DOI: 10.1007/s11103-005-7306-5] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 05/12/2005] [Indexed: 05/03/2023]
Abstract
The Arabidopsis gene COI1 is required for jasmonic acid (JA)-induced growth inhibition, resistance to insect herbivory, and resistance to pathogens. In addition, COI1 is also required for transcription of several genes induced by wounding or by JA. Here, we use microarray gene transcription profiling of wild type and coi1 mutant plants to examine the extent of the requirement of COI1 for JA-induced and wound-induced gene transcription. We show that COI1 is required for expression of approximately 84% of 212 genes induced by JA, and for expression of approximately 44% of 153 genes induced by wounding. Surprisingly, COI1 was also required for repression of 53% of 104 genes whose expression was suppressed by JA, and for repression of approximately 46% of 83 genes whose expression was suppressed by wounding. These results indicate that COI1 plays a pivotal role in wound- and JA signalling.
Collapse
Affiliation(s)
- Alessandra Devoto
- School of Biological Sciences, University of East Anglia, NR4 7TJ, Norwich, UK
| | | | | | | | | | | | | |
Collapse
|
909
|
Yadav V, Mallappa C, Gangappa SN, Bhatia S, Chattopadhyay S. A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth. THE PLANT CELL 2005; 17:1953-66. [PMID: 15923349 PMCID: PMC1167544 DOI: 10.1105/tpc.105.032060] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The crosstalk of light signaling pathways with other signaling cascades has just started to be revealed. Here, we report the identification and functional characterization of a Z-box binding factor (ZBF1) in light signaling pathways. Arabidopsis thaliana ZBF1 encodes AtMYC2/JIN1, a basic helix-loop-helix transcription factor, which has recently been shown to be involved in abscisic acid (ABA), jasmonic acid (JA), and jasmonate-ethylene signaling pathways. We demonstrate that AtMYC2 interacts with the Z- and G-box light-responsive elements of minimal light-regulated promoters. AtMYC2 is expressed in various light-grown seedlings, including in red, far red, and blue light. Genetic analyses suggest that AtMYC2 acts as a negative regulator of blue light-mediated photomorphogenic growth and blue and far-red-light-regulated gene expression; however, it functions as a positive regulator of lateral root formation. Our results further demonstrate that atmyc2 mutants have compromised sensitivity to ABA- and JA-mediated responses. Taken together, these results demonstrate that AtMYC2 is a common transcription factor of light, ABA, and JA signaling pathways in Arabidopsis.
Collapse
Affiliation(s)
- Vandana Yadav
- National Centre for Plant Genome Research, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
910
|
Baier M, Dietz KJ. Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:1449-62. [PMID: 15863449 DOI: 10.1093/jxb/eri161] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
During the evolution of plants, chloroplasts have lost the exclusive genetic control over redox regulation and antioxidant gene expression. Together with many other genes, all genes encoding antioxidant enzymes and enzymes involved in the biosynthesis of low molecular weight antioxidants were transferred to the nucleus. On the other hand, photosynthesis bears a high risk for photo-oxidative damage. Concomitantly, an intricate network for mutual regulation by anthero- and retrograde signals has emerged to co-ordinate the activities of the different genetic and metabolic compartments. A major focus of recent research in chloroplast regulation addressed the mechanisms of redox sensing and signal transmission, the identification of regulatory targets, and the understanding of adaptation mechanisms. In addition to redox signals communicated through signalling cascades also used in pathogen and wounding responses, specific chloroplast signals control nuclear gene expression. Signalling pathways are triggered by the redox state of the plastoquinone pool, the thioredoxin system, and the acceptor availability at photosystem I, in addition to control by oxolipins, tetrapyrroles, carbohydrates, and abscisic acid. The signalling function is discussed in the context of regulatory circuitries that control the expression of antioxidant enzymes and redox modulators, demonstrating the principal role of chloroplasts as the source and target of redox regulation.
Collapse
Affiliation(s)
- Margarete Baier
- Biochemistry and Physiology of Plants, University of Bielefeld, D-33501 Bielefeld, Germany.
| | | |
Collapse
|
911
|
He G, Tarui Y, Iino M. A Novel Receptor Kinase Involved in Jasmonate-mediated Wound and Phytochrome Signaling in Maize Coleoptiles. ACTA ACUST UNITED AC 2005; 46:870-83. [PMID: 15829513 DOI: 10.1093/pcp/pci092] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We identified a gene of maize (Zea mays L.) that is transcriptionally activated in decapitated coleoptiles. The amino acid sequence deduced from its full-length cDNA indicated that the identified gene encodes a novel leucine-rich-repeat receptor-like kinase. The gene is named WOUND-RESPONSIVE AND PHYTOCHROME-REGULATED KINASE1 (WPK1) based on the findings of this study. Database searches revealed two and three homologs of WPK1 for Arabidopsis thaliana and rice, respectively. These homologs occurred along with WPK1 on a phylogenetic branch separated from all reported receptor kinases. We uncovered that the level of WPK1 transcripts is up-regulated rapidly and transiently in response to wounding and red light. The response to red light was reversible by far-red light, indicating that it is mediated by phytochrome. Applied jasmonic acid activated the expression of WPK1, while ethylene, salicylic acid and abscisic acid had no such effect. These results strongly suggested that WPK1 is a component of the jasmonate-mediated signaling that participates in both wound-induced defensive and phytochrome-mediated photomorphogenetic responses. Furthermore, it was found that both wounding and red light up-regulate the transcript level of ZmAOS, a gene for the jasmonate biosynthesis enzyme allene oxide synthase, and that auxin inhibits the expression of WPK1 but not of ZmAOS. We present a model of jasmonate-mediated signaling to explain the results obtained.
Collapse
Affiliation(s)
- Guozhen He
- Botanical Gardens, Graduate School of Science, Osaka City University, Kisaichi, Katano-shi, Osaka, 576-0004 Japan
| | | | | |
Collapse
|
912
|
Salzman RA, Brady JA, Finlayson SA, Buchanan CD, Summer EJ, Sun F, Klein PE, Klein RR, Pratt LH, Cordonnier-Pratt MM, Mullet JE. Transcriptional profiling of sorghum induced by methyl jasmonate, salicylic acid, and aminocyclopropane carboxylic acid reveals cooperative regulation and novel gene responses. PLANT PHYSIOLOGY 2005; 138:352-68. [PMID: 15863699 PMCID: PMC1104189 DOI: 10.1104/pp.104.058206] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We have conducted a large-scale study of gene expression in the C4 monocot sorghum (Sorghum bicolor) L. Moench cv BTx623 in response to the signaling compounds salicylic acid (SA), methyl jasmonate (MeJA), and the ethylene precursor aminocyclopropane carboxylic acid. Expression profiles were generated from seedling root and shoot tissue at 3 and 27 h, using a microarray containing 12,982 nonredundant elements. Data from 102 slides and quantitative reverse transcription-PCR data on mRNA abundance from 171 genes were collected and analyzed and are here made publicly available. Numerous gene clusters were identified in which expression was correlated with particular signaling compound and tissue combinations. Many genes previously implicated in defense responded to the treatments, including numerous pathogenesis-related genes and most members of the phenylpropanoid pathway, and several other genes that may represent novel activities or pathways. Genes of the octadecanoic acid pathway of jasmonic acid (JA) synthesis were induced by SA as well as by MeJA. The resulting hypothesis that increased SA could lead to increased endogenous JA production was confirmed by measurement of JA content. Comparison of responses to SA, MeJA, and combined SA+MeJA revealed patterns of one-way and mutual antagonisms, as well as synergistic effects on regulation of some genes. These experiments thus help further define the transcriptional results of cross talk between the SA and JA pathways and suggest that a subset of genes coregulated by SA and JA may comprise a uniquely evolved sector of plant signaling responsive cascades.
Collapse
Affiliation(s)
- Ron A Salzman
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
913
|
Zhou C, Zhang L, Duan J, Miki B, Wu K. HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. THE PLANT CELL 2005; 17:1196-204. [PMID: 15749761 PMCID: PMC1087996 DOI: 10.1105/tpc.104.028514] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Accepted: 11/16/2004] [Indexed: 05/17/2023]
Abstract
Histone acetylation is modulated through the action of histone acetyltransferases and deacetylases, which play key roles in the regulation of eukaryotic gene expression. Previously, we have identified a yeast histone deacetylase REDUCED POTASSIUM DEPENDENCY3 (RPD3) homolog, HISTONE DEACETYLASE19 (HDA19) (AtRPD3A), in Arabidopsis thaliana. Here, we report further study of the expression and function of HDA19. Analysis of Arabidopsis plants containing the HDA19:beta-glucuronidase fusion gene revealed that HDA19 was expressed throughout the life of the plant and in most plant organs examined. In addition, the expression of HDA19 was induced by wounding, the pathogen Alternaria brassicicola, and the plant hormones jasmonic acid and ethylene. Using green fluorescent protein fusion, we demonstrated that HDA19 accumulated in the nuclei of Arabidopsis cells. Overexpression of HDA19 in 35S:HDA19 plants decreased histone acetylation levels, whereas downregulation of HDA19 in HDA19-RNA interference (RNAi) plants increased histone acetylation levels. In comparison with wild-type plants, 35S:HDA19 transgenic plants had increased expression of ETHYLENE RESPONSE FACTOR1 and were more resistant to the pathogen A. brassicicola. The expression of jasmonic acid and ethylene regulated PATHOGENESIS-RELATED genes, Basic Chitinase and beta-1,3-Glucanase, was upregulated in 35S:HDA19 plants but downregulated in HDA19-RNAi plants. Our studies provide evidence that HDA19 may regulate gene expression involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis.
Collapse
Affiliation(s)
- Changhe Zhou
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506-6057, USA
| | | | | | | | | |
Collapse
|
914
|
Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. TRENDS IN PLANT SCIENCE 2005; 10:88-94. [PMID: 15708346 DOI: 10.1016/j.tplants.2004.12.012] [Citation(s) in RCA: 759] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
cis-Acting regulatory elements are important molecular switches involved in the transcriptional regulation of a dynamic network of gene activities controlling various biological processes, including abiotic stress responses, hormone responses and developmental processes. In particular, understanding regulatory gene networks in stress response cascades depends on successful functional analyses of cis-acting elements. The ever-improving accuracy of transcriptome expression profiling has led to the identification of various combinations of cis-acting elements in the promoter regions of stress-inducible genes involved in stress and hormone responses. Here we discuss major cis-acting elements, such as the ABA-responsive element (ABRE) and the dehydration-responsive element/C-repeat (DRE/CRT), that are a vital part of ABA-dependent and ABA-independent gene expression in osmotic and cold stress responses.
Collapse
Affiliation(s)
- Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | |
Collapse
|
915
|
Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2005; 43:205-27. [PMID: 16078883 DOI: 10.1146/annurev.phyto.43.040204.135923] [Citation(s) in RCA: 2403] [Impact Index Per Article: 120.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
It has been suggested that effective defense against biotrophic pathogens is largely due to programmed cell death in the host, and to associated activation of defense responses regulated by the salicylic acid-dependent pathway. In contrast, necrotrophic pathogens benefit from host cell death, so they are not limited by cell death and salicylic acid-dependent defenses, but rather by a different set of defense responses activated by jasmonic acid and ethylene signaling. This review summarizes results from Arabidopsis-pathogen systems regarding the contributions of various defense responses to resistance to several biotrophic and necrotrophic pathogens. While the model above seems generally correct, there are exceptions and additional complexities.
Collapse
Affiliation(s)
- Jane Glazebrook
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108, USA.
| |
Collapse
|
916
|
Abstract
Jasmonic acid is an oxylipin signaling molecule derived from linolenic acid. So far, jasmonate (JA) (including the free acid and a number of conjugates) has been shown to regulate or co-regulate a wide range of processes in plants, from responses to biotic and abiotic stresses to the developmental maturation of stamens and pollen in Arabidopsis. This review focuses on discoveries in several of these areas. Most work described is from studies in Arabidopsis. While the results are expected to be broadly applicable to other higher plants, there are cases where related but distinct phenotypes have been observed in other species (e.g., tomato). Investigation of JA action in wound- and insect-defense responses has established that this compound is an essential component of the systemic signal that activates defense genes throughout the plant. It is possible that JA acts indirectly through the production of reactive oxygen species including hydrogen peroxide (H2O2). The availability of Arabidopsis mutants deficient in JA synthesis has been central to the identification of additional roles for JA in defense against microbial pathogens and in reproductive development. Currently, the key issues in JA action are to understand the role of the skip/cullin/F-box ubiquitination complex, SCF(COI1), and to identify additional protein components that act in the early steps of JA signaling.
Collapse
Affiliation(s)
- John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
917
|
Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. THE PLANT CELL 2004; 16:3460-79. [PMID: 15548743 PMCID: PMC535886 DOI: 10.1105/tpc.104.025833] [Citation(s) in RCA: 701] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 09/24/2004] [Indexed: 05/17/2023]
Abstract
The plant hormones abscisic acid (ABA), jasmonic acid (JA), and ethylene are involved in diverse plant processes, including the regulation of gene expression during adaptive responses to abiotic and biotic stresses. Previously, ABA has been implicated in enhancing disease susceptibility in various plant species, but currently very little is known about the molecular mechanisms underlying this phenomenon. In this study, we obtained evidence that a complex interplay between ABA and JA-ethylene signaling pathways regulate plant defense gene expression and disease resistance. First, we showed that exogenous ABA suppressed both basal and JA-ethylene-activated transcription from defense genes. By contrast, ABA deficiency as conditioned by the mutations in the ABA1 and ABA2 genes, which encode enzymes involved in ABA biosynthesis, resulted in upregulation of basal and induced transcription from JA-ethylene responsive defense genes. Second, we found that disruption of AtMYC2 (allelic to JASMONATE INSENSITIVE1 [JIN1]), encoding a basic helix-loop-helix Leu zipper transcription factor, which is a positive regulator of ABA signaling, results in elevated levels of basal and activated transcription from JA-ethylene responsive defense genes. Furthermore, the jin1/myc2 and aba2-1 mutants showed increased resistance to the necrotrophic fungal pathogen Fusarium oxysporum. Finally, using ethylene and ABA signaling mutants, we showed that interaction between ABA and ethylene signaling is mutually antagonistic in vegetative tissues. Collectively, our results indicate that the antagonistic interactions between multiple components of ABA and the JA-ethylene signaling pathways modulate defense and stress responsive gene expression in response to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Jonathan P Anderson
- Cooperative Research Centre for Tropical Plant Protection, University of Queensland, St. Lucia, Queensland, 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
918
|
Abstract
The plant immune system relies to a great extent on the highly regulated expression of hundreds of defense genes encoding antimicrobial proteins, such as defensins, and antiherbivore proteins, such as lectins. The expression of many of these genes is controlled by a family of mediators known as jasmonates; these cyclic oxygenated fatty acid derivatives are reminiscent of prostaglandins. The roles of jasmonates also extend to the control of reproductive development. How are these complex events regulated? Nearly 20 members of the jasmonate family have been characterized. Some, like jasmonic acid, exist in unmodified forms, whereas others are conjugated to other lipids or to hydrophobic amino acids. Why do so many chemically different forms of these mediators exist, and do individual jasmonates have unique signaling properties or are they made to facilitate transport within and between cells? Key features of the jasmonate signal pathway have been identified and include the specific activation of E3-type ubiquitin ligases thought to target as-yet-undescribed transcriptional repressors for modification or destruction. Several classes of transcription factor are known to function in the jasmonate pathway, and, in some cases, these proteins provide nodes that integrate this network with other important defensive and developmental pathways. Progress in jasmonate research is now rapid, but large gaps in our knowledge exist. Aimed to keep pace with progress, the ensemble of jasmonate Connections Maps at the Signal Transduction Knowledge Environment describe (i) the canonical signaling pathway, (ii) the Arabidopsis signaling pathway, and (iii) the biogenesis and structures of the jasmonates themselves.
Collapse
Affiliation(s)
- Aurélie Gfeller
- Gene Expression Laboratory, Plant Molecular Biology, University of Lausanne, Biology Building, 1015 Lausanne, Switzerland
| | | |
Collapse
|