901
|
Spatial organization of the somatosensory cortex revealed by osmFISH. Nat Methods 2018; 15:932-935. [DOI: 10.1038/s41592-018-0175-z] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 08/08/2018] [Indexed: 01/07/2023]
|
902
|
Sharma S, Gioia L, Abe B, Holt M, Costanzo A, Kain L, Su A, Teyton L. Using single cell analysis for translational studies in immune mediated diseases: Opportunities and challenges. Mol Immunol 2018; 103:191-199. [PMID: 30300798 DOI: 10.1016/j.molimm.2018.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022]
Abstract
The difficulty of studying small tissue samples and rare cell populations have been some of the main limitations in performing efficient translational studies of immune mediated diseases. Many of these conditions are grouped under the name of a single disease whilst there are strong suggestions that disease heterogeneity leads to variable disease progression as well as therapeutic responses. The recent development of single cell techniques, such as single cell RNA sequencing, gene expression profiling, or multiparametric cytometry, is likely to be a turning point. Single cell approaches provide researchers the opportunity to finally dissect disease pathology at a level that will allow mechanistic classifications and precision therapeutic strategies. In this review, we will give an overview of the current and developing repertoire of single cell techniques, the benefits and limitations of each, and provide an example of how single cell techniques can be utilized to understand complex immune mediated diseases and their translation from mouse to human.
Collapse
Affiliation(s)
- Siddhartha Sharma
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Louis Gioia
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Brian Abe
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Marie Holt
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Anne Costanzo
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Lisa Kain
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Andrew Su
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Luc Teyton
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
903
|
Abstract
PURPOSE OF REVIEW To discuss advances in our understanding of beta-cell heterogeneity and the ramifications of this for type 1 diabetes (T1D) and its therapy. RECENT FINDINGS A number of studies have challenged the long-standing dogma that the majority of beta cells are eliminated in T1D. As many as 80% are present in some T1D subjects. Why don't these cells function properly to release insulin in response to high glucose? Other findings deploying single-cell "omics" to study both healthy and diseased cells-from patients with both T1D and type 2 diabetes (T2D)-have revealed cell subpopulations and heterogeneity at the transcriptomic/protein level between individual cells. Finally, our own and others' findings have demonstrated the importance of functional beta-cell subpopulations for insulin secretion. Heterogeneity may endow beta cells with molecular features that predispose them to failure/death during T1D.
Collapse
Affiliation(s)
- Richard K. P. Benninger
- 0000 0001 0703 675Xgrid.430503.1Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
- 0000 0001 0703 675Xgrid.430503.1Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Craig Dorrell
- 0000 0000 9758 5690grid.5288.7Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239 USA
| | - David J. Hodson
- 0000 0004 1936 7486grid.6572.6Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, B15 2TT UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH UK
- COMPARE, University of Birmingham and University of Nottingham Midlands, Nottingham, UK
| | - Guy A. Rutter
- 0000 0001 2113 8111grid.7445.2Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN UK
| |
Collapse
|
904
|
Camp JG, Wollny D, Treutlein B. Single-cell genomics to guide human stem cell and tissue engineering. Nat Methods 2018; 15:661-667. [PMID: 30171231 DOI: 10.1038/s41592-018-0113-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022]
Abstract
To understand human development and disease, as well as to regenerate damaged tissues, scientists are working to engineer certain cell types in vitro and to create 3D microenvironments in which cells behave physiologically. Single-cell genomics (SCG) technologies are being applied to primary human organs and to engineered cells and tissues to generate atlases of cell diversity in these systems at unparalleled resolution. Moving beyond atlases, SCG methods are powerful tools for gaining insight into the engineering and disease process. Here we discuss how scientists can use single-cell sequencing to optimize human cell and tissue engineering by measuring precision, detecting inefficiencies, and assessing accuracy. We also provide a perspective on how emerging SCG methods can be used to reverse-engineer human cells and tissues and unravel disease mechanisms.
Collapse
Affiliation(s)
- J Gray Camp
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Damian Wollny
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Barbara Treutlein
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. .,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany. .,Department of Biosciences, Technical University Munich, Freising, Germany.
| |
Collapse
|
905
|
Sigal YM, Zhou R, Zhuang X. Visualizing and discovering cellular structures with super-resolution microscopy. Science 2018; 361:880-887. [PMID: 30166485 DOI: 10.1126/science.aau1044] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Super-resolution microscopy has overcome a long-held resolution barrier-the diffraction limit-in light microscopy and enabled visualization of previously invisible molecular details in biological systems. Since their conception, super-resolution imaging methods have continually evolved and can now be used to image cellular structures in three dimensions, multiple colors, and living systems with nanometer-scale resolution. These methods have been applied to answer questions involving the organization, interaction, stoichiometry, and dynamics of individual molecular building blocks and their integration into functional machineries in cells and tissues. In this Review, we provide an overview of super-resolution methods, their state-of-the-art capabilities, and their constantly expanding applications to biology, with a focus on the latter. We will also describe the current technical challenges and future advances anticipated in super-resolution imaging.
Collapse
Affiliation(s)
- Yaron M Sigal
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Ruobo Zhou
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
906
|
Abstract
Single-cell RNA sequencing provides a new approach to an old problem: how to study cellular diversity in complex biological systems. Three studies-Saunders et al., Zeisel et al., and Davie et al.-deploy this technique on an unprecedented scale to reveal transcriptional patterns that distinguish cells in the nervous systems of mice and flies.
Collapse
|
907
|
Nawy T. Transcript constellations in a tissue's universe. Nat Methods 2018; 15:567. [PMID: 30065378 DOI: 10.1038/s41592-018-0095-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
908
|
Affiliation(s)
- Thomas Knöpfel
- Department of Medicine and Centre for Neurotechnology, Imperial College London, UK.
| |
Collapse
|