51
|
Bobilev AM, Perez JM, Tamminga CA. Molecular alterations in the medial temporal lobe in schizophrenia. Schizophr Res 2020; 217:71-85. [PMID: 31227207 DOI: 10.1016/j.schres.2019.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 11/30/2022]
Abstract
The medial temporal lobe (MTL) and its individual structures have been extensively implicated in schizophrenia pathophysiology, with considerable efforts aimed at identifying structural and functional differences in this brain region. The major structures of the MTL for which prominent differences have been revealed include the hippocampus, the amygdala and the superior temporal gyrus (STG). The different functions of each of these regions have been comprehensively characterized, and likely contribute differently to schizophrenia. While neuroimaging studies provide an essential framework for understanding the role of these MTL structures in various aspects of the disease, ongoing efforts have sought to employ molecular measurements in order to elucidate the biology underlying these macroscopic differences. This review provides a summary of the molecular findings in three major MTL structures, and discusses convergent findings in cellular architecture and inter-and intra-cellular networks. The findings of this effort have uncovered cell-type, network and gene-level specificity largely unique to each brain region, indicating distinct molecular origins of disease etiology. Future studies should test the functional implications of these molecular changes at the circuit level, and leverage new advances in sequencing technology to further refine our understanding of the differential contribution of MTL structures to schizophrenia.
Collapse
Affiliation(s)
- Anastasia M Bobilev
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| | - Jessica M Perez
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| |
Collapse
|
52
|
Lane NM, Hunter SA, Lawrie SM. The benefit of foresight? An ethical evaluation of predictive testing for psychosis in clinical practice. Neuroimage Clin 2020; 26:102228. [PMID: 32173346 PMCID: PMC7229349 DOI: 10.1016/j.nicl.2020.102228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/05/2020] [Accepted: 02/23/2020] [Indexed: 12/12/2022]
Abstract
Risk prediction for psychosis has advanced to the stage at which it could feasibly become a clinical reality. Neuroimaging biomarkers play a central role in many risk prediction models. Using such models to predict the likelihood of transition to psychosis in individuals known to be at high risk has the potential to meaningfully improve outcomes, principally through facilitating early intervention. However, this compelling benefit must be evaluated in light of the broader ethical ramifications of this prospective development in clinical practice. This paper advances ethical discussion in the field in two ways: firstly, through in-depth consideration of the distinctive implications of the clinical application of predictive tools; and, secondly, by evaluating the manner in which newer predictive models incorporating neuroimaging alter the ethical landscape. We outline the current state of the science of predictive testing for psychosis, with a particular focus on emerging neuroimaging biomarkers. We then proceed to ethical analysis employing the four principles of biomedical ethics as a conceptual framework. We conclude with a call for scientific advancement to proceed in tandem with ethical consideration, informed by empirical study of the views of high risk individuals and their families. This collaborative approach will help ensure that predictive testing progresses in an ethically acceptable manner that minimizes potential adverse effects and maximizes meaningful benefits for those at high risk of psychosis.
Collapse
Affiliation(s)
- Natalie M Lane
- Department of Psychiatry, NHS Lanarkshire, Glasgow, Scotland G71 8BB, United Kingdom.
| | - Stuart A Hunter
- Department of Psychiatry, NHS Lothian, Edinburgh, Scotland EH1 3EG, United Kingdom
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, Scotland EH10 5HF, United Kingdom
| |
Collapse
|
53
|
Abstract
Psychotic disorders are severe, debilitating, and even fatal. The development of targeted and effective interventions for psychosis depends upon on clear understanding of the timing and nature of disease progression to target processes amenable to intervention. Strong evidence suggests early and ongoing neuroprogressive changes, but timing and inflection points remain unclear and likely differ across cognitive, clinical, and brain measures. Additionally, granular evidence across modalities is particularly sparse in the "bridging years" between first episode and established illness-years that may be especially critical for improving outcomes and during which interventions may be maximally effective. Our objective is the systematic, multimodal characterization of neuroprogression through the early course of illness in a cross-diagnostic sample of patients with psychosis. We aim to (1) interrogate neurocognition, structural brain measures, and network connectivity at multiple assessments over the first eight years of illness to map neuroprogressive trajectories, and (2) examine trajectories as predictors of clinical and functional outcomes. We will recruit 192 patients with psychosis and 36 healthy controls. Assessments will occur at baseline and 8- and 16-month follow ups using clinical, cognitive, and imaging measures. We will employ an accelerated longitudinal design (ALD), which permits ascertainment of data across a longer timeframe and at more frequent intervals than would be possible in a single cohort longitudinal study. Results from this study are expected to hasten identification of actionable treatment targets that are closely associated with clinical outcomes, and identify subgroups who share common neuroprogressive trajectories toward the development of individualized treatments.
Collapse
|
54
|
Yoviene Sykes LA, Ferrara M, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Cornblatt BA, Perkins DO, Mathalon DH, Seidman LJ, Tsuang MT, Walker EF, McGlashan TH, Woodberry KA, Powers AR, Ponce AN, Cahill JD, Pollard JM, Srihari VH, Woods SW. Predictive validity of conversion from the clinical high risk syndrome to frank psychosis. Schizophr Res 2020; 216:184-191. [PMID: 31864837 PMCID: PMC7239715 DOI: 10.1016/j.schres.2019.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023]
Abstract
Although the clinical high risk for psychosis (CHR) paradigm has become well-established over the past two decades, one key component has received surprisingly little investigative attention: the predictive validity of the criteria for conversion or transition to frank psychosis. The current study evaluates the predictive validity of the transition to psychosis as measured by the Structured Interview for Psychosis-Risk Syndromes (SIPS) in CHR individuals. Participants included 33 SIPS converters and 399 CHR non-converters both from the North American Prodromal Longitudinal Study (NAPLS-2), as well as a sample of 67 separately ascertained first-episode psychosis (FEP) patients from the STEP program. Comparisons were made at baseline and one-year follow-up on demographic, diagnostic stability (SCID), and available measurement domains relating to severity of illness (psychotropic medication, psychosocial treatment, and resource utilization). Principal findings are: 1) a large majority of cases in both SIPS converters (n = 27/33, 81.8%) and FEP (n = 57/67, 85.1%) samples met criteria for continued psychosis at one-year follow-up; 2) follow-up prescription rates for current antipsychotic medication were higher in SIPS converters (n = 17/32, 53.1%) compared to SIPS non-converters (n = 81/397, 20.4%), and similar as compared to FEP cases (n = 39/65, 60%); and 3) at follow-up, SIPS converters had higher rates of resource utilization (psychiatric hospitalizations, day hospital admissions, and ER visits) than SIPS non-converters and were similar to FEP in most categories. The results suggest that the SIPS definition of psychosis onset carries substantial predictive validity. Limitations and future directions are discussed.
Collapse
Affiliation(s)
- Laura A Yoviene Sykes
- Department of Psychiatry and Connecticut Mental Health Center, Yale University, New Haven, CT, United States of America.
| | - Maria Ferrara
- Department of Psychiatry and Connecticut Mental Health Center, Yale University, New Haven, CT, United States of America; Dipartimento di Salute Mentale e Dipendenze Patologiche, AUSL Modena, Modena, Italy
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E Bearden
- Departments of Psychology and Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, United States of America
| | | | - Tyrone D Cannon
- Departments of Psychology and Psychiatry, Yale University, New Haven, CT, United States of America
| | - Barbara A Cornblatt
- Department of Psychiatry, Zucker Hillside Hospital, Long Island, NY, United States of America
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States of America
| | - Daniel H Mathalon
- Department of Psychiatry, UCSF, San Francisco, CA, United States of America
| | - Larry J Seidman
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America
| | - Ming T Tsuang
- Department of Psychiatry, UCSD, San Diego, CA, United States of America
| | - Elaine F Walker
- Departments of Psychology and Psychiatry, Emory University, Atlanta, GA, United States of America
| | - Thomas H McGlashan
- Department of Psychiatry and Connecticut Mental Health Center, Yale University, New Haven, CT, United States of America
| | - Kristen A Woodberry
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America; Center for Psychiatric Research, Maine Medical Center, Portland, ME, United States of America
| | - Albert R Powers
- Department of Psychiatry and Connecticut Mental Health Center, Yale University, New Haven, CT, United States of America
| | - Allison N Ponce
- Department of Psychiatry and Connecticut Mental Health Center, Yale University, New Haven, CT, United States of America
| | - John D Cahill
- Department of Psychiatry and Connecticut Mental Health Center, Yale University, New Haven, CT, United States of America
| | - Jessica M Pollard
- Department of Psychiatry and Connecticut Mental Health Center, Yale University, New Haven, CT, United States of America
| | - Vinod H Srihari
- Department of Psychiatry and Connecticut Mental Health Center, Yale University, New Haven, CT, United States of America
| | - Scott W Woods
- Department of Psychiatry and Connecticut Mental Health Center, Yale University, New Haven, CT, United States of America
| |
Collapse
|
55
|
Duan D, Xia S, Rekik I, Wu Z, Wang L, Lin W, Gilmore JH, Shen D, Li G. Individual identification and individual variability analysis based on cortical folding features in developing infant singletons and twins. Hum Brain Mapp 2020; 41:1985-2003. [PMID: 31930620 PMCID: PMC7198353 DOI: 10.1002/hbm.24924] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 01/07/2023] Open
Abstract
Studying the early dynamic development of cortical folding with remarkable individual variability is critical for understanding normal early brain development and related neurodevelopmental disorders. This study focuses on the fingerprinting capability and the individual variability of cortical folding during early brain development. Specifically, we aim to explore (a) whether the developing neonatal cortical folding is unique enough to be considered as a "fingerprint" that can reliably identify an individual within a cohort of infants; (b) which cortical regions manifest more individual variability and thus contribute more for infant identification; (c) whether the infant twins can be distinguished by cortical folding. Hence, for the first time, we conduct infant individual identification and individual variability analysis involving twins based on the developing cortical folding features (mean curvature, average convexity, and sulcal depth) in 472 neonates with 1,141 longitudinal MRI scans. Experimental results show that the infant individual identification achieves 100% accuracy when using the neonatal cortical folding features to predict the identities of 1- and 2-year-olds. Besides, we observe high identification capability in the high-order association cortices (i.e., prefrontal, lateral temporal, and inferior parietal regions) and two unimodal cortices (i.e., precentral gyrus and lateral occipital cortex), which largely overlap with the regions encoding remarkable individual variability in cortical folding during the first 2 years. For twins study, we show that even for monozygotic twins with identical genes and similar developmental environments, their cortical folding features are unique enough for accurate individual identification; and in some high-order association cortices, the differences between monozygotic twin pairs are significantly lower than those between dizygotic twins. This study thus provides important insights into individual identification and individual variability based on cortical folding during infancy.
Collapse
Affiliation(s)
- Dingna Duan
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Shunren Xia
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Islem Rekik
- BASIRA Lab, Faculty of Computer and Informatics, Istanbul Technical University, Istanbul, Turkey.,Computing, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
56
|
Takahashi T, Kido M, Sasabayashi D, Nakamura M, Furuichi A, Takayanagi Y, Noguchi K, Suzuki M. Gray Matter Changes in the Insular Cortex During the Course of the Schizophrenia Spectrum. Front Psychiatry 2020; 11:659. [PMID: 32754066 PMCID: PMC7366364 DOI: 10.3389/fpsyt.2020.00659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/25/2020] [Indexed: 11/17/2022] Open
Abstract
Progressive gray matter reductions in the insular cortex have been reported in the early phases of schizophrenia (Sz); however, the trajectory of these reductions during the course of the illness currently remains unclear. Furthermore, it has not yet been established whether patients with schizotypal (SzTypal) features exhibit progressive changes in the insular cortex. This follow-up magnetic resonance imaging study examined volume changes in the short and long insular cortices (mean inter-scan interval = 2.6 years) of 23 first-episode (FE) and 17 chronic patients with Sz, 14 with SzTypal disorder, and 21 healthy controls. Baseline comparisons revealed smaller insular cortex volumes bilaterally in Sz patients (particularly in the chronic group) than in SzTypal patients and healthy controls. FESz patients showed significantly larger gray matter reductions in the insular cortex over time (left: -3.4%/year; right: -2.9%/year) than those in healthy controls (-0.1%/year for both hemispheres) without the effect of subregion or antipsychotic medication, whereas chronic Sz (left: -1.5%/year; right: -1.6%/year) and SzTypal (left: 0.5%/year; right: -0.6%/year) patients did not. Active atrophy of the right insular cortex during FE correlated with fewer improvements in positive symptoms in the Sz groups, while mild atrophy of the left insular cortex during the chronic phase was associated with the severity of negative symptoms in the follow-up period. The present results support dynamic volumetric changes in the insular cortex being specific to overt Sz among the spectrum disorders examined and their degree and role in symptomatology appear to differ across the illness stages.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Arisawabashi Hospital, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
57
|
Murphy TK, Haigh SM, Coffman BA, Salisbury DF. Mismatch Negativity and Impaired Social Functioning in Long-Term and in First Episode Schizophrenia Spectrum Psychosis. Front Psychiatry 2020; 11:544. [PMID: 32612547 PMCID: PMC7308533 DOI: 10.3389/fpsyt.2020.00544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/27/2020] [Indexed: 12/03/2022] Open
Abstract
Mismatch negativity (MMN) is elicited by infrequent physical parameter sound changes. MMN to pitch-deviants (pMMN) and duration-deviants (dMMN) are severely reduced in long-term schizophrenia (Sz). Although symptom factors (positive, negative, cognitive) are inconsistently associated with MMN amplitude in Sz, several studies have shown smaller dMMN is associated with impaired social functioning in Sz. MMN is less reduced at the first psychotic episode in the schizophrenia spectrum (FESz). Meta-analyses demonstrate that pMMN is not reduced, while dMMN is moderately impaired. Correlations of pMMN and dMMN with symptom factors in FESz are also equivocal. Associations with social functioning have not been reported. FESz and matched controls (n = 40/group), and Sz and matched controls (n = 50/group) were assessed for baseline and current cognitive functioning, symptoms, and social functioning, and pMMN and dMMN were recorded. Sz showed reductions in pMMN (p = 0.001) and dMMN (p = 0.006) amplitude. By contrast, pMMN (p = 0.27) and dMMN (p = 0.84) were not reduced in FESz. However, FESz showed associations between both MMNs and negative symptoms and social functioning. More impaired MMNs in FESz were associated with increased negative symptoms and impaired social functioning, both current and in the year prior to the emergence of psychosis. These data suggest that the extent of pathological process occurring before first psychosis as reflected in compromised social behavior prior to first break and reduced interpersonal communication and increased alogia at first break is indexed by pMMN and dMMN, putative biomarkers of disease progression sensitive to functional impairment.
Collapse
Affiliation(s)
- Timothy K Murphy
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sarah M Haigh
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
58
|
Takayanagi Y, Kulason S, Sasabayashi D, Takahashi T, Katagiri N, Sakuma A, Ohmuro N, Katsura M, Nishiyama S, Nakamura M, Kido M, Furuichi A, Noguchi K, Matsumoto K, Mizuno M, Ratnanather JT, Suzuki M. Structural MRI Study of the Planum Temporale in Individuals With an At-Risk Mental State Using Labeled Cortical Distance Mapping. Front Psychiatry 2020; 11:593952. [PMID: 33329144 PMCID: PMC7732500 DOI: 10.3389/fpsyt.2020.593952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Recent studies have demonstrated brain structural changes that predate or accompany the onset of frank psychosis, such as schizophrenia, among individuals with an at-risk mental state (ARMS). The planum temporale (PT) is a brain region involved in language processing. In schizophrenia patients, gray matter volume reduction and lack of normal asymmetry (left > right) of PT have repeatedly been reported. Some studies showed progressive gray matter reduction of PT in first-episode schizophrenia patients, and in ARMS subjects during their development of psychosis. Methods: MRI scans (1.5 T field strength) were obtained from 73 ARMS subjects and 74 gender- and age-matched healthy controls at three sites (University of Toyama, Toho University and Tohoku University). Participants with ARMS were clinically monitored for at least 2 years to confirm whether they subsequently developed frank psychosis. Cortical thickness, gray matter volume, and surface area of PT were estimated using FreeSurfer-initiated labeled cortical distance mapping (FSLCDM). PT measures were compared among healthy controls, ARMS subjects who later developed overt psychosis (ARMS-P), and those who did not (ARMS-NP). In each statistical model, age, sex, intracranial volume, and scanning sites were treated as nuisance covariates. Results: Of 73 ARMS subjects, 18 developed overt psychosis (12 schizophrenia and 6 other psychoses) within the follow-up period. There were no significant group differences of PT measures. In addition, significant asymmetries of PT volume and surface area (left > right) were found in all diagnostic groups. PT measures did not correlate with the neurocognitive performance of ARMS subjects. Discussion: Our results suggest that the previously-reported gray matter reduction and lack of normal anatomical asymmetry of PT in schizophrenia patients may not emerge during the prodromal stage of psychosis; taken together with previous longitudinal findings, such PT structural changes may occur just before or during the onset of psychosis.
Collapse
Affiliation(s)
- Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Arisawabashi Hospital, Toyama, Japan
| | - Sue Kulason
- Center for Imaging Science and Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Atsushi Sakuma
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Noriyuki Ohmuro
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan.,Osaki Citizen Hospital, Sendai, Japan
| | - Masahiro Katsura
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Shimako Nishiyama
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Health Administration Center, University of Toyama, Toyama, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kazunori Matsumoto
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan.,Kokoro no Clinic OASIS, Sendai, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - J Tilak Ratnanather
- Center for Imaging Science and Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
59
|
Parfianowicz D, Espiridion ED. Chronic Post-stroke Psychosis with Left Cortical and Bilateral Inferior Cerebellar Involvement. Cureus 2019; 11:e6437. [PMID: 31993274 PMCID: PMC6970439 DOI: 10.7759/cureus.6437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Post-stroke psychosis is the presence of delusions and/or hallucinations that result from an infarct in the cerebrovascular network. Involvement of a predominantly right-sided cortical pathology has been described in triggering the psychosis. In identified cases, patients often have little to no prior psychiatric history. We report a case of a 70-year-old female with chronic post-stroke psychosis consisting of auditory hallucinations and persecutory delusions. Our patient serves as a unique case in not only contributing to the limited number of documentations overall, but also in highlighting a presentation with infarction of the left parietal-temporal-occipital cortex and bilateral inferior cerebellum.
Collapse
|
60
|
Worthington MA, Cao H, Cannon TD. Discovery and Validation of Prediction Algorithms for Psychosis in Youths at Clinical High Risk. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:738-747. [PMID: 31902580 DOI: 10.1016/j.bpsc.2019.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/07/2019] [Accepted: 10/26/2019] [Indexed: 12/19/2022]
Abstract
In the past 2 to 3 decades, clinicians have used the clinical high risk for psychosis (CHR-P) paradigm to better understand factors that contribute to the onset of psychotic disorders. While this paradigm is useful to identify individuals at risk, the CHR-P criteria are not sufficient to predict outcomes from the CHR-P population. Because approximately 25% of the CHR-P population will ultimately convert to psychosis, more precise methods of prediction are needed to account for heterogeneity in both risk factors and outcomes in the CHR-P population. To this end, several groups in recent years have used data-driven approaches to refine predictive algorithms to predict both conversion to psychosis and functional outcomes. These models have generally used either clinical and behavioral data, including demographics and measures of symptom severity, neurocognitive functioning, and social functioning, or neuroimaging data, including structural and functional measures, to predict conversion to psychosis in CHR-P samples. This review focuses on the empirical models that have been derived within each of these lines of research and evaluates the performance and methodology of these models. This review also serves to inform best practices for data-driven approaches and directions moving forward to improve our prediction of psychotic disorders and associated outcomes. Because sample size is still the most critical consideration in the current models, we urge that algorithms to predict conversion be conducted using multisite data in order to obtain the power necessary to conclusively determine predictive accuracy without overfitting.
Collapse
Affiliation(s)
| | - Hengyi Cao
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, Connecticut.
| |
Collapse
|
61
|
Jung S, Lee A, Bang M, Lee SH. Gray matter abnormalities in language processing areas and their associations with verbal ability and positive symptoms in first-episode patients with schizophrenia spectrum psychosis. NEUROIMAGE-CLINICAL 2019; 24:102022. [PMID: 31670071 PMCID: PMC6831896 DOI: 10.1016/j.nicl.2019.102022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/16/2019] [Accepted: 09/27/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Impaired verbal communication is a prominent feature in patients with schizophrenia. Verbal communication difficulties adversely affect psychosocial outcomes and worsen schizophrenia's clinical manifestation. In the present study, we aimed to investigate associations among gray matter (GM) volumes in language processing areas (LPAs), verbal ability, and positive symptoms in first-episode patients (FEPs) with schizophrenia spectrum psychosis. METHODS We enrolled 94 FEPs and 52 healthy controls (HCs) and subjected them to structural magnetic resonance imaging. The GM volumes of the bilateral pars opercularis (POp), pars triangularis (PTr), planum temporale (PT), Heschl's gyrus (HG), insula, and fusiform gyrus (FG), were estimated and compared between the FEPs and HCs. Verbal intelligence levels and positive symptom severity were examined for correlations with the left LPA volumes. RESULTS The GM volumes of the left POp, HG, and FG were significantly smaller in the FEPs than in the HCs, while the right regions showed no significant between-group difference. A multiple linear regression model revealed that larger left PT volume was associated with better verbal intelligence in FEPs. In exploratory correlation analysis, several LPAs showed significant correlations with the severity of positive symptoms in FEPs. The left FG volume had a strong inverse correlation with the severity of auditory verbal hallucinations, while the left PT volume was inversely associated with the severity of positive formal thought disorder and delusions. Moreover, the volume of the left insula was positively associated with the severity of bizarre behavior. CONCLUSIONS The present study suggests that GM abnormalities in the LPAs, which can be detected during the early stage of illness, may underlie impaired verbal communication and positive symptoms in patients with schizophrenia spectrum psychosis.
Collapse
Affiliation(s)
- Sra Jung
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Arira Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Clinical Pharmacology and Therapeutics, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
62
|
Gallardo-Ruiz R, Crespo-Facorro B, Setién-Suero E, Tordesillas-Gutierrez D. Long-Term Grey Matter Changes in First Episode Psychosis: A Systematic Review. Psychiatry Investig 2019; 16:336-345. [PMID: 31132837 PMCID: PMC6539265 DOI: 10.30773/pi.2019.02.10.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/21/2018] [Accepted: 02/10/2019] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To determine possible progressive changes of the grey matter at the first stages of the schizophrenia spectrum disorders, and to determine what regions are involved in these changes. METHODS We searched the literature concerning studies on longitudinal changes in grey matter in first-episode psychosis using magnetic resonance imaging, especially studies with an interval between scans of more than a year. Only articles published before 2018 were searched. We selected 19 magnetic resonance imaging longitudinal studies that used different neuroimaging analysis techniques to study changes in cerebral grey matter in a group of patients with a first episode of psychosis. RESULTS Patients with first episode of psychosis showed a decrease over time in cortical grey matter compared with a group of control subjects in frontal, temporal (specifically in superior regions), parietal, and subcortical regions. In addition to the above, studies indicate that patients showed a grey matter decrease in cerebellum and lateral ventricles volume. CONCLUSION The results suggest a decrease in grey matter in the years after the first episode of psychosis. Furthermore, the results of the studies showed consistency, regardless of the methods used in their analyses, as well as the time intervals between image collections.
Collapse
Affiliation(s)
- Ruth Gallardo-Ruiz
- Neuroimaging Unit, Technological Facilities,Valdecilla Biomedical Research Institute IDIVAL, Santander, Cantabria, Spain
| | - Benedicto Crespo-Facorro
- Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain
- CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| | - Esther Setién-Suero
- Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain
- CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| | - Diana Tordesillas-Gutierrez
- Neuroimaging Unit, Technological Facilities,Valdecilla Biomedical Research Institute IDIVAL, Santander, Cantabria, Spain
- CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| |
Collapse
|
63
|
Abnormal development of early auditory processing in 22q11.2 Deletion Syndrome. Transl Psychiatry 2019; 9:138. [PMID: 30992427 PMCID: PMC6467880 DOI: 10.1038/s41398-019-0473-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/25/2019] [Accepted: 03/23/2019] [Indexed: 12/12/2022] Open
Abstract
The 22q11.2 Deletion Syndrome (22q11.2 DS) is one of the highest genetic risk factors for the development of schizophrenia spectrum disorders. In schizophrenia, reduced amplitude of the frequency mismatch negativity (fMMN) has been proposed as a promising neurophysiological marker for progressive brain pathology. In this longitudinal study in 22q11.2 DS, we investigate the progression of fMMN between childhood and adolescence, a vulnerable period for brain maturation. We measured evoked potentials to auditory oddball stimuli in the same sample of 16 patients with 22q11.2 DS and 14 age-matched controls in childhood and adolescence. In addition, we cross-sectionally compared an increased sample of 51 participants with 22q11.2 DS and 50 controls divided into two groups (8-14 and 14-20 years). The reported results are obtained using the fMMN difference waveforms. In the longitudinal design, the 22q11.2 deletion carriers exhibit a significant reduction in amplitude and a change in topographic patterns of the mismatch negativity response from childhood to adolescence. The same effect, reduced mismatch amplitude in adolescence, while preserved during childhood, is observed in the cross-sectional study. These results point towards functional changes within the brain network responsible for the fMMN. In addition, the adolescents with 22q11.2 DS displayed a significant increase in amplitude over central electrodes during the auditory N1 component. No such differences, reduced mismatch response nor increased N1, were observed in the typically developing group. These findings suggest different developmental trajectories of early auditory sensory processing in 22q11.2 DS and functional changes that emerge during the critical period of increased risk for schizophrenia spectrum disorders.
Collapse
|
64
|
Parham LD, Roush S, Downing DT, Michael PG, McFarlane WR. Sensory characteristics of youth at clinical high risk for psychosis. Early Interv Psychiatry 2019; 13:264-271. [PMID: 28840977 DOI: 10.1111/eip.12475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/20/2017] [Accepted: 07/11/2017] [Indexed: 11/28/2022]
Abstract
AIM To identify and compare the sensory characteristics of young people at clinical high risk (CHR) for psychosis to those of peers at clinical low risk (CLR), and to national normative data. CHR and CLR participants were recruited from 6 US regions. METHOD A descriptive cohort design was used to analyse baseline data collected as part of the Early Detection and Intervention for the Prevention of Psychosis Program (EDIPPP). Raw scores on the Adolescent/Adult Sensory Profile (AASP) were analysed for 205 young people with CHR and 87 with CLR in 2 age groups: 12 to 17 years (N = 203) and 18 to 25 years (N = 89). ANOVA procedures were used to determine whether differences in AASP scores existed across CLR, CHR, and normative groups by age group. RESULTS CHR participants differed significantly from the normative group for all 4 AASP quadrant scores (Low Registration, Sensory Seeking, Sensory Sensitivity and Sensory Avoiding) in both age groups. CLR participants were similar to norms, except for Sensory Seeking scores that were significantly lower than norms in both age ranges. CONCLUSION Young people with CHR demonstrate active avoidance, heightened sensitivity, reduced seeking, and reduced registration of sensations in everyday life compared to typical peers. This pattern of differences may be a valuable marker for identifying individuals who are at high risk for developing a psychotic illness, and may also inform interventions designed to prevent or minimize the illness process and accompanying dysfunction.
Collapse
Affiliation(s)
- L Diane Parham
- Occupational Therapy Graduate Program, University of New Mexico, Albuquerque, New Mexico
| | - Sean Roush
- School of Occupational Therapy, Pacific University, Hillsboro, Oregon
| | - Donna T Downing
- Pier Training Institute, Maine Medical Center, Portland, Maine
| | - Paul G Michael
- School of Graduate Psychology, Pacific University, Hillsboro, Oregon
| | - William R McFarlane
- Maine Medical Center Research Institute, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
65
|
Bai Y, Yin M, Zeng Z, Liang J, Yang H. Schizoaffective disorder comorbid with type 2 diabetes mellitus accompanied by frontotemporal atrophy and impaired cognition: A CARE compliant case report. Medicine (Baltimore) 2019; 98:e15292. [PMID: 31008977 PMCID: PMC6494280 DOI: 10.1097/md.0000000000015292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
RATIONALE Brain atrophy coupled with impaired cognition may be a sign of dementia. However, growing evidence indicates that schizoaffective disorder (SAD) and type 2 diabetes mellitus (T2DM) play roles in the processes of frontotemporal atrophy and cognitive decline. Few cases of frontotemporal atrophy and impaired cognition have been reported in young adult patients with SAD and T2DM. PATIENT CONCERNS A 34-year-old man was admitted for his 19th rehospitalization due to auditory verbal hallucinations (AVHs), delusions of persecution, mania, and fluctuating blood sugar levels. After admission, a brain computed tomography (CT) scan revealed that the patient's frontotemporal atrophy, which was first found in 2014, had gradually degenerated over time. The Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) revealed cognitive impairments. Based on the clinical assessment, his cognition and social function impairments were determined to mainly result from SAD and T2DM because the clinical characteristics and course of the disease did not coincide with the features of progressive aggravation of dementia. DIAGNOSES Diagnoses include the following: SAD-mania and T2DM. INTERVENTIONS Paliperidone and sodium valproate coupled with quetiapine add-on treatment were prescribed for the patient. OUTCOMES The therapeutic strategy had a limited effect on the patient. LESSONS Early onset of SAD and T2DM, as well as irregular treatment, resulting in brain atrophy coupled with cognitive impairments, may be the main causes of the patient's treatment resistance and poor outcome. The risks and benefits of treatment strategies should be individually assessed. Further neuroimaging, pertinent biomarkers, and genetic tests along with long-term follow-up are needed for precise evaluation of the patient's condition.
Collapse
|
66
|
Iwashiro N, Takano Y, Natsubori T, Aoki Y, Yahata N, Gonoi W, Kunimatsu A, Abe O, Kasai K, Yamasue H. Aberrant attentive and inattentive brain activity to auditory negative words, and its relation to persecutory delusion in patients with schizophrenia. Neuropsychiatr Dis Treat 2019; 15:491-502. [PMID: 30858706 PMCID: PMC6387602 DOI: 10.2147/ndt.s194353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous research has suggested that deficits in emotion recognition are involved in the pathogenesis of persecutory delusion in schizophrenia. Although disruption in auditory and language processing is crucial in the pathophysiology of schizophrenia, the neural basis for the deficits in emotion recognition of auditorily presented language stimuli and its relation to persecutory delusion have not yet been clarified. PATIENTS AND METHODS The current functional magnetic resonance imaging study used a dichotic listening task for 15 patients with schizophrenia and 23 healthy controls matched for age, sex, parental socioeconomic background, handedness, dexterous ear, and intelligence quotient. The participants completed a word recognition task on the attended side in which a word with emotionally valenced content (negative/neutral) was presented to one ear and a different neutral word was presented to the other ear. Participants selectively attended to either ear. RESULTS The whole brain analysis detected the aberrant neural activity in the right inferior frontal gyrus in the patients with schizophrenia compared to that in the controls (P<0.05, false discovery rate-corrected). Brain activity in the right pars triangularis of the inferior frontal gyrus was significantly reduced when negatively valenced words were presented to the right ear, whereas the activity of the same region was significantly enhanced when these words were presented to the left ear, irrespective of the attended ear, in the participants with schizophrenia compared to the controls. Furthermore, this diminished brain response to auditorily presented negatively valenced words significantly correlated with severe positive symptoms (r=-0.67, P=0.006) and delusional behavior (r=-0.62, P=0.014) in the patients with schizophrenia. CONCLUSION The present results indicate that the significantly impaired brain activity in response to auditorily presented negatively valenced words in the right pars triangularis of the inferior frontal gyrus is associated with the pathogenesis of positive symptoms such as persecutory delusion.
Collapse
Affiliation(s)
- Norichika Iwashiro
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan,
| | - Yosuke Takano
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan,
| | - Tatsunobu Natsubori
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan,
| | - Yuta Aoki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan,
| | - Noriaki Yahata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan,
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba-city, Chiba, Japan
| | - Wataru Gonoi
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Akira Kunimatsu
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan,
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu City, Japan,
| |
Collapse
|
67
|
Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM, Whittredge PB, Fu T, Worringer K, Brown HE, Wang J, Kaykas A, Karmacharya R, Goold CP, Sheridan SD, Perlis RH. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci 2019; 22:374-385. [PMID: 30718903 DOI: 10.1038/s41593-018-0334-7] [Citation(s) in RCA: 487] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/19/2018] [Indexed: 12/11/2022]
Abstract
Synapse density is reduced in postmortem cortical tissue from schizophrenia patients, which is suggestive of increased synapse elimination. Using a reprogrammed in vitro model of microglia-mediated synapse engulfment, we demonstrate increased synapse elimination in patient-derived neural cultures and isolated synaptosomes. This excessive synaptic pruning reflects abnormalities in both microglia-like cells and synaptic structures. Further, we find that schizophrenia risk-associated variants within the human complement component 4 locus are associated with increased neuronal complement deposition and synapse uptake; however, they do not fully explain the observed increase in synapse uptake. Finally, we demonstrate that the antibiotic minocycline reduces microglia-mediated synapse uptake in vitro and its use is associated with a modest decrease in incident schizophrenia risk compared to other antibiotics in a cohort of young adults drawn from electronic health records. These findings point to excessive pruning as a potential target for delaying or preventing the onset of schizophrenia in high-risk individuals.
Collapse
Affiliation(s)
- Carl M Sellgren
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA. .,Department of Psychiatry, Harvard Medical School, Boston, MA, USA. .,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Jessica Gracias
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bradley Watmuff
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jonathan D Biag
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Jessica M Thanos
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | | - Ting Fu
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | | - Hannah E Brown
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jennifer Wang
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Ajamete Kaykas
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Rakesh Karmacharya
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA
| | | | - Steven D Sheridan
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Roy H Perlis
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA. .,Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
68
|
Duan D, Xia S, Rekik I, Meng Y, Wu Z, Wang L, Lin W, Gilmore JH, Shen D, Li G. Exploring folding patterns of infant cerebral cortex based on multi-view curvature features: Methods and applications. Neuroimage 2019; 185:575-592. [PMID: 30130646 PMCID: PMC6289765 DOI: 10.1016/j.neuroimage.2018.08.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 12/30/2022] Open
Abstract
The highly convoluted cortical folding of the human brain is intriguingly complex and variable across individuals. Exploring the underlying representative patterns of cortical folding is of great importance for many neuroimaging studies. At term birth, all major cortical folds are established and are minimally affected by the complicated postnatal environments; hence, neonates are the ideal candidates for exploring early postnatal cortical folding patterns, which yet remain largely unexplored. In this paper, we propose a novel method for exploring the representative regional folding patterns of infant brains. Specifically, first, multi-view curvature features are constructed to comprehensively characterize the complex characteristics of cortical folding. Second, for each view of curvature features, a similarity matrix is computed to measure the similarity of cortical folding in a specific region between any pair of subjects. Next, a similarity network fusion method is adopted to nonlinearly and adaptively fuse all the similarity matrices into a single one for retaining both shared and complementary similarity information of the multiple characteristics of cortical folding. Finally, based on the fused similarity matrix and a hierarchical affinity propagation clustering approach, all subjects are automatically grouped into several clusters to obtain the representative folding patterns. To show the applications, we have applied the proposed method to a large-scale dataset with 595 normal neonates and discovered representative folding patterns in several cortical regions, i.e., the superior temporal gyrus (STG), inferior frontal gyrus (IFG), precuneus, and cingulate cortex. Meanwhile, we have revealed sex difference in STG, IFG, and cingulate cortex, as well as hemispheric asymmetries in STG and cingulate cortex in terms of cortical folding patterns. Moreover, we have also validated the proposed method on a public adult dataset, i.e., the Human Connectome Project (HCP), and revealed that certain major cortical folding patterns of adults are largely established at term birth.
Collapse
Affiliation(s)
- Dingna Duan
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, China; Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - Shunren Xia
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, China
| | - Islem Rekik
- BASIRA Lab, CVIP, Computing, School of Science and Engineering, University of Dundee, UK
| | - Yu Meng
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA; Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
69
|
Kim JY, Jeon H, Kwon A, Jin MJ, Lee SH, Chung YC. Self-Awareness of Psychopathology and Brain Volume in Patients With First Episode Psychosis. Front Psychiatry 2019; 10:839. [PMID: 31803084 PMCID: PMC6873658 DOI: 10.3389/fpsyt.2019.00839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/22/2019] [Indexed: 01/06/2023] Open
Abstract
Memory impairment, excessive rumination, and increased interpersonal sensitivity are major characteristics of high psychosis risk or first episode psychosis (FEP). Herein, we investigated the relationship between brain volume and self-awareness of psychopathology in patients with FEP. All participants (FEP: 34 and HCs: 34) completed clinical assessments and the following self-reported psychopathology evaluations: prospective and retrospective memory questionnaire (PRMQ), ruminative response scale (RRS), and interpersonal sensitivity measure (IPSM). Structural magnetic resonance imaging was then conducted. The PRMQ, RRS, and IPSM scores were significantly higher in the FEP group than in the healthy controls (HCs). The volumes of the amygdala, hippocampus, and superior temporal gyrus (STG) were significantly lower in the FEP group than in the HCs. There was a significant group-dependent moderation effect between self-awareness of psychopathology (PRMQ, RRS, and IPSM scores) and right STG (rSTG) volume. In the FEP group, self-awareness of psychopathology was positively associated with rSTG volume, while in the HCs, this correlation was negative. Our results indicate that self-awareness of psychopathology impacts rSTG volume in the opposite direction between patients with FEP and HCs. In patients with FEP, awareness of impairment may induce increases in rSTG brain volume. However, HCs showed decreased rSTG volume when they were aware of impairment.
Collapse
Affiliation(s)
- Jeong-Youn Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, South Korea
| | - Hyeonjin Jeon
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, South Korea
| | - Aeran Kwon
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, South Korea
| | - Min Jin Jin
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, South Korea.,Department of Psychology, Chung-Ang University, Seoul, South Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, South Korea.,Department of Psychiatry, Inje University, Ilsan-Paik Hospital, Goyang, South Korea
| | - Young-Chul Chung
- Department of Psychiatry, Chonbuk National University Medical School, Jeonju, South Korea
| |
Collapse
|
70
|
Metabolic-inflammatory status as predictor of clinical outcome at 1-year follow-up in patients with first episode psychosis. Psychoneuroendocrinology 2019; 99:145-153. [PMID: 30243054 DOI: 10.1016/j.psyneuen.2018.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/31/2018] [Accepted: 09/07/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Metabolic abnormalities and peripheral inflammation have been increasingly reported in patients at the onset of psychosis and associated with important physical health disorders and increased mortality. However, the impact of an abnormal metabolic-inflammatory status on the psychiatric outcome of these patients has not yet been investigated. OBJECTIVES The aims of this study were 1) to explore whether, in a sample of patients at their first episode of psychosis (FEP), an overall metabolic-inflammatory status may be measured, by combining metabolic and inflammatory variables in metabolic-inflammatory factors; 2) to explore the association between these factors and clinical outcome at 1-year follow-up (FU), in terms of symptoms severity and treatment response. METHODS In this longitudinal study we recruited 42 FEP patients and 46 healthy controls (HC) matched with patients for age, gender and ethnicity. At baseline (T1) we measured high sensitivity C-reactive protein (hsCRP) as biomarker of inflammation, and body mass index (BMI), lipid profile and gluco-metabolic parameters (glycated hemoglobin (HbA1c) and fasting glucose) as metabolic variables. A principal component analysis (PCA) was then used to reduce the dimensionality of the dataset accounting for both inflammation and metabolic status. In FEP patients, we assessed symptoms severity at T1 and at 1-year FU (T2) as well as treatment response to antipsychotics at T2. RESULTS at T1, FEP showed higher HbA1c (p = 0.034), triglycerides (TG) (p = 0.045) and BMI (p = 0.026) than HC. PCA identified 3 factors: factor 1 accounting for hsCRP, TG and BMI, factor 2 accounting for LDL and cholesterol, and factor 3 accounting for fasting glucose and HbA1c. Factor 1 was associated with T1 negative symptoms severity (p = 0.021) and predicted T2 positive (p = 0.004) and overall symptoms severity (0.001), as well as general psychopathology (p < 0.001) and T2 treatment response (p = 0.007). CONCLUSION In this sample of FEP patients, inflammation and metabolism, closely correlated at the onset of psychosis, proved to play a key role as predictors of the clinical course of psychosis when combined in a single factor. These findings offer an important potential target for early screening and interventions.
Collapse
|
71
|
Takahashi T, Suzuki M. Brain morphologic changes in early stages of psychosis: Implications for clinical application and early intervention. Psychiatry Clin Neurosci 2018; 72:556-571. [PMID: 29717522 DOI: 10.1111/pcn.12670] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2018] [Indexed: 12/20/2022]
Abstract
To date, a large number of magnetic resonance imaging (MRI) studies have been conducted in schizophrenia, which generally demonstrate gray matter reduction, predominantly in the frontal and temporo-limbic regions, as well as gross brain abnormalities (e.g., a deviated sulcogyral pattern). Although the causes as well as timing and course of these findings remain elusive, these morphologic changes (especially gross brain abnormalities and medial temporal lobe atrophy) are likely present at illness onset, possibly reflecting early neurodevelopmental abnormalities. In addition, longitudinal MRI studies suggest that patients with schizophrenia and related psychoses also have progressive gray matter reduction during the transition period from prodrome to overt psychosis, as well as initial periods after psychosis onset, while such changes may become almost stable in the chronic stage. These active brain changes during the early phases seem to be relevant to the development of clinical symptoms in a region-specific manner (e.g., superior temporal gyrus atrophy and positive psychotic symptoms), but may be at least partly ameliorated by antipsychotic medication. Recently, increasing evidence from MRI findings in individuals at risk for developing psychosis has suggested that those who subsequently develop psychosis have baseline brain changes, which could be at least partly predictive of later transition into psychosis. In this article, we selectively review previous MRI findings during the course of psychosis and also refer to the possible clinical applicability of these neuroimaging research findings, especially in the diagnosis of schizophrenia and early intervention for psychosis.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| |
Collapse
|
72
|
Gollo LL, Roberts JA, Cropley VL, Di Biase MA, Pantelis C, Zalesky A, Breakspear M. Fragility and volatility of structural hubs in the human connectome. Nat Neurosci 2018; 21:1107-1116. [PMID: 30038275 DOI: 10.1038/s41593-018-0188-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/30/2018] [Indexed: 11/09/2022]
Abstract
Brain structure reflects the influence of evolutionary processes that pit the costs of its anatomical wiring against the computational advantages conferred by its complexity. We show that cost-neutral 'mutations' of the human connectome almost inevitably degrade its complexity and disconnect high-strength connections to prefrontal network hubs. Conversely, restoring the peripheral location and strong connectivity of empirically observed hubs confers a wiring cost that the brain appears to minimize. Progressive cost-neutral randomization yields daughter networks that differ substantially from one another and results in a topologically unstable phenomenon consistent with a phase transition in complex systems. The fragility of hubs to disconnection shows a significant association with the acceleration of gray matter loss in schizophrenia. Together with effects on wiring cost, we suggest that fragile prefrontal hub connections and topological volatility act as evolutionary influences on brain networks whose optimal set point may be perturbed in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Leonardo L Gollo
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Centre of Excellence for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - James A Roberts
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Centre of Excellence for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia
| | - Maria A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, MA, USA
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia.,Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Victoria, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia.,Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Breakspear
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. .,Centre of Excellence for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. .,Metro North Mental Health Service, Brisbane, Queensland, Australia.
| |
Collapse
|
73
|
Neuropil contraction in relation to Complement C4 gene copy numbers in independent cohorts of adolescent-onset and young adult-onset schizophrenia patients-a pilot study. Transl Psychiatry 2018; 8:134. [PMID: 30026462 PMCID: PMC6053402 DOI: 10.1038/s41398-018-0181-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/14/2018] [Indexed: 02/08/2023] Open
Abstract
A recent report suggested Complement 4 (C4A) gene copy numbers (GCN) as risk factors for schizophrenia. Rodent model showed association of C4 with synaptic pruning suggesting its pathophysiological significance (Sekar, A. et al. (2016)). We, therefore, predicted that C4A GCN would be positively correlated with neuropil contraction in the human brain among schizophrenia patients showing more prominent correlations in ventral regions among young adults and dorsal regions among adolescents since neuromaturation progresses dorsoventrally. Whole-brain, multi-voxel, in vivo phosphorus magnetic resonance spectroscopy (31P MRS) assessed neuropil changes by estimating levels of membrane phospholipid (MPL) precursors and catabolites. Increased MPL catabolites and/or decreased MPL precursors indexed neuropil contraction. Digital droplet PCR-based assay was used to estimate C4A and C4B GCN. We evaluated two independent cohorts (young adult-onset early-course schizophrenia (YASZ = 15) and adolescent-onset schizophrenia (AOSZ = 12) patients), and controls matched for each group, n = 22 and 15, respectively. Separate forward stepwise linear regression models with Akaike information Criterion were built for MPL catabolites and precursors. YASZ cohort: Consistent with the rodent model (Sekar, A. et al. 2016)), C4A GCN positively correlated with neuropil contraction (increased pruning/decreased formation) in the inferior frontal cortex and inferior parietal lobule. AOSZ cohort: C4A GCN positively correlated with neuropil contraction in the dorsolateral prefrontal cortex and thalamus. Exploratory analysis of C4B GCN showed positive correlation with neuropil contraction in the cerebellum and superior temporal gyrus among YASZ while AOSZ showed neuropil contraction in the prefrontal and subcortical structures. Thus, C4A and C4B GCN are associated with neuropil contraction in regions often associated with schizophrenia, and may be neuromaturationally dependent.
Collapse
|
74
|
Kohlbrenner EA, Shaskan N, Pietersen CY, Sonntag KC, Woo TUW. Gene expression profile associated with postnatal development of pyramidal neurons in the human prefrontal cortex implicates ubiquitin ligase E3 in the pathophysiology of schizophrenia onset. J Psychiatr Res 2018; 102:110-117. [PMID: 29635114 PMCID: PMC6347389 DOI: 10.1016/j.jpsychires.2018.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 03/17/2018] [Accepted: 03/25/2018] [Indexed: 11/25/2022]
Abstract
Schizophrenia is a neurodevelopmental disorder with the typical age of onset of overt symptoms and deficits occurring during late adolescence or early adulthood, coinciding with the final maturation of the cortical network involving the prefrontal cortex. These observations have led to the hypothesis that disturbances of the developmental events that take place in the prefrontal cortex during this period, specifically the remodeling of synaptic connectivities between pyramidal neurons, may contribute to the onset of illness. In this context, we investigated the gene expression changes of pyramidal neurons in the human prefrontal cortex during normal periadolescent development in order to gain insight into the possible molecular mechanisms involved in synaptic remodeling of pyramidal neuronal circuitry. Our data suggest that genes associated with the ubiquitination system, which has been implicated in the biology of synaptic plasticity, may play a major role. Among these genes, UBE3B, which encodes the ubiquitin ligase E3, was found to undergo periadolescent increase and was validated at the protein level to be upregulated during periadolescent development. Furthermore, we found that the density of UBE3B-immunoreactive pyramidal neurons was decreased in schizophrenia subjects, consistent with the result of a previous study of decreased UBE3B mRNA expression in pyramidal neurons in this illness. Altogether these findings point to the novel hypothesis that this specific ligase may play a role in the developmental pathogenesis of schizophrenia onset by possibly altering the synaptic remodeling process.
Collapse
Affiliation(s)
- Emily A Kohlbrenner
- Laboratory for Cellular Neuropathology, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA; Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA
| | - Noel Shaskan
- Laboratory for Cellular Neuropathology, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA; Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA
| | - Charmaine Y Pietersen
- Laboratory for Cellular Neuropathology, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA; Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA
| | - Kai-C Sonntag
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, 02215, USA
| | - Tsung-Ung W Woo
- Laboratory for Cellular Neuropathology, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA; Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA; Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
75
|
Kroll J, Froudist-Walsh S, Brittain PJ, Tseng CEJ, Karolis V, Murray RM, Nosarti C. A dimensional approach to assessing psychiatric risk in adults born very preterm. Psychol Med 2018; 48:1738-1744. [PMID: 29350124 DOI: 10.1017/s0033291717003804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Individuals who were born very preterm have higher rates of psychiatric diagnoses compared with term-born controls; however, it remains unclear whether they also display increased sub-clinical psychiatric symptomatology. Hence, our objective was to utilize a dimensional approach to assess psychiatric symptomatology in adult life following very preterm birth. METHODS We studied 152 adults who were born very preterm (before 33 weeks' gestation; gestational range 24-32 weeks) and 96 term-born controls. Participants' clinical profile was examined using the Comprehensive Assessment of At-Risk Mental States (CAARMS), a measure of sub-clinical symptomatology that yields seven subscales including general psychopathology, positive, negative, cognitive, behavioural, motor and emotional symptoms, in addition to a total psychopathology score. Intellectual abilities were examined using the Wechsler Abbreviated Scale of Intelligence. RESULTS Between-group differences on the CAARMS showed elevated symptomatology in very preterm participants compared with controls in positive, negative, cognitive and behavioural symptoms. Total psychopathology scores were significantly correlated with IQ in the very preterm group only. In order to examine the characteristics of participants' clinical profile, a principal component analysis was conducted. This revealed two components, one reflecting a non-specific psychopathology dimension, and the other indicating a variance in symptomatology along a positive-to-negative symptom axis. K-means (k = 4) were used to further separate the study sample into clusters. Very preterm adults were more likely to belong to a high non-specific psychopathology cluster compared with controls.Conclusion and RelevanceVery preterm individuals demonstrated elevated psychopathology compared with full-term controls. Their psychiatric risk was characterized by a non-specific clinical profile and was associated with lower IQ.
Collapse
Affiliation(s)
- Jasmin Kroll
- Department of Psychosis Studies,Institute of Psychiatry, Psychology and Neuroscience, King's College London,16 De Crespigny Park, London SE5 8AF,UK
| | - Sean Froudist-Walsh
- Department of Psychosis Studies,Institute of Psychiatry, Psychology and Neuroscience, King's College London,16 De Crespigny Park, London SE5 8AF,UK
| | - Philip J Brittain
- Department of Psychosis Studies,Institute of Psychiatry, Psychology and Neuroscience, King's College London,16 De Crespigny Park, London SE5 8AF,UK
| | - Chieh-En J Tseng
- Department of Psychosis Studies,Institute of Psychiatry, Psychology and Neuroscience, King's College London,16 De Crespigny Park, London SE5 8AF,UK
| | - Vyacheslav Karolis
- Department of Psychosis Studies,Institute of Psychiatry, Psychology and Neuroscience, King's College London,16 De Crespigny Park, London SE5 8AF,UK
| | - Robin M Murray
- Department of Psychosis Studies,Institute of Psychiatry, Psychology and Neuroscience, King's College London,16 De Crespigny Park, London SE5 8AF,UK
| | - Chiara Nosarti
- Department of Psychosis Studies,Institute of Psychiatry, Psychology and Neuroscience, King's College London,16 De Crespigny Park, London SE5 8AF,UK
| |
Collapse
|
76
|
Rottstädt F, Han P, Weidner K, Schellong J, Wolff‐Stephan S, Strauß T, Kitzler H, Hummel T, Croy I. Reduced olfactory bulb volume in depression-A structural moderator analysis. Hum Brain Mapp 2018; 39:2573-2582. [PMID: 29493048 PMCID: PMC6866619 DOI: 10.1002/hbm.24024] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/19/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Removal of the olfactory bulb (OB) leads to depression like behavior in rodents. A link between depression and olfactory function is also established in humans. We hypothesized that the human OB volume relates to depressive state and tested whether such a potential coherence is moderated by structural alterations in other brain regions. METHODS Eighty-three participants (32 patients with major depression and 51 matched healthy controls) underwent structural MR scanning. Individual OB volumes were compared between patients and controls and the impact of depression and comorbidity was analyzed with multiple regression analysis. Whole-brain voxel-based morphometry revealed structures co-varying with both depressive state and OB volume. RESULTS The OB volume of patients was significantly reduced and this reduction averaged out at 17% compared to the controls. The OB volume was correlated to the volume of the insula, superior temporal cortex, and amygdala. The independent variables of depression (β = -.37), age (β = -.25), and gender (β = -.40) explained the individual OB volume variation (R2 = .37). The correlation between OB volume and depression was moderated by volumetric reductions in a cluster including the insula and superior temporal gyrus (STG). CONCLUSIONS The OB volume relates to depression in humans and to the volume of structures which are critical for salience detection. We assume that a reduced OB volume causes diminished neural olfactory input which facilitates volume reduction in the insula and STG. The OB volume may hence constitute a factor of vulnerability to depression. Olfactory-based deep brain stimulation is discussed as a future therapeutic approach.
Collapse
Affiliation(s)
- Fabian Rottstädt
- Department of Psychosomatic Medicine and PsychotherapyTU DresdenDresdenGermany
| | - Pengfei Han
- Smell & Taste Clinic, Department of OtorhinolaryngologyTU DresdenDresdenGermany
| | - Kerstin Weidner
- Department of Psychosomatic Medicine and PsychotherapyTU DresdenDresdenGermany
| | - Julia Schellong
- Department of Psychosomatic Medicine and PsychotherapyTU DresdenDresdenGermany
| | | | - Timmy Strauß
- Department of Psychosomatic Medicine and PsychotherapyTU DresdenDresdenGermany
| | | | - Thomas Hummel
- Smell & Taste Clinic, Department of OtorhinolaryngologyTU DresdenDresdenGermany
| | - Ilona Croy
- Department of Psychosomatic Medicine and PsychotherapyTU DresdenDresdenGermany
| |
Collapse
|
77
|
Nelson B, Amminger GP, Yuen HP, Wallis N, Kerr MJ, Dixon L, Carter C, Loewy R, Niendam TA, Shumway M, Morris S, Blasioli J, McGorry PD. Staged Treatment in Early Psychosis: A sequential multiple assignment randomised trial of interventions for ultra high risk of psychosis patients. Early Interv Psychiatry 2018; 12:292-306. [PMID: 28719151 PMCID: PMC6054879 DOI: 10.1111/eip.12459] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/19/2017] [Accepted: 05/11/2017] [Indexed: 11/29/2022]
Abstract
AIM Previous research indicates that preventive intervention is likely to benefit patients "at risk" of psychosis, in terms of functional improvement, symptom reduction and delay or prevention of onset of threshold psychotic disorder. The primary aim of the current study is to test outcomes of ultra high risk (UHR) patients, primarily functional outcome, in response to a sequential intervention strategy consisting of support and problem solving (SPS), cognitive-behavioural case management and antidepressant medication. A secondary aim is to test biological and psychological variables that moderate and mediate response to this sequential treatment strategy. METHODS This is a sequential multiple assignment randomised trial (SMART) consisting of three steps: Step 1: SPS (1.5 months); Step 2: SPS vs Cognitive Behavioural Case Management (4.5 months); Step 3: Cognitive Behavioural Case Management + Antidepressant Medication vs Cognitive Behavioural Case Management + Placebo (6 months). The intervention is of 12 months duration in total and participants will be followed up at 18 months and 24 months post baseline. CONCLUSION This paper reports on the rationale and protocol of the Staged Treatment in Early Psychosis (STEP) study. With a large sample of 500 UHR participants this study will investigate the most effective type and sequence of treatments for improving functioning and reducing the risk of developing psychotic disorder in this clinical population.
Collapse
Affiliation(s)
- Barnaby Nelson
- Orygen, The National Centre of Excellence in Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - G. Paul Amminger
- Orygen, The National Centre of Excellence in Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Hok Pan Yuen
- Orygen, The National Centre of Excellence in Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicky Wallis
- Orygen, The National Centre of Excellence in Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Melissa J. Kerr
- Orygen, The National Centre of Excellence in Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Lisa Dixon
- Department of Psychiatry, Columbia University, New York, New York
| | - Cameron Carter
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California
| | - Rachel Loewy
- Department of Psychiatry, University of California San Francisco, San Francisco, California
| | - Tara A. Niendam
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California
| | - Martha Shumway
- Department of Psychiatry, University of California San Francisco, San Francisco, California
| | - Sarah Morris
- National Institute of Mental Health, Bethesda, MD, USA
| | - Julie Blasioli
- Orygen, The National Centre of Excellence in Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Patrick D. McGorry
- Orygen, The National Centre of Excellence in Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
78
|
Goldsmith DR, Crooks CL, Walker EF, Cotes RO. An Update on Promising Biomarkers in Schizophrenia. FOCUS: JOURNAL OF LIFE LONG LEARNING IN PSYCHIATRY 2018; 16:153-163. [PMID: 31975910 DOI: 10.1176/appi.focus.20170046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Given the heterogeneity of symptoms in patients with schizophrenia and current treatment limitations, biomarkers may play an important role in diagnosis, subtype stratification, and the assessment of treatment response. Though many potential biomarkers have been studied, we have chosen to focus on some of the most promising and potentially clinically relevant biomarkers to review herein. These include markers of inflammation, neuroimaging biomarkers, brain-derived neurotrophic factor, genetic/epigenetic markers, and speech analysis. This will provide a broad overview of putative biomarkers that could become clinically relevant in the future, though none currently appear ready to assist the clinician in identifying cases of schizophrenia, subtypes of the disorder, treatment choice, or response. Nonetheless, some biomarkers, such as C-reactive protein (CRP), may be useful at identifying individuals who may be more highly inflamed, which could drive treatment choice. Though checking CRP is not a standard of practice, this is one example of how biomarkers may drive treatment decisions in the future, supporting precision medicine. Similarly, technological advances may one day allow clinicians to detect changes in speech patterns, which could represent a noninvasive, clinically useful tool in the future. We conclude the review by highlighting two important potential clinical uses for biomarkers in schizophrenia: the identification of individuals who may convert from clinical high risk and the stratification of patients via different biomarkers that may supersede clinical diagnosis. Given the enormous burden of illness of schizophrenia, the search for clinically relevant biomarkers is of great importance to improve the lives of patients with the disorder.
Collapse
Affiliation(s)
- David R Goldsmith
- Dr. Goldsmith, Dr. Crooks, and Dr. Cotes are with the Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia. Dr. Crooks is also with the Electronic Systems Laboratory, Georgia Tech Research Institute, Atlanta. Dr. Walker is with the Department of Psychology, Emory University
| | - Courtney L Crooks
- Dr. Goldsmith, Dr. Crooks, and Dr. Cotes are with the Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia. Dr. Crooks is also with the Electronic Systems Laboratory, Georgia Tech Research Institute, Atlanta. Dr. Walker is with the Department of Psychology, Emory University
| | - Elaine F Walker
- Dr. Goldsmith, Dr. Crooks, and Dr. Cotes are with the Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia. Dr. Crooks is also with the Electronic Systems Laboratory, Georgia Tech Research Institute, Atlanta. Dr. Walker is with the Department of Psychology, Emory University
| | - Robert O Cotes
- Dr. Goldsmith, Dr. Crooks, and Dr. Cotes are with the Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia. Dr. Crooks is also with the Electronic Systems Laboratory, Georgia Tech Research Institute, Atlanta. Dr. Walker is with the Department of Psychology, Emory University
| |
Collapse
|
79
|
Abnormal neural activity as a potential biomarker for drug-naive first-episode adolescent-onset schizophrenia with coherence regional homogeneity and support vector machine analyses. Schizophr Res 2018; 192:408-415. [PMID: 28476336 DOI: 10.1016/j.schres.2017.04.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Patients with adolescent-onset schizophrenia (AOS) hold the same but severe form of symptoms with adult-onset schizophrenia, and with worse outcome and poor treatment response to antipsychotics. Several dominant brain regions of schizophrenia patients show significantly abnormal structural and functional connectivity during resting-state scans. However, coherence regional homogeneity (Cohe-ReHo) in drug-naive first-episode patients with AOS remains unclear. METHOD A total of 48 drug-naive first-episode AOS outpatients and 31 healthy controls underwent resting-state functional magnetic resonance scans. Cohe-ReHo and support vector machine analyses were used to analyze the data. RESULTS Compared with the healthy controls, the AOS group showed significantly decreased Cohe-ReHo values distributed over brain regions, including the left postcentral gyrus, left superior temporal gyrus, left paracentral lobule, right precentral gyrus, right inferior parietal lobule (IPL), right middle frontal gyrus, and bilateral precuneus. No region with increased Cohe-ReHo values was observed in the AOS group compared with healthy controls. In addition, the right IPL was correlated with fluency (r=-0.324, p=0.030). However, the correlation was not significant after the Bonferroni correction at p<0.0083 (0.05/6). A combination of the Cohe-ReHo values in the bilateral precuneus and right IPL discriminated the patients from controls with the sensitivity, specificity, and accuracy of 91.67%, 87.10%, and 89.87%, respectively. CONCLUSION Our findings suggested that the AOS patients exhibited diminished Cohe-ReHo values in some regions within the DMN network and sensorimotor network. The abnormalities in particular brain regions (bilateral precuneus and right IPL) may serve as potential biomarkers for AOS.
Collapse
|
80
|
Wang S, Zhang Y, Lv L, Wu R, Fan X, Zhao J, Guo W. Abnormal regional homogeneity as a potential imaging biomarker for adolescent-onset schizophrenia: A resting-state fMRI study and support vector machine analysis. Schizophr Res 2018; 192:179-184. [PMID: 28587813 DOI: 10.1016/j.schres.2017.05.038] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 05/04/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Structural and functional abnormalities have been reported in the brain of patients with adolescent-onset schizophrenia (AOS). The brain regional functional synchronization in patients with AOS remains unclear. METHODS We analyzed resting-state functional magnetic resonance scans in 48 drug-naive patients with AOS and 31 healthy controls by using regional homogeneity (ReHo), a measurement that reflects brain local functional connectivity or synchronization and indicates regional integration of information processing. Then, receiver operating characteristic curves and support vector machines were used to evaluate the effect of abnormal regional homogeneity in differentiating patients from controls. RESULTS Patients with AOS showed significantly increased ReHo values in the bilateral superior medial prefrontal cortex (MPFC) and significantly decreased ReHo values in the left superior temporal gyrus (STG), right precentral lobule, right inferior parietal lobule (IPL), and left paracentral lobule when compared with controls. A combination of the ReHo values in bilateral superior MPFC, left STG, and right IPL was able to discriminate patients from controls with the sensitivity of 88.24%, specificity of 91.89%, and accuracy of 90.14%. CONCLUSION The brain regional functional synchronization abnormalities exist in drug-naive patients with AOS. A combination of ReHo values in these abnormal regions might serve as potential imaging biomarker to identify patients with AOS.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yan Zhang
- Henan Key Laboratory of Biological Psychiatry, Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Luxian Lv
- Henan Key Laboratory of Biological Psychiatry, Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Renrong Wu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xiaoduo Fan
- UMass Memorial Medical Center, UMass Medical School, Worcester, USA
| | - Jingping Zhao
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China; Henan Key Laboratory of Biological Psychiatry, Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| | - Wenbin Guo
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.
| |
Collapse
|
81
|
Kurachi M, Takahashi T, Sumiyoshi T, Uehara T, Suzuki M. Early Intervention and a Direction of Novel Therapeutics for the Improvement of Functional Outcomes in Schizophrenia: A Selective Review. Front Psychiatry 2018; 9:39. [PMID: 29515467 PMCID: PMC5826072 DOI: 10.3389/fpsyt.2018.00039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A recent review reported that the median proportion of patients recovering from schizophrenia was 13.5% and that this did not change over time. Various factors including the duration of untreated psychosis, cognitive impairment, negative symptoms, and morphological changes in the brain influence the functional outcome of schizophrenia. The authors herein reviewed morphological changes in the brain of schizophrenia patients, effects of early intervention, and a direction of developing novel therapeutics to achieve significant improvement of the functional outcome. METHODS A selective review of the literature including studies from our department was performed. RESULTS Longitudinal structural neuroimaging studies on schizophrenia revealed that volume reductions in the peri-Sylvian regions (e.g., superior temporal gyrus and insula), which are related to positive psychotic symptoms, progress around the onset (critical stage) of schizophrenia, but become stable in the chronic stage. On the other hand, morphological changes in the fronto-thalamic regions and lateral ventricle, which are related to negative symptoms, neurocognitive dysfunction, and the functional outcome, progress during both the critical and chronic stages. These changes in the peri-Sylvian and fronto-thalamic regions may provide a pathophysiological basis for Crow's two-syndrome classification. Accumulated evidence from early intervention trials suggests that the transition risk from an at-risk mental state (ARMS) to psychosis is approximately 30%. Differences in the cognitive performance, event-related potentials (e.g., mismatch negativity), and brain morphology have been reported between ARMS subjects who later developed psychosis and those who did not. Whether early intervention for ARMS significantly improves the long-term recovery rate of schizophrenia patients remains unknown. With respect to the development of novel therapeutics, animal models of schizophrenia based on the N-methyl-d-aspartate receptor hypofunction hypothesis successfully mimicked behavioral changes associated with cognitive impairments characteristic of the disease. Furthermore, these animal models elicited histological changes in the brain similar to those observed in schizophrenia patients, i.e., decreased numbers of parvalbumin-positive interneurons and dendritic spines of pyramidal neurons in the frontal cortex. Some antioxidant compounds were found to ameliorate these behavioral and histological abnormalities. CONCLUSION Early intervention coupled with novel therapeutics may offer a promising approach for substantial improvement of the functional outcome of schizophrenia patients.
Collapse
Affiliation(s)
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, Graduate School of Medicine, University of Toyama, Toyama, Japan
| | - Tomiki Sumiyoshi
- Department of Clinical Epidemiology, Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Uehara
- Department of Neuropsychiatry, Kanazawa Medical University, Kanazawa, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, Graduate School of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
82
|
Hunter SA, Lawrie SM. Imaging and Genetic Biomarkers Predicting Transition to Psychosis. Curr Top Behav Neurosci 2018; 40:353-388. [PMID: 29626338 DOI: 10.1007/7854_2018_46] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The search for diagnostic and prognostic biomarkers in schizophrenia care and treatment is the focus of many within the research community. Longitudinal cohorts of patients presenting at elevated genetic and clinical risk have provided a wealth of data that has informed our understanding of the development of schizophrenia and related psychotic disorders.Imaging follow-up of high-risk cohorts has demonstrated changes in cerebral grey matter of those that eventually transition to schizophrenia that predate the onset of symptoms and evolve over the course of illness. Longitudinal follow-up studies demonstrate that observed grey matter changes can be employed to differentiate those who will transition to schizophrenia from those who will not prior to the onset of the disorder.In recent years our understanding of the genetic makeup of schizophrenia has advanced significantly. The development of modern analysis techniques offers researchers the ability to objectively quantify genetic risk; these have been successfully applied within a high-risk paradigm to assist in differentiating between high-risk individuals who will subsequently become unwell and those who will not.This chapter will discuss the application of imaging and genetic biomarkers within high-risk groups to predict future transition to schizophrenia and related psychotic disorders. We aim to provide an overview of current approaches focussing on grey matter changes that are predictive of future transition to illness, the developing field of genetic risk scores and other methods being developed to aid clinicians in diagnosis and prognosis.
Collapse
Affiliation(s)
- Stuart A Hunter
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK.
| | - Stephen M Lawrie
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
83
|
Suvisaari J, Mantere O, Keinänen J, Mäntylä T, Rikandi E, Lindgren M, Kieseppä T, Raij TT. Is It Possible to Predict the Future in First-Episode Psychosis? Front Psychiatry 2018; 9:580. [PMID: 30483163 PMCID: PMC6243124 DOI: 10.3389/fpsyt.2018.00580] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022] Open
Abstract
The outcome of first-episode psychosis (FEP) is highly variable, ranging from early sustained recovery to antipsychotic treatment resistance from the onset of illness. For clinicians, a possibility to predict patient outcomes would be highly valuable for the selection of antipsychotic treatment and in tailoring psychosocial treatments and psychoeducation. This selective review summarizes current knowledge of prognostic markers in FEP. We sought potential outcome predictors from clinical and sociodemographic factors, cognition, brain imaging, genetics, and blood-based biomarkers, and we considered different outcomes, like remission, recovery, physical comorbidities, and suicide risk. Based on the review, it is currently possible to predict the future for FEP patients to some extent. Some clinical features-like the longer duration of untreated psychosis (DUP), poor premorbid adjustment, the insidious mode of onset, the greater severity of negative symptoms, comorbid substance use disorders (SUDs), a history of suicide attempts and suicidal ideation and having non-affective psychosis-are associated with a worse outcome. Of the social and demographic factors, male gender, social disadvantage, neighborhood deprivation, dysfunctional family environment, and ethnicity may be relevant. Treatment non-adherence is a substantial risk factor for relapse, but a small minority of patients with acute onset of FEP and early remission may benefit from antipsychotic discontinuation. Cognitive functioning is associated with functional outcomes. Brain imaging currently has limited utility as an outcome predictor, but this may change with methodological advancements. Polygenic risk scores (PRSs) might be useful as one component of a predictive tool, and pharmacogenetic testing is already available and valuable for patients who have problems in treatment response or with side effects. Most blood-based biomarkers need further validation. None of the currently available predictive markers has adequate sensitivity or specificity used alone. However, personalized treatment of FEP will need predictive tools. We discuss some methodologies, such as machine learning (ML), and tools that could lead to the improved prediction and clinical utility of different prognostic markers in FEP. Combination of different markers in ML models with a user friendly interface, or novel findings from e.g., molecular genetics or neuroimaging, may result in computer-assisted clinical applications in the near future.
Collapse
Affiliation(s)
- Jaana Suvisaari
- Mental Health Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Outi Mantere
- Mental Health Unit, National Institute for Health and Welfare, Helsinki, Finland.,Department of Psychiatry, McGill University, Montreal, QC, Canada.,Bipolar Disorders Clinic, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaakko Keinänen
- Mental Health Unit, National Institute for Health and Welfare, Helsinki, Finland.,Department of Psychiatry, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Teemu Mäntylä
- Mental Health Unit, National Institute for Health and Welfare, Helsinki, Finland.,Department of Neuroscience and Biomedical Engineering, and Advanced Magnetic Imaging Center, Aalto NeuroImaging, Aalto University School of Science, Espoo, Finland.,Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Eva Rikandi
- Mental Health Unit, National Institute for Health and Welfare, Helsinki, Finland.,Department of Neuroscience and Biomedical Engineering, and Advanced Magnetic Imaging Center, Aalto NeuroImaging, Aalto University School of Science, Espoo, Finland.,Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Maija Lindgren
- Mental Health Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Tuula Kieseppä
- Mental Health Unit, National Institute for Health and Welfare, Helsinki, Finland.,Department of Psychiatry, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuukka T Raij
- Mental Health Unit, National Institute for Health and Welfare, Helsinki, Finland.,Department of Neuroscience and Biomedical Engineering, and Advanced Magnetic Imaging Center, Aalto NeuroImaging, Aalto University School of Science, Espoo, Finland
| |
Collapse
|
84
|
Abstract
Schizophrenia is a complex disorder lacking an effective treatment option for the pervasive and debilitating cognitive impairments experienced by patients. Working memory is a core cognitive function impaired in schizophrenia that depends upon activation of distributed neural network, including the circuitry of the dorsolateral prefrontal cortex (DLPFC). Accordingly, individuals diagnosed with schizophrenia show reduced DLPFC activation while performing working-memory tasks. This lower DLPFC activation appears to be an integral part of the disease pathophysiology, and not simply a reflection of poor performance. Thus, the cellular and circuitry alterations that underlie lower DLPFC neuronal activity in schizophrenia must be determined in order to identify appropriate therapeutic targets. Studies using human postmortem brain tissue provide a robust way to investigate and characterize these cellular and circuitry alterations at multiple levels of resolution, and such studies provide essential information that cannot be obtained either through in vivo studies in humans or through experimental animal models. Studies examining neuronal morphology, protein expression and localization, and transcript levels indicate that a microcircuit composed of excitatory pyramidal cells and inhibitory interneurons containing the calcium-binding protein parvalbumin is altered in the DLPFC of subjects with schizophrenia and likely contributes to DLPFC dysfunction.
Collapse
Affiliation(s)
- Jill R Glausier
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
85
|
Seol JJ, Kim M, Lee KH, Hur JW, Cho KIK, Lee TY, Chung CK, Kwon JS. Is There an Association Between Mismatch Negativity and Cortical Thickness in Schizophrenia Patients? Clin EEG Neurosci 2017; 48:383-392. [PMID: 28612661 DOI: 10.1177/1550059417714705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Mismatch negativity (MMN) is thought to reflect preattentive, automatic auditory processing. Reduced MMN amplitude is among the most robust findings in schizophrenia research. MMN generators have been shown to be located in the temporal and frontal cortices, which are key areas in the pathophysiology of schizophrenia. This study investigated whether frontotemporal cortical thickness was associated with reduced MMN current source density (CSD) strength in patients with schizophrenia. METHODS Sixteen schizophrenia patients and 18 healthy controls (HCs) were examined using magnetoencephalography while they performed a passive auditory oddball paradigm. All participants underwent a T1 structural magnetic resonance imaging scan in a separate session. We evaluated MMN CSD and cortical thickness, and their associations, in the superior and transverse temporal gyri, as well as in the inferior and middle frontal gyri. RESULTS Patients exhibited significantly reduced CSD strength in all temporal and frontal areas of interest relative to HCs. There was a positive correlation between CSD strength and cortical thickness in both temporal and frontal areas in HCs. However, schizophrenia patients showed negative correlations between CSD strength and cortical thickness in the bilateral inferior frontal gyri. Additionally, we found positive correlations between frontal cortical thickness and negative and total scores on the Positive and Negative Syndrome Scale (PANSS). CONCLUSIONS Our findings provide evidence for deficient temporal and frontal MMN generators and a disruption of normal structure-function relationship in patients with schizophrenia.
Collapse
Affiliation(s)
- Jiyoon J Seol
- 1 Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Minah Kim
- 2 Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kwang Hyuk Lee
- 1 Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Ji-Won Hur
- 3 Department of Psychology, Chung-Ang University, Seoul, Republic of Korea
| | - Kang Ik K Cho
- 1 Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Tae Young Lee
- 2 Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chun Kee Chung
- 4 Magnetoencephalography Center, Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- 1 Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea.,2 Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,5 Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
86
|
Ibrahim EC, Guillemot V, Comte M, Tenenhaus A, Zendjidjian XY, Cancel A, Belzeaux R, Sauvanaud F, Blin O, Frouin V, Fakra E. Modeling a linkage between blood transcriptional expression and activity in brain regions to infer the phenotype of schizophrenia patients. NPJ SCHIZOPHRENIA 2017; 3:25. [PMID: 28883405 PMCID: PMC5589880 DOI: 10.1038/s41537-017-0027-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/05/2017] [Accepted: 07/21/2017] [Indexed: 11/20/2022]
Abstract
Hundreds of genetic loci participate to schizophrenia liability. It is also known that impaired cerebral connectivity is directly related to the cognitive and affective disturbances in schizophrenia. How genetic susceptibility and brain neural networks interact to specify a pathological phenotype in schizophrenia remains elusive. Imaging genetics, highlighting brain variations, has proven effective to establish links between vulnerability loci and associated clinical traits. As previous imaging genetics works in schizophrenia have essentially focused on structural DNA variants, these findings could be blurred by epigenetic mechanisms taking place during gene expression. We explored the meaningful links between genetic data from peripheral blood tissues on one hand, and regional brain reactivity to emotion task assayed by blood oxygen level-dependent functional magnetic resonance imaging on the other hand, in schizophrenia patients and matched healthy volunteers. We applied Sparse Generalized Canonical Correlation Analysis to identify joint signals between two blocks of variables: (i) the transcriptional expression of 33 candidate genes, and (ii) the blood oxygen level-dependent activity in 16 region of interest. Results suggested that peripheral transcriptional expression is related to brain imaging variations through a sequential pathway, ending with the schizophrenia phenotype. Generalization of such an approach to larger data sets should thus help in outlining the pathways involved in psychiatric illnesses such as schizophrenia. IMAGING SEARCHING FOR LINKS TO AID DIAGNOSIS: Researchers explore links between the expression of genes associated with schizophrenia in blood cells and variations in brain activity during emotion processing. El Chérif Ibrahim and Eric Fakra at Aix-Marseille Université, France, and colleagues have developed a method to relate the expression levels of 33 schizophrenia susceptibility genes in blood cells and functional magnetic resonance imaging (fMRI) data obtained as individuals carry out a task that triggers emotional responses. Although they found no significant differences in the expression of genes between the 26 patients with schizophrenia and 26 healthy controls they examined, variations in activity in the superior temporal gyrus were strongly linked to schizophrenia-associated gene expression and presence of disease. Similar analyses of larger data sets will shed further light on the relationship between peripheral molecular changes and disease-related behaviors and ultimately, aid the diagnosis of neuropsychiatric disease.
Collapse
Affiliation(s)
- El Chérif Ibrahim
- Aix-Marseille Univ, CNRS, CRN2M, Marseille, France.
- Fondation FondaMental, Fondation de Recherche et de Soins en Santé Mentale, Créteil, France.
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France.
| | - Vincent Guillemot
- INSERM, U 1127, Paris, France
- CNRS, 7225, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, Paris, France
- ICM, Département des maladies du système nerveux and Département de Génétique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Magali Comte
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - Arthur Tenenhaus
- Laboratoire des Signaux et Systèmes (L2S, UMR CNRS 8506), CentraleSupélec-CNRS Université Paris-Sud, Gif-sur-Yvette, France
- Bioinformatics/Biostatistics Platform IHU-A-ICM, Brain and Spine Institute, Paris, France
| | - Xavier Yves Zendjidjian
- Pôle Psychiatrie centre, Hôpital de la Conception, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Aida Cancel
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
- Service Hospitalo-Universitaire de Psychiatrie Secteur Saint-Etienne, Hôpital Nord, Saint-Etienne, France
| | - Raoul Belzeaux
- Aix-Marseille Univ, CNRS, CRN2M, Marseille, France
- Fondation FondaMental, Fondation de Recherche et de Soins en Santé Mentale, Créteil, France
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Florence Sauvanaud
- Service Hospitalo-Universitaire de Psychiatrie Secteur Saint-Etienne, Hôpital Nord, Saint-Etienne, France
| | - Olivier Blin
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
- CIC-UPCET et Pharmacologie Clinique, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | | | - Eric Fakra
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France.
- Service Hospitalo-Universitaire de Psychiatrie Secteur Saint-Etienne, Hôpital Nord, Saint-Etienne, France.
| |
Collapse
|
87
|
Conjoint and dissociated structural and functional abnormalities in first-episode drug-naive patients with major depressive disorder: a multimodal meta-analysis. Sci Rep 2017; 7:10401. [PMID: 28871117 PMCID: PMC5583354 DOI: 10.1038/s41598-017-08944-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 07/21/2017] [Indexed: 02/05/2023] Open
Abstract
Published MRI evidence of structural and resting-state functional brain abnormalities in MDD has been inconsistent. To eliminate interference by repeated disease episodes and antidepressant treatment, we conducted the first multimodal voxel-wise meta-analysis of studies of voxel-based morphometry (VBM) and the amplitude of low-frequency fluctuation (ALFF) in first-episode drug-naive MDD patients, using the Seed-based d Mapping method (SDM). Fifteen VBM data sets and 11 ALFF data sets were included. SDM-based multimodal meta-analysis was used to highlight brain regions with both structural and functional abnormalities. This identified conjoint structural and functional abnormalities in left lateral orbitofrontal cortex and right supplementary motor area, and also dissociated abnormalities of structure (decreased grey matter in right dorsolateral prefrontal cortex and right inferior temporal gyrus; increased grey matter in right insula, right putamen, left temporal pole, and bilateral thalamus) and function (increased brain activity in left supplementary motor area, left parahippocampal gyrus, and hippocampus; decreased brain activity in right lateral orbitofrontal cortex). This study reveals a complex pattern of conjoint and dissociated structural and functional abnormalities, supporting the involvement of basal ganglia-thalamocortical circuits, representing emotional, cognitive and psychomotor abnormalities, in the pathophysiology of early-stage MDD. Specifically, this study adds to Psychoradiology, an emerging subspecialty of radiology, which seems primed to play a major clinical role in guiding diagnostic and treatment planning decisions in patients with mental disorder.
Collapse
|
88
|
Progressive cortical reorganisation: A framework for investigating structural changes in schizophrenia. Neurosci Biobehav Rev 2017; 79:1-13. [DOI: 10.1016/j.neubiorev.2017.04.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 12/27/2022]
|
89
|
Forsyth JK, Lewis DA. Mapping the Consequences of Impaired Synaptic Plasticity in Schizophrenia through Development: An Integrative Model for Diverse Clinical Features. Trends Cogn Sci 2017; 21:760-778. [PMID: 28754595 DOI: 10.1016/j.tics.2017.06.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/13/2017] [Accepted: 06/09/2017] [Indexed: 01/19/2023]
Abstract
Schizophrenia is associated with alterations in sensory, motor, and cognitive functions that emerge before psychosis onset; identifying pathogenic processes that can account for this multi-faceted phenotype remains a challenge. Accumulating evidence suggests that synaptic plasticity is impaired in schizophrenia. Given the role of synaptic plasticity in learning, memory, and neural circuit maturation, impaired plasticity may underlie many features of the schizophrenia syndrome. Here, we summarize the neurobiology of synaptic plasticity, review evidence that plasticity is impaired in schizophrenia, and explore a framework in which impaired synaptic plasticity interacts with brain maturation to yield the emergence of sensory, motor, cognitive, and psychotic features at different times during development in schizophrenia. Key gaps in the literature and future directions for testing this framework are discussed.
Collapse
Affiliation(s)
- Jennifer K Forsyth
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA.
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
90
|
Fisher M, Herman A, Stephens DB, Vinogradov S. Neuroscience-informed computer-assisted cognitive training in schizophrenia. Ann N Y Acad Sci 2017; 1366:90-114. [PMID: 27111135 DOI: 10.1111/nyas.13042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 01/29/2016] [Accepted: 02/16/2016] [Indexed: 01/09/2023]
Abstract
Schizophrenia is a heterogeneous psychiatric syndrome characterized by psychosis. It is also a neurodevelopmental disorder. In the earliest phases of the illness, at-risk individuals exhibit subtle, nonspecific symptoms, including cognitive dysfunction and progressive brain volumetric loss. Generally, schizophrenia is characterized by abnormal/inefficient neural system operations and neural oscillatory activity, as well as functional disconnectivity across frontal-temporo parietal and frontal-subcortical networks; it thus may best be described as a widespread neural oscillatory connectomopathy. Despite earlier views of schizophrenia as an inevitably progressive neurodegenerative disease, emerging evidence indicates that endogenous neuroplastic capacity is retained. An active area of research is directed at understanding how best to harness this learning-induced neuroplasticity to enhance neural system functioning, improve cognition, and prevent-and possibly even reverse-disease progression. In this review, we present an overview of results from the most widely used computer-assisted cognitive-training programs in schizophrenia, contrasting a broad neuropsychological rehabilitation approach with a targeted cognitive-training approach. We then review studies on the neurobiological effects of these two training methods. Finally, we discuss future directions with a focus on the "oscillatory connectome" as a key area of investigation for developing the most precise and scientifically informed treatment approaches for this illness.
Collapse
Affiliation(s)
- Melissa Fisher
- Department of Psychiatry, University of California, San Francisco, and San Francisco Department of Veterans Affairs Medical Center, San Francisco, California
| | - Alexander Herman
- School of Medicine, University of California, San Francisco, California
| | | | - Sophia Vinogradov
- Department of Psychiatry, University of California, San Francisco, and San Francisco Department of Veterans Affairs Medical Center, San Francisco, California
| |
Collapse
|
91
|
Tan G, Dan ZR, Zhang Y, Huang X, Zhong YL, Ye LH, Rong R, Ye L, Zhou Q, Shao Y. Altered brain network centrality in patients with adult comitant exotropia strabismus: A resting-state fMRI study. J Int Med Res 2017; 46:392-402. [PMID: 28679330 PMCID: PMC6011327 DOI: 10.1177/0300060517715340] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objective To investigate the underlying functional network brain-activity changes in patients with adult comitant exotropia strabismus (CES) and the relationship with clinical features using the voxel-wise degree centrality (DC) method. Methods A total of 30 patients with CES (17 men, 13 women), and 30 healthy controls (HCs; 17 men, 13 women) matched in age, sex, and education level participated in the study. DC was used to evaluate spontaneous brain activity. Receiver operating characteristic (ROC) curve analysis was conducted to distinguish CESs from HCs. The relationship between mean DC values in various brain regions and behavioral performance was examined with correlation analysis. Results Compared with HCs, CES patients exhibited decreased DC values in the right cerebellum posterior lobe, right inferior frontal gyrus, right middle frontal gyrus and right superior parietal lobule/primary somatosensory cortex (S1), and increased DC values in the right superior temporal gyrus, bilateral anterior cingulate, right superior temporal gyrus, and left inferior parietal lobule. However, there was no correlation between mean DC values and behavioral performance in any brain regions. Conclusions Adult comitant exotropia strabismus is associated with abnormal brain network activity in various brain regions, possibly reflecting the pathological mechanisms of ocular motility disorders in CES.
Collapse
Affiliation(s)
- Gang Tan
- 1 Department of Ophthalmology, First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi Province, China.,2 Department of Ophthalmology, the First Affiliated Hospital, University of South China, Hengyang, Hunan Province, China
| | - Zeng-Renqing Dan
- 1 Department of Ophthalmology, First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi Province, China.,3 The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Ying Zhang
- 1 Department of Ophthalmology, First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi Province, China
| | - Xin Huang
- 1 Department of Ophthalmology, First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi Province, China.,4 Department of Ophthalmology, First People's Hospital of Jiujiang City, Jiujiang, Jiangxi Province, China
| | - Yu-Lin Zhong
- 1 Department of Ophthalmology, First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi Province, China
| | - Lin-Hong Ye
- 1 Department of Ophthalmology, First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi Province, China
| | - Rong Rong
- 1 Department of Ophthalmology, First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi Province, China
| | - Lei Ye
- 1 Department of Ophthalmology, First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi Province, China
| | - Qiong Zhou
- 1 Department of Ophthalmology, First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi Province, China
| | - Yi Shao
- 1 Department of Ophthalmology, First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi Province, China
| |
Collapse
|
92
|
Ivleva EI, Clementz BA, Dutcher AM, Arnold SJ, Jeon-Slaughter H, Aslan S, Witte B, Poudyal G, Lu H, Meda SA, Pearlson GD, Sweeney JA, Keshavan MS, Tamminga CA. Brain Structure Biomarkers in the Psychosis Biotypes: Findings From the Bipolar-Schizophrenia Network for Intermediate Phenotypes. Biol Psychiatry 2017; 82:26-39. [PMID: 27817844 PMCID: PMC6501573 DOI: 10.1016/j.biopsych.2016.08.030] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND The current definitions of psychotic illness lack biological validity, motivating alternative biomarker-driven disease entities. Building on experimental constructs-Biotypes-that were previously developed from cognitive and neurophysiologic measures, we contrast brain anatomy characteristics across Biotypes alongside conventional diagnoses, examining gray matter density (GMD) as an independent validator for the Biotypes. METHODS Whole brain GMD measures were examined in probands, their relatives, and healthy subjects organized by Biotype and then by DSM-IV-TR diagnosis (n = 1409) using voxel-based morphometry with subsequent subject-level regional characterization and distribution analyses. RESULTS Probands grouped by Biotype versus healthy controls showed a stepwise pattern of GMD reductions as follows: Biotype1, extensive and diffusely distributed GMD loss, with the largest effects in frontal, anterior/middle cingulate cortex, and temporal regions; Biotype2, intermediate and more localized reductions, with the largest effects in insula and frontotemporal regions; and Biotype3, small reductions localized to anterior limbic regions. Relatives showed regionally distinct GMD reductions versus healthy controls, with primarily anterior (frontotemporal) effects in Biotype1; posterior (temporo-parieto-cerebellar) in Biotype2; and normal GMD in Biotype3. Schizophrenia and schizoaffective probands versus healthy controls showed overlapping GMD reductions, with the largest effects in frontotemporal and parietal regions; psychotic bipolar probands had small reductions, primarily in frontal regions. GMD changes in relatives followed regional patterns observed in probands, albeit less extensive. Biotypes showed stronger between-group separation based on GMD than the conventional diagnoses and were the strongest predictor of GMD change. CONCLUSIONS GMD biomarkers depicted unique brain structure characteristics within Biotypes, consistent with their cognitive and sensorimotor profiles, and provided stronger discrimination for biologically driven biotypes than symptom-based diagnoses.
Collapse
Affiliation(s)
| | | | | | | | | | - Sina Aslan
- Advance MRI, LLC, Frisco,University of Texas at Dallas, Richardson, Texas
| | - Bradley Witte
- University of Texas Southwestern Medical Center, Dallas
| | | | - Hanzhang Lu
- University of Texas Southwestern Medical Center, Dallas,Johns Hopkins University, Baltimore, Maryland
| | | | - Godfrey D. Pearlson
- Institute of Living/Hartford Hospital, Hartford,Yale School of Medicine, New Haven, Connecticut
| | | | | | | |
Collapse
|
93
|
Tascone LDS, Payne ME, MacFall J, Azevedo D, de Castro CC, Steffens DC, Busatto GF, Bottino CMC. Cortical brain volume abnormalities associated with few or multiple neuropsychiatric symptoms in Alzheimer's disease. PLoS One 2017; 12:e0177169. [PMID: 28481904 PMCID: PMC5422036 DOI: 10.1371/journal.pone.0177169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/24/2017] [Indexed: 12/03/2022] Open
Abstract
New research on assessing neuropsychiatric manifestations of Alzheimer´s Disease (AD) involves grouping neuropsychiatric symptoms into syndromes. Yet this approach is limited by high inter-subject variability in neuropsychiatric symptoms and a relatively low degree of concordance across studies attempting to cluster neuropsychiatric symptoms into syndromes. An alternative strategy that involves dichotomizing AD subjects into those with few versus multiple neuropsychiatric symptoms is both consonant with real-world clinical practice and can contribute to understanding neurobiological underpinnings of neuropsychiatric symptoms in AD patients. The aim of this study was to address whether the number of neuropsychiatric symptoms (i.e., presence of few [≤2] versus multiple [≥3] symptoms) in AD would be associated with degree of significant gray matter (GM) volume loss. Of particular interest was volume loss in brain regions involved in memory, emotional processing and salience brain networks, including the prefrontal, lateral temporal and parietal cortices, anterior cingulate gyrus, temporo-limbic structures and insula. We recruited 19 AD patients and 13 healthy controls, which underwent an MRI and neuropsychiatric assessment. Regional brain volumes were determined using voxel-based morphometry and other advanced imaging processing methods. Our results indicated the presence of different patterns of GM atrophy in the two AD subgroups relative to healthy controls. AD patients with multiple neuropsychiatric manifestations showed more evident GM atrophy in the left superior temporal gyrus and insula as compared with healthy controls. In contrast, AD subjects with few neuropsychiatric symptoms displayed more GM atrophy in prefrontal regions, as well as in the dorsal anterior cingulate ad post-central gyri, as compared with healthy controls. Our findings suggest that the presence of multiple neuropsychiatric symptoms is more related to the degree of atrophy in specific brain networks rather than dependent on the global severity of widespread neurodegenerative brain changes.
Collapse
Affiliation(s)
- Lyssandra dos Santos Tascone
- Old Age Research Group–PROTER, Institute and Department of Psychiatry, University of Sao Paulo, Sao Paulo, Brazil
- CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF, Brazil
- * E-mail:
| | - Martha E. Payne
- Office of Research Development, Duke University School of Medicine, Durham, North Carolina, United States
| | - James MacFall
- Department of Radiology (Retired), Duke University School of Medicine, Durham, North Carolina, United States
| | - Dionísio Azevedo
- Old Age Research Group–PROTER, Institute and Department of Psychiatry, University of Sao Paulo, Sao Paulo, Brazil
| | - Claudio Campi de Castro
- Department of Diagnostic Imaging, Heart Institute–InCor, Hospital das Clínicas at University of Sao Paulo, Sao Paulo, Brazil
| | - David C. Steffens
- Department of Psychiatry, University of Connecticut Health Center, Psychiatry, Farmington, Connecticut, United States
| | - Geraldo F. Busatto
- Laboratory of Psychiatric Neuroimaging, Department and Institute of Psychiatry, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Cássio M. C. Bottino
- Old Age Research Group–PROTER, Institute and Department of Psychiatry, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
94
|
Dietsche B, Kircher T, Falkenberg I. Structural brain changes in schizophrenia at different stages of the illness: A selective review of longitudinal magnetic resonance imaging studies. Aust N Z J Psychiatry 2017; 51:500-508. [PMID: 28415873 DOI: 10.1177/0004867417699473] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Schizophrenia is a devastating mental disorder accompanied by aberrant structural brain connectivity. The question whether schizophrenia is a progressive brain disorder is yet to be resolved. Thus, it is not clear when these structural alterations occur and how they develop over time. METHODS In our selective review, we summarized recent findings from longitudinal magnetic resonance imaging studies investigating structural brain alterations and its impact on clinical outcome at different stages of the illness: (1) subjects at ultra-high risk of developing psychosis, (2) patients with a first episode psychosis, and (3) chronically ill patients. Moreover, we reviewed studies examining the longitudinal effects of medication on brain structure in patients with schizophrenia. RESULTS (1) Studies from pre-clinical stages to conversion showed a more pronounced cortical gray matter loss (i.e. superior temporal and inferior frontal regions) in those individuals who later made transition to psychosis. (2) Studies investigating patients with a first episode psychosis revealed a decline in multiple gray matter regions (i.e. frontal regions and thalamus) over time as well as progressive cortical thinning in the superior and inferior frontal cortex. (3) Studies focusing on patients with chronic schizophrenia showed that gray matter decreased to a greater extent (i.e. frontal and temporal areas, thalamus, and cingulate cortices)-especially in poor-outcome patients. Very few studies reported effects on white matter microstructure in the longitudinal course of the illness. CONCLUSION There is adequate evidence to suggest that schizophrenia is associated with progressive gray matter abnormalities particularly during the initial stages of illness. However, causal relationships between structural changes and illness course-especially in chronically ill patients-should be interpreted with caution. Findings might be confounded by longer periods of treatment and higher doses of antipsychotics or epiphenomena related to the illness.
Collapse
Affiliation(s)
- Bruno Dietsche
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Irina Falkenberg
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
95
|
Bartholomeusz CF, Cropley VL, Wannan C, Di Biase M, McGorry PD, Pantelis C. Structural neuroimaging across early-stage psychosis: Aberrations in neurobiological trajectories and implications for the staging model. Aust N Z J Psychiatry 2017; 51:455-476. [PMID: 27733710 DOI: 10.1177/0004867416670522] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE This review critically examines the structural neuroimaging evidence in psychotic illness, with a focus on longitudinal imaging across the first-episode psychosis and ultra-high-risk of psychosis illness stages. METHODS A thorough search of the literature involving specifically longitudinal neuroimaging in early illness stages of psychosis was conducted. The evidence supporting abnormalities in brain morphology and altered neurodevelopmental trajectories is discussed in the context of a clinical staging model. RESULTS In general, grey matter (and, to a lesser extent, white matter) declines across multiple frontal, temporal (especially superior regions), insular and parietal regions during the first episode of psychosis, which has a steeper trajectory than that of age-matched healthy counterparts. Although the ultra-high-risk of psychosis literature is considerably mixed, evidence indicates that certain volumetric structural aberrations predate psychotic illness onset (e.g. prefrontal cortex thinning), while other abnormalities present in ultra-high-risk of psychosis populations are potentially non-psychosis-specific (e.g. hippocampal volume reductions). CONCLUSION We highlight the advantages of longitudinal designs, discuss the implications such studies have on clinical staging and provide directions for future research.
Collapse
Affiliation(s)
- Cali F Bartholomeusz
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- 2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- 3 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Vanessa L Cropley
- 3 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Cassandra Wannan
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- 2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- 3 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Maria Di Biase
- 3 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Patrick D McGorry
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- 2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Christos Pantelis
- 3 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- 4 Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Carlton South, VIC, Australia
| |
Collapse
|
96
|
Radoeva PD, Bansal R, Antshel KM, Fremont W, Peterson BS, Kates WR. Longitudinal study of cerebral surface morphology in youth with 22q11.2 deletion syndrome, and association with positive symptoms of psychosis. J Child Psychol Psychiatry 2017; 58:305-314. [PMID: 27786353 PMCID: PMC5340081 DOI: 10.1111/jcpp.12657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS) is a genetic disorder that greatly increases risk of developing schizophrenia. We previously characterized cerebral surface morphology trajectories from late childhood to mid adolescence in a cohort of youth with 22q11DS. Herein, we extend the study period into early adulthood, and describe further the trajectories associated with severe psychiatric symptoms in this cohort. METHODS Participants included 76 youth with 22q11DS and 30 unaffected siblings, assessed at three timepoints, during which high resolution, anatomic magnetic resonance images were acquired. High-dimensional, nonlinear warping algorithms were applied to images in order to derive characteristics of cerebral surface morphology for each participant at each timepoint. Repeated-measures, linear regressions using a mixed model were conducted, while covarying for age and sex. RESULTS Alterations in cerebral surface morphology during late adolescence/early adulthood in individuals with 22q11DS were observed in the lateral frontal, orbitofrontal, temporal, parietal, occipital, and cerebellar regions. An Age x Diagnosis interaction revealed that relative to unaffected siblings, individuals with 22q11DS showed age-related surface protrusions in the prefrontal cortex (which remained stable or increased during early adulthood), and surface indentations in posterior regions (which seemed to level off during late adolescence). Symptoms of psychosis were associated with a trajectory of surface indentations in the orbitofrontal and parietal regions. CONCLUSIONS These results advance our understanding of cerebral maturation in individuals with 22q11DS, and provide clinically relevant information about the psychiatric phenotype associated with the longitudinal trajectory of cortical surface morphology in youth with this genetic syndrome.
Collapse
Affiliation(s)
- Petya D. Radoeva
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Ravi Bansal
- Children’s Hospital Los Angeles and the Keck School of Medicine at the University of Southern California, Los Angeles, California, USA
| | - Kevin M. Antshel
- Department of Psychology, Syracuse University, Syracuse, New York, USA
| | - Wanda Fremont
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Bradley S. Peterson
- Children’s Hospital Los Angeles and the Keck School of Medicine at the University of Southern California, Los Angeles, California, USA
| | - Wendy R. Kates
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
97
|
Son S, Miyata J, Mori Y, Isobe M, Urayama SI, Aso T, Fukuyama H, Murai T, Takahashi H. Lateralization of intrinsic frontoparietal network connectivity and symptoms in schizophrenia. Psychiatry Res Neuroimaging 2017; 260:23-28. [PMID: 28012423 DOI: 10.1016/j.pscychresns.2016.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/14/2016] [Accepted: 12/10/2016] [Indexed: 11/16/2022]
Abstract
It has been frequently reported that schizophrenia patients have reduced functional lateralization in the areas related to language processing. Furthermore, there is evidence supporting that schizophrenia patients have disrupted functional connectivity in the bilateral frontoparietal networks (FPNs), of which the left is strongly associated with a cognition-language paradigm, using resting-state functional magnetic resonance imaging (rsfMRI). To examine the laterality of resting-state functional connectivity in schizophrenia, we investigated the bilateral FPNs. We investigated 41 schizophrenia and 35 healthy participants using independent component analysis for rsfMRI. We extracted mean connectivity values of both left and right FPNs and calculated their laterality index by (left - right)/(left + right). Subsequently, we investigated group differences of these values and the correlation between these values and symptoms. In schizophrenia, mean connectivity values of both left and right FPNs were significantly lower than in healthy controls, whereas their laterality indices were not significantly different. However, correlation analyses revealed that the laterality index was negatively correlated with positive symptoms, and that mean connectivity of left FPN was negatively correlated with depressive symptoms in schizophrenia. Our results suggest that language-related networks and their laterality might be one of the neural correlates of schizophrenia symptoms.
Collapse
Affiliation(s)
- Shuraku Son
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Jun Miyata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Yasuo Mori
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masanori Isobe
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shin-Ichi Urayama
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toshihiko Aso
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hidenao Fukuyama
- Research and Educational Unit of Leaders for Integrated Medical System, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
98
|
Pruessner M, Cullen AE, Aas M, Walker EF. The neural diathesis-stress model of schizophrenia revisited: An update on recent findings considering illness stage and neurobiological and methodological complexities. Neurosci Biobehav Rev 2017; 73:191-218. [DOI: 10.1016/j.neubiorev.2016.12.013] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 01/29/2023]
|
99
|
Takano Y, Aoki Y, Yahata N, Kawakubo Y, Inoue H, Iwashiro N, Natsubori T, Koike S, Gonoi W, Sasaki H, Takao H, Kasai K, Yamasue H. Neural basis for inferring false beliefs and social emotions in others among individuals with schizophrenia and those at ultra-high risk for psychosis. Psychiatry Res Neuroimaging 2017; 259:34-41. [PMID: 27960147 DOI: 10.1016/j.pscychresns.2016.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 11/12/2016] [Accepted: 11/20/2016] [Indexed: 01/14/2023]
Abstract
Inferring beliefs and social emotions of others has different neural substrates and possibly different roles in the pathophysiology of different clinical phases of schizophrenia. The current study investigated the neural basis for inferring others' beliefs and social emotions, as individual concepts, in 17 subjects at ultra-high risk for psychosis (UHR), 16 patients with schizophrenia and 20 healthy controls. Brain activity significantly differed from normal in both the left superior temporal sulcus (STS) and the inferior frontal gyrus (IFG) in the schizophrenia group while inferring others' beliefs, whereas those of UHR group were in the middle of those in the schizophrenia and healthy-control groups. Brain activity during inferring others' social emotions significantly differed in both the left STS and right IFG among individuals at UHR; however, there was no significant difference in the schizophrenia group. In contrast, brain activity differed in the left IFG of those in both the schizophrenia and UHR groups while inferring social emotion. Regarding the difference in direction of the abnormality, both the UHR and schizophrenia groups were characterized by hyper-STS and hypo-IFG activations when inferring others' beliefs and emotions. These findings might reflect different aspects of the same pathophysiological process at different clinical phases of psychosis.
Collapse
Affiliation(s)
- Yosuke Takano
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yuta Aoki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; The Child Study Center at NYU Langone Medical Center, One Park Avenue, New York, NY 10016, USA
| | - Noriaki Yahata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yuki Kawakubo
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hideyuki Inoue
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Norichika Iwashiro
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tatsunobu Natsubori
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Wataru Gonoi
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroki Sasaki
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hidemasa Takao
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hidenori Yamasue
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City 431-3192, Japan.
| |
Collapse
|
100
|
Decreased Functional Connectivity of Insular Cortex in Drug Naïve First Episode Schizophrenia: In Relation to Symptom Severity. PLoS One 2017; 12:e0167242. [PMID: 28107346 PMCID: PMC5249106 DOI: 10.1371/journal.pone.0167242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/10/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND This study was to examine the insular cortical functional connectivity in drug naïve patients with first episode schizophrenia and to explore the relationship between the connectivity and the severity of clinical symptoms. METHODS Thirty-seven drug naïve patients with schizophrenia and 25 healthy controls were enrolled in this study. A seed-based approach was used to analyze the resting-state functional imaging data. Insular cortical connectivity maps were bilaterally extracted for group comparison and validated by voxel-based morphometry (VBM) analysis. Clinical symptoms were measured using the Positive and Negative Syndrome Scale (PANSS). RESULTS There were significant reductions in the right insular cortical connectivity with the Heschl's gyrus, anterior cingulate cortex (ACC), and caudate (p's<0.001) in the patient group compared with the healthy control (HC) group. Reduced right insular cortical connectivity with the Heschl's gyrus was further confirmed in the VBM analysis (FDR corrected p<0.05). Within the patient group, there was a significant positive relationship between the right insula-Heschl's connectivity and PANSS general psychopathology scores (r = 0.384, p = 0.019). CONCLUSION Reduced insula-Heschl's functional connectivity is present in drug naïve patients with first episode schizophrenia, which might be related to the manifestation of clinical symptoms.
Collapse
|