51
|
Brockhage R, Slone J, Ma Z, Hegde MR, Valencia CA, Huang T. Validation of the diagnostic potential of mtDNA copy number derived from whole genome sequencing. J Genet Genomics 2018; 45:S1673-8527(18)30098-5. [PMID: 29910094 DOI: 10.1016/j.jgg.2018.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Rachel Brockhage
- Division of Human Genetics, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jesse Slone
- Division of Human Genetics, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Zeqiang Ma
- PerkinElmer Genomics, Branford, CT 06405, USA
| | - Madhuri R Hegde
- PerkinElmer Genomics, Branford, CT 06405, USA; Department of Human Genetics, Emory University, Atlanta, GA 30322, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - C Alexander Valencia
- PerkinElmer Genomics, Branford, CT 06405, USA; West China Hospital, Sichuan University, Chengdu 610041, China
| | - Taosheng Huang
- Division of Human Genetics, Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Human Aging Research Institute, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
52
|
Swimming Exercise and Transient Food Deprivation in Caenorhabditis elegans Promote Mitochondrial Maintenance and Protect Against Chemical-Induced Mitotoxicity. Sci Rep 2018; 8:8359. [PMID: 29844465 PMCID: PMC5974391 DOI: 10.1038/s41598-018-26552-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Exercise and caloric restriction improve health, including reducing risk of cardiovascular disease, neurological disease, and cancer. However, molecular mechanisms underlying these protections are poorly understood, partly due to the cost and time investment of mammalian long-term diet and exercise intervention studies. We subjected Caenorhabditis elegans nematodes to a 6-day, twice daily swimming exercise regimen, during which time the animals also experienced brief, transient food deprivation. Accordingly, we included a non-exercise group with the same transient food deprivation, a non-exercise control with ad libitum access to food, and a group that exercised in food-containing medium. Following these regimens, we assessed mitochondrial health and sensitivity to mitochondrial toxicants. Exercise protected against age-related decline in mitochondrial morphology in body-wall muscle. Food deprivation increased organismal basal respiration; however, exercise was the sole intervention that increased spare respiratory capacity and proton leak. We observed increased lifespan in exercised animals compared to both control and transiently food-deprived nematodes. Finally, exercised animals (and to a lesser extent, transiently food-deprived animals) were markedly protected against lethality from acute exposures to the mitotoxicants rotenone and arsenic. Thus, swimming exercise and brief food deprivation provide effective intervention in C. elegans, protecting from age-associated mitochondrial decline and providing resistance to mitotoxicant exposures.
Collapse
|
53
|
Khan K, Tewari S, Rastogi M, Agarwal GR, Mishra SP, Husain N. Quantitative Extra Long PCR to Detect DNA Lesions in Patients Exposed to Low Doses of Diagnostic Radiation. Asian Pac J Cancer Prev 2018; 19:1367-1373. [PMID: 29802702 PMCID: PMC6031809 DOI: 10.22034/apjcp.2018.19.5.1367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/11/2018] [Indexed: 11/28/2022] Open
Abstract
Background: Radiation causes oxidative lesions and strand breaks in DNA of exposed cells. Extended length PCR is a reliable method for assessing DNA damage. Longer DNA strands with DNA damage are difficult to amplify compared to smaller DNA strands by PCR. The present study was aimed to evaluate DNA damage caused by ionising radiation exposure in therapeutic and diagnostic medicine. Materials and Methods: The study group comprised 50 cases with low dose single exposure (LDS), low dose multiple exposure (LDM) and low dose angiography (LDA) which were compared with 25 high dose controls (HDC) and 25 controls with no exposure (NEC). Blood samples were collected within 1 hour of radiation exposure. DNA was isolated using a kit based protocol, 50 ng aliquots of DNA were used to amplify a long 13kbp DNA fragment of the β-actin gene by conventional PCR and band intensity was then quantified. Relative amplification was calculated and damage was expressed in terms of lesions per kilobase (kbp) by assuming a Poisson distribution. Result: Relative amplification was found to be 1.0, 0.87, 0.86, 0.72 and 0.69 with NEC, LDS, LDM, LDA and HDC groups, respectively. Cases undergoing angiography as well as high dose controls had high values, compared to NEC. The lesions/kbp calculated for LDS was 0.13, for LDM 0.15, for LDA 0.32 and for HDC 0.37 suggesting a linear increase in quantity with increasing radiation dose. Conclusion: DNA damage, even at low doses of radiation can be assessed by quantitative extra long PCR.
Collapse
Affiliation(s)
- Kainat Khan
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India.
| | | | | | | | | | | |
Collapse
|
54
|
Sanders LH, Rouanet JP, Howlett EH, Leuthner TC, Rooney JP, Greenamyre JT, Meyer JN. Newly Revised Quantitative PCR-Based Assay for Mitochondrial and Nuclear DNA Damage. CURRENT PROTOCOLS IN TOXICOLOGY 2018; 76:e50. [PMID: 30040241 PMCID: PMC6060631 DOI: 10.1002/cptx.50] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Given the crucial role of DNA damage in human health and disease, it is important to be able to accurately measure both mitochondrial and nuclear DNA damage. This article describes a method based on a long-amplicon quantitative PCR-based assay that does not require a separate mitochondrial isolation step, which can often be labor-intensive and generate artifacts. The detailed basic protocol presented here is newly revised, with particular attention to application in Homo sapiens, Rattus norvegicus, and Caenorhabditis elegans resulting from changes in availability of PCR reagents. Optimized extraction support protocols are also described for high-quality DNA from multiple rat tissues for which these procedures had not previously been described. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Laurie H. Sanders
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260,Department of Neurology, Duke University Medical Center, Durham NC 27710,To whom correspondence should be addressed: Dr. Laurie H. Sanders
| | - Jeremy P. Rouanet
- Department of Neurology, Duke University Medical Center, Durham NC 27710
| | - Evan H. Howlett
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260
| | - Tess C. Leuthner
- Nicholas School of the Environment, Duke University, Durham NC 27708-0328
| | - John P. Rooney
- Nicholas School of the Environment, Duke University, Durham NC 27708-0328
| | - J. Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham NC 27708-0328
| |
Collapse
|
55
|
Ramirez-Barbieri G, Moskowitzova K, Shin B, Blitzer D, Orfany A, Guariento A, Iken K, Friehs I, Zurakowski D, Del Nido PJ, McCully JD. Alloreactivity and allorecognition of syngeneic and allogeneic mitochondria. Mitochondrion 2018; 46:103-115. [PMID: 29588218 DOI: 10.1016/j.mito.2018.03.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/09/2018] [Accepted: 03/20/2018] [Indexed: 01/30/2023]
Abstract
Previously, we have demonstrated that the transplantation of autologous mitochondria is cardioprotective. No immune or autoimmune response was detectable following the single injection of autologous mitochondria. To expand the therapeutic potential and safety of mitochondrial transplantation, we now investigate the immune response to single and serial injections of syngeneic and allogeneic mitochondria delivered by intraperitoneal injection. Our results demonstrate that there is no direct or indirect, acute or chronic alloreactivity, allorecognition or damage-associated molecular pattern molecules (DAMPs) reaction to single or serial injections of either syngeneic or allogeneic mitochondria.
Collapse
Affiliation(s)
- Giovanna Ramirez-Barbieri
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kamila Moskowitzova
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Borami Shin
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - David Blitzer
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Arzoo Orfany
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Alvise Guariento
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Khadija Iken
- Department of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ingeborg Friehs
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - David Zurakowski
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - James D McCully
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
56
|
Gonzalez-Hunt CP, Wadhwa M, Sanders LH. DNA damage by oxidative stress: Measurement strategies for two genomes. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2017.11.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
57
|
De R, Mazumder S, Sarkar S, Debsharma S, Siddiqui AA, Saha SJ, Banerjee C, Nag S, Saha D, Bandyopadhyay U. Acute mental stress induces mitochondrial bioenergetic crisis and hyper-fission along with aberrant mitophagy in the gut mucosa in rodent model of stress-related mucosal disease. Free Radic Biol Med 2017; 113:424-438. [PMID: 28993273 DOI: 10.1016/j.freeradbiomed.2017.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/06/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022]
Abstract
Psychological stress, depression and anxiety lead to multiple organ dysfunctions wherein stress-related mucosal disease (SRMD) is common to people experiencing stress and also occur as a side effect in patients admitted to intensive care units; however the underlying molecular aetiology is still obscure. We report that in rat-SRMD model, cold restraint-stress severely damaged gut mitochondrial functions to generate superoxide anion (O2•-), depleted ATP and shifted mitochondrial fission-fusion dynamics towards enhanced fission to induce mucosal injury. Activation of mitophagy to clear damaged and fragmented mitochondria was evident from mitochondrial translocation of Parkin and PINK1 along with enhanced mitochondrial proteome ubiquitination, depletion of mitochondrial DNA copy number and TOM 20. However, excess and sustained accumulation of O2•--generating defective mitochondria overpowered the mitophagic machinery, ultimately triggering Bax-dependent apoptosis and NF-κB-intervened pro-inflammatory mucosal injury. We further observed that stress-induced enhanced serum corticosterone stimulated mitochondrial recruitment of glucocorticoid receptor (GR), which contributed to gut mitochondrial dysfunctions as documented from reduced ETC complex 1 activity, mitochondrial O2•- accumulation, depolarization and hyper-fission. GR-antagonism by RU486 or specific scavenging of mitochondrial O2•- by a mitochondrially targeted antioxidant mitoTEMPO ameliorated stress-induced mucosal damage. Gut mitopathology and mucosal injury were also averted when the perception of mental stress was blocked by pre-treatment with a sedative or antipsychotic. Altogether, we suggest the role of mitochondrial GR-O2•--fission cohort in brain-mitochondria cross-talk during acute mental stress and advocate the utilization of this pathway as a potential target to prevent mitochondrial unrest and gastropathy bypassing central nervous system.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Antipsychotic Agents/pharmacology
- Cold Temperature
- Corticosterone/blood
- Electron Transport Complex I/genetics
- Electron Transport Complex I/metabolism
- Gastric Mucosa/drug effects
- Gastric Mucosa/metabolism
- Gastric Mucosa/pathology
- Gene Expression Regulation
- Immobilization/methods
- Immobilization/psychology
- Inflammation
- Membrane Transport Proteins
- Mifepristone/pharmacology
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondrial Dynamics/drug effects
- Mitochondrial Dynamics/genetics
- Mitochondrial Precursor Protein Import Complex Proteins
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Mitophagy/drug effects
- Mitophagy/genetics
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Organophosphorus Compounds/pharmacology
- Oxidative Stress
- Piperidines/pharmacology
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Rats, Sprague-Dawley
- Receptors, Cell Surface
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Glucocorticoid/antagonists & inhibitors
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Stomach
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Stress, Psychological/pathology
- Superoxides/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- bcl-2-Associated X Protein/genetics
- bcl-2-Associated X Protein/metabolism
Collapse
Affiliation(s)
- Rudranil De
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Souvik Sarkar
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shubhra Jyoti Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
58
|
Zhang P, Lehmann BD, Samuels DC, Zhao S, Zhao YY, Shyr Y, Guo Y. Estimating relative mitochondrial DNA copy number using high throughput sequencing data. Genomics 2017; 109:457-462. [PMID: 28734953 DOI: 10.1016/j.ygeno.2017.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/22/2017] [Accepted: 07/17/2017] [Indexed: 02/05/2023]
Abstract
We hypothesize that the relative mitochondria copy number (MTCN) can be estimated by comparing the abundance of mitochondrial DNA to nuclear DNA reads using high throughput sequencing data. To test this hypothesis, we examined relative MTCN across 13 breast cancer cell lines using the RT-PCR based NovaQUANT Human Mitochondrial to Nuclear DNA Ratio Kit as the gold standard. Six distinct computational approaches were used to estimate the relative MTCN in order to compare to the RT-PCR measurements. The results demonstrate that relative MTCN correlates well with the RT-PCR measurements using exome sequencing data, but not RNA-seq data. Through analysis of copy number variants (CNVs) in The Cancer Genome Atlas, we show that the two nuclear genes used in the NovaQUANT assay to represent the nuclear genome often experience CNVs in tumor cells, questioning the accuracy of this gold-standard method when it is applied to tumor cells.
Collapse
Affiliation(s)
- Pan Zhang
- Center for Quantitative Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Brian D Lehmann
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - David C Samuels
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Shilin Zhao
- Center for Quantitative Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37232, USA
| | - Yan Guo
- Center for Quantitative Sciences, Vanderbilt University, Nashville, TN 37232, USA; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
59
|
Chen Y, Meyer JN, Hill HZ, Lange G, Condon MR, Klein JC, Ndirangu D, Falvo MJ. Role of mitochondrial DNA damage and dysfunction in veterans with Gulf War Illness. PLoS One 2017; 12:e0184832. [PMID: 28910366 PMCID: PMC5599026 DOI: 10.1371/journal.pone.0184832] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/31/2017] [Indexed: 11/22/2022] Open
Abstract
Gulf War Illness (GWI) is a chronic multi-symptom illness not currently diagnosed by standard medical or laboratory test that affects 30% of veterans who served during the 1990-1991 Gulf War. The clinical presentation of GWI is comparable to that of patients with certain mitochondrial disorders-i.e., clinically heterogeneous multisystem symptoms. Therefore, we hypothesized that mitochondrial dysfunction may contribute to both the symptoms of GWI as well as its persistence over time. We recruited 21 cases of GWI (CDC and Kansas criteria) and 7 controls to participate in this study. Peripheral blood samples were obtained in all participants and a quantitative polymerase chain reaction (QPCR) based assay was performed to quantify mitochondrial and nuclear DNA lesion frequency and mitochondrial DNA (mtDNA) copy number (mtDNAcn) from peripheral blood mononuclear cells. Samples were also used to analyze nuclear DNA lesion frequency and enzyme activity for mitochondrial complexes I and IV. Both mtDNA lesion frequency (p = 0.015, d = 1.13) and mtDNAcn (p = 0.001; d = 1.69) were elevated in veterans with GWI relative to controls. Nuclear DNA lesion frequency was also elevated in veterans with GWI (p = 0.344; d = 1.41), but did not reach statistical significance. Complex I and IV activity (p > 0.05) were similar between groups and greater mtDNA lesion frequency was associated with reduced complex I (r2 = -0.35, p = 0.007) and IV (r2 = -0.28, p < 0.01) enzyme activity. In conclusion, veterans with GWI exhibit greater mtDNA damage which is consistent with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yang Chen
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, United States of America
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, United States of America
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Helene Z Hill
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, United States of America
| | - Gudrun Lange
- Pain and Fatigue Study Center, Beth Israel Medical Center and Albert Einstein Medical Center, New York, New York, United States of America
| | - Michael R Condon
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, United States of America
- Surgical Services, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, United States of America
| | - Jacquelyn C Klein
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, United States of America
| | - Duncan Ndirangu
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, United States of America
| | - Michael J Falvo
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, United States of America
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, United States of America
| |
Collapse
|
60
|
Luz AL, Godebo TR, Smith LL, Leuthner TC, Maurer LL, Meyer JN. Deficiencies in mitochondrial dynamics sensitize Caenorhabditis elegans to arsenite and other mitochondrial toxicants by reducing mitochondrial adaptability. Toxicology 2017; 387:81-94. [PMID: 28602540 PMCID: PMC5535741 DOI: 10.1016/j.tox.2017.05.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/10/2017] [Accepted: 05/30/2017] [Indexed: 01/06/2023]
Abstract
Mitochondrial fission, fusion, and mitophagy are interlinked processes that regulate mitochondrial shape, number, and size, as well as metabolic activity and stress response. The fundamental importance of these processes is evident in the fact that mutations in fission (DRP1), fusion (MFN2, OPA1), and mitophagy (PINK1, PARK2) genes can cause human disease (collectively >1/10,000). Interestingly, however, the age of onset and severity of clinical manifestations varies greatly between patients with these diseases (even those harboring identical mutations), suggesting a role for environmental factors in the development and progression of certain mitochondrial diseases. Using the model organism Caenorhabditis elegans, we screened ten mitochondrial toxicants (2, 4-dinitrophenol, acetaldehyde, acrolein, aflatoxin B1, arsenite, cadmium, cisplatin, doxycycline, paraquat, rotenone) for increased or decreased toxicity in fusion (fzo-1, eat-3)-, fission (drp-1)-, and mitophagy (pdr-1, pink-1)-deficient nematodes using a larval growth assay. In general, fusion-deficient nematodes were the most sensitive to toxicants, including aflatoxin B1, arsenite, cisplatin, paraquat, and rotenone. Because arsenite was particularly potent in fission- and fusion-deficient nematodes, and hundreds of millions of people are chronically exposed to arsenic, we investigated the effects of these genetic deficiencies on arsenic toxicity in more depth. We found that deficiencies in fission and fusion sensitized nematodes to arsenite-induced lethality throughout aging. Furthermore, low-dose arsenite, which acted in a "mitohormetic" fashion by increasing mitochondrial function (in particular, basal and maximal oxygen consumption) in wild-type nematodes by a wide range of measures, exacerbated mitochondrial dysfunction in fusion-deficient nematodes. Analysis of multiple mechanistic changes suggested that disruption of pyruvate metabolism and Krebs cycle activity underlie the observed arsenite-induced mitochondrial deficits, and these disruptions are exacerbated in the absence of mitochondrial fusion. This research demonstrates the importance of mitochondrial dynamics in limiting arsenite toxicity by permitting mitochondrial adaptability. It also suggests that individuals suffering from deficiencies in mitodynamic processes may be more susceptible to the mitochondrial toxicity of arsenic and other toxicants.
Collapse
Affiliation(s)
- Anthony L Luz
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA
| | - Tewodros R Godebo
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA
| | - Latasha L Smith
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA
| | - Tess C Leuthner
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA
| | - Laura L Maurer
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ, 08801-3059, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
61
|
Wyatt LH, Luz AL, Cao X, Maurer LL, Blawas AM, Aballay A, Pan WKY, Meyer JN. Effects of methyl and inorganic mercury exposure on genome homeostasis and mitochondrial function in Caenorhabditis elegans. DNA Repair (Amst) 2017; 52:31-48. [PMID: 28242054 PMCID: PMC5394729 DOI: 10.1016/j.dnarep.2017.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 12/05/2016] [Accepted: 02/06/2017] [Indexed: 12/21/2022]
Abstract
Mercury toxicity mechanisms have the potential to induce DNA damage and disrupt cellular processes, like mitochondrial function. Proper mitochondrial function is important for cellular bioenergetics and immune signaling and function. Reported impacts of mercury on the nuclear genome (nDNA) are conflicting and inconclusive, and mitochondrial DNA (mtDNA) impacts are relatively unknown. In this study, we assessed genotoxic (mtDNA and nDNA), metabolic, and innate immune impacts of inorganic and organic mercury exposure in Caenorhabditis elegans. Genotoxic outcomes measured included DNA damage, DNA damage repair (nucleotide excision repair, NER; base excision repair, BER), and genomic copy number following MeHg and HgCl2 exposure alone and in combination with known DNA damage-inducing agents ultraviolet C radiation (UVC) and hydrogen peroxide (H2O2), which cause bulky DNA lesions and oxidative DNA damage, respectively. Following exposure to both MeHg and HgCl2, low-level DNA damage (∼0.25 lesions/10kb mtDNA and nDNA) was observed. Unexpectedly, a higher MeHg concentration reduced damage in both genomes compared to controls. However, this observation was likely the result of developmental delay. In co-exposure treatments, both mercury compounds increased initial DNA damage (mtDNA and nDNA) in combination with H2O2 exposure, but had no impact in combination with UVC exposure. Mercury exposure both increased and decreased DNA damage removal via BER. DNA repair after H2O2 exposure in mercury-exposed nematodes resulted in damage levels lower than measured in controls. Impacts to NER were not detected. mtDNA copy number was significantly decreased in the MeHg-UVC and MeHg-H2O2 co-exposure treatments. Mercury exposure had metabolic impacts (steady-state ATP levels) that differed between the compounds; HgCl2 exposure decreased these levels, while MeHg slightly increased levels or had no impact. Both mercury species reduced mRNA levels for immune signaling-related genes, but had mild or no effects on survival on pathogenic bacteria. Overall, mercury exposure disrupted mitochondrial endpoints in a mercury-compound dependent fashion.
Collapse
Affiliation(s)
- Lauren H Wyatt
- Nicholas School of the Environment, Duke University, Durham, NC, United States.
| | - Anthony L Luz
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Xiou Cao
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Laura L Maurer
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Ashley M Blawas
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Alejandro Aballay
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - William K Y Pan
- Nicholas School of the Environment, Duke University, Durham, NC, United States; Duke Global Health Institute, Duke University, Durham, NC, United States
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, United States.
| |
Collapse
|
62
|
Ishak L, Moretton A, Garreau-Balandier I, Lefebvre M, Alziari S, Lachaume P, Morel F, Farge G, Vernet P, Dubessay P. DNA maintenance following bleomycin-induced strand breaks does not require poly(ADP-ribosyl)ation activation in Drosophila S2 cells. DNA Repair (Amst) 2016; 48:8-16. [PMID: 27793508 DOI: 10.1016/j.dnarep.2016.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 09/05/2016] [Accepted: 10/09/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Poly-ADP ribosylation (PARylation) is a post translational modification, catalyzed by Poly(ADP-ribose)polymerase (PARP) family. In Drosophila, PARP-I (human PARP-1 ortholog) is considered to be the only enzymatically active isoform. PARylation is involved in various cellular processes such as DNA repair in case of base excision and strand-breaks. OBSERVATIONS Strand-breaks (SSB and DSB) are detrimental to cell viability and, in Drosophila, that has a unique PARP family organization, little is known on PARP involvement in the control of strand-breaks repair process. In our study, strands-breaks (SSB and DSB) are chemically induced in S2 Drosophila cells using bleomycin. These breaks are efficiently repaired in S2 cells. During the bleomycin treatment, changes in PARylation levels are only detectable in a few cells, and an increase in PARP-I and PARP-II mRNAs is only observed during the recovery period. These results differ strongly from those obtained with Human cells, where PARylation is strongly activating when DNA breaks are generated. Finally, in PARP knock-down cells, DNA stability is altered but no change in strand-breaks repair can be observed. CONCLUSIONS PARP responses in DNA strands-breaks context are functional in Drosophila model as demonstrated by PARP-I and PARP-II mRNA increases. However, no modification of the global PARylation profile is observed during strand-breaks generation, only changes at cellular levels are detectable. Taking together, these results demonstrate that PARylation process in Drosophila is tightly regulated in the context of strands-breaks repair and that PARP is essential during the maintenance of DNA integrity but dispensable in the DNA repair process.
Collapse
Affiliation(s)
- Layal Ishak
- Université Clermont Auvergne, Université Blaise Pascal, EA 4645, Réparation du Génome Mitochondrial Normal et Pathologique, BP 10448, F-63000 Clermont-Ferrand, France
| | - Amandine Moretton
- Université Clermont Auvergne, Université Blaise Pascal, EA 4645, Réparation du Génome Mitochondrial Normal et Pathologique, BP 10448, F-63000 Clermont-Ferrand, France
| | - Isabelle Garreau-Balandier
- Université Clermont Auvergne, Université Blaise Pascal, EA 4645, Réparation du Génome Mitochondrial Normal et Pathologique, BP 10448, F-63000 Clermont-Ferrand, France
| | - Mathilde Lefebvre
- Université Clermont Auvergne, Université Blaise Pascal, EA 4645, Réparation du Génome Mitochondrial Normal et Pathologique, BP 10448, F-63000 Clermont-Ferrand, France
| | - Serge Alziari
- Université Clermont Auvergne, Université Blaise Pascal, EA 4645, Réparation du Génome Mitochondrial Normal et Pathologique, BP 10448, F-63000 Clermont-Ferrand, France
| | - Philippe Lachaume
- Université Clermont Auvergne, Université Blaise Pascal, EA 4645, Réparation du Génome Mitochondrial Normal et Pathologique, BP 10448, F-63000 Clermont-Ferrand, France
| | - Frédéric Morel
- Université Clermont Auvergne, Université Blaise Pascal, EA 4645, Réparation du Génome Mitochondrial Normal et Pathologique, BP 10448, F-63000 Clermont-Ferrand, France
| | - Géraldine Farge
- Université Clermont Auvergne, Université Blaise Pascal, EA 4645, Réparation du Génome Mitochondrial Normal et Pathologique, BP 10448, F-63000 Clermont-Ferrand, France
| | - Patrick Vernet
- Université Clermont Auvergne, Université Blaise Pascal, EA 4645, Réparation du Génome Mitochondrial Normal et Pathologique, BP 10448, F-63000 Clermont-Ferrand, France.
| | - Pascal Dubessay
- Université Clermont Auvergne, Université Blaise Pascal, EA 4645, Réparation du Génome Mitochondrial Normal et Pathologique, BP 10448, F-63000 Clermont-Ferrand, France
| |
Collapse
|
63
|
Luz AL, Meyer JN. Effects of reduced mitochondrial DNA content on secondary mitochondrial toxicant exposure in Caenorhabditis elegans. Mitochondrion 2016; 30:255-64. [PMID: 27566481 PMCID: PMC5023498 DOI: 10.1016/j.mito.2016.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/12/2016] [Accepted: 08/22/2016] [Indexed: 01/21/2023]
Abstract
The mitochondrial genome (mtDNA) is intimately linked to cellular and organismal health, as demonstrated by the fact that mutations in and depletion of mtDNA result in severe mitochondrial disease in humans. However, cells contain hundreds to thousands of copies of mtDNA, which provides genetic redundancy, and creates a threshold effect in which a large percentage of mtDNA must be lost prior to clinical pathogenesis. As certain pharmaceuticals and genetic mutations can result in depletion of mtDNA, and as many environmental toxicants target mitochondria, it is important to understand whether reduced mtDNA will sensitize an individual to toxicant exposure. Here, using ethidium bromide (EtBr), which preferentially inhibits mtDNA replication, we reduced mtDNA 35-55% in the in vivo model organism Caenorhabditis elegans. Chronic, lifelong, low-dose EtBr exposure did not disrupt nematode development or lifespan, and induced only mild alterations in mitochondrial respiration, while having no effect on steady-state ATP levels. Next, we exposed nematodes with reduced mtDNA to the known and suspected mitochondrial toxicants aflatoxin B1, arsenite, paraquat, rotenone or ultraviolet C radiation (UVC). EtBr pre-exposure resulted in mild sensitization of nematodes to UVC and arsenite, had no effect on AfB1 and paraquat, and provided some protection from rotenone toxicity. These mixed results provide a first line of evidence suggesting that reduced mtDNA content may sensitize an individual to certain environmental exposures.
Collapse
Affiliation(s)
- Anthony L Luz
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC 27708, United States.
| | - Joel N Meyer
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC 27708, United States.
| |
Collapse
|