51
|
Uptake of polymeric nanoparticles in a human induced pluripotent stem cell-based blood-brain barrier model: Impact of size, material, and protein corona. Biointerphases 2021; 16:021004. [PMID: 33765771 DOI: 10.1116/6.0000889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The blood-brain barrier (BBB) maintains the homeostasis of the central nervous system, which is one of the reasons for the treatments of brain disorders being challenging in nature. Nanoparticles (NPs) have been seen as potential drug delivery systems to the brain overcoming the tight barrier of endothelial cells. Using a BBB model system based on human induced pluripotent stem cells (iPSCs), the impact of polymeric nanoparticles has been studied in relation to nanoparticle size, material, and protein corona. PLGA [poly(lactic-co-glycolic acid)] and PLLA [poly(d,l-lactide)] nanoparticles stabilized with Tween® 80 were synthesized (50 and 100 nm). iPSCs were differentiated into human brain microvascular endothelial cells (hBMECs), which express prominent BBB features, and a tight barrier was established with a high transendothelial electrical resistance of up to 4000 Ω cm2. The selective adsorption of proteins on the PLGA and PLLA nanoparticles resulted in a high percentage of apolipoproteins and complement components. In contrast to the prominently used BBB models based on animal or human cell lines, the present study demonstrates that the iPSC-based model is suited to study interactions with nanoparticles in correlation with their material, size, and protein corona composition. Furthermore, asymmetrical flow field-flow fractionation enables the investigation of size and agglomeration state of NPs in biological relevant media. Even though a similar composition of the protein corona has been detected on NP surfaces by mass spectrometry, and even though similar amounts of NP are interacting with hBMECs, 100 nm-sized PLGA NPs do impact the barrier, forming endothelial cells in an undiscovered manner.
Collapse
|
52
|
Abstract
Cell analysis is of great significance for the exploration of human diseases and health. However, there are not many techniques for high-throughput cell analysis in the simulated cell microenvironment. The high designability of the microfluidic chip enables multiple kinds of cells to be co-cultured on the chip, with other functions such as sample preprocessing and cell manipulation. Mass spectrometry (MS) can detect a large number of biomolecules without labelling. Therefore, the application of the microfluidic chip coupled with MS has represented a major branch of cell analysis over the past decades. Here, we concisely introduce various microfluidic devices coupled with MS used for cell analysis. The main functions of microfluidic devices are described first, followed by introductions of different interfaces with different types of MS. Then, their various applications in cell analysis are highlighted, with an emphasis on cell metabolism, drug screening, and signal transduction. Current limitations and prospective trends of microfluidics coupled with MS are discussed at the end.
Collapse
Affiliation(s)
- Wanling Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University
| | - Qiang Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University
| |
Collapse
|
53
|
Campisi M, Lim SH, Chiono V, Kamm RD. 3D Self-Organized Human Blood-Brain Barrier in a Microfluidic Chip. Methods Mol Biol 2021; 2258:205-219. [PMID: 33340363 DOI: 10.1007/978-1-0716-1174-6_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A preclinical blood-brain barrier (BBB) model is important for the study of fundamental transport mechanisms and in accessing the delivery of small molecules and antibodies that target brain. Transwell assays for BBB models are easy to create and use but lack the true 3D anatomy of the brain microvasculature and also often the cell-cell and cell-matrix interactions that are important in ensuring a tight BBB. Here we describe the formation of a BBB that expresses neurovascular membrane transporters, tight junction, and extracellular matrix proteins using the coculture of human-induced pluripotent stem cell-derived endothelial cells (iPSC-EC), brain pericytes (PC), and astrocytes (AC) in a microfluidic device. The BBB model recapitulates human brain vascular permeability with values that are lower than conventional in vitro models and are comparable to in vivo measurements in rat brain. This in vitro BBB model can therefore be used to screen for brain-targeting drugs or to study neurovascular functions.
Collapse
Affiliation(s)
- Marco Campisi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Pisa, Italy
| | | | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Pisa, Italy
| | - Roger Dale Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
54
|
Gaining Micropattern Fidelity in an NOA81 Microsieve Laser Ablation Process. MICROMACHINES 2020; 12:mi12010021. [PMID: 33375445 PMCID: PMC7823379 DOI: 10.3390/mi12010021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022]
Abstract
We studied the micropattern fidelity of a Norland Optical Adhesive 81 (NOA81) microsieve made by soft-lithography and laser micromachining. Ablation opens replicated cavities, resulting in three-dimensional (3D) micropores. We previously demonstrated that microsieves can capture cells by passive pumping. Flow, capture yield, and cell survival depend on the control of the micropore geometry and must yield high reproducibility within the device and from device to device. We investigated the NOA81 film thickness, the laser pulse repetition rate, the number of pulses, and the beam focusing distance. For NOA81 films spin-coated between 600 and 1200 rpm, the pulse number controls the breaching of films to form the pore’s aperture and dominates the process. Pulse repetition rates between 50 and 200 Hz had no observable influence. We also explored laser focal plane to substrate distance to find the most effective ablation conditions. Scanning electron micrographs (SEM) of focused ion beam (FIB)-cut cross sections of the NOA81 micropores and inverted micropore copies in polydimethylsiloxane (PDMS) show a smooth surface topology with minimal debris. Our studies reveal that the combined process allows for a 3D micropore quality from device to device with a large enough process window for biological studies.
Collapse
|
55
|
Lee CS, Leong KW. Advances in microphysiological blood-brain barrier (BBB) models towards drug delivery. Curr Opin Biotechnol 2020; 66:78-87. [PMID: 32711361 PMCID: PMC7744339 DOI: 10.1016/j.copbio.2020.06.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022]
Abstract
Though the blood-brain barrier (BBB) is vital for the maintenance of brain homeostasis, it also accounts for a high attrition rate of therapies targeting the central nervous system (CNS). The challenge of delivery across the BBB is attributed to a combination of low permeability through an endothelium closely knit by tight and adherens junctions, extremely low rates of endothelial transcytosis, and efflux transporters. In the past decade, enormous research efforts have been spent to develop BBB penetration strategies using biochemical or physical stimuli, aided by BBB-on-chips or microphysiological BBB models to facilitate in vitro studies. Here, we discuss recent advances in BBB-chip technology that have enabled effective preclinical screenings of brain targeting therapeutics and external stimulation, such as sonoporation and electroporation, for improved BBB penetration.
Collapse
Affiliation(s)
- Caleb S Lee
- Columbia University, NY, NY, 10027, United States
| | - Kam W Leong
- Columbia University, NY, NY, 10027, United States.
| |
Collapse
|
56
|
A multicomponent-based microemulsion for boosting ovarian cancer therapy through dual modification with transferrin and SA-R 6H 4. Drug Deliv Transl Res 2020; 11:1969-1982. [PMID: 33006741 DOI: 10.1007/s13346-020-00859-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 12/17/2022]
Abstract
Balancing the antitumor activity and systemic toxicity of tripterine still faces a big challenge due to the narrow therapeutic window. To address this issue, we report a microemulsion system based on tripterine, brucea oil, and glycyrrhizin, and dual modified with both transferrin and cell-penetrating peptide SA-R6H4 (Tf/SA-R6H4-TBG-MEs) for combinational and tumor-targeted cancer therapy. Such a microemulsion exhibited a spherical shape with a size of ~50 nm and a mildly-negative charge. The half-maximal inhibitory concentration (IC50) of Tf/SA-R6H4-TBG-MEs against ovarian cancer SKOV3 cells was 0.27 ± 0.43 μg tripterine/mL, which was 5.85 times lower than that of free tripterine. The cellular uptake of tripterine after treatment with Tf/SA-R6H4-TBG-MEs was 1.56 times higher than that of TBG-MEs (non-modified microemulsion). In pharmacokinetics studies, the area under the curve of Tf/SA-R6H4-TBG-MEs increased by 1.97 times compared with that of the physical mixture group. The tumoral accumulation of tripterine was significantly improved in Tf/SA-R6H4-TBG-MEs group than TBG-MEs-treated group. In antitumor efficacy in vivo, Tf/SA-R6H4-TBG-MEs exhibited the strongest inhibition of tumor growth and the longest survival period among all the groups, which is associated with the rational combination, microemulsion system, and dual modification with tumor-targeted ligands. Importantly, Tf/SA-R6H4-TBG-MEs significantly reduced the toxicity of tripterine against the liver and kidney. Our design provides a new approach for efficient and safe ovarian cancer therapy based on a multicomponent combination.
Collapse
|
57
|
Jeske R, Albo J, Marzano M, Bejoy J, Li Y. Engineering Brain-Specific Pericytes from Human Pluripotent Stem Cells. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:367-382. [PMID: 32571167 PMCID: PMC7462039 DOI: 10.1089/ten.teb.2020.0091] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
Pericytes (PCs) are a type of perivascular cells that surround endothelial cells of small blood vessels. In the brain, PCs show heterogeneity depending on their position within the vasculature. As a result, PC interactions with surrounding endothelial cells, astrocytes, and neuron cells play a key role in a wide array of neurovascular functions such as regulating blood-brain barrier (BBB) permeability, cerebral blood flow, and helping to facilitate the clearance of toxic cellular molecules. Therefore, a reliable method of engineering brain-specific PCs from human induced pluripotent stem cells (hiPSCs) is critical in neurodegenerative disease modeling. This review summarizes brain-specific PC differentiation of hiPSCs through mesoderm and neural crest induction. Key signaling pathways (platelet-derived growth factor-B [PDGF-B], transforming growth factor [TGF]-β, and Notch signaling) regulating PC function, PC interactions with adjacent cells, and PC differentiation from hiPSCs are also discussed. Specifically, PDGF-BB-platelet-derived growth factor receptor β signaling promotes PC cell survival, TGF-β signal transduction facilitates PC attachment to endothelial cells, and Notch signaling is critical in vascular development and arterial-venous specification. Furthermore, current challenges facing the use of hiPSC-derived PCs are discussed, and their ongoing uses in neurodegenerative disease modeling are identified. Further investigations into PCs and surrounding cell interactions are needed to characterize the roles of brain PCs in various neurodegenerative disorders. Impact statement This article summarizes the work related to brain-specific pericytes (PCs) derived from human pluripotent stem cells (hPSCs). In particular, key signaling pathways regulating PC function, PC interactions with adjacent cells, and PC differentiation from hPSCs were discussed. Furthermore, current challenges facing the use of hPSC-derived PCs were identified, and their ongoing uses in neurodegenerative disease modeling were discussed. The review highlights the important role of cell-cell interactions in blood-brain barrier (BBB) models and neurodegeneration. The summarized findings are significant for establishing pluripotent stem cell-based BBB models toward the applications in drug screening and disease modeling.
Collapse
Affiliation(s)
- Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Jonathan Albo
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Mark Marzano
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Julie Bejoy
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
58
|
Andjelkovic AV, Stamatovic SM, Phillips CM, Martinez-Revollar G, Keep RF. Modeling blood-brain barrier pathology in cerebrovascular disease in vitro: current and future paradigms. Fluids Barriers CNS 2020; 17:44. [PMID: 32677965 PMCID: PMC7367394 DOI: 10.1186/s12987-020-00202-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
The complexity of the blood-brain barrier (BBB) and neurovascular unit (NVU) was and still is a challenge to bridge. A highly selective, restrictive and dynamic barrier, formed at the interface of blood and brain, the BBB is a "gatekeeper" and guardian of brain homeostasis and it also acts as a "sensor" of pathological events in blood and brain. The majority of brain and cerebrovascular pathologies are associated with BBB dysfunction, where changes at the BBB can lead to or support disease development. Thus, an ultimate goal of BBB research is to develop competent and highly translational models to understand mechanisms of BBB/NVU pathology and enable discovery and development of therapeutic strategies to improve vascular health and for the efficient delivery of drugs. This review article focuses on the progress being made to model BBB injury in cerebrovascular diseases in vitro.
Collapse
Affiliation(s)
- Anuska V Andjelkovic
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA.
| | - Svetlana M Stamatovic
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA
| | - Chelsea M Phillips
- Graduate Program in Neuroscience, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriela Martinez-Revollar
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
59
|
News and Views. Altern Lab Anim 2020. [DOI: 10.1177/0261192920942344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
60
|
Recent advances in human iPSC-derived models of the blood-brain barrier. Fluids Barriers CNS 2020; 17:30. [PMID: 32321511 PMCID: PMC7178976 DOI: 10.1186/s12987-020-00191-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/07/2020] [Indexed: 01/07/2023] Open
Abstract
The blood–brain barrier (BBB) is a critical component of the central nervous system that protects neurons and other cells of the brain parenchyma from potentially harmful substances found in peripheral circulation. Gaining a thorough understanding of the development and function of the human BBB has been hindered by a lack of relevant models given significant species differences and limited access to in vivo tissue. However, advances in induced pluripotent stem cell (iPSC) and organ-chip technologies now allow us to improve our knowledge of the human BBB in both health and disease. This review focuses on the recent progress in modeling the BBB in vitro using human iPSCs.
Collapse
|