51
|
Shen Y, Wu H, Luo X, Zhang H, Cheng L. Pd nanoparticles decorated ultrathin 2D metal-organic framework nanosheets with enhanced peroxidase-mimic activity and colorimetric assay of glucose. RSC Adv 2023; 13:27283-27291. [PMID: 37711382 PMCID: PMC10498946 DOI: 10.1039/d3ra05072f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023] Open
Abstract
In addition to size, shape and morphology, enzyme-mimetic property could be efficiently regulated by controlling composition, forming complexes or hybrids, and surface modification. Herein, Pd nanoparticles with an average diameter of 2.52 nm were decorated on ultrathin 2D copper(ii)-porphyrin derived metal-organic framework (MOF) nanosheets by a simple reduction method for catalytic activity regulation. In comparison with other nanozymes, the as-synthesized Pd modified 2D MOF hybrid nanosheets (Pd@Cu-TCPP(Fe)) presented excellent peroxidase-mimic activity, exhibiting an even superior catalytic ability towards H2O2 with a Michaelis-Menten constant as low as 2.33 mM. Based on a cascade reaction between glucose oxidase and Pd@Cu-TCPP(Fe), a colorimetric method for the detection of glucose was established and validated with a wide linear range (0.2-8.0 mM), good recovery (89.5-94.2%) and nice reproducibility (3.65%). All these features guaranteed its excellent ability for glucose determination in human cerebrospinal fluids. This study could offer a valuable reference for constructing novel optical biosensors.
Collapse
Affiliation(s)
- Ying Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 P. R. China
| | - Hongyuan Wu
- College of Food Science and Engineering, Wuhan Polytechnic University Wuhan 430023 China
| | - Xia Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 P. R. China
| | - Haizhi Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University Wuhan 430023 China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 P. R. China
| |
Collapse
|
52
|
Wang Q, Chen K, Jiang H, Chen C, Xiong C, Chen M, Xu J, Gao X, Xu S, Zhou H, Wu Y. Cell-inspired design of cascade catalysis system by 3D spatially separated active sites. Nat Commun 2023; 14:5338. [PMID: 37660124 PMCID: PMC10475024 DOI: 10.1038/s41467-023-41002-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/10/2023] [Indexed: 09/04/2023] Open
Abstract
Cells possess isolated compartments that spatially confine different enzymes, enabling high-efficiency enzymatic cascade reactions. Herein, we report a cell-inspired design of biomimetic cascade catalysis system by immobilizing Fe single atoms and Au nanoparticles on the inner and outer layers of three-dimensional nanocapsules, respectively. The different metal sites catalyze independently and work synergistically to enable engineered and cascade glucose detection. The biomimetic catalysis system demonstrates ~ 9.8- and 2-fold cascade activity enhancement than conventional mixing and coplanar construction systems, respectively. Furthermore, the biomimetic catalysis system is successfully demonstrated for the colorimetric glucose detection with high catalytic activity and selectivity. Also, the proposed gel-based sensor is integrated with smartphone to enable real-time and visual determination of glucose. More importantly, the gel-based sensor exhibits a high correlation with a commercial glucometer in real samples detection. These findings provide a strategy to design an efficient biomimetic catalysis system for applications in bioassays and nanobiomedicines.
Collapse
Affiliation(s)
- Qiuping Wang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Kui Chen
- Key Laboratory of Strongly Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Hui Jiang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Cai Chen
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Can Xiong
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Min Chen
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jie Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Xiaoping Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China.
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Huang Zhou
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Yuen Wu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
53
|
Tong PH, Wang JJ, Hu XL, James TD, He XP. Metal-organic framework (MOF) hybridized gold nanoparticles as a bifunctional nanozyme for glucose sensing. Chem Sci 2023; 14:7762-7769. [PMID: 37476709 PMCID: PMC10355114 DOI: 10.1039/d3sc02598e] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/17/2023] [Indexed: 07/22/2023] Open
Abstract
Inspired by natural enzymes that possess multiple catalytic activities, here we develop a bifunctional metal-organic frame-work (MOF) for biosensing applications. Ultrasmall gold nano-particles (AuNPs) are grown in the internal cavities of an iron (Fe) porphyrin-based MOF to produce a hybridized nanozyme, AuNPs@PCN-224(Fe), in which AuNPs and PCN-224(Fe) exhibit the catalytic activity of glucose oxidase (GOx) and horseradish peroxidase (HRP), respectively. We established that the bifunctional nanozyme was capable of a cascade reaction to generate hydrogen peroxide in the presence of d-glucose and oxygen in situ, and subsequently activate a colorimetric or chemiluminescent substrate through HRP-mimicking catalytic activity. The nanozyme was selective over a range of other saccharides, and 93% of the catalytic activity was retained after being recycled five times.
Collapse
Affiliation(s)
- Pei-Hong Tong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 China
| | - Jing-Jing Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 China
| | - Tony D James
- Department of Chemistry, University of Bath Bath BA2 7AY UK
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, National Center for Liver Cancer Shanghai 200438 China
| |
Collapse
|
54
|
Li Q, Liu Q, Wang Z, Zhang X, Ma R, Hu X, Mei J, Su Z, Zhu W, Zhu C. Biofilm Homeostasis Interference Therapy via 1 O 2 -Sensitized Hyperthermia and Immune Microenvironment Re-Rousing for Biofilm-Associated Infections Elimination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300592. [PMID: 36850031 DOI: 10.1002/smll.202300592] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Indexed: 06/02/2023]
Abstract
The recurrence of biofilm-associated infections (BAIs) remains high after implant-associated surgery. Biofilms on the implant surface reportedly shelter bacteria from antibiotics and evade innate immune defenses. Moreover, little is currently known about eliminating residual bacteria that can induce biofilm reinfection. Herein, novel "interference-regulation strategy" based on bovine serum albumin-iridium oxide nanoparticles (BIONPs) as biofilm homeostasis interrupter and immunomodulator via singlet oxygen (1 O2 )-sensitized mild hyperthermia for combating BAIs is reported. The catalase-like BIONPs convert abundant H2 O2 inside the biofilm-microenvironment (BME) to sufficient oxygen gas (O2 ), which can efficiently enhance the generation of 1 O2 under near-infrared irradiation. The 1 O2 -induced biofilm homeostasis disturbance (e.g., sigB, groEL, agr-A, icaD, eDNA) can disrupt the sophisticated defense system of biofilm, further enhancing the sensitivity of biofilms to mild hyperthermia. Moreover, the mild hyperthermia-induced bacterial membrane disintegration results in protein leakage and 1 O2 penetration to kill bacteria inside the biofilm. Subsequently, BIONPs-induced immunosuppressive microenvironment re-rousing successfully re-polarizes macrophages to pro-inflammatory M1 phenotype in vivo to devour residual biofilm and prevent biofilm reconstruction. Collectively, this 1 O2 -sensitized mild hyperthermia can yield great refractory BAIs treatment via biofilm homeostasis interference, mild-hyperthermia, and immunotherapy, providing a novel and effective anti-biofilm strategy.
Collapse
Affiliation(s)
- Qianming Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Quan Liu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Zhengxi Wang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Ruixiang Ma
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Xianli Hu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Jiawei Mei
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Zheng Su
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Wanbo Zhu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| |
Collapse
|
55
|
Liao X, Tong W, Dai L, Han L, Sun H, Liu W, Wang C. Nanozyme-catalyzed cascade reaction enables a highly sensitive detection of live bacteria. J Mater Chem B 2023. [PMID: 37184107 DOI: 10.1039/d3tb00441d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The accurate and timely detection of bacteria is critically important for human health as it helps to determine the original source of bacterial infections and prevent disease spread. Herein, gold nanoparticles (AuNPs) were synthesized using polyoxometalates (POMs) as the stabilizing agent. Since AuNPs have glucose oxidase (GOx)-like activity and POMs possess peroxidase (HRP)-like activity, the as-prepared Au@POM nanoparticles have double enzyme-like activities and facilitate cascade reaction. As known, glucose is required as an energy resource during bacterial metabolism, the concentration of glucose decreases with the increase of bacteria content in a system with bacteria and glucose. Therefore, when we use Au@POM nanozymes to trigger the cascade catalysis of glucose and 3,3',5,5'-tetramethylbenzidine (TMB), the concentration of glucose and bacteria can be sensitively detected using the absorbance intensity at 652 nm in the visible spectrum. As demonstration, S. aureus and E. coli were used as model bacteria. The experimental results show that the present method has a good linear relationship in the bacterial concentration range of 1 to 7.5 × 107 colony-forming units (CFU) mL-1 with a detection limit of 5 CFU mL-1. This study shows a great promise of nanozyme cascade reactions in the construction of biosensors and clinical detections.
Collapse
Affiliation(s)
- Xuewei Liao
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- College of Chemistry and Materials Science, Analytical & Testing Center, Nanjing Normal University, Nanjing 210023, China.
| | - Wenjun Tong
- College of Chemistry and Materials Science, Analytical & Testing Center, Nanjing Normal University, Nanjing 210023, China.
| | - Li Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Lingfei Han
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Hanjun Sun
- College of Chemistry and Materials Science, Analytical & Testing Center, Nanjing Normal University, Nanjing 210023, China.
| | - Wenyuan Liu
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Chen Wang
- College of Chemistry and Materials Science, Analytical & Testing Center, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
56
|
Xu M, Tan F, Luo W, Jia Y, Deng Y, Topham PD, Wang L, Yu Q. In Situ Fabrication of Silver Peroxide Hybrid Ultrathin Co-Based Metal-Organic Frameworks for Enhanced Chemodynamic Antibacterial Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22985-22998. [PMID: 37155995 DOI: 10.1021/acsami.3c03863] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Bacterial-induced infectious diseases have always caused an unavoidable problem and lead to an increasing threat to human health. Hence, there is an urgent need for effective antibacterial strategies to treat infectious diseases. Current methods are often ineffective and require large amounts of hydrogen peroxide (H2O2), with harmful effects on normal healthy tissue. Chemodynamic therapy (CDT) provides an ideal infection microenvironment (IME)-activated paradigm to tackle bacterial-related diseases. To take full advantage of the specificity of IME and enhanced CDT for wounds with bacterial infection, we have designed an intelligent antibacterial system that exploits nanocatalytic ZIF-67@Ag2O2 nanosheets. In this system, silver peroxide nanoparticles (Ag2O2 NPs) were grown on ultrathin zeolitic imidazolate framework-67 (ZIF-67) nanosheets by in situ oxidation, and then, ZIF-67@Ag2O2 nanosheets with the ability to self-generate H2O2 were triggered by the mildly acidic environment of IME. Lamellar ZIF-67 nanosheets were shown to rapidly degrade and release Co2+, allowing the conversion of less reactive H2O2 into the highly toxic reactive oxygen species hydroxyl radicals (•OH) for enhanced CDT antibacterial properties. In vivo results revealed that the ZIF-67@Ag2O2 nanosheet system exhibits excellent antibacterial performance against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The proposed hybrid strategy demonstrates a promising therapeutic strategy to enable antibacterial agents with IME-responsive nanocatalytic activity to circumvent antibiotic resistance against bacterial infections.
Collapse
Affiliation(s)
- Mengmeng Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Fangrong Tan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wanru Luo
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yifan Jia
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yan Deng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Paul D Topham
- Chemical Engineering and Applied Chemistry, School of Infrastructure and Sustainable Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B47ET, U.K
| | - LinGe Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Qianqian Yu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
57
|
Wang G, Ma Y, Wang J, Lu P, Wang Y, Fan Z. Metal functionalization of two-dimensional nanomaterials for electrochemical carbon dioxide reduction. NANOSCALE 2023; 15:6456-6475. [PMID: 36951476 DOI: 10.1039/d3nr00484h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
With the mechanical exfoliation of graphene in 2004, researchers around the world have devoted significant efforts to the study of two-dimensional (2D) nanomaterials. Nowadays, 2D nanomaterials are being developed into a large family with varieties of structures and derivatives. Due to their fascinating electronic, chemical, and physical properties, 2D nanomaterials are becoming an important type of catalyst for the electrochemical carbon dioxide reduction reaction (CO2RR). Here, we review the recent progress in electrochemical CO2RR using 2D nanomaterial-based catalysts. First, we briefly describe the reaction mechanism of electrochemical CO2 reduction to single-carbon (C1) and multi-carbon (C2+) products. Then, we discuss the strategies and principles for applying metal materials to functionalize 2D nanomaterials, such as graphene-based materials, metal-organic frameworks (MOFs), and transition metal dichalcogenides (TMDs), as well as applications of resultant materials in the electrocatalytic CO2RR. Finally, we summarize the present research advances and highlight the current challenges and future opportunities of using metal-functionalized 2D nanomaterials in the electrochemical CO2RR.
Collapse
Affiliation(s)
- Guozhi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Juan Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
58
|
Zhou G, Chen Y, Chen W, Wu H, Yu Y, Sun C, Hu B, Liu Y. Renal Clearable Catalytic 2D Au-Porphyrin Coordination Polymer Augmented Photothermal-Gas Synergistic Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206749. [PMID: 36599631 DOI: 10.1002/smll.202206749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
As a gasotransmitter, carbon monoxide (CO) possesses antitumor activity by reversing the Warburg effect at higher concentrations. The targeted delivery of carbon monoxide-releasing molecules (CORMs) using nanomaterials is an appealing option for CO administration, but how to maintain CO above the threshold concentration in tumor tissue remains a challenge. Herein, a nanozyme-catalyzed cascade reaction is proposed to promote CO release for high-efficacy photothermal therapy (PTT)-combined CO therapy of cancer. A gold-based porphyrinic coordination polymer nanosheet (Au0 -Por) is synthesized to serve as a carrier for CORM. It also possesses excellent glucose oxygenase-like activity owing to ultrasmall zero-valent gold atoms on the nanosheet. The catalytically generated H2 O2 can efficiently catalyze CORM decomposition, which enables in situ generation of sufficient CO for gas therapy. In vivo, the Au0 -Por nanosheets-enhanced photoacoustic imaging (PAI) and fluorescence imaging collectively demonstrate high tumor-targeting efficiency and nanomaterial retention. Proven to have augmented therapeutic efficacy, the nanoplatform can also be easily degraded and excreted through the kidney, indicating good biocompatibility. Thus, the application of rational designed Au0 -Por nanosheet with facile approach and biodegradable property to PAI-guided synergistic gas therapy can provide a strategy for the development of biocompatible and highly effective gaseous nanomedicine.
Collapse
Affiliation(s)
- Gaoxin Zhou
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Yang Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Wenhao Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Hao Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Yun Yu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Chunlong Sun
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, 256600, China
| | - Benhui Hu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Yun Liu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
59
|
Gholamin D, Karami P, Pahlavan Y, Johari-Ahar M. Highly sensitive photoelectrochemical immunosensor for detecting cancer marker CA19-9 based on a new SnSe quantum dot. Mikrochim Acta 2023; 190:154. [PMID: 36961600 DOI: 10.1007/s00604-023-05718-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/23/2023] [Indexed: 03/25/2023]
Abstract
A sandwich-type photoelectrochemical (PEC) immunosensor was constructed on a screen-printed electrode (SPE) using gold-coated tin selenide quantum dots (Au-SnSe QDs) to determine the carbohydrate antigen 19 9 (CA19-9). Water-soluble Au-SnSe QDs were prepared by coating low-cost SnSe QDs, prepared by reacting tin(II) 2-ethyl hexanoate with selenium ions (HNaSe) without needing to add an external capping agent (SnSe QDs). SnSe-based QDs were characterized using high-resolution transmission electron microscopy (HR-TEM) and dynamic light scattering (DLS). DSP (dithio-bis (succinimidyl propionate)) as a linker was attached on Au@SnSe QDs and conjugated with CA19-9 monoclonal antibodies (Ab2-DSP-Au@SnSE QD). For capture probe assembling, an Au nano-layer was electrochemically deposited on a SPE by HAuCl4 reduction using 12 cycles of cyclic voltammetry (0 to - 1.4 V) at the scan rate of 50 mV s-1, then covered by self-assembly of DSP and covalent conjugation of CA19-9 Ab1. Our developed PEC immunosensor showed a significant photoelectrochemical response, recorded using chronoamperometry (0.3 V), for the presence of CA19-9 antigen in serum samples under light irradiation, with a detection limit (LOD) of 0.0011 U mL-1 and a dynamic range of 0.005-100 U mL-1. The recovery of CA19-9 determination from serum samples was 101 to 113%.
Collapse
Affiliation(s)
- Danial Gholamin
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Pari Karami
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Yasamin Pahlavan
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Johari-Ahar
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
60
|
Yan H, Sun Z, Qing M, Ling Y, Liu WW, Li NB, Luo HQ. Kill two birds with one stone: Ratiometric sensing of phosphate via a single-component probe with fluorescence-scattering dual-signal response behavior. Anal Chim Acta 2023; 1246:340866. [PMID: 36764770 DOI: 10.1016/j.aca.2023.340866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Ratiometric fluorescence sensors gain stronger anti-interference ability via self-calibration. Nevertheless, ratiometric analysis of phosphate (Pi) still faces problems such as complicated construction process of dual emission probes and possible interferences from outputting mono-category fluorescent signal. Herein, we propose a "kill two birds with one stone" strategy to address these challenges, by simply introducing a single-component probe, porphyrin paddlewheel framework-3 (PPF-3) nanosheets without modification, encapsulation or complex, to integrate fluorescence (FL)-second-order scattering (SOS) dual-signal for ratiometric detection of Pi. PPF-3 nanosheets are constructed by coordination of Co2+ with 5,10,15,20-tetrakis(4-carboxyl-phenyl)-porphyrin (TCPP) ligands, displaying weak FL and strong SOS, two different and independent signals. In the response system to Pi, Co2+ and TCPP serve as the recognition element and signal unit, respectively. After interacting with Pi, the high affinity for Co2+ makes Pi snatch Co2+ from the PPF-3 nanosheets, causing their structure disassembly (SOS decrease) and TCPP release (FL increase). Finally, the FL-SOS ratiometric platform is successfully employed to access Pi in real water samples. Synchronous collection of FL and SOS from the single-component probe provides a simpler and more efficient way on ratiometric sensor design as well as a new useful technique for monitoring target-induced aggregation and disaggregation behavior.
Collapse
Affiliation(s)
- Hang Yan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Zhe Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Min Qing
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yu Ling
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Wei Wei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Nian Bing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Hong Qun Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
61
|
Lu Y, Zhang P, Zhou Y, Zhang R, Fu X, Feng J, Zhang H. Novel nanocarrier for promoting tumor synergistic therapy by down-regulation of heat shock proteins and increased Fe3+ supply. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
62
|
Zhong Y, Liao P, Kang J, Liu Q, Wang S, Li S, Liu X, Li G. Locking Effect in Metal@MOF with Superior Stability for Highly Chemoselective Catalysis. J Am Chem Soc 2023; 145:4659-4666. [PMID: 36791392 DOI: 10.1021/jacs.2c12590] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Ultrasmall metal nanoparticles (NPs) show high catalytic activity in heterogeneous catalysis but are prone to reunion and loss during the catalytic process, resulting in low chemoselectivity and poor efficiency. Herein, a locking effect strategy is proposed to synthesize high-loading and ultrafine metal NPs in metal-organic frameworks (MOFs) for efficient chemoselective catalysis with high stability. Briefly, the MOF ZIF-90 with aldehyde groups cooperating with diamine chains via aldimine condensation was interlocked, which was employed to confine in situ formation of Au NPs, denoted as Au@L-ZIF-90. The optimized Au@La-ZIF-90 has highly dispersed Au NPs (2.60 ± 0.81 nm) with a loading amount around 22 wt % and shows a great performance toward 3-aminophenylacetylene (3-APA) from the selective hydrogenation of 3-nitrophenylacetylene (3-NPA) with a high yield (99%) and excellent durability (over 20 cycles), far superior to contrast catalysts without chains locking and other reported catalysts. In addition, experimental characterization and systematic density functional theory calculations further demonstrate that the locked MOF modulates the charge of Au nanoparticles, making them highly specific for nitro group hydrogenation to obtain 3-APA with high selectivity (99%). Furthermore, this locking effect strategy is also applicable to other metal nanoparticles confined in a variety of MOFs, and all of these catalysts locked with chains show great selectivity (≥90%) of 3-APA. The proposed strategy in this work provides a novel and universal method for precise control of the inherent activity of accessible metal nanoparticles with a programmable MOF microenvironment toward highly specific catalysis.
Collapse
Affiliation(s)
- Yicheng Zhong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Peisen Liao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Jiawei Kang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Qinglin Liu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Shihan Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Suisheng Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Xianlong Liu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
63
|
Jin Y, Guo Y, Yang J, Chu X, Huang X, Wang Q, Zeng Y, Su L, Lu S, Wang C, Yang J, Qu J, Yang Y, Wang B. A Novel "Inside-Out" Intraocular Nanomedicine Delivery Mode for Nanomaterials' Biological Effect Enhanced Choroidal Neovascularization Occlusion and Microenvironment Regulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209690. [PMID: 36527723 DOI: 10.1002/adma.202209690] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Photodynamic therapy (PDT) is commonly used in choroidal neovascularization (CNV) treatment due to the superior light transmittance of the eye. However, PDT often leads to surrounding tissue damage and further microenvironmental deterioration, including exacerbated hypoxia, inflammation, and secondary neovascularization. In this work, Pt nanoparticles (NPs) and Au NPs decorated zeolitic imidazolate framework-8 nanoplatform is developed to load indocyanine green for precise PDT and microenvironment amelioration, which can penetrate the internal limiting membrane through Müller cells endocytosis and target to CNV by surface-grafted cyclo(Arg-Gly-Asp-d-Phe-Lys) after intravitreal injection. The excessive H2 O2 in the CNV microenvironment is catalyzed by catalase-like Pt NPs for hypoxia relief and enhanced PDT occlusion of neovascular. Meanwhile, Au NPs show significant anti-inflammatory and anti-angiogenesis properties in regulating macrophages and blocking vascular endothelial growth factor (VEGF). Compared with verteporfin treatment, the mRNA expressions of hypoxia-inducible factor-1α and VEGF in the nanoplatform group are downregulated by 90.2% and 81.7%, respectively. Therefore, the nanoplatform realizes a comprehensive CNV treatment effect based on the high drug loading capacity and biosafety. The CNV treatment mode developed in this work provides a valuable reference for treating other diseases with similar physiological barriers that limit drug delivery and similar microenvironment.
Collapse
Affiliation(s)
- Yingying Jin
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
| | - Yishun Guo
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
| | - Jianhua Yang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
| | - Xiaoying Chu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
| | - Xiaomin Huang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
| | - Qingying Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
| | - Yanlin Zeng
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
| | - Lili Su
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
| | - Si Lu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
| | - Chenyang Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
| | - Jie Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
- National Engineering Research Center of Ophthalmology and Optometry, Wenzhou, 325027, P. R. China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, P. R. China
- NMPA Key Laboratory for Clinical Research and Evaluation of Medical Devices and Drug for Ophthalmic Diseases, Wenzhou, 325027, P. R. China
| | - Yingwei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130012, P. R. China
| | - Bailiang Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
- National Engineering Research Center of Ophthalmology and Optometry, Wenzhou, 325027, P. R. China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, P. R. China
- NMPA Key Laboratory for Clinical Research and Evaluation of Medical Devices and Drug for Ophthalmic Diseases, Wenzhou, 325027, P. R. China
| |
Collapse
|
64
|
Chen J, Niu H, Guan L, Yang Z, He Y, Zhao J, Wu C, Wang Y, Lin K, Zhu Y. Microneedle-Assisted Transdermal Delivery of 2D Bimetallic Metal-Organic Framework Nanosheet-Based Cascade Biocatalysts for Enhanced Catalytic Therapy of Melanoma. Adv Healthc Mater 2023; 12:e2202474. [PMID: 36420881 DOI: 10.1002/adhm.202202474] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Current conventional treatments for malignant melanoma still face limitations, especially low therapeutic efficacy and serious side effects, and more effective strategies are urgently needed to develop them. Delivering biocatalysts into tumors to efficiently trigger in situ cascade reactions has shown huge potential in producing more therapeutic species or generating stronger tumoricidal effects for augmented tumor therapy. Recently, ultrathin 2D metal-organic framework (MOF) nanosheets have acquired great interest in biocatalysis owing to their large surface areas and abundant accessible active catalytic sites. Herein, an enhanced catalytic therapeutic strategy against melanoma is developed by biocompatible microneedle (MN)-assisted transdermal delivery of a 2D bimetallic MOF nanosheet-based cascade biocatalyst (Cu-TCPP(Fe)@GOD). Profiting from the constructed dissolving MN system, the loaded Cu-TCPP(Fe)@GOD hybrid nanosheets can be accurately delivered into the melanoma sites through skin barriers, and subsequently, trigger the specific cascade catalytic reactions in response to the acidic tumor microenvironment to effectively generate highly toxic hydroxyl radical (• OH) and deplete glucose nutrient for inducing the death of melanoma cells. The ultimate results prove the high melanoma inhibition effect and biosafety of such therapeutic modality, exhibiting a new and promising strategy to conquer malignant melanoma.
Collapse
Affiliation(s)
- Jiajie Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huicong Niu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Lei Guan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Zhibo Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuzhao He
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Jinjin Zhao
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, Hebei, 050024, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yitong Wang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
65
|
Li G, Liu H, Yi J, Pu F, Ren J, Qu X. Integrating Incompatible Nanozyme-Catalyzed Reactions for Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206707. [PMID: 36541749 DOI: 10.1002/smll.202206707] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Multi-nanozymes are widely applied in disease treatment, biosensing, and other fields. However, most current multi-nanozyme systems exhibit only moderate activity since reaction microenvironments of different nanozyme are often distinct or even incompatible. Conventional assemble strategies are inapplicable for designing multi-nanozymes consisting of incompatible nanozymes. Herein, a versatile fiber-based compartmentalization strategy is developed to construct multi-nanozyme system capable of simultaneously performing incompatible reactions. In this system, the incompatible nanozymes are spatially distributed in distinct compartmentalized fibers, where different microenvironments can be tailored by controlling the doping reagent, endowing each nanozymes with the preferential microenvironments to exhibit their highest activity. As a proof of concept, pH-incompatible peroxidase-like and catalase-like catalytic reactions are tested to verify the feasibility of this strategy. By doping with benzoic acid in the desired location, the two pH-incompatible nanozymes can work simultaneously without interference. Further, it is demonstrated that the oxygen supply and antimicrobial power of the integrated platform can be applied for accelerating diabetic wound healing. It is hoped that this work provides a way to integrate incompatible nanozyme and broadens the application potential of multi-nanozymes.
Collapse
Affiliation(s)
- Guangming Li
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Hao Liu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiadai Yi
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Fang Pu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
66
|
Chen J, Liu X, Zheng G, Feng W, Wang P, Gao J, Liu J, Wang M, Wang Q. Detection of Glucose Based on Noble Metal Nanozymes: Mechanism, Activity Regulation, and Enantioselective Recognition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205924. [PMID: 36509680 DOI: 10.1002/smll.202205924] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Glucose monitoring is essential to evaluate the degree of glucose metabolism disorders. The enzymatic determination has been the most widely used method in glucose detection because of its high efficiency, accuracy, and sensitivity. Noble metal nanomaterials (NMs, i.e., Au, Ag, Pt, and Pd), inheriting their excellent electronic, optical, and enzyme-like properties, are classified as noble metal nanozymes (NMNZs). As the NMNZs are often involved in two series of reactions, the oxidation of glucose and the chromogenic reaction of peroxide, here the chemical mechanism by employing NMNZs with glucose oxidase (GOx) and peroxidase (POD) mimicking activities is briefly summarized first. Subsequently, the regulation strategies of the GOx-like, POD-like and tandem enzyme-like activities of NMNZs are presented in detail, including the materials, size, morphology, composition, and the reaction condition of the representative NMs. In addition, in order to further mimic the enantioselectivity of enzyme, the design of NMNZs with enantioselective recognition of d-glucose and l-glucose by using different chiral compounds (DNA, amino acids, and cyclodextrins) and molecular imprinting is further described in this review. Finally, the feasible solutions to the existing challenges and a vision for future development possibilities are discussed.
Collapse
Affiliation(s)
- Jiaqi Chen
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Xiaoyang Liu
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Guangchao Zheng
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Feng
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Pan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Jian Gao
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Jianbo Liu
- College of Opto-electronic Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Mingzhe Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qingyuan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| |
Collapse
|
67
|
Rao Y, Fan T, Zhou L, Fang K, Sun Y, Hu X, Wang A, Li R, Zhu Z, Dong C, Shi S. A positive self-amplified H 2O 2 and acidity circulation for boosting CDT-PTT-starvation therapy. J Control Release 2023; 354:701-712. [PMID: 36690036 DOI: 10.1016/j.jconrel.2023.01.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
The therapeutic application of chemodynamic therapy (CDT) is severely limited by the insufficient intracellular H2O2 and acidity in tumor. Herein, an acid-sensitive nanoplatform (ZIF67-ICG/TAM@GOx) to promote H2O2 and acidity enhancement through intracellular cyclic amplification for enhanced CDT is rationally designed. Notably, the acidic conditions of the tumor microenvironment (TME) can turn on the switch of the nanoplatform, setting free the loaded tamoxifen (TAM) and indocyanine green (ICG). The mitochondrial respiration inhibitor TAM and the superoxide dismutase-mimicking ZIF67 synergistically lead to an increase in the content of O2 and H2O2, accelerating the depletion of β-d-glucose by GOx to generate gluconate and H2O2. The gluconate in turn boosts the acidity to facilitate the collapse of nanoparticles, further significantly promoting the accumulation of intracellular H2O2 through a positive circulation. Consequently, the amplificated endogenous H2O2 is catalyzed by Co2+ to liberate hydroxyl radicals (•OH). Besides, ICG-mediated photothermal therapy (PTT) and GOx-induced starvation therapy along with CDT realize the synergistic cancer treatment. Importantly, in vitro and in vivo experiments verified that the nanoplatform performed superior specificity and excellent therapeutic responses. The smart nanoplatform overcomes H2O2 and acidity deficiency simultaneously for intensive CDT, providing new prospects for the development of biocompatible cancer synergistic therapy strategies.
Collapse
Affiliation(s)
- Yiming Rao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai 200092, People's Republic of China
| | - Ting Fan
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai 200092, People's Republic of China
| | - Lulu Zhou
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai 200092, People's Republic of China
| | - Kang Fang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai 200092, People's Republic of China
| | - Yanting Sun
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai 200092, People's Republic of China
| | - Xiaochun Hu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai 200092, People's Republic of China
| | - Anqi Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai 200092, People's Republic of China
| | - Ruihao Li
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai 200092, People's Republic of China
| | - Zhounan Zhu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai 200092, People's Republic of China
| | - Chunyan Dong
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai 200092, People's Republic of China.
| | - Shuo Shi
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai 200092, People's Republic of China.
| |
Collapse
|
68
|
Yang XD, Zhang YJ, Zhou JH, Liu L, Sun JK. Air-Stable Radical Organic Cages as Cascade Nanozymes for Enhanced Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206127. [PMID: 36440672 DOI: 10.1002/smll.202206127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/12/2022] [Indexed: 06/16/2023]
Abstract
The pursuit of single-assembled molecular cage reactors for complex tandem reactions is a long-standing target in biomimetic catalysis but still a grand challenge. Herein, nanozyme-like organic cages are reported by engineering air-stable radicals into the skeleton upon photoinduced electron transfer. The generation of radicals is accompanied by single-crystal structural transformation and exhibits superior stability over six months in air. Impressively, the radicals throughout the cage skeleton can mimic the peroxidase of natural enzymes to decompose H2 O2 into OH· and facilitate oxidation reactions. Furthermore, an integrated catalyst by encapsulating Au clusters (glucose oxidase mimics) into the cage has been developed, in which the dual active sites (Au cluster and radical) are spatially isolated and can work as cascade nanozymes to prominently promote the enzyme-like tandem reaction via a substrate channeling effect.
Collapse
Affiliation(s)
- Xiao-Dong Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Ya-Jun Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
- College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang, 050080, P. R. China
| | - Jun-Hao Zhou
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Ling Liu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jian-Ke Sun
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
69
|
Liu Y, Sun M, Qiao W, Cong S, Zhang Y, Wang L, Hu Z, Liu F, Wang D, Wang P, Liu Q. Multicolor colorimetric visual detection of Staphylococcus aureus based on Fe 3O 4-Ag-MnO 2 composites nano-oxidative mimetic enzyme. Anal Chim Acta 2023; 1239:340654. [PMID: 36628750 DOI: 10.1016/j.aca.2022.340654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Novel Fe3O4-Ag-MnO2 composites were successfully synthesized. It was noteworthy that the obtained Fe3O4-Ag-MnO2 composites were found to possess three types of enzyme-mimicking activities, including peroxidase-like, catalase-like and oxidase-like activities. Taking advantage of the oxidase properties of Fe3O4-Ag-MnO2, the direct oxidation of TMB could be catalyzed to generate blue oxidation products without H2O2. The oxidase-like activity of Fe3O4-Ag-MnO2 were carefully studied. Based on the Fe3O4-Ag-MnO2-TMB system, a fast, sensitive and intuitive multicolor colorimetric method for Staphylococcus aureus (S. aureus) detection was established under the optimized conditions. The proposed method allows the detection of S. aureus with a detection limit of 3.7 cfu mL-1 and a linear range of 10-106 cfu mL-1. This new colorimetric method has been successfully proved to be applicable to the detection S. aureus of food samples.
Collapse
Affiliation(s)
- Yushen Liu
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China.
| | - Mengyue Sun
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China
| | - Wenteng Qiao
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China
| | - Shuang Cong
- College of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Yunqian Zhang
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China
| | - Luliang Wang
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China
| | - Zhenhua Hu
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China
| | - Fangjie Liu
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China
| | - Dacheng Wang
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China
| | - Ping Wang
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China
| | - Quanwen Liu
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China.
| |
Collapse
|
70
|
Gong Y, Liu H, Ke S, Zhuo L, Wang H. Latest advances in biomimetic nanomaterials for diagnosis and treatment of cardiovascular disease. Front Cardiovasc Med 2023; 9:1037741. [PMID: 36684578 PMCID: PMC9846151 DOI: 10.3389/fcvm.2022.1037741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular disease remains one of the leading causes of death in China, with increasingly serious negative effects on people and society. Despite significant advances in preventing and treating cardiovascular diseases, such as atrial fibrillation/flutter and heart failure over the last few years, much more remains to be done. Therefore, developing innovative methods for identifying and managing cardiovascular disorders is critical. Nanomaterials provide multiple benefits in biomedicine, primarily better catalytic activity, drug loading, targeting, and imaging. Biomimetic materials and nanoparticles are specially combined to synthesize biomimetic nanoparticles that successfully reduce the nanoparticles' toxicity and immunogenicity while enhancing histocompatibility. Additionally, the biological targeting capability of nanoparticles facilitates the diagnosis and therapy of cardiovascular disease. Nowadays, nanomedicine still faces numerous challenges, which necessitates creating nanoparticles that are highly selective, toxic-free, and better clinically applicable. This study reviews the scientific accomplishments in this field over the past few years covering the classification, applications, and prospects of noble metal biomimetic nanozymes and biomimetic nanocarriers.
Collapse
Affiliation(s)
- Yuxuan Gong
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Huaying Liu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Shen Ke
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Li Zhuo
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China,Li Zhuo,
| | - Haibin Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China,*Correspondence: Haibin Wang,
| |
Collapse
|
71
|
Li C, Song M, Wu S, Wang Z, Duan N. Selection of aptamer targeting levamisole and development of a colorimetric and SERS dual-mode aptasensor based on AuNPs/Cu-TCPP(Fe) nanosheets. Talanta 2023; 251:123739. [DOI: 10.1016/j.talanta.2022.123739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022]
|
72
|
An ultrasensitive electrochemical immunosensor for carcinoembryonic antigen detection based on two-dimensional PtPd/Cu-TCPP(Fe) nanocomposites. Anal Bioanal Chem 2023; 415:447-456. [PMID: 36357598 DOI: 10.1007/s00216-022-04425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022]
Abstract
Establishing an effective signal amplification strategy is the key to achieving sensitive detection of analytes by electrochemical immunoassay. In this work, a novel sandwich-type electrochemical immunosensor with dual-signal amplification was successfully constructed using PtPd/Cu-TCPP(Fe) as the sensing platform and mesoporous silicon dioxide as the signal amplifier. Firstly, two-dimensional wrinkled Cu-TCPP(Fe) nanomaterials loaded with PtPd nanoparticles have strong affinity for the immobilization of capture antibodies and can generate excellent electrochemical signals. Meanwhile, the mesoporous silicon dioxide with large steric hindrance was used as signal label to further improve the sensitivity of the immunosensor by increasing the difference of the current response signal. Under optimal experimental conditions, the electrochemical immunosensor exhibited a wide linear detection range from 0.1 pg/mL to 1.0 μg/mL, with a detection limit as low as 0.166 fg/mL. The experimental results showed that the constructed immunosensor has a great application prospect in clinical biomarker detection.
Collapse
|
73
|
Zhang J, Chen M, Peng Y, Li S, Han D, Ren S, Qin K, Li S, Han T, Wang Y, Gao Z. Wearable biosensors for human fatigue diagnosis: A review. Bioeng Transl Med 2023; 8:e10318. [PMID: 36684114 PMCID: PMC9842037 DOI: 10.1002/btm2.10318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 02/01/2023] Open
Abstract
Fatigue causes deleterious effects to physical and mental health of human being and may cause loss of lives. Therefore, the adverse effects of fatigue on individuals and the society are massive. With the ever-increasing frequency of overtraining among modern military and sports personnel, timely, portable and accurate fatigue diagnosis is essential to avoid fatigue-induced accidents. However, traditional detection methods require complex sample preparation and blood sampling processes, which cannot meet the timeliness and portability of fatigue diagnosis. With the development of flexible materials and biosensing technology, wearable biosensors have attracted increased attention to the researchers. Wearable biosensors collect biomarkers from noninvasive biofluids, such as sweat, saliva, and tears, followed by biosensing with the help of biosensing modules continuously and quantitatively. The detection signal can then be transmitted through wireless communication modules that constitute a method for real-time understanding of abnormality. Recent developments of wearable biosensors are focused on miniaturized wearable electrochemistry and optical biosensors for metabolites detection, of which, few have exhibited satisfactory results in medical diagnosis. However, detection performance limits the wide-range applicability of wearable fatigue diagnosis. In this article, the application of wearable biosensors in fatigue diagnosis has been discussed. In fact, exploration of the composition of different biofluids and their potential toward fatigue diagnosis have been discussed here for the very first time. Moreover, discussions regarding the current bottlenecks in wearable fatigue biosensors and the latest advancements in biochemical reaction and data communication modules have been incorporated herein. Finally, the main challenges and opportunities were discussed for wearable fatigue diagnosis in the future.
Collapse
Affiliation(s)
- Jingyang Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Mengmeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Kang Qin
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Sen Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Tie Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| |
Collapse
|
74
|
Xie Y, Wang M, Sun Q, Wang D, Li C. Recent Advances in Tetrakis (4‐Carboxyphenyl) Porphyrin‐Based Nanocomposites for Tumor Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yulin Xie
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua 321004 P.R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| |
Collapse
|
75
|
Wang Q, Luo Z, Wu YL, Li Z. Recent Advances in Enzyme‐Based Biomaterials Toward Diabetic Wound Healing. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Qi Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 China
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 China
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis, #08-03 Singapore 138634 Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 China
| | - Zibiao Li
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis, #08-03 Singapore 138634 Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way Singapore 138634 Singapore
- Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| |
Collapse
|
76
|
Lin C, Guo X, Chen L, You T, Lu J, Sun D. Ultrathin trimetallic metal-organic framework nanosheets for accelerating bacteria-infected wound healing. J Colloid Interface Sci 2022; 628:731-744. [PMID: 36027783 DOI: 10.1016/j.jcis.2022.08.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
Bacteria-infected wounds are commonly regarded as a hidden threat to human health that can create persistent infection and even bring about amputation or death. Two-dimensional metal-organic frameworks (2D MOFs) with biomimetic enzyme activity have been used to reduce the huge harm caused by antibiotic resistance due to their massive active sites and ultralarge specific surface area. However, their therapeutic efficiency is unsatisfactory because of their relatively low catalytic activity and poor productivity. In this paper, we presented a simple and mild one-pot solution phase method for the large-scale synthesis of NiCoCu-based MOF nanosheets. The NiCoCu nanosheets (denoted as (Ni2Co1)1-xCux) with controlled molar ratios have different morphologies and sizes. Specifically, the (Ni2Co1)0.5Cu0.5 nanosheets showed the best catalytic performance toward the reduction of H2O2 and H2O2 was efficiently catalyzed to generate toxic •OH in the presence of MOF nanosheets with peroxidase-like activity. (Ni2Co1)0.5Cu0.5 exhibited the best antibacterial activity against gram-positive Escherichia coli and methicillin-resistant Staphylococcus aureus bacteria. Animal wound healing experiments demonstrate that ultrathin trimetallic nanosheets can effectively contribute to wound healing with excellent biocompatibility. This study reveals the immense potential of ultrathin trimetallic MOF nanosheets for clinical antibacterial therapy for future pragmatic clinical applications.
Collapse
Affiliation(s)
- Chuyan Lin
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, Guangdong, China
| | - Xiangjian Guo
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Linxi Chen
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Tianhui You
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China.
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, Guangdong, China.
| |
Collapse
|
77
|
Su Y, Zhang X, Li H, Peng D, Zhang Y. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
78
|
Wang Y, Xue Y, Zhao Q, Wang S, Sun J, Yang X. Colorimetric Assay for Acetylcholinesterase Activity and Inhibitor Screening Based on Metal–Organic Framework Nanosheets. Anal Chem 2022; 94:16345-16352. [DOI: 10.1021/acs.analchem.2c03290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yu Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Xue
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qilin Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuang Wang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
79
|
Zheng L, Wang F, Jiang C, Ye S, Tong J, Dramou P, He H. Recent progress in the construction and applications of metal-organic frameworks and covalent-organic frameworks-based nanozymes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
80
|
Guo C, He L, Liu S. Accelerating the peroxidase- and glucose oxidase-like activity of Au nanoparticles by seeded growth strategy and their applications for colorimetric detection of dopamine and glucose. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
81
|
Huang W, Xu Y, Wang Z, Liao K, Zhang Y, Sun Y. Dual nanozyme based on ultrathin 2D conductive MOF nanosheets intergraded with gold nanoparticles for electrochemical biosensing of H2O2 in cancer cells. Talanta 2022; 249:123612. [DOI: 10.1016/j.talanta.2022.123612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/12/2022] [Accepted: 05/25/2022] [Indexed: 10/31/2022]
|
82
|
Luo B, Zhang Y, An P, Lan F, Wu Y. Covalent organic framework nanosheet anchored with highly dispersed Au nanoparticles as a novel nanoprobe for DNA methylation detection. J Colloid Interface Sci 2022; 626:241-250. [DOI: 10.1016/j.jcis.2022.06.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 10/31/2022]
|
83
|
Dai F, Cui X, Luo Y, Zhang D, Li N, Huang Y, Peng Y. Ultrathin MOF nanosheet-based resistive sensors for highly sensitive detection of methanol. Chem Commun (Camb) 2022; 58:11543-11546. [PMID: 36155602 DOI: 10.1039/d2cc04230d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sensors with high-sensitivity for resistive methanol gas detection are highly desirable. Herein, we report newly designed ultrathin anionic metal-organic framework (MOF) nanosheets (NSs), with an average thickness of 10 nm and an electrical conductivity of 3.77 × 10-4 S cm-1. The ultrathin MOF NSs can be used as the active material in an electronic methanol gas sensor, which exhibits high sensitivity toward methanol gas at room temperature, i.e., high Rair/Rgas (363.2 at 100 ppm), fast gas response/recovery speed (6 s/2 s at 20 ppm), long-term stability, and superior cross-selectivity against other interfering gases.
Collapse
Affiliation(s)
- Fangna Dai
- School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, Shandong 266580, China
| | - Xiaoya Cui
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuwei Luo
- School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, Shandong 266580, China
| | - Dongzhi Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, Shandong 266580, China
| | - Nanjun Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Ying Huang
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
84
|
Wang C, Li Y, Liu L, Liu M, Chen X, Zhou S, Cui P, Du X, Qiu L, Wang J, Jiang P, Xia J. Antimicrobial nanozyme-enzyme complex catalyzing cascade reaction of glucose to hydroxyl radical to combat bacterial infection. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
85
|
Zhong Y, Huang C, Cai J, Wang J, Zeng Z, Deng Q. A
2D
metal‐organic framework with dual‐acidic sites for the valorization of saccharides to 5‐hydroxymethylfurfural. AIChE J 2022. [DOI: 10.1002/aic.17890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yao Zhong
- School of Resources and Environment Nanchang University, No. 999 Xuefu Avenue Nanchang PR China
| | - Cuiying Huang
- School of Chemistry and Chemical Engineering Nanchang University, No. 999 Xuefu Avenue Nanchang PR China
| | - Jianxin Cai
- School of Chemistry and Chemical Engineering Nanchang University, No. 999 Xuefu Avenue Nanchang PR China
| | - Jun Wang
- School of Chemistry and Chemical Engineering Nanchang University, No. 999 Xuefu Avenue Nanchang PR China
| | - Zheling Zeng
- School of Chemistry and Chemical Engineering Nanchang University, No. 999 Xuefu Avenue Nanchang PR China
| | - Qiang Deng
- School of Resources and Environment Nanchang University, No. 999 Xuefu Avenue Nanchang PR China
- School of Chemistry and Chemical Engineering Nanchang University, No. 999 Xuefu Avenue Nanchang PR China
| |
Collapse
|
86
|
Deng Q, Hou X, Zhong Y, Zhu J, Wang J, Cai J, Zeng Z, Zou J, Deng S, Yoskamtorn T, Tsang SCE. 2D MOF with Compact Catalytic Sites for the One-pot Synthesis of 2,5-Dimethylfuran from Saccharides via Tandem Catalysis. Angew Chem Int Ed Engl 2022; 61:e202205453. [PMID: 35700334 PMCID: PMC9544098 DOI: 10.1002/anie.202205453] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 11/20/2022]
Abstract
One pot synthesis of 2,5-dimethylfuran (2,5-DMF) from saccharides under mild conditions is of importance for the production of biofuel and fine chemicals. However, the synthesis requires a multitude of active sites and suffers from slow kinetics due to poor diffusion in most composite catalysts. Herein, a metal-acid functionalized 2D metal-organic framework (MOF; Pd/NUS-SO3 H), as an ultrathin nanosheet of 3-4 nm with Lewis acid, Brønsted acid, and metal active sites, was prepared based on the diazo method for acid modification and subsequent metal loading. This new composite catalyst gives substantially higher yields of DMF than all reported catalysts for different saccharides (fructose, glucose, cellobiose, sucrose, and inulins). Characterization suggests that a cascade of reactions including polysaccharide hydrolysis, isomerization, dehydration, and hydrodeoxygenation takes place with rapid molecular interactions.
Collapse
Affiliation(s)
- Qiang Deng
- School of Chemistry and Chemical EngineeringNanchang UniversityNo. 999 Xuefu AvenueNanchang330031P. R. China
| | - Xuemeng Hou
- School of Chemistry and Chemical EngineeringNanchang UniversityNo. 999 Xuefu AvenueNanchang330031P. R. China
| | - Yao Zhong
- School of Chemistry and Chemical EngineeringNanchang UniversityNo. 999 Xuefu AvenueNanchang330031P. R. China
| | - Jiawei Zhu
- School of Chemistry and Chemical EngineeringNanchang UniversityNo. 999 Xuefu AvenueNanchang330031P. R. China
| | - Jun Wang
- School of Chemistry and Chemical EngineeringNanchang UniversityNo. 999 Xuefu AvenueNanchang330031P. R. China
| | - Jianxin Cai
- School of Chemistry and Chemical EngineeringNanchang UniversityNo. 999 Xuefu AvenueNanchang330031P. R. China
| | - Zheling Zeng
- School of Chemistry and Chemical EngineeringNanchang UniversityNo. 999 Xuefu AvenueNanchang330031P. R. China
| | - Ji‐Jun Zou
- School of Chemical Engineering and TechnologyTianjin UniversityNo.92 Weijin RoadTianjin300072P. R. China
| | - Shuguang Deng
- School for Engineering of MatterTransport and EnergyArizona State University551 E. Tyler MallTempeAZ 85287USA
| | | | - Shik Chi Edman Tsang
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
| |
Collapse
|
87
|
Sun H, Dan J, Liang Y, Li M, Zhuo J, Kang Y, Su Z, Zhang Q, Wang J, Zhang W. Dimensionality reduction boosts the peroxidase-like activity of bimetallic MOFs for enhanced multidrug-resistant bacteria eradication. NANOSCALE 2022; 14:11693-11702. [PMID: 35912946 DOI: 10.1039/d2nr02828j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The antibacterial strategy using cutting-edge metal-organic framework (MOF)-based nanozymes can effectively solve the problem caused by antibiotic resistance to protect human health and the environment; however it has been significantly limited by the complicated modification method and non-ideal catalytic activity. Herein, we report a facile dimensionality-reduction strategy to improve the catalytic activity of MOF-based nanozymes. By reducing the dimensionality of two-dimensional Co-TCPP(Fe) (Co-Fe NSs) to zero-dimensional Co-TCPP(Fe) (Co-Fe NDs), the peroxidase-like activity of the prepared bimetallic Co-Fe NDs was almost tripled. Consequently, the bimetallic Co-Fe NDs can highly efficiently catalyze the lower-concentration H2O2 into reactive oxygen species (ROS), resulting in a favorable antibacterial effect against methicillin-resistant Staphylococcus aureus (MRSA). Meanwhile, Co-Fe NDs can effectively promote wound healing and water environment disinfection with good biocompatibility. This work reveals the potential of a zero-dimensional bimetallic MOF-based nanozyme in resisting drug-resistant bacteria and holds great promise for future clinical and environmental applications.
Collapse
Affiliation(s)
- Hao Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jie Dan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yanmin Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Min Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yi Kang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Zehui Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Qiuping Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
88
|
Zhang Y, Hu X, Shang J, Shao W, Jin L, Quan C, Li J. Emerging nanozyme-based multimodal synergistic therapies in combating bacterial infections. Theranostics 2022; 12:5995-6020. [PMID: 35966582 PMCID: PMC9373825 DOI: 10.7150/thno.73681] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Pathogenic infections have emerged as major threats to global public health. Multidrug resistance induced by the abuse of antibiotics makes the anti-infection therapies to be a global challenge. Thus, it is urgent to develop novel, efficient and biosafe antibiotic alternatives for future antibacterial therapy. Recently, nanozymes have emerged as promising antibiotic alternatives for combating bacterial infections. More significantly, the multimodal synergistic nanozyme-based antibacterial systems open novel disinfection pathways. In this review, we are mainly focusing on the recent research progress of nanozyme-based multimodal synergistic therapies to eliminate bacterial infections. Their antibacterial mechanism, the synergistic antibacterial systems are systematically summarized and discussed according to the combination of mechanisms and the purpose to improve their antibacterial efficiency, biosafety and specificity. Finanly, the current challenges and prospects of the multimodal synergistic antibacterial systems are proposed.
Collapse
Affiliation(s)
- Yanmei Zhang
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Xin Hu
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Jing Shang
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Wenhui Shao
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Liming Jin
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Chunshan Quan
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Jun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, P. O. Box 110, Dalian 116023, China
| |
Collapse
|
89
|
Abstract
Cancerous diseases are rightfully considered among the most lethal, which have a consistently negative effect when considering official statistics in regular health reports around the globe. Nowadays, metallic nanoparticles can be potentially applied in medicine as active pharmaceuticals, adjustable carriers, or distinctive enhancers of physicochemical properties if combined with other drugs. Boron dipyrromethene (BODIPY) molecules have been considered for future applications in theranostics in the oncology field, thus expanding the potential of conceivable applicability. Hence, taking into account positive practical features of both metal-based nanostructures and BODIPY derivatives, the present study aims to gather recent results connected to BODIPY-conjugated metallic nanoparticles. This is with respect to their expediency in the diagnosis and treatment of tumor ailments as well as in sensing of heavy metals. To fulfill the designated objectives, multiple research documents were analyzed concerning the latest discoveries within the scope of BODIPY-based nanomaterials with particular emphasis on their utilization for diagnostical sensing as well as cancer diagnostics and therapy. In addition, collected examples of mentioned conjugates were presented in order to draw the attention of the scientific community to their practical applications, elucidate the topic in a consistent manner, and inspire fellow researchers for new findings.
Collapse
|
90
|
Gao X, Wu H, Li Y, Zhang L, Song M, Fu X, Chen R, Ding S, Zeng J, Li J, Liu P. Dancing in local space: rolling hoop orbital amplification combined with local cascade nanozyme catalytic system to achieve ultra-sensitive detection of exosomal miRNA. J Nanobiotechnology 2022; 20:357. [PMID: 35918755 PMCID: PMC9344616 DOI: 10.1186/s12951-022-01568-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022] Open
Abstract
The exosomal miRNA (exo-miRNA) derived from tumor cells contains rich biological information that can effectively aid in the early diagnosis of disease. However, the extremely low abundance imposes stringent requirements for accurate detection techniques. In this study, a novel, protease-free DNA amplification strategy, known as “Rolling Hoop Orbital Amplification” (RHOA), was initially developed based on the design concept of local reaction and inspired by the childhood game of rolling iron ring. Benefiting from the local space constructed by the DNA orbital, the circular DNA enzyme rolls directionally and interacts efficiently with the amplification element, making it nearly 3-fold more productive than conventional free-diffusion amplification. Similarly, the localized cascade nanozyme catalytic system formed by bridging DNA probes also exhibits outperformed than free ones. Therefore, a localized energized high-performance electrochemiluminescence (ECL) biosensor was constructed by bridging cascading nanozymes on the electrode surface through DNA probes generated by RHOA, with an impressive limit of detection (LOD) of 1.5 aM for the detection of exosomal miRNA15a-5p and a stable linearity over a wide concentration range from 10− 2 to 108 fM. Thus, this work is a focused attempt at the localized reaction, which is expected to provide a reliable method for accurately detecting of exo-miRNAs.
Collapse
Affiliation(s)
- Xin Gao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yujian Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lu Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Mingxuan Song
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xuhuai Fu
- Department of Clinical Laboratory, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Rui Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jiawei Zeng
- Department of Clinical Laboratory, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, 621000, People's Republic of China.
| | - Jia Li
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Ping Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China. .,Bioscience (Tianjin) Diagnostic Technology CO., LTD, Tianjin, 300399, People's Republic of China.
| |
Collapse
|
91
|
Wu H, Liu J, Chen Z, Lin P, Ou W, Wang Z, Xiao W, Chen Y, Cao D. Mechanism and Application of Surface-Charged Ferrite Nanozyme-Based Biosensor toward Colorimetric Detection of l-Cysteine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8266-8279. [PMID: 35749646 DOI: 10.1021/acs.langmuir.2c00657] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Peroxidase-like nanozymes with robust catalytic capacity and detection specificity have been proposed as substitutes to natural peroxidases in biochemical sensing. However, the catalytic activity enhancement, detection mechanism, and application of nanozyme-based biosensors toward l-cysteine (l-Cys) detection still remain significant challenges. In this work, a doped ferrite nanozyme with well-defined structure and surface charges is fabricated by a two-step method of continuous flow coprecipitation and high-temperature annealing. The resulted ferrite nanozyme possesses an average size of 54.5 nm and a zeta-potential of 6.45 mV. A high-performance biosensor is manufactured based on the peroxidase-like catalytic feature of the doped ferrite. The ferrite nanozyme can oxidize the 3,3',5,5'-tetramethylbenzidine (TMB) with the assistance of H2O2 because of the instinctive capacity to decompose H2O2 into ·OH. The Michaelis-Menten constants (0.0911 mM for TMB, 0.140 mM for H2O2) of the ferrite nanozyme are significantly smaller than those of horseradish peroxidase. A reliable colorimetric method is established to selectively analyze l-Cys via a facile mixing-and-detecting methodology. The detection limit and linear range are 0.119 μM and 0.2-20 μM, respectively. Taking the merits of the ferrite nanozyme-based biosensors, the l-Cys level in the human serum can be qualitatively detected. It can be anticipated that the surface-charged ferrite nanozyme shows great application prospects in the fields of bioanalytical chemistry and point-of-care testing.
Collapse
Affiliation(s)
- Hongjiao Wu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Jun Liu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Zhuoyu Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Pengcheng Lin
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Wentao Ou
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Zian Wang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Wei Xiao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| |
Collapse
|
92
|
Copper nanocomposite decorated two-dimensional metal organic frameworks of metalloporphyrin with peroxidase-mimicking activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
93
|
Yang M, Zhang J, Shi W, Zhang J, Tao C. Recent advances in metal-organic frameworks and their composites for the phototherapy of skin wounds. J Mater Chem B 2022; 10:4695-4713. [PMID: 35687028 DOI: 10.1039/d2tb00341d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Wound healing is a complex process that greatly affects the normal physiological activities of genes, proteins, signaling pathways, tissues, and organs. Bacterial infection could easily lead to serious tissue damage during wound healing, thus countering wound infections becomes a major challenge for clinicians and nursing professionals. At present, the exploration of highly effective, low toxicity and environment friendly methods for wound healing is attracting considerable interest all over the world. Recently, metal-organic frameworks (MOFs) have presented great potential for treating wound infections due to their unique characteristics of diversified functionality, large specific surface area, and high biocompatibility. These properties endow MOFs/MOF-based composites with an outstanding anti-wound infection effect, which is mainly attributed to the continuously released active components and the exerted catalytic activity with the assistance of phototherapy. In this review, the current progress of MOFs/MOF-based composites for the phototherapy of skin wounds is presented. Firstly, we illustrate the pathophysiological mechanisms, principles of phototherapy and the conventional methods for wound healing. Then, the structures and characteristics of MOFs are systematically summarized. Moreover, the review highlights the recent advances in the application of phototherapy for wound healing (including photodynamic therapy, photothermal therapy, and synergistic therapy) based on various MOFs/MOF-based composites. Finally, the challenges and perspectives are provided for the further development of MOF-based materials for medical application.
Collapse
Affiliation(s)
- Mei Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Jin Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Wu Shi
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| |
Collapse
|
94
|
Deng Q, Hou X, Zhong Y, Zhu J, Wang J, Cai J, Zeng Z, Zou JJ, Deng S, Yoskamtorn T, Tsang ESC. 2D MOF with Compact Catalytic Sites for the One‐pot Synthesis of 2,5‐Dimethylfuran from Saccharides via Tandem Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qiang Deng
- Nanchang University School of Resource, Environmental and Chemical Engineering CHINA
| | - Xuemeng Hou
- Nanchang University School of Resource, Environmental and Chemical Engineering CHINA
| | - Yao Zhong
- Nanchang University School of Resource, Environmental and Chemical Engineering CHINA
| | - Jiawei Zhu
- Nanchang University School of Resource, Environmental and Chemical Engineering CHINA
| | - Jun Wang
- Nanchang University School of Resource, Environmental and Chemical Engineering CHINA
| | - Jianxin Cai
- Nanchang University School of Resource, Environmental and Chemical Engineering CHINA
| | - Zheling Zeng
- Nanchang University School of Resource, Environmental and Chemical Engineering CHINA
| | - Ji-Jun Zou
- Tianjin University School of Chemical Engineering and Technology, CHINA
| | - Shuguang Deng
- Arizona State University School for Engineering of Matter, Transport and Energy, UNITED STATES
| | | | - Edman Shik Chi Tsang
- University of Oxford Chemistry South Parks RoadUniversity of Oxford OX1 3QR Oxford UNITED KINGDOM
| |
Collapse
|
95
|
Lyu Z, Ding S, Du D, Qiu K, Liu J, Hayashi K, Zhang X, Lin Y. Recent advances in biomedical applications of 2D nanomaterials with peroxidase-like properties. Adv Drug Deliv Rev 2022; 185:114269. [PMID: 35398244 DOI: 10.1016/j.addr.2022.114269] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 01/10/2023]
Abstract
Significant progress has been made in developing two-dimensional (2D) nanomaterials owing to their ultra-thin structure, high specific surface area, and many other advantages. Recently, 2D nanomaterials with enzyme-like properties, especially peroxidase (POD)-like activity, are highly desirable for many biomedical applications. In this review, we first classify the types of 2D POD-like nanomaterials and then summarize various strategies for endowing 2D nanomaterials with POD-like properties. Representative examples of biomedical applications are reviewed, emphasizing in antibacterial, biosensing, and cancer therapy. Last, the future challenges and prospects of 2D POD-like nanomaterials are discussed. This review is expected to provide an in-depth understanding of 2D POD-like materials for biomedical applications.
Collapse
|
96
|
Zhang B, Lv Y, Yu C, Zhang W, Song S, Li Y, Chong Y, Huang J, Zhang Z. Au-Pt nanozyme-based multifunctional hydrogel dressing for diabetic wound healing. BIOMATERIALS ADVANCES 2022; 137:212869. [PMID: 35929245 DOI: 10.1016/j.bioadv.2022.212869] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022]
Abstract
Diabetic chronic wound healing is a critical clinical challenge due to the particularity of wound microenvironment, including hyperglycemia, excessive oxidative stress, hypoxia, and bacterial infection. Herein, we developed a multifunctional self-healing hydrogel dressing (defined as OHCN) to regulate the complex microenvironment of wound for accelerative diabetic wound repair. The OHCN hydrogel dressing was constructed by integrating Au-Pt alloy nanoparticles into a hydrogel (OHC) that formed through Schiff-base reaction between oxidized hyaluronic acid (OHA) and carboxymethyl chitosan (CMCS). The dynamic cross-linking of OHA and antibacterial CMCS imparted the OHCN hydrogel dressing with excellent antibacterial and self-healing properties. Meanwhile, Au-Pt alloy nanoparticles endowed the OHCN hydrogel dressing with the functions of lowering blood glucose, alleviating oxidative damage, and providing O2 by simulating glucose oxidase and catalase. Through a synergistic combination of OHC hydrogel and Au-Pt alloy nanoparticles, the resulted OHCN hydrogel dressing significantly ameliorated the pathological microenvironment and accelerated the healing rate of diabetic wound. The proposed nanozyme-decorated multifunctional hydrogel offers an efficient strategy for the improved management of diabetic chronic wound.
Collapse
Affiliation(s)
- Bo Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Yinjuan Lv
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chenggong Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Wei Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shaoshuai Song
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yuxuan Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yu Chong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
97
|
Cheng L, Guo Q, Zhao K, Li YM, Ren H, Ji CY, Li W. AuPd Alloys and Chiral Proline Dual-Functionalized NH2-UiO-66 Catalysts for Tandem Oxidation/Asymmetric Aldol Reactions. Catal Letters 2022. [DOI: 10.1007/s10562-022-04044-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
98
|
Chen M, Zhou X, Xiong C, Yuan T, Wang W, Zhao Y, Xue Z, Guo W, Wang Q, Wang H, Li Y, Zhou H, Wu Y. Facet Engineering of Nanoceria for Enzyme-Mimetic Catalysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21989-21995. [PMID: 35503925 DOI: 10.1021/acsami.2c04320] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomaterials with natural enzyme-mimicking characteristics have aroused extensive attention in various fields owing to their economical price, ease of large-scale production, and environmental resistance. Previous investigations have demonstrated that composition, size, shape, and surface modification play important roles in the enzymelike activity of nanomaterials; however, a fundamental understanding of the crystal facet effect, which determines surface energy or surface reactivity, has rarely been reported. Herein, fluorite cubic CeO2 nanocrystals with controllably exposed {111}, {100}, or {110} facets are fabricated as proof-of-concept candidates to study the facet effect on the peroxidase-mimetic activity. Both experiments and theoretical results show that {110}-dominated CeO2 nanorods (CeO2 NR) possess the highest peroxidase-mimetic activity due to the richest defects on their surfaces, which are beneficial to capture metal atoms to further enrich their artificial enzymatic functionality for cascade catalysis. For instance, the introduction of atomically dispersed Au on CeO2 NR surfaces not only enhances the peroxidase activity but also endows the obtained catalyst with glucose oxidase (GOx)-mimicking activity, which realizes enzyme-free cascade reactions for glucose colorimetric detection. This work not only provides an understanding for crystal facet engineering of nanomaterials to enhance the catalytic activity but also opens up a new way for the design of biomimetic nanomaterials with multiple functions.
Collapse
Affiliation(s)
- Min Chen
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaocheng Zhou
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Can Xiong
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tongwei Yuan
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Wenyu Wang
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yafei Zhao
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhenggang Xue
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenxin Guo
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qiuping Wang
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Huang Zhou
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuen Wu
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
99
|
Mao X, He F, Qiu D, Wei S, Luo R, Chen Y, Zhang X, Lei J, Monchaud D, Mergny JL, Ju H, Zhou J. Efficient Biocatalytic System for Biosensing by Combining Metal-Organic Framework (MOF)-Based Nanozymes and G-Quadruplex (G4)-DNAzymes. Anal Chem 2022; 94:7295-7302. [PMID: 35549161 DOI: 10.1021/acs.analchem.2c00600] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A high catalytic efficiency associated with a robust chemical structure are among the ultimate goals when developing new biocatalytic systems for biosensing applications. To get ever closer to these goals, we report here on a combination of metal-organic framework (MOF)-based nanozymes and a G-quadruplex (G4)-based catalytic system known as G4-DNAzyme. This approach aims at combining the advantages of both partners (chiefly, the robustness of the former and the modularity of the latter). To this end, we used MIL-53(Fe) MOF and linked it covalently to a G4-forming sequence (F3TC), itself covalently linked to its cofactor hemin. The resulting complex (referred to as MIL-53(Fe)/G4-hemin) exhibited exquisite peroxidase-mimicking oxidation activity and an excellent robustness (being stored in water for weeks). These properties were exploited to devise a new biosensing system based on a cascade of reactions catalyzed by the nanozyme (ABTS oxidation) and an enzyme, the alkaline phosphatase (or ALP, ascorbic acid 2-phosphate dephosphorylation). The product of the latter poisoning the former, we thus designed a biosensor for ALP (a marker of bone diseases and cancers), with a very low limit of detection (LOD, 0.02 U L-1), which is operative in human plasma samples.
Collapse
Affiliation(s)
- Xuanxiang Mao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Fangni He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Shijiong Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Rengan Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yun Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR 6302, UBFC, Dijon 21078, France
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
100
|
Zhang J, Yang J, Qin X, Zhuang J, Jing D, Ding Y, Lu B, Wang Y, Chen T, Yao Y. Glucose Oxidase Integrated Porphyrinic Covalent Organic Polymers for Combined Photodynamic/Chemodynamic/Starvation Therapy in Cancer Treatment. ACS Biomater Sci Eng 2022; 8:1956-1963. [PMID: 35412788 DOI: 10.1021/acsbiomaterials.2c00138] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The anticancer effect of photodynamic therapy (PDT) is usually impeded by the hypoxia microenvironment in solid tumors; thus, it requires integration with other treatment tactics to achieve an optimal anticancer efficacy. Porphyrin-containing nanotherapeutic agents are broadly used for PDT in tumor treatment. However, chemodynamic therapy (CDT) of porphyrin-based namomaterials has been rarely reported. Here, a novel nanoscale porphyrin-containing covalent organic polymer (PCOP) was designed by the cross-linking of 5,10,15,20-tetrakis(4-aminophenyl)porphyrin with 1,1'-ferrocenedicarboxylic acid at room temperature. After glucose oxidase (GOx) was loaded, the obtained nanotherapeutic agent of PCOPs@GOx presented an augmented synergy of PDT, CDT, and energy starvation to suppress tumor growth upon near-infrared light irradiation. In vitro and in vivo outcomes demonstrated that this multifunctional nanoplatform not only realized excellent tumor inhibition but also provided a new tactic for designing chemodynamic/photodynamic/starvation combined therapy in one material.
Collapse
Affiliation(s)
- Jianan Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Jiawen Yang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiru Qin
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Jiayi Zhuang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Danni Jing
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| |
Collapse
|