51
|
Yang Y, Zhao H, Li Y, Chen Y, Wang Z, Wu W, Hu L, Zhu J. Tuning the Photochromism of Spiropyran in Functionalized Nanoporous Silica Nanoparticles for Dynamic Anticounterfeiting Applications. ACS OMEGA 2023; 8:16459-16470. [PMID: 37179600 PMCID: PMC10173341 DOI: 10.1021/acsomega.3c01604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Here, we report a novel invisible ink with different decay times based on thin films with different molar ratios of spiropyran (SP)/Si, which allows the encryption of messages over time. Nanoporous silica has been found to be an excellent substrate to improve the solid photochromism of spiropyran, but the hydroxyl groups of silica have a serious effect on fade speeds. The density of silanol groups in silica has an influence on the switching behavior of spiropyran molecules, as they stabilize the amphiphilic merocyanine isomers and thus slow down the fading process from the open to the closed form. Here, we investigate the solid photochromic behavior of spiropyran by sol-gel modification of the silanol groups and explore its potential application in UV printing and dynamic anticounterfeiting. To extend its applications, spiropyran is embedded in organically modified thin films prepared by the sol-gel method. Notably, by using the different decay times of thin films with different SP/Si molar ratios, time-dependent information encryption can be realized. It provides an initial "false" code, which does not display the required information, and only after a given time will the encrypted data appear.
Collapse
Affiliation(s)
- Yuhui Yang
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
- Department
of Polymer Materials, Zhejiang Sci-Tech
University, Hangzhou 310018, China
- Institute
of Smart Biomedical Materials, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Huimin Zhao
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Yuqing Li
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Yilong Chen
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Zhaohui Wang
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Wei Wu
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Leilei Hu
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Jiangkun Zhu
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
52
|
Zou X, Xue J, Li X, Chan CPY, Li Z, Li P, Yang Z, Lai KWC. High-Fidelity sEMG Signals Recorded by an on-Skin Electrode Based on AgNWs for Hand Gesture Classification Using Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19374-19383. [PMID: 37036803 DOI: 10.1021/acsami.2c21354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The human forearm is one of the most densely distributed parts of the human body, with the most irregular spatial distribution of muscles. A number of specific forearm muscles control hand motions. Acquiring high-fidelity sEMG signals from human forearm muscles is vital for human-machine interface (HMI) applications based on gesture recognition. Currently, the most commonly used commercial electrodes for detecting sEMG or other electrophysiological signals have a rigid nature without stretchability and cannot maintain conformal contact with the human skin during deformation, and the adhesive hydrogel used in them to reduce skin-electrode impedance may shrink and cause skin inflammation after long-term use. Therefore, developing elastic electrodes with stretchability and biocompatibility for sEMG signal recording is essential for developing HMI. Here, we fabricated a nanocomposite hybrid on-skin electrode by infiltrating silver nanowires (AgNWs), a one-dimensional (1D) nano metal material with conductivity, into polydimethylsiloxane (PDMS), a silicone elastomer with a similar Young's modulus to that of the human skin. The AgNW on-skin electrode has a thickness of 300 μm and low sheet resistance of 0.481 ± 0.014 Ω/sq and can withstand the mechanical strain of up to 54% and maintain a sheet resistance lower than 1 Ω/sq after 1000 dynamic strain cycles. The AgNW on-skin electrode can record high signal-to-noise ratio (SNR) sEMG signals from forearm muscles and can reflect various force levels of muscles by sEMG signals. Besides, four typical hand gestures were recognized by the multichannel AgNW on-skin electrodes with a recognition accuracy of 92.3% using machine learning method. The AgNW on-skin electrode proposed in this study has great potential and promise in various HMI applications that employ sEMG signals as control signals.
Collapse
Affiliation(s)
- Xiaoyang Zou
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Hong Kong 999077, China
| | - Jiaqi Xue
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Hong Kong 999077, China
| | - Xiaoting Li
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Hong Kong 999077, China
| | - Colin Pak Yu Chan
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Hong Kong 999077, China
| | - Ziqi Li
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Hong Kong 999077, China
| | - Pengyu Li
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Zhengbao Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - King Wai Chiu Lai
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
53
|
Li J, Ding Q, Wang H, Wu Z, Gui X, Li C, Hu N, Tao K, Wu J. Engineering Smart Composite Hydrogels for Wearable Disease Monitoring. NANO-MICRO LETTERS 2023; 15:105. [PMID: 37060483 PMCID: PMC10105367 DOI: 10.1007/s40820-023-01079-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/16/2023] [Indexed: 05/31/2023]
Abstract
Growing health awareness triggers the public's concern about health problems. People want a timely and comprehensive picture of their condition without frequent trips to the hospital for costly and cumbersome general check-ups. The wearable technique provides a continuous measurement method for health monitoring by tracking a person's physiological data and analyzing it locally or remotely. During the health monitoring process, different kinds of sensors convert physiological signals into electrical or optical signals that can be recorded and transmitted, consequently playing a crucial role in wearable techniques. Wearable application scenarios usually require sensors to possess excellent flexibility and stretchability. Thus, designing flexible and stretchable sensors with reliable performance is the key to wearable technology. Smart composite hydrogels, which have tunable electrical properties, mechanical properties, biocompatibility, and multi-stimulus sensitivity, are one of the best sensitive materials for wearable health monitoring. This review summarizes the common synthetic and performance optimization strategies of smart composite hydrogels and focuses on the current application of smart composite hydrogels in the field of wearable health monitoring.
Collapse
Affiliation(s)
- Jianye Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ning Hu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China.
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
54
|
Guo Y, An X, Qian X. Fast Response and Visual Transparency Switching Hydrochromic Film Based on the Rational Structure of Cellulose/Poloxamer Copolymers Design for Smart Window. Macromol Rapid Commun 2023; 44:e2200831. [PMID: 36583648 DOI: 10.1002/marc.202200831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/14/2022] [Indexed: 12/31/2022]
Abstract
The authors are motivated to develop a series of hydrochromic copolymers with fast response, reversibility, repeatability, and visual transparency transition. The hydrochromic block copolymers are based on the rational ratio of hydrophilic segments of poloxamer block and hydrophobic segments of ethyl cellulose according to the preparation method of polyurethane. By tuning the ratio of hydrophilic segments or adding hygroscopic salts, the hydrochromic polymer is endowed with the ability to visualize the transparency in response to the relative humidity. Especially, the response time of the polymer is extremely shortened, up to 1 s for the optimized sample. Within the moisture stimulation, the hygroscopic swelling increases the film thickness, leading to a reversible transparency switching from a highly transparent state (82%) to an opaque white state (20.5%).
Collapse
Affiliation(s)
- Yuqian Guo
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Xianhui An
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Xueren Qian
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| |
Collapse
|
55
|
Li B, Cai G, Li X, Sha W, Shen X, Wang T, Zhao H, Wang Y, Cui J. Pruney Finger-Inspired Switchable Surface with Water-Actuated Dynamic Textures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11333-11341. [PMID: 36795999 DOI: 10.1021/acsami.2c22378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Switchable surfaces play an important role in the development of functional materials. However, the construction of dynamic surface textures remains challenging due to the complicated structural design and surface patterning. Herein, a pruney finger-inspired switchable surface (PFISS) is developed by constructing water-sensitive surface textures on a polydimethylsiloxane substrate by taking advantage of the hygroscopicity of the inorganic salt filler and the 3D printing technology. Like human fingertips, the PFISS shows high water sensitivity with obvious surface variation in wet and dry states, which is actuated by water absorption-desorption of the hydrotropic inorganic salt filler. Besides, when the fluorescent dye is optionally added into the matrix of the surface texture, water-responsive fluorescent emitting is observed, providing a feasible surface-tracing strategy. The PFISS shows effective regulation of the surface friction and performs a good antislip effect. The reported synthetic strategy for the PFISS offers a facile way for building a wide range of switchable surfaces.
Collapse
Affiliation(s)
- Boya Li
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Pukou District, Nanjing 211816, P.R. China
- Advanced Manufacturing and Programmable Matter Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Gao Cai
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Pukou District, Nanjing 211816, P.R. China
| | - Xunzhang Li
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Pukou District, Nanjing 211816, P.R. China
| | - Wenjing Sha
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Pukou District, Nanjing 211816, P.R. China
| | - Xiaodong Shen
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Pukou District, Nanjing 211816, P.R. China
| | - Tingwei Wang
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Pukou District, Nanjing 211816, P.R. China
| | - Huaixia Zhao
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Pukou District, Nanjing 211816, P.R. China
| | - Yangxin Wang
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Pukou District, Nanjing 211816, P.R. China
| | - Jiaxi Cui
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| |
Collapse
|
56
|
Fu Y, Shi Q, Sun J, Li X, Pan C, Tang T, Peng T, Tan H. Construction of Wash-Resistant Photonic Crystal-Coated Fabrics based on Hydrogen Bonds and a Dynamically Cross-Linking Double-Network Structure. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8480-8491. [PMID: 36748731 DOI: 10.1021/acsami.2c20581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Structural coloration as the most possible way to realize the ecofriendly dying process for textiles or fabrics has attracted significant attention in the past decades. However, photonic crystals (PCs) are a typical example of materials with structural color usually located on the surface of the fabrics or textiles, which make them not stable when rubbed, bent, or washed due to the weak interaction between the PC coatings and fabrics. Here, double networks were constructed between the PC coatings and the fabrics for the first time via a hydrogen bond by introducing tannic acid (TA) and dynamic cross-linking with 2-formylphenylboronic acid to increase the wash resistance of the structural colored fabrics. On modifying the monodispersed SiO2 nanoparticles, poly(dimethylsiloxane), and the fabrics, the interaction between the PC coatings and the fabrics increased by the formation of double networks. The structural color, wash, and rub resistance of the PC-coated fabrics were systematically studied. The obtained fabrics with the TA content at 0.030% (SiDT30) showed the best wash and rub resistance. The construction of double networks not only improved the wash and rub resistance of PCs but also retained the bright structural color of the PC coatings, facilitating the practical application of structural coloration in the textile industry.
Collapse
Affiliation(s)
- Yin Fu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qingwen Shi
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jiuxiao Sun
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xue Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Chen Pan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Tao Tang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Tao Peng
- High-Tech Organic Fibers Key Laboratory of Sichuan Province, Bluestar Chengrand Co., Ltd., Chengdu, Sichuan 610041, China
| | - Haiying Tan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
57
|
Wei X, Li J, Hu Z, Wang C, Gao Z, Cao Y, Han J, Li Y. Carbon Quantum Dot/Chitosan-Derived Hydrogels with Photo-stress-pH Multiresponsiveness for Wearable Sensors. Macromol Rapid Commun 2023; 44:e2200928. [PMID: 36786588 DOI: 10.1002/marc.202200928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Indexed: 02/15/2023]
Abstract
In recent years, hydrogels have attracted extensive attention in smart sensing owing to their biocompatibility and high elasticity. However, it is still a challenge to develop hydrogels with excellent multiple responsiveness for smart wearable sensors. In this paper, a facile synthesis of carbon quantum dots (CQDs)-doped cross-linked chitosan quaternary/carboxymethylcellulose hydrogels (CCCDs) is presented. Designing of dual network hydrogels decorated with CQDs provides abundant crosslinking and improves the mechanical properties of the hydrogels. The hydrogel-based strain sensor exhibits excellent sensitivity (gauge factor: 9.88), linearity (R2 : 0.97), stretchable ability (stress: 0.67 MPa; strain: 404%), good cyclicity, and durability. The luminescent properties are endowed by the CQDs further broaden the application of hydrogels for realizing flexible electronics. More interestingly, the strain sensor based on CCCDs hydrogel demonstrates photo responsiveness (ΔR/R0 ≈20%) and pH responsiveness (pH range ≈4-7) performance. CCCDs hydrogels can be used for gesture recognition and light sensing switch. As a proof-of-concept, a smart wearable sensor is designed for monitoring human activities and detecting pH variation in human sweat during exercise. This study reveals new possibilities for further applications in wearable health monitoring.
Collapse
Affiliation(s)
- Xiaotong Wei
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Jie Li
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Zhirui Hu
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Chen Wang
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Zhiqiang Gao
- School of Mechatronic Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Yang Cao
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Jing Han
- School of Mechatronic Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Yingchun Li
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| |
Collapse
|
58
|
Shi Q, Li X, Fu Y, Sun J, Tang T, Wang X, Ma Y, Tan H. Structurally colored aramid fabric construction and its application as a recyclable photonic catalyst. SOFT MATTER 2023; 19:701-707. [PMID: 36601785 DOI: 10.1039/d2sm01373h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Structural colors can be used in fabric coloring due to their bright color and non-fading properties. However, it is still a challenge to construct structural color on high crystallinity, smooth surfaced and yellow colored aramid fabrics. Herein, for the first time, photonic crystals (PCs) with structural color were constructed on aramid fabrics by introducing dopamine to modify aramid fabrics and synthesizing monodisperse high refractive index zinc sulfide nanoparticles (ZnS). The influence of the PC coatings on the structural color, mechanical properties, and thermal stability of the structurally colored aramid fabrics or fibers was further investigated. Moreover, due to the excellent catalytic properties of ZnS and the slow photon effects of PCs, the structurally colored fabrics showed good photocatalytic properties, which will be beneficial in reusing the catalysts, which is crucial to their application in the coloring of fabrics but also facilitates the recycling of waste PC coated aramid fabrics.
Collapse
Affiliation(s)
- Qingwen Shi
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Xue Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Yin Fu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Jiuxiao Sun
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Tao Tang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xuyi Wang
- High-Tech Organic Fibers Key Laboratory of Sichuan Province and China, Bluestar Chengrand Co., Ltd, China
| | - Yubin Ma
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Haiying Tan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
59
|
Han F, Xie X, Wang T, Cao C, Li J, Sun T, Liu H, Geng S, Wei Z, Li J, Xu F. Wearable Hydrogel-Based Epidermal Sensor with Thermal Compatibility and Long Term Stability for Smart Colorimetric Multi-Signals Monitoring. Adv Healthc Mater 2023; 12:e2201730. [PMID: 36259562 DOI: 10.1002/adhm.202201730] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/06/2022] [Indexed: 01/26/2023]
Abstract
Hydrogel-based wearable epidermal sensors (HWESs) have attracted widespread attention in health monitoring, especially considering their colorimetric readout capability. However, it remains challenging for HWESs to work at extreme temperatures with long term stability due to the existence of water. Herein, a wearable transparent epidermal sensor with thermal compatibility and long term stability for smart colorimetric multi-signals monitoring is developed, based on an anti-freezing and anti-drying hydrogel with high transparency (over 90% transmittance), high stretchability (up to 1500%) and desirable adhesiveness to various kinds of substrates. The hydrogel consists of polyacrylic acid, polyacrylamide, and tannic acid-coated cellulose nanocrystals in glycerin/water binary solvents. When glycerin readily forms strong hydrogen bonds with water, the hydrogel exhibits outstanding thermal compatibility. Furthermore, the hydrogel maintains excellent adhesion, stretchability, and transparency after long term storage (45 days) or at subzero temperatures (-20 °C). For smart colorimetric multi-signals monitoring, the freestanding smart colorimetric HWESs are utilized for simultaneously monitoring the pH, T and light, where colorimetric signals can be read and stored by artificial intelligence strategies in a real time manner. In summary, the developed wearable transparent epidermal sensor holds great potential for monitoring multi-signals with visible readouts in long term health monitoring.
Collapse
Affiliation(s)
- Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xueyong Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tiansong Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chaoyu Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Juju Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tianying Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jing Li
- Department of Burns and Plastic Surgery, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
60
|
Kim K, Lee WG. Portable, Automated and Deep-Learning-Enabled Microscopy for Smartphone-Tethered Optical Platform Towards Remote Homecare Diagnostics: A Review. SMALL METHODS 2023; 7:e2200979. [PMID: 36420919 DOI: 10.1002/smtd.202200979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Globally new pandemic diseases induce urgent demands for portable diagnostic systems to prevent and control infectious diseases. Smartphone-based portable diagnostic devices are significantly efficient tools to user-friendly connect personalized health conditions and collect valuable optical information for rapid diagnosis and biomedical research through at-home screening. Deep learning algorithms for portable microscopes also help to enhance diagnostic accuracy by reducing the imaging resolution gap between benchtop and portable microscopes. This review highlighted recent progress and continued efforts in a smartphone-tethered optical platform through portable, automated, and deep-learning-enabled microscopy for personalized diagnostics and remote monitoring. In detail, the optical platforms through smartphone-based microscopes and lens-free holographic microscopy are introduced, and deep learning-based portable microscopic imaging is explained to improve the image resolution and accuracy of diagnostics. The challenges and prospects of portable optical systems with microfluidic channels and a compact microscope to screen COVID-19 in the current pandemic are also discussed. It has been believed that this review offers a novel guide for rapid diagnosis, biomedical imaging, and digital healthcare with low cost and portability.
Collapse
Affiliation(s)
- Kisoo Kim
- Intelligent Optical Module Research Center, Korea Photonics Technology Institute (KOPTI), Buk-gu, Gwangju, 61007, Republic of Korea
| | - Won Gu Lee
- Department of Mechanical Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| |
Collapse
|
61
|
Yu Z, Tang D. Artificial Neural Network-Assisted Wearable Flexible Sweat Patch for Drug Management in Parkinson's Patients Based on Vacancy-Engineered Processing of g-C 3N 4. Anal Chem 2022; 94:18000-18008. [PMID: 36524711 DOI: 10.1021/acs.analchem.2c04291] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein, we developed a flexible, low-cost non-enzymatic sweat sensing chip for in situ acquisition of bioinformation in sweat of individuals under exercise conditions to advance personal health monitoring and medication management for patients with Parkinson's disease. This low-cost, flexible, wearable sweat sensor consists of a printed screen electrode modified with g-C3N4 material and an external MSME element. The doping strategy and surface activation strategy of the g-C3N4-based exhibited efficient glucose oxidase-like activity and electrochemical activity when testing l-dopa and glucose in sweat. The optimized signal was transmitted to a smartphone for processing 12 individuals with simulated dosing, enabling continuous monitoring of l-dopa metabolism in sweat and management of dosing. The generalization ability and robustness of models constructed by methods such as multiple linear regression, artificial neural networks, and convolutional neural networks were compared cross-sectionally. Deep learning models based on artificial neural networks help develop a user-personalized medication administration reminder system, which provides a promising paradigm for reliable medication supervision for Parkinson's patients in the Internet of Things era.
Collapse
Affiliation(s)
- Zhichao Yu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People Republic of China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People Republic of China
| |
Collapse
|
62
|
Transparent, intrinsically stretchable cellulose nanofiber-mediated conductive hydrogel for strain and humidity sensing. Carbohydr Polym 2022; 301:120300. [DOI: 10.1016/j.carbpol.2022.120300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/08/2022]
|
63
|
Arjun AM, Krishna PH, Nath AR, Rasheed PA. A review on advances in the development of electrochemical sensors for the detection of anesthetic drugs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4040-4052. [PMID: 36173296 DOI: 10.1039/d2ay01290a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Surgeries are a crucial medical intervention that has saved countless lives from time immemorial. To reduce pain during surgeries patients are administered with anesthetic drugs, which cause loss of sensation and thus reduce the pain involved. However, anesthetists control the effects of the drug by depending on pharmacokinetic calculations, which may vary from patient to patient, thus leading to a reduction in the quality of anesthetic care and adverse effects. To avoid these adverse effects, it is highly necessary to implement a real time monitoring of plasma drug concentration, which will adjust the drug infusion and maintain the levels of drug within therapeutic levels. To implement such a system, it is highly essential to analyze current advances in electrochemical sensor systems for different types of anesthetic drugs like opioids, intravenous anesthetics, and neuromuscular blockers. This review focuses on the present strategy of electrochemical sensors implemented for the detection of anesthetic drugs and it helps towards developing a real time drug dispensing system with respect to the plasma concentration of the drug. This analysis will contribute towards establishing highly effective real time drug dispensing systems like the total intravenous anesthesia technique and patient-controlled analgesia. Such systems will lead to better usage of anesthetic drugs and improve the quality of anesthetic care thus making surgeries safer and more painless.
Collapse
Affiliation(s)
- Ajith Mohan Arjun
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, India-678 557.
| | - Prasannakumari H Krishna
- Department of Anaesthesiology, Regional Cancer Center, Medical College Campus, Post Bag No. 2417, Thiruvananthapuram, India 695011
| | - Anish R Nath
- DST Unit on Nanoscience and Thematic Unit of Excellence, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India-600036
| | - P Abdul Rasheed
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, India-678 557.
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, India-678 557
| |
Collapse
|
64
|
Liu Z, Wang J, Zhang Q, Li Z, Li Z, Cheng L, Dai F. Electrospinning Silk Fibroin/Graphene Nanofiber Membrane Used for 3D Wearable Pressure Sensor. Polymers (Basel) 2022; 14:polym14183875. [PMID: 36146023 PMCID: PMC9502556 DOI: 10.3390/polym14183875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
With the improvement of science and technology, flexible sensors have become a hot research topic. Flexible sensors have broad application in human health detection and motion detection and other fields. In this paper, the silk fibroin/graphene nanofiber membranes were prepared by double needle electrospinning. In addition, the high sensitivity of the three-dimensional composite hierarchy was obtained by superimposing a monolayer silk fibroin/graphene nanofiber membrane, which was prepared via double needle electrospinning. In addition, the three-dimensional hierarchy was encapsulated by polydimethylsiloxane to prepare a pressure sensor. The sensitivity of the pressure sensor can achieve 7.7 Pa−1. In addition, this pressure sensor has excellent durability (>2000 cycles) and shorter response times (490 ms), which has broad research prospects in human health detection and motion detection.
Collapse
Affiliation(s)
- Zulan Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jiaxuan Wang
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Qian Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China
| | - Zheng Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China
| | - Zhi Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Lan Cheng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Correspondence: (L.C.); (F.D.)
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Correspondence: (L.C.); (F.D.)
| |
Collapse
|
65
|
Jang J, Lee SW, Lee S, Lee CE, Kim EH, Jin W, Lee S, Kim Y, Oh JW, Jung Y, Kim H, Yong H, Park J, Lee S, Park C. Wireless Stand-Alone Trimodal Interactive Display Enabled by Direct Capacitive Coupling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204760. [PMID: 35905410 DOI: 10.1002/adma.202204760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
With recent advances in interactive displays, the development of a stand-alone interactive display with no electrical interconnection is of great interest. Here, a wireless stand-alone interactive display (WiSID), enabled by direct capacitive coupling, consisting of three layers: two in-plane metal electrodes separated by a gap, a composite layer for field-induced electroluminescence (EL) and inverse piezoelectric sound, and a stimuli-responsive layer, from bottom to top, is presented. Alternating current power necessary for field-induced EL and inverse piezoelectric sound is wirelessly transferred from a power unit, with two in-plane electrodes remotely separated from the WiSID. The unique in-plane power transfer through the stimuli-sensitive polar bridge allows stand-alone operation of the WiSID, making it suitable for the wireless dynamic monitoring of medical fluids. Moreover, a haptic wireless stand-alone trimodal interactive display mounted on a human finger is demonstrated, whereby touch is wirelessly displayed in various outputs of EL, inverse piezoelectric sound, and tactile vibration, making it suitable for a wireless three-mode smart braille display.
Collapse
Affiliation(s)
- Jihye Jang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seung Won Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208-3108, USA
| | - Seokyeong Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chang Eun Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eui Hyuk Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Wookyeong Jin
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sejeong Lee
- College of Nursing and Brain Korea 21 FOUR Project, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Youngkyung Kim
- College of Nursing and Brain Korea 21 FOUR Project, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin Woo Oh
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Youngdoo Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - HoYeon Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyungseok Yong
- School of Mechanical Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjack-gu, Seoul, 156-756, Republic of Korea
| | - Jeongok Park
- College of Nursing, Mo-Im Kim Nursing Research Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjack-gu, Seoul, 156-756, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|