51
|
Prange S, Lin Z, Nourredine M, Danaila T, Laurencin C, Lagha-Boukbiza O, Anheim M, Klinger H, Longato N, Phillipps C, Voirin J, Polo G, Simon E, Mertens P, Rolland AS, Devos D, Metereau E, Tranchant C, Thobois S. Limbic stimulation drives mania in STN-DBS in Parkinson disease: a prospective study. Ann Neurol 2022; 92:411-417. [PMID: 35703252 DOI: 10.1002/ana.26434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 11/10/2022]
Abstract
In this one-year prospective study, Parkinson's disease (PD) patients with or without mania following STN-DBS were compared to investigate risk and etiological factors, clinical management and consequences. Eighteen (16.2%) out of 111 consecutive PD patients developed mania, of whom 17 were males. No preoperative risk factor was identified. Postoperative mania was related to ventral limbic subthalamic stimulation in 15 (83%) patients, and resolved as stimulation was relocated to the sensorimotor STN, besides discontinuation or reduction of dopamine agonists and use of low-dose clozapine in 12 patients, while motor and nonmotor outcomes were similar. These findings underpin the prominent role of limbic subthalamic stimulation in postoperative mania. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Stéphane Prange
- Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France.,Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson NS-PARK/FCRIN network, Bron, France.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Cologne, Germany
| | - Zhengyu Lin
- Service de Neurochirurgie fonctionnelle, Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Hospices Civils de Lyon 59 Bd Pinel, 69500, Bron, France.,Department of Neurosurgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Teodor Danaila
- Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France.,Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson NS-PARK/FCRIN network, Bron, France
| | - Chloé Laurencin
- Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France.,Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson NS-PARK/FCRIN network, Bron, France
| | - Ouhaid Lagha-Boukbiza
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Hélène Klinger
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson NS-PARK/FCRIN network, Bron, France
| | - Nadine Longato
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Clelie Phillipps
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jimmy Voirin
- Department of Neurosurgery, NS-PARK/F-CRIN, Strasbourg University Hospital, Strasbourg, France
| | - Gustavo Polo
- Service de Neurochirurgie fonctionnelle, Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Hospices Civils de Lyon 59 Bd Pinel, 69500, Bron, France
| | - Emile Simon
- Service de Neurochirurgie fonctionnelle, Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Hospices Civils de Lyon 59 Bd Pinel, 69500, Bron, France
| | - Patrick Mertens
- Service de Neurochirurgie fonctionnelle, Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Hospices Civils de Lyon 59 Bd Pinel, 69500, Bron, France
| | - Anne-Sophie Rolland
- Univ Lille, CHU-Lille, Medical Pharmacology & Neurology, Expert center for Parkinson, Lille Neuroscience & Cognition, Inserm, UMR-S1172, LICEND, NS-Park network, F-59000, Lille, France
| | - David Devos
- Univ Lille, CHU-Lille, Medical Pharmacology & Neurology, Expert center for Parkinson, Lille Neuroscience & Cognition, Inserm, UMR-S1172, LICEND, NS-Park network, F-59000, Lille, France
| | - Elise Metereau
- Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France.,Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson NS-PARK/FCRIN network, Bron, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Stéphane Thobois
- Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France.,Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson NS-PARK/FCRIN network, Bron, France.,Univ Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine et de Maïeutique Lyon Sud Charles Mérieux, Oullins, France
| | | |
Collapse
|
52
|
Rački V, Hero M, Rožmarić G, Papić E, Raguž M, Chudy D, Vuletić V. Cognitive Impact of Deep Brain Stimulation in Parkinson’s Disease Patients: A Systematic Review. Front Hum Neurosci 2022; 16:867055. [PMID: 35634211 PMCID: PMC9135964 DOI: 10.3389/fnhum.2022.867055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionParkinson’s disease (PD) patients have a significantly higher risk of developing dementia in later disease stages, leading to severe impairments in quality of life and self-functioning. Questions remain on how deep brain stimulation (DBS) affects cognition, and whether we can individualize therapy and reduce the risk for adverse cognitive effects. Our aim in this systematic review is to assess the current knowledge in the field and determine if the findings could influence clinical practice.MethodsWe have conducted a systematic review according to PRISMA guidelines through MEDLINE and Embase databases, with studies being selected for inclusion via a set inclusion and exclusion criteria.ResultsSixty-seven studies were included in this systematic review according to the selected criteria. This includes 6 meta-analyses, 18 randomized controlled trials, 17 controlled clinical trials, and 26 observational studies with no control arms. The total number of PD patients encompassed in the studies cited in this review is 3677, not including the meta-analyses.ConclusionCognitive function in PD patients can deteriorate, in most cases mildly, but still impactful to the quality of life. The strongest evidence is present for deterioration in verbal fluency, while inconclusive evidence is still present for executive function, memory, attention and processing speed. Global cognition does not appear to be significantly impacted by DBS, especially if cognitive screening is performed prior to the procedure, as lower baseline cognitive function is connected to poor outcomes. Further randomized controlled studies are required to increase the level of evidence, especially in the case of globus pallidus internus DBS, pedunculopontine nucleus DBS, and the ventral intermediate nucleus of thalamus DBS, and more long-term studies are required for all respective targets.
Collapse
Affiliation(s)
- Valentino Rački
- Department of Neurology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Clinic of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Mario Hero
- Department of Neurology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Clinic of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | | | - Eliša Papić
- Department of Neurology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Clinic of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Marina Raguž
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
| | - Darko Chudy
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimira Vuletić
- Department of Neurology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Clinic of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia
- *Correspondence: Vladimira Vuletić,
| |
Collapse
|
53
|
Hayashi Y, Mishima T, Fujioka S, Morishita T, Inoue T, Nagamachi S, Tsuboi Y. Unilateral GPi-DBS Improves Ipsilateral and Axial Motor Symptoms in Parkinson’s Disease as Evidenced by a Brain Perfusion Single Photon Emission Computed Tomography Study. Front Hum Neurosci 2022; 16:888701. [PMID: 35634204 PMCID: PMC9130959 DOI: 10.3389/fnhum.2022.888701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/07/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Deep brain stimulation (DBS) is an effective treatment for advanced Parkinson’s disease (PD) with the targeting bilateral subthalamic nucleus or globus pallidus internus (STN or GPi-DBS). So far, detailed studies on the efficacy of unilateral STN-DBS for motor symptoms have been reported, but few studies have been conducted on unilateral GPi-DBS. Materials and Methods Seventeen patients with Parkinson’s disease (PwPD) who underwent unilateral GPi-DBS were selected. We conducted comparison analyses between scores obtained 6–42 months pre- and postoperatively using the following measurement tools: the Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) part III, the Hoehn and Yahr stage, the presence/absence of dyskinesia, Mini-Mental State Examination (MMSE), Frontal Assessment Battery (FAB), Geriatric Depression Scale (GDS), levodopa equivalent dose (LED), and cerebral blood flow by single photon emission computed tomography (SPECT). Patient backgrounds were compared between four cohorts with favorable (good responders, ≥50% improvement) and unfavorable (poor responders, <50% improvement) postoperative outcome. Results Significant improvement was observed postoperatively in the following: total MDS-UPDRS Part III scores during the off period, contralateral scores, ipsilateral scores, and axial scores. Similarly, the Hoehn and Yahr stages during the off period, and GDS also showed significant decrease. In contrast, LED, MMSE, and FAB remained unchanged while the number of patients who scored positive for dyskinesia decreased by 40%. Abnormal cerebral blood flow preoperatively seen in the cerebral cortex had normalized in the total score-based good responder cohort. In the ipsilateral score-based good responder cohort, cerebral blood flow increased in the contralateral frontal lobe including in the premotor cortex, contralateral to the DBS. Compared to the poor responders, postoperative good responders demonstrated significantly higher preoperative MMSE scores. Discussion Unilateral GPi-DBS therapy was effective in improving contralateral, ipsilateral, and axial motor symptoms of patients with advanced PD; in particular, it was found to be especially beneficial in PwPD whose cognitive function was unimpaired; the treatment efficacy rivaled that of bilateral counterparts up till at least 6 months postoperatively. Finally, normalization of preoperative abnormalities in cerebral blood flow and increased cerebral blood flow in the contralateral frontal lobe indicated the beneficial potential of this therapy on ipsilateral motor symptoms.
Collapse
Affiliation(s)
- Yuka Hayashi
- Department of Neurology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Takayasu Mishima
- Department of Neurology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- *Correspondence: Takayasu Mishima,
| | - Shinsuke Fujioka
- Department of Neurology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Takashi Morishita
- Department of Neurosurgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tooru Inoue
- Department of Neurosurgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shigeki Nagamachi
- Department of Radiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Yoshio Tsuboi,
| |
Collapse
|
54
|
Cole RC, Okine DN, Yeager BE, Narayanan NS. Neuromodulation of cognition in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:435-455. [PMID: 35248205 DOI: 10.1016/bs.pbr.2022.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Neuromodulation is a widely used treatment for motor symptoms of Parkinson's disease (PD). It can be a highly effective treatment as a result of knowledge of circuit dysfunction associated with motor symptoms in PD. However, the mechanisms underlying cognitive symptoms of PD are less well-known, and the effects of neuromodulation on these symptoms are less consistent. Nonetheless, neuromodulation provides a unique opportunity to modulate motor and cognitive circuits while minimizing off-target side effects. We review the modalities of neuromodulation used in PD and the potential implications for cognitive symptoms. There have been some encouraging findings with both invasive and noninvasive modalities of neuromodulation, and there are promising advances being made in the field of therapeutic neuromodulation. Substantial work is needed to determine which modulation targets are most effective for the different types of cognitive deficits of PD.
Collapse
Affiliation(s)
- Rachel C Cole
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - Derrick N Okine
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - Brooke E Yeager
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | | |
Collapse
|
55
|
Pal G, Mangone G, Hill EJ, Ouyang B, Liu Y, Lythe V, Ehrlich D, Saunders-Pullman R, Shanker V, Bressman S, Alcalay RN, Garcia P, Marder KS, Aasly J, Mouradian MM, Link S, Rosenbaum M, Anderson S, Bernard B, Wilson R, Stebbins G, Nichols WC, Welter ML, Sani S, Afshari M, Verhagen L, de Bie RM, Foltynie T, Hall D, Corvol JC, Goetz CG. Parkinson Disease and Subthalamic Nucleus Deep Brain Stimulation: Cognitive Effects in GBA Mutation Carriers. Ann Neurol 2022; 91:424-435. [PMID: 34984729 PMCID: PMC8857042 DOI: 10.1002/ana.26302] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This study was undertaken to compare the rate of change in cognition between glucocerebrosidase (GBA) mutation carriers and noncarriers with and without subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson disease. METHODS Clinical and genetic data from 12 datasets were examined. Global cognition was assessed using the Mattis Dementia Rating Scale (MDRS). Subjects were examined for mutations in GBA and categorized as GBA carriers with or without DBS (GBA+DBS+, GBA+DBS-), and noncarriers with or without DBS (GBA-DBS+, GBA-DBS-). GBA mutation carriers were subcategorized according to mutation severity (risk variant, mild, severe). Linear mixed modeling was used to compare rate of change in MDRS scores over time among the groups according to GBA and DBS status and then according to GBA severity and DBS status. RESULTS Data were available for 366 subjects (58 GBA+DBS+, 82 GBA+DBS-, 98 GBA-DBS+, and 128 GBA-DBS- subjects), who were longitudinally followed (range = 36-60 months after surgery). Using the MDRS, GBA+DBS+ subjects declined on average 2.02 points/yr more than GBA-DBS- subjects (95% confidence interval [CI] = -2.35 to -1.69), 1.71 points/yr more than GBA+DBS- subjects (95% CI = -2.14 to -1.28), and 1.49 points/yr more than GBA-DBS+ subjects (95% CI = -1.80 to -1.18). INTERPRETATION Although not randomized, this composite analysis suggests that the combined effects of GBA mutations and STN-DBS negatively impact cognition. We advise that DBS candidates be screened for GBA mutations as part of the presurgical decision-making process. We advise that GBA mutation carriers be counseled regarding potential risks associated with STN-DBS so that alternative options may be considered. ANN NEUROL 2022;91:424-435.
Collapse
Affiliation(s)
- Gian Pal
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Graziella Mangone
- Sorbonne Université, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Institut du Cerveau – Paris Brain Institute – ICM, Pitié-Salpêtrière Hospital, Department of Neurology, Centre d’Investigation Clinique Neurosciences, Paris, France
| | - Emily J. Hill
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Bichun Ouyang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Yuanqing Liu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Vanessa Lythe
- Department of Clinical & Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Debra Ehrlich
- Parkinson’s Disease Clinic, Office of the Clinical Director, NIH/NINDS, Bethesda, MD, USA
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vicki Shanker
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Susan Bressman
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Roy N. Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Priscilla Garcia
- Department of Neurology, New York Medical College, Valhalla, NY, USA
| | - Karen S. Marder
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Jan Aasly
- Department of Neurology, St. Olavs Hospital and Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, 7030, Norway
| | - M. Maral Mouradian
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Samantha Link
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Marc Rosenbaum
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sharlet Anderson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Bryan Bernard
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Robert Wilson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Glenn Stebbins
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - William C. Nichols
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Marie-Laure Welter
- Sorbonne Université, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Institut du Cerveau – Paris Brain Institute – ICM, Pitié-Salpêtrière Hospital, Department of Neurology, Centre d’Investigation Clinique Neurosciences, Paris, France
- Normandie Univ, CHU Rouen, Department of Neurophysiology, Rouen, France
| | - Sepehr Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, USA
| | - Mitra Afshari
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Leo Verhagen
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Rob M.A. de Bie
- Amsterdam University Medical Centers, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Tom Foltynie
- Department of Clinical & Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Deborah Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Jean-Christophe Corvol
- Sorbonne Université, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Institut du Cerveau – Paris Brain Institute – ICM, Pitié-Salpêtrière Hospital, Department of Neurology, Centre d’Investigation Clinique Neurosciences, Paris, France
| | - Christopher G. Goetz
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
56
|
Wang X, Xiong Y, Lin J, Lou X. Target Selection for Magnetic Resonance-Guided Focused Ultrasound in the Treatment of Parkinson's Disease. J Magn Reson Imaging 2022; 56:35-44. [PMID: 35081263 DOI: 10.1002/jmri.28080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/03/2023] Open
Abstract
Parkinson's disease (PD) is a common, progressive, and incurable neurodegenerative disease. Pharmacological treatment is the first-line therapy for PD, including carbidopa-levodopa, dopamine agonists. However, some patients respond poorly to medication. For these patients, functional neurosurgical treatment is an important option. Magnetic resonance-guided focused ultrasound (MRgFUS) is a novel, minimally invasive surgical option for patients refractory to drugs. Currently, several important anatomical structures can be targeted by MRgFUS in the treatment of PD. However, there is no uniform standard for target selection. This review summarizes the clinical studies on MRgFUS for PD, focusing on the relationship between different treatment targets and the relieved symptoms, to help clinicians determine the ideal therapeutic target for individual patients. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Radiology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yongqin Xiong
- Department of Radiology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Jiaji Lin
- Department of Radiology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| |
Collapse
|
57
|
Zeng Z, Wang L, Shi W, Xu L, Lin Z, Xu X, Huang P, Pan Y, Chen Z, Ling Y, Ren K, Zhang C, Sun B, Li D. Effects of Unilateral Stimulation in Parkinson's Disease: A Randomized Double-Blind Crossover Trial. Front Neurol 2022; 12:812455. [PMID: 35126302 PMCID: PMC8812849 DOI: 10.3389/fneur.2021.812455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
IntroductionPrevious studies have shown that subthalamic nucleus (STN) and unilateral globus pallidus interna (GPi) are similarly effective in the deep brain stimulation (DBS) treatment of motor symptoms. However, the counterintuitively more common clinical application of STN DBS makes us hypothesize that STN is superior to GPi in the treatment of motor symptoms.MethodsIn this prospective, double-blind, randomized crossover study, idiopathic PD patients treated with combined unilateral STN and contralateral GPi DBS (STN in one brain hemisphere and GPi in the other) for 2 to 3 years were enrolled. The MDS UPDRS-III total score and subscale scores for axial and bilateral limb symptoms were assessed preoperatively and at 2- to 3-year follow-up in four randomized, double-blinded conditions: (1) Med–STN+GPi–, (2) Med–STN–GPi+, (3) Med+STN+GPi–, and (4) Med+STN–GPi+.ResultsEight patients had completed 30 trials of assessment. Compared with the preoperative Med– state, in the Med–STN+GPi– condition, the cardinal symptoms in both sides of the body were all improved. In the Med–STN–GPi+ condition, symptoms of the GPi-stim limb were improved, while only tremor was improved on the ipsilateral side, although all axial symptoms showed aggravation. Compared with the preoperative Med+ state, in the Med+STN+GPi– state, cardinal symptoms were improved on both sides, except that tremor was worsened on the STN-stim side. In the Med+STN–GPi+ state, the overall motor symptoms were aggravated compared with the preoperative Med+ state. Most axial symptoms worsened at acute unilateral STN or GPi DBS onset, compared to both preoperative Med– and Med+ states. No side effects associated with this study were seen.ConclusionsImprovement in motor symptoms was greater in all sub-scores favoring STN. The effects of STN+ were seen on both sides of the body, while GPi+ mainly acted on the contralateral side.
Collapse
Affiliation(s)
- Zhitong Zeng
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linbin Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Weikun Shi
- Gyenno Science Co., LTD., Shenzhen, China
| | - Lu Xu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyu Lin
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinmeng Xu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Huang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Yun Ling
- Gyenno Science Co., LTD., Shenzhen, China
| | - Kang Ren
- Gyenno Science Co., LTD., Shenzhen, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Chencheng Zhang
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Bomin Sun
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Dianyou Li
| |
Collapse
|
58
|
Jahanshahi M, Leimbach F, Rawji V. Short and Long-Term Cognitive Effects of Subthalamic Deep Brain Stimulation in Parkinson's Disease and Identification of Relevant Factors. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2191-2209. [PMID: 36155529 DOI: 10.3233/jpd-223446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND Subthalamic nucleus deep brain stimulation (STN-DBS) successfully controls the motor symptoms of Parkinson's disease (PD) but has associated cognitive side-effects. OBJECTIVE Establish the short- and long-term cognitive effects of STN-DBS in PD. METHODS Both the short-term and long-term effects of STN-DBS on cognition were examined through evaluation of the controlled studies that compared patients with STN-DBS to unoperated PD patients, thus controlling for illness progression. We also reviewed the literature to identify the factors that influence cognitive outcome of STN-DBS in PD. RESULTS The meta-analysis of the short-term cognitive effects of STN-DBS revealed moderate effect sizes for semantic and phonemic verbal fluency and small effect sizes for psychomotor speed and language, indicating greater decline in the STN-DBS operated than the unoperated patients in these cognitive domains. The longer-term STN-DBS results from controlled studies indicated rates of cognitive decline/dementia up to 32%; which are no different from the rates from the natural progression of PD. Greater executive dysfunction and poorer memory pre-operatively, older age, higher pre-operative doses of levodopa, and greater axial involvement are some of the factors associated with worse cognition after STN-DBS in PD. CONCLUSION This evidence can be used to inform patients and their families about the short-term and long-term risks of cognitive decline following STN-DBS surgery and aid the team in selection of suitable candidates for surgery.
Collapse
Affiliation(s)
- Marjan Jahanshahi
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology & Neurosurgery, London, UK
| | - Friederike Leimbach
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology & Neurosurgery, London, UK
| | - Vishal Rawji
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology & Neurosurgery, London, UK
| |
Collapse
|
59
|
Abstract
PURPOSE OF REVIEW Subcortical structures have long been thought to play a role in language processing. Increasingly spirited debates on language studies, arising from as early as the nineteenth century, grew remarkably sophisticated as the years pass. In the context of non-thalamic aphasia, a few theoretical frameworks have been laid out. The disconnection hypothesis postulates that basal ganglia insults result in aphasia due to a rupture of connectivity between Broca and Wernicke's areas. A second viewpoint conjectures that the basal ganglia would more directly partake in language processing, and a third stream proclaims that aphasia would stem from cortical deafferentation. On the other hand, thalamic aphasia is more predominantly deemed as a resultant of diaschisis. This article reviews the above topics with recent findings on deep brain stimulation, neurophysiology, and aphasiology. RECENT FINDINGS The more recent approach conceptualizes non-thalamic aphasias as the offspring of unpredictable cortical hypoperfusion. Regarding the thalamus, there is mounting evidence now pointing to leading contributions of the pulvinar/lateral posterior nucleus and the anterior/ventral anterior thalamus to language disturbances. While the former appears to relate to lexical-semantic indiscrimination, the latter seems to bring about a severe breakdown in word selection and/or spontaneous top-down lexical-semantic operations. The characterization of subcortical aphasias and the role of the basal ganglia and thalamus in language processing continues to pose a challenge. Neuroimaging studies have pointed a path forward, and we believe that more recent methods such as tractography and connectivity studies will significantly expand our knowledge in this particular area of aphasiology.
Collapse
|
60
|
Chan D, Suk HJ, Jackson B, Milman NP, Stark D, Beach SD, Tsai LH. Induction of specific brain oscillations may restore neural circuits and be used for the treatment of Alzheimer's disease. J Intern Med 2021; 290:993-1009. [PMID: 34156133 DOI: 10.1111/joim.13329] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/24/2021] [Accepted: 05/17/2021] [Indexed: 01/08/2023]
Abstract
Brain oscillations underlie the function of our brains, dictating how we both think and react to the world around us. The synchronous activity of neurons generates these rhythms, which allow different parts of the brain to communicate and orchestrate responses to internal and external stimuli. Perturbations of cognitive rhythms and the underlying oscillator neurons that synchronize different parts of the brain contribute to the pathophysiology of diseases including Alzheimer's disease, (AD), Parkinson's disease (PD), epilepsy and other diseases of rhythm that have been studied extensively by Gyorgy Buzsaki. In this review, we discuss how neurologists manipulate brain oscillations with neuromodulation to treat diseases and how this can be leveraged to improve cognition and pathology underlying AD. While multiple modalities of neuromodulation are currently clinically indicated for some disorders, nothing is yet approved for improving memory in AD. Recent investigations into novel methods of neuromodulation show potential for improving cognition in memory disorders. Here, we demonstrate that neuronal stimulation using audiovisual sensory stimulation that generated 40-HZ gamma waves reduced AD-specific pathology and improved performance in behavioural tests in mouse models of AD, making this new mode of neuromodulation a promising new avenue for developing a new therapeutic intervention for the treatment of dementia.
Collapse
Affiliation(s)
- D Chan
- From the, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - H-J Suk
- From the, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - B Jackson
- From the, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.,Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - N P Milman
- From the, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Behavioral Neuroscience, Northeastern University, Boston, MA, USA
| | - D Stark
- From the, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - S D Beach
- From the, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - L-H Tsai
- From the, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
61
|
Cagle JN, Wong JK, Johnson KA, Foote KD, Okun MS, de Hemptinne C. Suppression and Rebound of Pallidal Beta Power: Observation Using a Chronic Sensing DBS Device. Front Hum Neurosci 2021; 15:749567. [PMID: 34566612 PMCID: PMC8458625 DOI: 10.3389/fnhum.2021.749567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/23/2021] [Indexed: 11/14/2022] Open
Abstract
Pallidal deep brain stimulation (DBS) is an increasingly used therapy for Parkinson’s disease (PD). Here, we study the effect of DBS on pallidal oscillatory activity as well as on symptom severity in an individual with PD implanted with a new pulse generator (Medtronic Percept system) which facilitates chronic recording of local field potentials (LFP) through implanted DBS lead. Pallidal LFPs were recorded while delivering stimulation in a monopolar configuration using stepwise increments (0.5 mA, every 20 s). At each stimulation amplitude, the power spectral density (PSD) was computed, and beta power (13–30 Hz) was calculated and correlated with the degree of bradykinesia. Pallidal beta power was reduced when therapeutic stimulation was delivered. Beta power correlated to the severity of bradykinesia. Worsening of parkinsonism when excessive stimulation was applied was associated with a rebound in the beta band power. These preliminary results suggest that pallidal beta power might be used as an objective marker of the disease state in PD. The use of brain sensing from implanted neural interfaces may in the future facilitate clinical programming. Detection of rebound could help to optimize benefits and minimize worsening from overstimulation.
Collapse
Affiliation(s)
- Jackson N Cagle
- Department of Neurology, University of Florida, Gainesville, FL, United States.,Norman Fixel Institute for Neurological Diseases, Gainesville, FL, United States
| | - Joshua K Wong
- Department of Neurology, University of Florida, Gainesville, FL, United States.,Norman Fixel Institute for Neurological Diseases, Gainesville, FL, United States
| | - Kara A Johnson
- Department of Neurology, University of Florida, Gainesville, FL, United States.,Norman Fixel Institute for Neurological Diseases, Gainesville, FL, United States
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases, Gainesville, FL, United States.,Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Department of Neurology, University of Florida, Gainesville, FL, United States.,Norman Fixel Institute for Neurological Diseases, Gainesville, FL, United States
| | - Coralie de Hemptinne
- Department of Neurology, University of Florida, Gainesville, FL, United States.,Norman Fixel Institute for Neurological Diseases, Gainesville, FL, United States
| |
Collapse
|
62
|
Altered Regional Homogeneity and Functional Connectivity during Microlesion Period after Deep Brain Stimulation in Parkinson's Disease. PARKINSON'S DISEASE 2021; 2021:2711365. [PMID: 34512944 PMCID: PMC8429001 DOI: 10.1155/2021/2711365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022]
Abstract
Background Patients with Parkinson's disease (PD) undergoing deep brain electrode implantation experience a temporary improvement in motor symptoms before the electrical stimulation begins. We usually call this the microlesion effect (MLE), but the mechanism behind it is not clear. Purpose This study aimed to assess the alterations in brain functions at the regional and whole-brain levels, using regional homogeneity (ReHo) and functional connectivity (FC), during the postoperative microlesion period after deep brain stimulation (DBS) in PD patients. Method Resting-state functional MRI data were collected from 27 PD patients before and after the first day of DBS and 12 healthy controls (HCs) in this study. The ReHo in combination with FC analysis was used to investigate the alterations of regional brain activity in all the subjects. Results There were increased ReHo in the basal ganglia-thalamocortical circuit (left supplementary motor area and bilateral paracentral lobule), whereas decreased ReHo in the default mode network (DMN) (left angular gyrus, bilateral precuneus), prefrontal cortex (bilateral middle frontal gyrus), and the cerebello-thalamocortical (CTC) circuit (Cerebellum_crus2/1_L) after DBS. In addition, we also found abnormal FC in the lingual gyrus, cerebellum, and DMN. Conclusion Microlesion of the thalamus caused by electrode implantation can alter the activity of the basal ganglia-thalamocortical circuit, prefrontal cortex, DMN, and CTC circuit and induce abnormal FC in the lingual gyrus, cerebellum, prefrontal cortex, and DMN among PD patients. The findings of this study contribute to the understanding of the mechanism of MLE.
Collapse
|
63
|
Holanda VM, Eisinger RS, Almeida L, Tsuboi T, Wang H, Okun MS, Deeb W, Patterson A, Wagle Shukla A, Lobo Lopes J, Foote KD. Evolution of Globus Pallidus Targeting for Parkinson's and Dystonia Deep Brain Stimulation: A 15-Year Experience. Front Neurol 2021; 12:679918. [PMID: 34456844 PMCID: PMC8387620 DOI: 10.3389/fneur.2021.679918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/05/2021] [Indexed: 12/02/2022] Open
Abstract
Objective: The aim of this study is to evaluate the evolution of GPi DBS targeting. Methods: This retrospective, single-center study included patients implanted with GPi DBS leads for dystonia or PD during the years 2004 to 2018 at the University of Florida Fixel Institute for Neurological Diseases. Each patient underwent a high-resolution targeting study on the day prior to the surgery, which was fused with a high resolution CT scan that was acquired on the day of the procedure. Intraoperative target location was selected using a digitized 3D Schaltenbrand-Bailey atlas. All patients underwent a high-resolution head CT scan without contrast approximately one month after lead implantation and accurate measurement of neuroanatomical lead position was acquired after fusion of pre-operative and post-operative image studies. Results: We analyzed 253 PD patients with 352 leads and 80 dystonia patients with 141 leads. During 15 years of follow-up, lead locations in the PD group migrated more laterally (β = 0.09, p < 0.0001), posteriorly [slope (β) = 0.04, p < 0.05], and dorsally (β = 0.07, p < 0.001), whereas leads in the dystonia group did not significantly change position aside from a trend in the dorsal direction (β = 0.06, p = 0.053). Conclusion: The evolving target likely results from multiple factors including improvements in targeting techniques and clinical feedback intraoperatively and post-operatively. Our demonstrates the potential importance of a systematic post-operative DBS lead measurement protocol to ensure quality control and to inform and optimize DBS programming.
Collapse
Affiliation(s)
- Vanessa M Holanda
- Department of Neurosurgery, Center of Neurology and Neurosurgery Associates (NeuroCENNA), Beneficencia Portuguesa of São Paulo Hospital, São Paulo, Brazil
| | - Robert Stephen Eisinger
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| | - Leonardo Almeida
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| | - Takashi Tsuboi
- Department of Neurology, Nagoya University, Nagoya, Japan
| | - Huimin Wang
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| | - Wissam Deeb
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Addie Patterson
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| | - Aparna Wagle Shukla
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| | - Janine Lobo Lopes
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| | - Kelly Douglas Foote
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| |
Collapse
|
64
|
Sobesky L, Goede L, Odekerken VJJ, Wang Q, Li N, Neudorfer C, Rajamani N, Al-Fatly B, Reich M, Volkmann J, de Bie RMA, Kühn AA, Horn A. Subthalamic and pallidal deep brain stimulation: are we modulating the same network? Brain 2021; 145:251-262. [PMID: 34453827 DOI: 10.1093/brain/awab258] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/05/2021] [Accepted: 06/21/2021] [Indexed: 11/14/2022] Open
Abstract
The subthalamic nucleus and internal pallidum are main target sites for deep brain stimulation in Parkinson's disease. Multiple trials that investigated subthalamic versus pallidal stimulation were unable to settle on a definitive optimal target between the two. One reason could be that the effect is mediated via a common functional network. To test this hypothesis, we calculated connectivity profiles seeding from deep brain stimulation electrodes in 94 patients that underwent subthalamic and 28 patients with pallidal treatment based on a normative connectome atlas calculated from 1,000 healthy subjects. In each cohort, we calculated connectivity profiles that were associated with optimal clinical improvements. The two maps showed striking similarity and were able to cross-predict outcomes in the respective other cohort (R = 0.37 at p < 0.001; R = 0.34 at p = 0.032). Next, we calculated an agreement map which retained regions common to both target sites. Crucially, this map was able to explain an additional amount of variance in clinical improvements of either cohort when compared to the maps calculated on the two cohorts alone. Finally, we tested profiles and predictive utility of connectivity maps calculated from different motor symptom subscores with a specific focus on bradykinesia and rigidity. While our study is based on retrospective data and indirect connectivity metrics, it may deliver empirical data to support the hypothesis of a largely overlapping network associated with effective deep brain stimulation in Parkinson's disease irrespective of the specific target.
Collapse
Affiliation(s)
- Leon Sobesky
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Lukas Goede
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Vincent J J Odekerken
- Department of Neurology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Qiang Wang
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Ningfei Li
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Clemens Neudorfer
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Nanditha Rajamani
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Bassam Al-Fatly
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Martin Reich
- Department of Neurology, University Clinic of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Clinic of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Rob M A de Bie
- Department of Neurology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| |
Collapse
|
65
|
Guang J, Baker H, Ben-Yishay Nizri O, Firman S, Werner-Reiss U, Kapuller V, Israel Z, Bergman H. Toward asleep DBS: cortico-basal ganglia spectral and coherence activity during interleaved propofol/ketamine sedation mimics NREM/REM sleep activity. NPJ PARKINSONS DISEASE 2021; 7:67. [PMID: 34341348 PMCID: PMC8329235 DOI: 10.1038/s41531-021-00211-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022]
Abstract
Deep brain stimulation (DBS) is currently a standard procedure for advanced Parkinson's disease. Many centers employ awake physiological navigation and stimulation assessment to optimize DBS localization and outcome. To enable DBS under sedation, asleep DBS, we characterized the cortico-basal ganglia neuronal network of two nonhuman primates under propofol, ketamine, and interleaved propofol-ketamine (IPK) sedation. Further, we compared these sedation states in the healthy and Parkinsonian condition to those of healthy sleep. Ketamine increases high-frequency power and synchronization while propofol increases low-frequency power and synchronization in polysomnography and neuronal activity recordings. Thus, ketamine does not mask the low-frequency oscillations used for physiological navigation toward the basal ganglia DBS targets. The brain spectral state under ketamine and propofol mimicked rapid eye movement (REM) and Non-REM (NREM) sleep activity, respectively, and the IPK protocol resembles the NREM-REM sleep cycle. These promising results are a meaningful step toward asleep DBS with nondistorted physiological navigation.
Collapse
Affiliation(s)
- Jing Guang
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Halen Baker
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Shimon Firman
- Department of Anesthesiology, Critical Care Medicine, and Pain Management, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Uri Werner-Reiss
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vadim Kapuller
- Department of Pediatric Surgery, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel.,Asuta-Ashdod University Medical Center, Ashdod, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zvi Israel
- Department of Neurosurgery, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagai Bergman
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Neurosurgery, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
66
|
Luo B, Lu Y, Qiu C, Dong W, Xue C, Zhang L, Liu W, Zhang W. Altered Spontaneous Neural Activity and Functional Connectivity in Parkinson's Disease With Subthalamic Microlesion. Front Neurosci 2021; 15:699010. [PMID: 34354566 PMCID: PMC8329380 DOI: 10.3389/fnins.2021.699010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background Transient improvement in motor symptoms are immediately observed in patients with Parkinson's disease (PD) after an electrode has been implanted into the subthalamic nucleus (STN) for deep brain stimulation (DBS). This phenomenon is known as the microlesion effect (MLE). However, the underlying mechanisms of MLE is poorly understood. Purpose We utilized resting state functional MRI (rs-fMRI) to evaluate changes in spontaneous brain activity and networks in PD patients during the microlesion period after DBS. Method Overall, 37 PD patients and 13 gender- and age-matched healthy controls (HCs) were recruited for this study. Rs-MRI information was collected from PD patients three days before DBS and one day after DBS, whereas the HCs group was scanned once. We utilized the amplitude of low-frequency fluctuation (ALFF) method in order to analyze differences in spontaneous whole-brain activity among all subjects. Furthermore, functional connectivity (FC) was applied to investigate connections between other brain regions and brain areas with significantly different ALFF before and after surgery in PD patients. Result Relative to the PD-Pre-DBS group, the PD-Post-DBS group had higher ALFF in the right putamen, right inferior frontal gyrus, right precentral gyrus and lower ALFF in right angular gyrus, right precuneus, right posterior cingulate gyrus (PCC), left insula, left middle temporal gyrus (MTG), bilateral middle frontal gyrus and bilateral superior frontal gyrus (dorsolateral). Functional connectivity analysis revealed that these brain regions with significantly different ALFF scores demonstrated abnormal FC, largely in the temporal, prefrontal cortices and default mode network (DMN). Conclusion The subthalamic microlesion caused by DBS in PD was found to not only improve the activity of the basal ganglia-thalamocortical circuit, but also reduce the activity of the DMN and executive control network (ECN) related brain regions. Results from this study provide new insights into the mechanism of MLE.
Collapse
Affiliation(s)
- Bei Luo
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Lu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Qiu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Dong
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhang
- Department of Geriatrics, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
67
|
Weiss D, Volkmann J, Fasano A, Kühn A, Krack P, Deuschl G. Changing Gears - DBS For Dopaminergic Desensitization in Parkinson's Disease? Ann Neurol 2021; 90:699-710. [PMID: 34235776 DOI: 10.1002/ana.26164] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022]
Abstract
In Parkinson's disease, both motor and neuropsychiatric complications unfold as a consequence of both incremental striatal dopaminergic denervation and intensifying long-term dopaminergic treatment. Together, this leads to 'dopaminergic sensitization' steadily increasing motor and behavioral responses to dopaminergic medication that result in the detrimental sequalae of long-term dopaminergic treatment. We review the clinical presentations of 'dopaminergic sensitization', including rebound off and dyskinesia in the motor domain, and neuropsychiatric fluctuations and behavioral addictions with impulse control disorders and dopamine dysregulation syndrome in the neuropsychiatric domain. We summarize state-of-the-art deep brain stimulation, and show that STN-DBS allows dopaminergic medication to be tapered, thus supporting dopaminergic desensitization. In this framework, we develop our integrated debatable viewpoint of "changing gears", that is we suggest rethinking earlier use of subthalamic nucleus deep brain stimulation, when the first clinical signs of dopaminergic motor or neuropsychiatric complications emerge over the steadily progressive disease course. In this sense, subthalamic deep brain stimulation may help reduce longitudinal motor and neuropsychiatric symptom expression - importantly, not by neuroprotection but by supporting dopaminergic desensitization through postoperative medication reduction. Therefore, we suggest considering STN-DBS early enough before patients encounter potentially irreversible psychosocial consequences of dopaminergic complications, but importantly not before a patient shows first clinical signs of dopaminergic complications. We propose to consider neuropsychiatric dopaminergic complications as a new inclusion criterion in addition to established motor criteria, but this concept will require validation in future clinical trials. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Daniel Weiss
- Centre for Neurology, Department for Neurodegenerative Diseases, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital and Julius-Maximilian-University, Würzburg, Germany
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, ON, Canada.,Division of Neurology, University of Toronto, Toronto, ON, Canada.,Krembil Brain Institute, Toronto, ON, Canada.,Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Andrea Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Paul Krack
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Günther Deuschl
- Department of Neurology, University Hospital Schleswig Holstein (UKSH), Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
68
|
Permezel F. Brain MRI-guided focused ultrasound conceptualised as a tool for brain network intervention. J Clin Neurosci 2021; 90:370-379. [PMID: 34275578 DOI: 10.1016/j.jocn.2021.05.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 05/02/2021] [Accepted: 05/27/2021] [Indexed: 11/25/2022]
Abstract
Magnetic resonance imaging guided high intensity focused ultrasound (HIFU) has emerged as a tool offering incisionless intervention on brain tissue. The low risk and rapid recovery from this procedure, in addition to the ability to assess for clinical benefit and adverse events intraprocedurally, makes it an ideal tool for intervention upon brain networks both for clinical and research applications. This review article proposes that conceptualising brain focused ultrasound as a tool for brain network intervention and adoption of methodology to complement this approach may result in better clinical outcomes, fewer adverse events and may unveil or allow treatment opportunities not otherwise possible. A brief introduction to network neuroscience is discussed before a description of pathological brain networks is provided for a number of conditions for which MRI-guided brain HIFU intervention has been implemented. Essential Tremor is discussed as the most advanced example of MRI-guided brain HIFU intervention adoption along with the issues that present with this treatment modality compared to alternatives. The brain network intervention paradigm is proposed to overcome these issues and a number of examples of implementation of this are discussed. The ability of low intensity MRI guided focussed ultrasound to neuromoduate brain tissue without lesioning is introduced. This tool is discussed with regards to its potential clinical application as well as its potential to further our understanding of network neuroscience via its ability to interrogate brain networks without damaging tissue. Finally, a number of current clinical trials utilising brain focused ultrasound are discussed, along with the additional applications available from the utilisation of low intensity focused ultrasound.
Collapse
Affiliation(s)
- Fiona Permezel
- Austin Hospital, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Austin Hospital, Victoria, Australia.
| |
Collapse
|
69
|
Cleary RT, Bucholz R. Neuromodulation Approaches in Parkinson's Disease Using Deep Brain Stimulation and Transcranial Magnetic Stimulation. J Geriatr Psychiatry Neurol 2021; 34:301-309. [PMID: 34219521 DOI: 10.1177/08919887211018269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease, characterized by progressive motor (such as resting tremor, hypokinesia, postural instability) and non-motor symptoms (such as neuropsychiatric decline and autonomic dysfunction). Since its introduction in the late 1980s, deep brain stimulation (DBS) has revolutionized the treatment of PD. Initially used in patients' with advanced PD with either medically refractory motor symptoms or medication intolerance, DBS typically provides excellent improvement in motor symptoms. Indications for DBS have continued to expand, with demonstrated efficacy in early PD and essential tremor, and promising preliminary results in the treatment of epilepsy, psychiatric disease, and depression. Advancements in DBS hardware, programming, neuroimaging, and surgical techniques have led to progressive improvement in efficacy and safety profiles. Thanks to ongoing research into remote programming, adaptive DBS, new targets, and alternative interventions, such as transcranial magnetic stimulation, the opportunities for further improvements in DBS and neuromodulation are bright.
Collapse
Affiliation(s)
- Ryan T Cleary
- Department of Neurosurgery, 25213Saint Louis University Hospital, Saint Louis, MO, USA
| | - Richard Bucholz
- Department of Neurosurgery, 25213Saint Louis University Hospital, Saint Louis, MO, USA
| |
Collapse
|
70
|
Doshi PK, Das D. Deep Brain Stimulation for Parkinson's Disease: Currents Status and Emerging Concepts. Neurol India 2021; 68:S179-S186. [PMID: 33318348 DOI: 10.4103/0028-3886.302466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The clinical application of DBS has become manifold and there has been a tremendous growth in DBS technology in the last few decades making it safer and user friendly. The earlier concept of its delayed application in motor fluctuations of Parkinson's disease has been replaced by Class-I evidence of EARLY-STIM trial in 2013, leading to its FDA approval to be used in early-stage despite criticism. Various studies have provided evidence of beneficial effects of bilateral STN-DBS on both motor as well as nonmotor symptoms and different new targets such as the pedunculopontine nucleus, posterior subthalamic area or caudal zona incerta, centromedian-parafascicular complex, and substantia nigra pars reticulata have now become a new area of interest in addition to the subthalamic nucleus and globus pallidus internus for the alleviation of both motor and nonmotor symptoms of Parkinson's disease. New data has confirmed that the DBS is clinically as effective and safe in elderly patients as it is in younger ones. Technological advances like current steering, directional leads, and closed-loop DBS are directed towards reducing the stimulation-induced adverse effects and preservation of the battery life for a longer period. Results of the long-term efficacy of DBS on Parkinson's disease are now available. These have shown that as the motor benefit continues, the clinical progression of Parkinson's disease also continues. We plan to discuss all these in this paper.
Collapse
Affiliation(s)
- Paresh K Doshi
- Jaslok Hospital and Research Center, 15 Dr. G. Deshmukh Marg, Mumbai, Maharashtra, India
| | - Deepak Das
- Jaslok Hospital and Research Center, 15 Dr. G. Deshmukh Marg, Mumbai, Maharashtra, India
| |
Collapse
|
71
|
Au KLK, Wong JK, Tsuboi T, Eisinger RS, Moore K, Lemos Melo Lobo Jofili Lopes J, Holland MT, Holanda VM, Peng-Chen Z, Patterson A, Foote KD, Ramirez-Zamora A, Okun MS, Almeida L. Globus Pallidus Internus (GPi) Deep Brain Stimulation for Parkinson's Disease: Expert Review and Commentary. Neurol Ther 2021; 10:7-30. [PMID: 33140286 PMCID: PMC8140010 DOI: 10.1007/s40120-020-00220-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/08/2020] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION The globus pallidus internus (GPi) region has evolved as a potential target for deep brain stimulation (DBS) in Parkinson's disease (PD). DBS of the GPi (GPi DBS) is an established, safe and effective method for addressing many of the motor symptoms associated with advanced PD. It is important that clinicians fully understand this target when considering GPi DBS for individual patients. METHODS The literature on GPi DBS in PD has been comprehensively reviewed, including the anatomy, physiology and potential pitfalls that may be encountered during surgical targeting and post-operative management. Here, we review and address the implications of lead location on GPi DBS outcomes. Additionally, we provide a summary of randomized controlled clinical trials conducted on DBS in PD, together with expert commentary on potential applications of the GPi as target. Finally, we highlight future technologies that will likely impact GPi DBS, including closed-loop adaptive approaches (e.g. sensing-stimulating capabilities), advanced methods for image-based targeting and advances in DBS programming, including directional leads and pulse shaping. RESULTS There are important disease characteristics and factors to consider prior to selecting the GPi as the DBS target of PD surgery. Prior to and during implantation of the leads it is critical to consider the neuroanatomy, which can be defined through the combination of image-based targeting and intraoperative microelectrode recording strategies. There is an increasing body of literature on GPi DBS in patients with PD suggesting both short- and long-term benefits. Understanding the GPi target can be useful in choosing between the subthalamic (STN), GPi and ventralis intermedius nucleus as lead locations to address the motor symptoms and complications of PD. CONCLUSION GPi DBS can be effectively used in select cases of PD. As the ongoing DBS target debate continues (GPi vs. STN as DBS target), clinicians should keep in mind that GPi DBS has been shown to be an effective treatment strategy for a variety of symptoms, including bradykinesia, rigidity and tremor control. GPi DBS also has an important, direct anti-dyskinetic effect. GPi DBS is easier to program in the outpatient setting and will allow for more flexibility in medication adjustments (e.g. levodopa). Emerging technologies, including GPi closed-loop systems, advanced tractography-based targeting and enhanced programming strategies, will likely be future areas of GPi DBS expansion. We conclude that although the GPi as DBS target may not be appropriate for all PD patients, it has specific clinical advantages.
Collapse
Affiliation(s)
- Ka Loong Kelvin Au
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| | - Joshua K Wong
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Takashi Tsuboi
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Robert S Eisinger
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Kathryn Moore
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | | | - Marshall T Holland
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Vanessa M Holanda
- Center of Neurology and Neurosurgery Associates (CENNA), Hospital Beneficência Portuguesa de São Paulo, São Paulo, Brazil
- Department of Neurosurgery, Mayo Clinic Jackonsville, Jacksonville, FL, USA
| | - Zhongxing Peng-Chen
- Facultad de Medicina Clínica Alemana, Hospital Padre Hurtado-Universidad del Desarrollo, Santiago, Chile
| | - Addie Patterson
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Kelly D Foote
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Adolfo Ramirez-Zamora
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Leonardo Almeida
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
72
|
Palmese CA, Wyman-Chick KA, Racine C, Pollak LE, Lin G, Farace E, Tran B, Floden D, Bobholz J, Turner TH, York MK. Assessment of deep brain stimulation candidacy during the COVID-19 pandemic: Lessons learned and future directions for neuropsychologists. Clin Neuropsychol 2021; 36:72-84. [PMID: 34030595 DOI: 10.1080/13854046.2021.1929496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Neuropsychological assessment is integral to the pre-surgical deep brain stimulation (DBS) workup for patients with movement disorders. The COVID-19 pandemic quickly affected care access and shifted healthcare delivery, and neuropsychology has adapted successfully to provide tele-neuropsychological (teleNP) DBS evaluations during this time, thus permanently changing the landscape of neuropsychological practice. Method: In this paper, we discuss the lessons learned from the pandemic and we offer care management guidelines for teleNP and in-person evaluations of pre-DBS populations, with exploration of the feasibility of the different approaches for uninterrupted care access. Results: We summarize the strengths and weaknesses of these care models and we provide future directions for the state of clinical neuropsychological practice for DBS programs, with implications for broader patient populations. Conclusions: A better understanding of these dynamics will inform and educate the DBS team and community regarding the complexities of performing DBS neuropsychological evaluations during COVID-19 and beyond.
Collapse
Affiliation(s)
- C A Palmese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - K A Wyman-Chick
- HealthPartners Struthers Parkinson's Center, Twin Cities, MN, USA
| | - C Racine
- Dept of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
| | | | - G Lin
- Harvard Medical School, Boston, MA, USA
| | - E Farace
- Departments of Public Health Sciences and Neurosurgery, Penn State University, Hershey, PA, USA
| | - B Tran
- Dept of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - D Floden
- Psychiatry & Psychology, Cleveland Clinic, Cleveland, OH, USA
| | - J Bobholz
- Medical College of Wisconsin, Green Bay, WI, USA
| | - T H Turner
- Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - M K York
- Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
73
|
Louie KH, Petrucci MN, Grado LL, Lu C, Tuite PJ, Lamperski AG, MacKinnon CD, Cooper SE, Netoff TI. Semi-automated approaches to optimize deep brain stimulation parameters in Parkinson's disease. J Neuroeng Rehabil 2021; 18:83. [PMID: 34020662 PMCID: PMC8147513 DOI: 10.1186/s12984-021-00873-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/27/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is a treatment option for Parkinson's disease patients when medication does not sufficiently manage their symptoms. DBS can be a highly effect therapy, but only after a time-consuming trial-and-error stimulation parameter adjustment process that is susceptible to clinician bias. This trial-and-error process will be further prolonged with the introduction of segmented electrodes that are now commercially available. New approaches to optimizing a patient's stimulation parameters, that can also handle the increasing complexity of new electrode and stimulator designs, is needed. METHODS To improve DBS parameter programming, we explored two semi-automated optimization approaches: a Bayesian optimization (BayesOpt) algorithm to efficiently determine a patient's optimal stimulation parameter for minimizing rigidity, and a probit Gaussian process (pGP) to assess patient's preference. Quantified rigidity measurements were obtained using a robotic manipulandum in two participants over two visits. Rigidity was measured, in 5Hz increments, between 10-185Hz (total 30-36 frequencies) on the first visit and at eight BayesOpt algorithm-selected frequencies on the second visit. The participant was also asked their preference between the current and previous stimulation frequency. First, we compared the optimal frequency between visits with the participant's preferred frequency. Next, we evaluated the efficiency of the BayesOpt algorithm, comparing it to random and equal interval selection of frequency. RESULTS The BayesOpt algorithm estimated the optimal frequency to be the highest tolerable frequency, matching the optimal frequency found during the first visit. However, the participants' pGP models indicate a preference at frequencies between 70-110 Hz. Here the stimulation frequency is lowest that achieves nearly maximal suppression of rigidity. BayesOpt was efficient, estimating the rigidity response curve to stimulation that was almost indistinguishable when compared to the longer brute force method. CONCLUSIONS These results provide preliminary evidence of the feasibility to use BayesOpt for determining the optimal frequency, while pGP patient's preferences include more difficult to measure outcomes. Both novel approaches can shorten DBS programming and can be expanded to include multiple symptoms and parameters.
Collapse
Affiliation(s)
- Kenneth H. Louie
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455 US
| | - Matthew N. Petrucci
- Department of Neurology, University of Minnesota, 516 Delaware St. SE, 55455 Minneapoli, MN US
| | - Logan L. Grado
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455 US
| | - Chiahao Lu
- Department of Neurology, University of Minnesota, 516 Delaware St. SE, 55455 Minneapoli, MN US
| | - Paul J. Tuite
- Department of Neurology, University of Minnesota, 516 Delaware St. SE, 55455 Minneapoli, MN US
| | - Andrew G. Lamperski
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union St. SE, Minneapolis, MN 55455 US
| | - Colum D. MacKinnon
- Department of Neurology, University of Minnesota, 516 Delaware St. SE, 55455 Minneapoli, MN US
| | - Scott E. Cooper
- Department of Neurology, University of Minnesota, 516 Delaware St. SE, 55455 Minneapoli, MN US
| | - Theoden I. Netoff
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455 US
| |
Collapse
|
74
|
Tiedt HO, Ehlen F, Wyrobnik M, Klostermann F. Thalamic but Not Subthalamic Neuromodulation Simplifies Word Use in Spontaneous Language. Front Hum Neurosci 2021; 15:656188. [PMID: 34093151 PMCID: PMC8173144 DOI: 10.3389/fnhum.2021.656188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/13/2021] [Indexed: 12/30/2022] Open
Abstract
Several investigations have shown language impairments following electrode implantation surgery for Deep Brain Stimulation (DBS) in movement disorders. The impact of the actual stimulation, however, differs between DBS targets with further deterioration in formal language tests induced by thalamic DBS in contrast to subtle improvement observed in subthalamic DBS. Here, we studied speech samples from interviews with participants treated with DBS of the thalamic ventral intermediate nucleus (VIM) for essential tremor (ET), or the subthalamic nucleus (STN) for Parkinson’s disease (PD), and healthy volunteers (each n = 13). We analyzed word frequency and the use of open and closed class words. Active DBS increased word frequency in case of VIM, but not STN stimulation. Further, relative to controls, both DBS groups produced fewer open class words. Whereas VIM DBS further decreased the proportion of open class words, it was increased by STN DBS. Thus, VIM DBS favors the use of relatively common words in spontaneous language, compatible with the idea of lexical simplification under thalamic stimulation. The absence or even partial reversal of these effects in patients receiving STN DBS is of interest with respect to biolinguistic concepts suggesting dichotomous thalamic vs. basal ganglia roles in language processing.
Collapse
Affiliation(s)
- Hannes Ole Tiedt
- Department of Neurology, Motor and Cognition Group, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Felicitas Ehlen
- Department of Neurology, Motor and Cognition Group, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychiatry, Jüdisches Krankenhaus Berlin, Berlin, Germany
| | - Michelle Wyrobnik
- Department of Neurology, Motor and Cognition Group, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Institute of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fabian Klostermann
- Department of Neurology, Motor and Cognition Group, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
75
|
Lee DJ, Drummond NM, Saha U, De Vloo P, Dallapiazza RF, Gramer R, Al-Ozzi TM, Lam J, Loh A, Elias GJB, Boutet A, Germann J, Hodaie M, Fasano A, Munhoz RP, Hutchison W, Cohn M, Chen R, Kalia SK, Lozano AM. Acute low frequency dorsal subthalamic nucleus stimulation improves verbal fluency in Parkinson's disease. Brain Stimul 2021; 14:754-760. [PMID: 33940243 DOI: 10.1016/j.brs.2021.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disorder that results in movement-related dysfunction and has variable cognitive impairment. Deep brain stimulation (DBS) of the dorsal subthalamic nucleus (STN) has been shown to be effective in improving motor symptoms; however, cognitive impairment is often unchanged, and in some cases, worsened particularly on tasks of verbal fluency. Traditional DBS strategies use high frequency gamma stimulation for motor symptoms (∼130 Hz), but there is evidence that low frequency theta oscillations (5-12 Hz) are important in cognition. METHODS We tested the effects of stimulation frequency and location on verbal fluency among patients who underwent STN DBS implantation with externalized leads. During baseline cognitive testing, STN field potentials were recorded and the individual patients' peak theta frequency power was identified during each cognitive task. Patients repeated cognitive testing at five different stimulation settings: no stimulation, dorsal contact gamma (130 Hz), ventral contact gamma, dorsal theta (peak baseline theta) and ventral theta (peak baseline theta) frequency stimulation. RESULTS Acute left dorsal peak theta frequency STN stimulation improves overall verbal fluency compared to no stimulation and to either dorsal or ventral gamma stimulation. Stratifying by type of verbal fluency probes, verbal fluency in episodic categories was improved with dorsal theta stimulation compared to all other conditions, while there were no differences between stimulation conditions in non-episodic probe conditions. CONCLUSION Here, we provide evidence that dorsal STN theta stimulation may improve verbal fluency, suggesting a potential possibility of integrating theta stimulation into current DBS paradigms to improve cognitive outcomes.
Collapse
Affiliation(s)
- Darrin J Lee
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada; Department of Neurological Surgery, University of Southern California, 1200 North State Street, Suite 3300, Los Angeles, CA, 90033, USA; USC Neurorestoration Center, Keck School of Medicine of USC, 1333 San Pablo Street, McKibben Hall B51, Los Angeles, CA, 90033, USA.
| | - Neil M Drummond
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada
| | - Utpal Saha
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada; USC Neurorestoration Center, Keck School of Medicine of USC, 1333 San Pablo Street, McKibben Hall B51, Los Angeles, CA, 90033, USA
| | - Philippe De Vloo
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada; Department of Neurosurgery, University Hospitals Leuven - KU Leuven, Herestraat 49, 3000, Leuven, Vlaams-Brabant, Belgium
| | - Robert F Dallapiazza
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Robert Gramer
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Tameem M Al-Ozzi
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Jordan Lam
- Department of Neurological Surgery, University of Southern California, 1200 North State Street, Suite 3300, Los Angeles, CA, 90033, USA; USC Neurorestoration Center, Keck School of Medicine of USC, 1333 San Pablo Street, McKibben Hall B51, Los Angeles, CA, 90033, USA
| | - Aaron Loh
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada
| | - Gavin J B Elias
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada
| | - Alexandre Boutet
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada; Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Jurgen Germann
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada
| | - Mojgan Hodaie
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - Renato P Munhoz
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - William Hutchison
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Melanie Cohn
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada; Department of Psychology, University of Toronto, Toronto, Canada
| | - Robert Chen
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Andres M Lozano
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| |
Collapse
|
76
|
Mahajan A, Butala A, Okun MS, Mari Z, Mills KA. Global Variability in Deep Brain Stimulation Practices for Parkinson's Disease. Front Hum Neurosci 2021; 15:667035. [PMID: 33867961 PMCID: PMC8044366 DOI: 10.3389/fnhum.2021.667035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/11/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction Deep brain stimulation (DBS) has become a standard treatment option for select patients with Parkinson’s disease (PD). The selection process and surgical procedures employed have, to date, not been standardized. Methods A comprehensive 58-question web-based survey was developed with a focus on DBS referral practices and peri-operative management. The survey was distributed to the Parkinson’s Foundation Centers of Excellence, members of the International Parkinson’s Disease and Movement Disorders Society, and the Parkinson Study Group (Functional Neurosurgery Working Group) between December 2015 and May 2016. Results There were 207 individual respondents (20% response rate) drawn from 59 countries and 6 continents, of whom 64% received formal training in DBS. Thirteen percent of centers reported that DBS could proceed despite a confidence level of < 50% for PD diagnosis. A case-based approach to DBS candidacy was applied in 51.3% of centers without a cut-off for levodopa-responsiveness. Surprisingly, 33% of centers regularly used imaging for diagnostic confirmation of idiopathic PD. Thirty-one percent of centers reported that neuropsychological evaluation did not affect DBS target selection. Approximately half of the respondents reported determination of DBS candidacy based on a multidisciplinary committee evaluation and 1/3rd reported that a committee was used for target selection. Eight percent of respondents felt that psychosocial factors should not impact DBS candidacy nor site selection. Involvement of allied health professionals in the preoperative process was sparse. There was high variability in preoperative education about DBS outcome expectations. Approximately half of the respondents did not utilize a “default brain target,” though STN was used more commonly than GPi. Specific DBS procedure techniques applied, as well as follow-up timelines, were highly variable. Conclusion Results revealed high variability on the best approaches for DBS candidate selection, brain target selection, procedure type, and postoperative practices. Cognitive and mood assessments were underutilized. There was low reliance on multidisciplinary teams or psychosocial factors to impact the decision-making process. There were small but significant differences in practice across global regions, especially regarding multidisciplinary teams. The wide variability of responses across multiple facets of DBS care highlights the need for prospective studies to inform evidence-based guidelines.
Collapse
Affiliation(s)
- Abhimanyu Mahajan
- Rush Parkinson's Disease and Movement Disorders Program, Chicago, IL, United States
| | - Ankur Butala
- Departments of Psychiatry and Neurology (GMP), Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Zoltan Mari
- Cleveland Clinic Luo Ruvo Center for Brain Health, Las Vegas, NV, United States
| | - Kelly A Mills
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
77
|
Kwan V, Shum D, Haffenden A, Yeates KO, Kwok A, Lau H, Poon WS, Chan D, Zhu XL, Chan D, Mok V, Chan A, Ma K, Yeung J, Lau C, Bezchlibnyk Y, Kiss Z, Tang V. A retrospective comparison of cognitive performance in individuals with advanced Parkinson's Disease in Hong Kong and Canada. APPLIED NEUROPSYCHOLOGY-ADULT 2021; 29:1562-1570. [PMID: 33721508 DOI: 10.1080/23279095.2021.1898396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A deeper understanding of the cross-cultural applicability of cognitive tests across countries and cultures is needed to better equip neuropsychologists for the assessment of patients from diverse backgrounds. Our study compared cognitive test scores in patients with advanced Parkinson's disease (PD) at the Prince of Wales Hospital (n = 63; Hong Kong) and the Foothills Medical Center (n = 20; Calgary, Canada). The groups did not differ in age or sex (p > .05), but Western patients had significantly more years of education (M = 14.2, SD = 2.7) than Asian patients (M = 10.33, SD = 4.4). Cognitive tests administered to both groups included: digit span, verbal fluency (animals), the Boston Naming Test, and verbal memory (California Verbal Learning Test or Chinese Auditory Verbal Learning Test). Testing was completed before and 12 months after deep brain stimulation surgery. Results showed cognitive performance was similar across time, but significant group differences were found on digit span forward (longer among patients from Hong Kong; F(1, 75) = 44.155, p < .001) and the Boston Naming Test (higher percent spontaneous correct among patients from Canada; F(1, 62) = 7.218, p = .009, η2 = 0.104), after controlling for age, sex, and years of education. In conclusion, our findings provide preliminary support for the similarity of Chinese versions of tests originally developed for Western populations. Also, we caution that some aspects of testing may be susceptible to cultural bias and therefore warrant attention in clinical practice and refinement in future test development for Asian patients.
Collapse
Affiliation(s)
| | - David Shum
- The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | | | | | - Alice Kwok
- Department of Clinical Psychology, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Herman Lau
- Chinese University Medical Centre, Ma Liu Shui, Hong Kong
| | - Wai Sang Poon
- Department of Surgery, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Danny Chan
- Department of Surgery, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - X L Zhu
- Department of Surgery, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - David Chan
- Department of Surgery, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Vincent Mok
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Anne Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Karen Ma
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Jonas Yeung
- Department of Medicine, Alice Ho Miu Ling Nethersole Hospital, Tai Po, Hong Kong
| | - Claire Lau
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Yarema Bezchlibnyk
- Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Zelma Kiss
- Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Venus Tang
- Department of Clinical Psychology, Prince of Wales Hospital, Sha Tin, Hong Kong
| |
Collapse
|
78
|
John KD, Wylie SA, Dawant BM, Rodriguez WJ, Phibbs FT, Bradley EB, Neimat JS, van Wouwe NC. Deep brain stimulation effects on verbal fluency dissociated by target and active contact location. Ann Clin Transl Neurol 2021; 8:613-622. [PMID: 33596331 PMCID: PMC7951101 DOI: 10.1002/acn3.51304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Deep brain stimulation (DBS) improves motor symptoms in Parkinson's disease (PD), but it can also disrupt verbal fluency with significant costs to quality of life. The current study investigated how variability of bilateral active electrode coordinates along the superior/inferior, anterior/posterior, and lateral/medial axes in the subthalamic nucleus (STN) or the globus pallidus interna (GPi) contribute to changes in verbal fluency. We predicted that electrode location in the left hemisphere would be linked to changes in fluency, especially in the STN. METHODS Forty PD participants treated with bilateral DBS targeting STN (n = 23) or GPi (n = 17) completed verbal fluency testing in their optimally treated state before and after DBS therapy. Normalized atlas coordinates from left and right active electrode positions along superior/inferior, anterior/posterior, and lateral/medial axes were used to predict changes in fluency postoperatively, separately for patients with STN and GPi targets. RESULTS Consistent with prior studies, fluency significantly declined pre- to postsurgery (in both DBS targets). In STN-DBS patients, electrode position along the inferior to superior axis in the left STN was a significant predictor of fluency changes; relatively more superior left active electrode was associated with the largest fluency declines in STN. Electrode coordinates in right STN or GPi (left or right) did not predict fluency changes. INTERPRETATION We discuss these findings in light of putative mechanisms and potential clinical impact.
Collapse
Affiliation(s)
- Kevin D. John
- Department of Neurological SurgeryUniversity of LouisvilleLouisvilleKYUSA
| | - Scott A. Wylie
- Department of Neurological SurgeryUniversity of LouisvilleLouisvilleKYUSA
| | - Benoit M. Dawant
- Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleTNUSA
| | - William J. Rodriguez
- Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleTNUSA
| | - Fenna T. Phibbs
- Department of NeurologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Elise B. Bradley
- Department of NeurologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Joseph S. Neimat
- Department of Neurological SurgeryUniversity of LouisvilleLouisvilleKYUSA
| | - Nelleke C. van Wouwe
- Department of Neurological SurgeryUniversity of LouisvilleLouisvilleKYUSA
- Department of NeurologyVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
79
|
Molina R, Hass CJ, Cernera S, Sowalsky K, Schmitt AC, Roper JA, Martinez-Ramirez D, Opri E, Hess CW, Eisinger RS, Foote KD, Gunduz A, Okun MS. Closed-Loop Deep Brain Stimulation to Treat Medication-Refractory Freezing of Gait in Parkinson's Disease. Front Hum Neurosci 2021; 15:633655. [PMID: 33732122 PMCID: PMC7959768 DOI: 10.3389/fnhum.2021.633655] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Treating medication-refractory freezing of gait (FoG) in Parkinson’s disease (PD) remains challenging despite several trials reporting improvements in motor symptoms using subthalamic nucleus or globus pallidus internus (GPi) deep brain stimulation (DBS). Pedunculopontine nucleus (PPN) region DBS has been used for medication-refractory FoG, with mixed findings. FoG, as a paroxysmal phenomenon, provides an ideal framework for the possibility of closed-loop DBS (CL-DBS). Methods: In this clinical trial (NCT02318927), five subjects with medication-refractory FoG underwent bilateral GPi DBS implantation to address levodopa-responsive PD symptoms with open-loop stimulation. Additionally, PPN DBS leads were implanted for CL-DBS to treat FoG. The primary outcome of the study was a 40% improvement in medication-refractory FoG in 60% of subjects at 6 months when “on” PPN CL-DBS. Secondary outcomes included device feasibility to gauge the recruitment potential of this four-lead DBS approach for a potentially larger clinical trial. Safety was judged based on adverse events and explantation rate. Findings: The feasibility of this approach was demonstrated as we recruited five subjects with both “on” and “off” medication freezing. The safety for this population of patients receiving four DBS leads was suboptimal and associated with a high explantation rate of 40%. The primary clinical outcome in three of the five subjects was achieved at 6 months. However, the group analysis of the primary clinical outcome did not reveal any benefit. Interpretation: This study of a human PPN CL-DBS trial in medication-refractory FoG showed feasibility in recruitment, suboptimal safety, and a heterogeneous clinical effect in FoG outcomes.
Collapse
Affiliation(s)
- Rene Molina
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States.,Norman Fixel Institute for Neurological Diseases and The Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Chris J Hass
- Norman Fixel Institute for Neurological Diseases and The Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Stephanie Cernera
- Norman Fixel Institute for Neurological Diseases and The Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Kristen Sowalsky
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Abigail C Schmitt
- Norman Fixel Institute for Neurological Diseases and The Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Jaimie A Roper
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | | | - Enrico Opri
- Norman Fixel Institute for Neurological Diseases and The Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Christopher W Hess
- Norman Fixel Institute for Neurological Diseases and The Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Robert S Eisinger
- Norman Fixel Institute for Neurological Diseases and The Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases and The Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Aysegul Gunduz
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States.,Norman Fixel Institute for Neurological Diseases and The Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases and The Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Neurology, University of Florida, Gainesville, FL, United States.,Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| |
Collapse
|
80
|
Azevedo P, Aquino CC, Fasano A. Surgical Management of Parkinson's Disease in the Elderly. Mov Disord Clin Pract 2021; 8:500-509. [PMID: 33981782 DOI: 10.1002/mdc3.13161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 11/09/2022] Open
Abstract
Background Deep Brain Stimulation (DBS) is an increasingly popular therapy for Parkinson's Disease (PD). Despite the experience gained over time with DBS of either the subthalamus or the globus pallidus pars interna, there is still no consensus regarding the age limit for DBS indication. Objectives This narrative review of the literature discusses the issues of age and DBS, emphasizing the critical need for good quality evidence to support the surgical management of elderly patients with PD. Methods We searched PubMed using the terms Parkinson's Disease; Parkinson's Disease therapy; deep brain stimulation; antiparkinsonian agents therapeutic use; age factors; aged; aged, 80 and over; middle aged; treatment outcome; and risk assessments. Results We identified several limitations of the available evidence, such as under-representation of older patients in DBS studies, small sample sizes in studies with older participants, heterogeneity of outcomes, and conflicting results. Conclusions Despite preliminary suggestions that age might affect the outcomes of DBS, the evidence to support the hypothesis of age as an independent predictor of DBS outcomes is limited and results are controversial. Ultimately, finding an age-independent biomarker predicting DBS outcome is the final goal to expand this powerful treatment to all patients age in an effective and safe manner.
Collapse
Affiliation(s)
- Paula Azevedo
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology University of Toronto Toronto Ontario Canada
| | - Camila C Aquino
- Department of Clinical Neurosciences University of Calgary Calgary Alberta Canada.,Hotchkiss Brain Institute, University of Calgary Calgary Alberta Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology University of Toronto Toronto Ontario Canada.,Krembil Brain Institute Toronto Ontario Canada.,CenteR for Advancing Neurotechnological Innovation to Application (CRANIA) Toronto Ontario Canada
| |
Collapse
|
81
|
Lam J, Williams M, Ashla M, Lee DJ. Cognitive outcomes following vagus nerve stimulation, responsive neurostimulation and deep brain stimulation for epilepsy: A systematic review. Epilepsy Res 2021; 172:106591. [PMID: 33711711 DOI: 10.1016/j.eplepsyres.2021.106591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The cognitive impacts of resective surgery for epilepsy have been well-studied. While seizure outcomes for less invasive, neuromodulatory treatments are promising, there is a paucity of data for cognitive outcomes. METHODS Medline, EMBASE, and the Cochrane Library were searched on November 2019. Inclusion criteria were studies reporting cognitive outcomes following chronic (>6 months) vagus nerve stimulation (VNS), deep brain stimulation (DBS) and responsive neurostimulation (RNS) for epilepsy in at least five patients. Studies reporting acute on-off effects of stimulation were also included. Studies were screened, extracted of data, and assessed for bias using the Joanna Briggs Institute Critical Appraisal Tools by two independent reviewers. Prospero ID: CRD42020184432. RESULTS Of 8443 studies screened, 29 studies were included. Nineteen investigated the effects of chronic stimulation (11 VNS, 6 DBS, 2 RNS): 10 (53 %) reported no change compared to preoperative baseline; 8 (42 %) reported some improvement in one or more cognitive domain; 1 (5%) reported decline. Ten investigated the effects of acute stimulation (5 VNS, 5 DBS): 3 (30 %) reported no change; 4 reported improvement (40 %); 3 (30 %) reported decline. Eight (28 %) did not report statistical analysis. CONCLUSIONS Long-term cognitive outcomes are at least stable following VNS, DBS and RNS. Acute effects of stimulation are less clear. However, data are limited by number, size, and quality. More robust evidence is needed to properly assess the cognitive effects of each of these treatments.
Collapse
Affiliation(s)
- Jordan Lam
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, United States
| | - Marcus Williams
- King's College London Medical School, London, United Kingdom
| | - Mark Ashla
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, United States
| | - Darrin J Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, United States.
| |
Collapse
|
82
|
Cognitive effects of theta frequency bilateral subthalamic nucleus stimulation in Parkinson's disease: A pilot study. Brain Stimul 2021; 14:230-240. [PMID: 33418095 DOI: 10.1016/j.brs.2020.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/12/2020] [Accepted: 12/28/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND There is significant evidence for cognitive decline following deep brain stimulation (DBS). Current stimulation paradigms utilize gamma frequency stimulation for optimal motor benefits; however, little has been done to optimize stimulation parameters for cognition. Recent evidence implicates subthalamic nucleus (STN) theta oscillations in executive function, and theta oscillations are well-known to relate to episodic memory, suggesting that theta frequency stimulation could potentially improve cognition in Parkinson's disease (PD). OBJECTIVE To evaluate the acute effects of theta frequency bilateral STN stimulation on executive function in PD versus gamma frequency and off, as well as investigate the differential effects on episodic versus nonepisodic verbal fluency. METHODS Twelve patients (all males, mean age 60.8) with bilateral STN DBS for PD underwent a double-blinded, randomized cognitive testing during stimulation at (1) 130-135 Hz (gamma), (2) 10 Hz (theta) and (3) off. Executive functions and processing speed were evaluated using verbal fluency tasks (letter, episodic category, nonepisodic category, and category switching), color-word interference task, and random number generation task. Performance at each stimulation frequency was compared within subjects. RESULTS Theta frequency significantly improved episodic category fluency compared to gamma, but not compared to off. There were no significant differences between stimulation frequencies in other tests. CONCLUSION In this pilot trial, our results corroborate the role of theta oscillations in episodic retrieval, although it is unclear whether this reflects direct modulation of the medial temporal lobe and whether similar effects can be found with more canonical memory paradigms. Further work is necessary to corroborate our findings and investigate the possibility of interleaving theta and gamma frequency stimulation for concomitant motor and cognitive effects.
Collapse
|
83
|
Jones JD, Orozco T, Bowers D, Hu W, Jabarkheel Z, Chiu S, Ramirez-Zamora A, Foote K, Okun MS, Wagle Shukla A. Cognitive Outcomes for Essential Tremor Patients Selected for Thalamic Deep Brain Stimulation Surgery Through Interdisciplinary Evaluations. Front Hum Neurosci 2020; 14:578348. [PMID: 33362489 PMCID: PMC7759538 DOI: 10.3389/fnhum.2020.578348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/10/2020] [Indexed: 11/20/2022] Open
Abstract
Objective: Deep brain stimulation (DBS) targeted to the ventral intermediate (VIM) nucleus of the thalamus is effective for motor symptoms in essential tremor (ET), but there is limited data on cognitive outcomes. We examined cognitive outcomes in a large cohort of ET DBS patients (pre-DBS and 1+ year after DBS). Methods: In a retrospective analysis, we used repeated-measures ANOVA testing to examine whether the age of tremor onset, age at DBS surgery, hemisphere side implanted with lead, unilateral vs. bilateral implantations, and presence of surgical complications influenced the cognitive outcomes. Neuropsychological outcomes of interest were verbal memory, executive functioning, working memory, language functioning, visuospatial functioning, and general cognitive function. Results: We identified 50 ET DBS patients; 29 (58%) males; the mean age of tremor onset was 35.84 (±21.50) years with a median age of 38 years. The mean age at DBS was 68.18 (±10.07) years. There were 37 unilateral 30 left, seven right, and 13 bilateral brain implantations. In the subgroup analysis, there was a significant interaction between assessment (pre vs. post) and age of tremor onset (<38 vs. >38 years); F(1,30) = 4.47; p = 0.043 for working memory. The post hoc testing found improvements for younger onset ET. Similarly, there was a significant interaction between assessment (pre vs. post) and complications vs. no complications subgroups; F(1,45) = 4.34; p = 0.043 for verbal memory with worsening scores seen for ET patients with complications. The remaining tests were not significant. Conclusion: In this large cohort of ET patients with (>30% improvements), DBS was not accompanied by a significant decline in many cognitive domains. These outcomes were possibly related to the selection of patients with normal cognitive functioning before surgery, unilateral DBS implantations for the majority, and selection of patients with optimal response to DBS.
Collapse
Affiliation(s)
- Jacob D Jones
- Department of Psychology, California State University, San Bernardino, CA, United States
| | - Tatiana Orozco
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Dawn Bowers
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Wei Hu
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Zakia Jabarkheel
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Shannon Chiu
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Kelly Foote
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Aparna Wagle Shukla
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
84
|
Holanda VM, Okun MS, Middlebrooks EH, Gungor A, Barry ME, Forder J, Foote KD. Postmortem Dissections of Common Targets for Lesion and Deep Brain Stimulation Surgeries. Neurosurgery 2020; 86:860-872. [PMID: 31504849 DOI: 10.1093/neuros/nyz318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/09/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The subthalamic nucleus (STN), globus pallidus internus (GPi), and pedunculopontine nucleus (PPN) are effective targets for deep brain stimulation (DBS) in many pathological conditions. Previous literature has focused on appropriate stimulation targets and their relationships with functional neuroanatomic pathways; however, comprehensive anatomic dissections illustrating these nuclei and their connections are lacking. This information will provide insight into the anatomic basis of stimulation-induced DBS benefits and side effects. OBJECTIVE To combine advanced cadaveric dissection techniques and ultrahigh field magnetic resonance imaging (MRI) to explore the anatomy of the STN, GPi, and PPN with their associated fiber pathways. METHODS A total of 10 cadaveric human brains and 2 hemispheres of a cadaveric head were examined using fiber dissection techniques. The anatomic dissections were compared with 11.1 Tesla (T) structural MRI and 4.7 T MRI fiber tractography. RESULTS The extensive connections of the STN (caudate nucleus, putamen, medial frontal cortex, substantia innominata, substantia nigra, PPN, globus pallidus externus (GPe), GPi, olfactory tubercle, hypothalamus, and mammillary body) were demonstrated. The connections of GPi to the thalamus, substantia nigra, STN, amygdala, putamen, PPN, and GPe were also illustrated. The PPN was shown to connect to the STN and GPi anteriorly, to the cerebellum inferiorly, and to the substantia nigra anteriorly and superiorly. CONCLUSION This study demonstrates connections using combined anatomic microdissections, ultrahigh field MRI, and MRI tractography. The anatomic findings are analyzed in relation to various stimulation-induced clinical effects. Precise knowledge of neuroanatomy, anatomic relationships, and fiber connections of the STN, GPi, PPN will likely enable more effective targeting and improved DBS outcomes.
Collapse
Affiliation(s)
- Vanessa M Holanda
- Fixel Institute for Neurological Diseases, Department of Neurosurgery, University of Florida, Gainesville, Florida.,Center of Neurology and Neurosurgery Associates (NeuroCENNA), BP - A Beneficência Portuguesa de São Paulo, São Paulo SP, Brazil.,Department of Neurosurgery, Mayo Clinic College of Medicine, Jacksonville, Florida
| | - Michael S Okun
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, Florida
| | - Erik H Middlebrooks
- Department of Radiology, Mayo Clinic College of Medicine, Jacksonville, Florida
| | - Abuzer Gungor
- Department of Neurosurgery, Acιbadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Margaret E Barry
- Fixel Institute for Neurological Diseases, Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - John Forder
- Department of Radiology, University of Florida, Gainesville, Florida
| | - Kelly D Foote
- Fixel Institute for Neurological Diseases, Department of Neurosurgery, University of Florida, Gainesville, Florida
| |
Collapse
|
85
|
Wong JK, Viswanathan VT, Nozile-Firth KS, Eisinger RS, Leone EL, Desai AM, Foote KD, Ramirez-Zamora A, Okun MS, Wagle Shukla A. STN Versus GPi Deep Brain Stimulation for Action and Rest Tremor in Parkinson's Disease. Front Hum Neurosci 2020; 14:578615. [PMID: 33192410 PMCID: PMC7651783 DOI: 10.3389/fnhum.2020.578615] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/07/2020] [Indexed: 11/15/2022] Open
Abstract
Objective To investigate the effects of subthalamic nucleus (STN) and globus pallidus internus (GPi), deep brain stimulation (DBS) on individual action tremor/postural tremor (AT) and rest tremor (RT) in Parkinson’s disease (PD). Randomized DBS studies have reported marked benefit in tremor with both GPi and STN and DBS, however, there is a paucity of information available on AT vs RT when separated by the surgical target. Methods We retrospectively reviewed the 1-year clinical outcome of PD patients treated with STN and GPi DBS at the University of Florida. We specifically selected patients with moderate to severe AT. Eighty-eight patients (57 STN and 31 GPi) were evaluated at 6 and 12 months for changes in AT and RT in the OFF-medication/ON stimulation state. A comparison of “response” was performed and defined as greater than or equal to a 2-point decrease in tremor score. Results STN and GPi DBS both improved AT at 6- and 12-months post-implantation (p < 0.001 and p < 0.001). The STN DBS group experienced a greater improvement in AT at 6 months compared to the GPi group (p = 0.005) but not at the 12 months follow-up (p = 0.301). Both STN and GPi DBS also improved RT at 6- and 12-months post-implantation (p < 0.001 and p < 0.001). There was no difference in RT scores between the two groups at 6 months (p = 0.23) or 12 months (p = 0.74). The STN group had a larger proportion of patients who achieved a “response” in AT at 6 months (p < 0.01), however, this finding was not present at 12 months (p = 0.23). A sub-analysis revealed that in RT, the STN group had a larger percentage of “responders” when followed through 12 months (p < 0.01). Conclusion Both STN and GPi DBS reduced PD associated AT and RT at 12 months follow-up. There was no advantage of either brain target in the management of RT or AT. One nuance of the study was that STN DBS was more effective in suppressing AT in the early postoperative period, however, this effect diminished over time. Clinicians should be aware that it may take longer to achieve a similar tremor outcome when utilizing the GPi target.
Collapse
Affiliation(s)
- Joshua K Wong
- Department of Neurology, Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Vyas T Viswanathan
- Department of Neurology, Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Kamilia S Nozile-Firth
- Department of Neurology, Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Robert S Eisinger
- Department of Neurology, Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Emma L Leone
- Department of Neurology, Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Anuj M Desai
- Department of Neurology, Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Department of Neurosurgery, Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Department of Neurology, Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Aparna Wagle Shukla
- Department of Neurology, Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
86
|
van Wouwe NC, Neimat JS, van den Wildenberg WPM, Hughes SB, Lopez AM, Phibbs FT, Schall JD, Rodriguez WJ, Bradley EB, Dawant BM, Wylie SA. Subthalamic Nucleus Subregion Stimulation Modulates Inhibitory Control. Cereb Cortex Commun 2020; 1:tgaa083. [PMID: 33381760 PMCID: PMC7750129 DOI: 10.1093/texcom/tgaa083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 11/12/2022] Open
Abstract
Patients with Parkinson's disease (PD) often experience reductions in the proficiency to inhibit actions. The motor symptoms of PD can be effectively treated with deep brain stimulation (DBS) of the subthalamic nucleus (STN), a key structure in the frontal-striatal network that may be directly involved in regulating inhibitory control. However, the precise role of the STN in stopping control is unclear. The STN consists of functional subterritories linked to dissociable cortical networks, although the boundaries of the subregions are still under debate. We investigated whether stimulating the dorsal and ventral subregions of the STN would show dissociable effects on ability to stop. We studied 12 PD patients with STN DBS. Patients with two adjacent contacts positioned within the bounds of the dorsal and ventral STN completed two testing sessions (OFF medication) with low amplitude stimulation (0.4 mA) at either the dorsal or ventral contacts bilaterally, while performing the stop task. Ventral, but not dorsal, DBS improved stopping latencies. Go reactions were similar between dorsal and ventral DBS STN. Stimulation in the ventral, but not dorsal, subregion of the STN improved stopping speed, confirming the involvement of the STN in stopping control and supporting the STN functional subregions.
Collapse
Affiliation(s)
- Nelleke C van Wouwe
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202 USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph S Neimat
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202 USA
| | - Wery P M van den Wildenberg
- Department of Psychology, University of Amsterdam, Amsterdam 1018 WS, The Netherlands
- Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam 1001 NK, The Netherlands
| | - Shelby B Hughes
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alexander M Lopez
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Fenna T Phibbs
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey D Schall
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - William J Rodriguez
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Elise B Bradley
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Benoit M Dawant
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Scott A Wylie
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202 USA
| |
Collapse
|
87
|
Mulders AEP, Temel Y, Tonge M, Schaper FLWVJ, van Kranen-Mastenbroek V, Ackermans L, Kubben P, Janssen MLF, Duits A. The association between surgical characteristics and cognitive decline following deep brain stimulation of the subthalamic nucleus in Parkinson's disease. Clin Neurol Neurosurg 2020; 200:106341. [PMID: 33160716 DOI: 10.1016/j.clineuro.2020.106341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Despite optimal improvement in motor functioning, both short- and long-term studies have reported small but consistent changes in cognitive functioning following STN-DBS in Parkinson's disease (PD). The aim of the present study was to explore whether surgical characteristics were associated with cognitive decline one year following STN-DBS. METHODS We retrospectively analyzed 49 PD patients who underwent bilateral STN-DBS. Cognitive change scores were related to the number of microelectrode recording (MER) trajectories, the STN length as measured by MER, and cortical entry points. Regression analyses were corrected for age at surgery, disease duration, education and preoperative levodopa responsiveness. Patients were then divided into a cognitive and non-cognitive decline group for each neuropsychological test and compared regarding demographic and surgical characteristics. RESULTS One year postoperatively, significant declines were found in verbal fluency, Stroop Color-Word test and Trail Making Test B (TMT-B). Only changes in TMT-B were associated with the coronal entry point in the right hemisphere. The number of MER trajectories and STN length were not associated with cognitive change scores. When comparing the cognitive decline and non-cognitive decline groups, no significant differences were found in surgical characteristics. CONCLUSIONS The electrode passage through the right prefrontal lobe may contribute to subtle changes in executive function. However, only few patients showed clinically relevant cognitive decline. The use of multiple MER trajectories and a longer STN length were not associated with cognitive decline one year following surgery. From a cognitive point of view, DBS may be considered a relatively safe procedure.
Collapse
Affiliation(s)
- Anne E P Mulders
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Yasin Temel
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Department of Neurosurgery, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Mehmet Tonge
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Istanbul Medipol Universit, Istanbul, Turkey
| | - Frédéric L W V J Schaper
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Vivianne van Kranen-Mastenbroek
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Clinical Neurophysiology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Pieter Kubben
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marcus L F Janssen
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Clinical Neurophysiology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Annelien Duits
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands.
| |
Collapse
|
88
|
Sharma VD, Patel M, Miocinovic S. Surgical Treatment of Parkinson's Disease: Devices and Lesion Approaches. Neurotherapeutics 2020; 17:1525-1538. [PMID: 33118132 PMCID: PMC7851282 DOI: 10.1007/s13311-020-00939-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 10/23/2022] Open
Abstract
Surgical treatments have transformed the management of Parkinson's disease (PD). Therapeutic options available for the management of PD motor complications include deep brain stimulation (DBS), ablative or lesioning procedures (pallidotomy, thalamotomy, subthalamotomy), and dopaminergic medication infusion devices. The decision to pursue these advanced treatment options is typically done by a multidisciplinary team by considering factors such as the patient's clinical characteristics, efficacy, ease of use, and risks of therapy with a goal to improve PD symptoms and quality of life. DBS has become the most widely used surgical therapy, although there is a re-emergence of interest in ablative procedures with the introduction of MR-guided focused ultrasound. In this article, we review DBS and lesioning procedures for PD, including indications, selection process, and management strategies.
Collapse
Affiliation(s)
- Vibhash D Sharma
- Department of Neurology, University of Kansas Medical Center, 3599 Rainbow Blvd, MS 3042, Kansas City, KS, 66160, USA.
| | - Margi Patel
- Department of Neurology, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
89
|
Zhang S, Tagliati M, Pouratian N, Cheeran B, Ross E, Pereira E. Steering the Volume of Tissue Activated With a Directional Deep Brain Stimulation Lead in the Globus Pallidus Pars Interna: A Modeling Study With Heterogeneous Tissue Properties. Front Comput Neurosci 2020; 14:561180. [PMID: 33101000 PMCID: PMC7546409 DOI: 10.3389/fncom.2020.561180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Objective: To study the effect of directional deep brain stimulation (DBS) electrode configuration and vertical electrode spacing on the volume of tissue activated (VTA) in the globus pallidus, pars interna (GPi). Background: Directional DBS leads may allow clinicians to precisely direct current fields to different functional networks within traditionally targeted brain areas. Modeling the shape and size of the VTA for various monopolar or bipolar configurations can inform clinical programming strategies for GPi DBS. However, many computational models of VTA are limited by assuming tissue homogeneity. Methods: We generated a multimodal image-based detailed anatomical (MIDA) computational model with a directional DBS lead (1.5 mm or 0.5 mm vertical electrode spacing) placed with segmented contact 2 at the ventral posterolateral "sensorimotor" region of the GPi. The effect of tissue heterogeneity was examined by replacing the MIDA tissues with a homogeneous tissue of conductance 0.3 S/m. DBS pulses (amplitude: 1 mA, pulse width: 60 μs, frequency: 130 Hz) were used to produce VTAs. The following DBS contact configurations were tested: single-segment monopole (2B-/Case+), two-segment monopole (2A-/2B-/Case+ and 2B-/3B-/Case+), ring monopole (2A-/2B-/2C-/Case+), one-cathode three-anode bipole (2B-/3A+/3B+/3C+), three-cathode three-anode bipole (2A-/2B-/2C-/3A+/3B+/3C+). Additionally, certain vertical configurations were repeated with 2 mA current amplitude. Results: Using a heterogeneous tissue model affected both the size and shape of the VTA in GPi. Electrodes with both 0.5 mm and 1.5 mm vertical spacing (1 mA) modeling showed that the single segment monopolar VTA was entirely contained within the GPi when the active electrode is placed at the posterolateral "sensorimotor" GPi. Two segments in a same ring and ring settings, however, produced VTAs outside of the GPi border that spread into adjacent white matter pathways, e.g., optic tract and internal capsule. Both stacked monopolar settings and vertical bipolar settings allowed activation of structures dorsal to the GPi in addition to the GPi. Modeling of the stacked monopolar settings with the DBS lead with 0.5 mm vertical electrode spacing further restricted VTAs within the GPi, but the VTA volumes were smaller compared to the equivalent settings of 1.5 mm spacing.
Collapse
Affiliation(s)
- Simeng Zhang
- Neuromodulation Division, Abbott, Plano, TX, United States
| | | | - Nader Pouratian
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Binith Cheeran
- Neuromodulation Division, Abbott, Plano, TX, United States
| | - Erika Ross
- Neuromodulation Division, Abbott, Plano, TX, United States
| | - Erlick Pereira
- Research Institute of Molecular and Clinical Sciences, St. George's University of London, London, United Kingdom
| |
Collapse
|
90
|
Di Luca DG, Sambursky JA, Margolesky J, Cordeiro JG, Diaz A, Shpiner DS, Moore HP, Singer C, Luca C. Minority Enrollment in Parkinson's Disease Clinical Trials: Meta-Analysis and Systematic Review of Studies Evaluating Treatment of Neuropsychiatric Symptoms. JOURNAL OF PARKINSON'S DISEASE 2020; 10:1709-1716. [PMID: 32894250 DOI: 10.3233/jpd-202045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Randomized clinical trials (RCTs) in Parkinson's disease (PD) have historically enrolled a low number of underrepresented minorities, lessening the generalizability of therapeutic developments. Although there are racial disparities in PD, little is known regarding neuropsychiatric symptoms and other nonmotor manifestations across all races/ethnicities. OBJECTIVE To assess minority participation in PD trials evaluating the treatment of neuropsychiatric symptoms and explore underlying reasons. METHODS We systematically searched PubMed and Embase for RCTs with a primary goal of treating neuropsychiatric symptoms in PD patients from 2000-2019. The pooled prevalence and 95% confidence interval (CI) of being white and enrolled in a clinical trial was calculated using the inverse variance method. I-square was calculated as a measure of heterogeneity and meta-regression was used to evaluate temporal trends. RESULTS We included 63 RCTs with a total of 7,973 patients. In pooled analysis, 11 (17.5%) RCTs reported race/ethnicity. Of studies reporting this data, 5 African American (0.2%), 16 Hispanics (0.64%), and 539 Asians (21.44%) were enrolled. The pooled prevalence of being white in clinical trials was 98% (CI 0.97-0.98, p < 0.001), with 1,908 patients (75.8%). NIH-funded studies were most likely to report racial data when compared to non-NIH trials (p = 0.032). CONCLUSION This large pooled analysis found a small percentage of RCTs reporting race/ethnicity when evaluating treatment of neuropsychiatric symptoms in PD. There was a disproportionally high number of white patients when compared to African Americans and Hispanics. More studies are needed to investigate this discrepancy and improve rates of & minority enrollment in PD trials.
Collapse
Affiliation(s)
- Daniel G Di Luca
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jacob A Sambursky
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jason Margolesky
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Anthony Diaz
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Danielle S Shpiner
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Henry P Moore
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carlos Singer
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Corneliu Luca
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
91
|
Cernera S, Eisinger RS, Wong JK, Ho KWD, Lopes JL, To K, Carbunaru S, Ramirez-Zamora A, Almeida L, Foote KD, Okun MS, Gunduz A. Long-term Parkinson's disease quality of life after staged DBS: STN vs GPi and first vs second lead. NPJ Parkinsons Dis 2020; 6:13. [PMID: 32656315 PMCID: PMC7338364 DOI: 10.1038/s41531-020-0115-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
Deep brain stimulation (DBS) for Parkinson's disease (PD) improves quality of life (QoL), but longitudinal follow-up data are scarce. We sought to quantify long-term benefits of subthalamic nucleus (STN) vs globus pallidus internus (GPi), and unilateral vs staged bilateral PD-DBS on postoperative QoL. This is a retrospective, longitudinal, non-randomized study using the PD QoL questionnaire (PDQ)-39 in patients with STN- or GPi-DBS, and with unilateral (N = 191) or staged bilateral (an additional contralateral lead implant) surgery (N = 127 and 156 for the first and second lead, respectively). Changes in PDQ-39 summary index (PDQ-39SI) and subscores throughout 60 months of follow-up were used as the primary analysis. We applied mixed models that included levodopa and covariates that differed at baseline across groups. For unilateral implantation, we observed an initial improvement in PDQ-39SI of 15.55 ± 3.29% (µ ± SE) across both brain targets at 4 months postoperatively. Unilateral STN patients demonstrated greater improvement in PDQ-39SI than GPi patients at 4 and 18 months postoperatively. Analysis of patients with staged bilateral leads revealed an initial 25.34 ± 2.74% (µ ± SE) improvement in PDQ-39SI at 4 months after the first lead with further improvement until 18 months, with no difference across targets. Scores did not improve after the second lead with gradual worsening starting at 18 months postoperatively. STN-DBS provided greater short-term QoL improvement than GPi-DBS for unilateral surgery. For staged bilateral DBS, overall QoL improvement was explained primarily by the first lead. Decision-making for patients considering DBS should include a discussion surrounding the potential risks and benefits from a second DBS lead.
Collapse
Affiliation(s)
- Stephanie Cernera
- J. Crayton Pruitt Department of Biomedical Engineering, Gainesville, FL USA
| | - Robert S. Eisinger
- Department of Neuroscience, Norman Fixel Institute for Neurological Diseases, Gainesville, FL USA
| | - Joshua K. Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, Gainesville, FL USA
| | - Kwo Wei David Ho
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, Gainesville, FL USA
| | - Janine Lobo Lopes
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, Gainesville, FL USA
| | - Kevin To
- Department of Neuroscience, Norman Fixel Institute for Neurological Diseases, Gainesville, FL USA
| | - Samuel Carbunaru
- Department of Neuroscience, Norman Fixel Institute for Neurological Diseases, Gainesville, FL USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, Gainesville, FL USA
| | - Leonardo Almeida
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, Gainesville, FL USA
| | - Kelly D. Foote
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, Gainesville, FL USA
| | - Michael S. Okun
- Department of Neuroscience, Norman Fixel Institute for Neurological Diseases, Gainesville, FL USA
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, Gainesville, FL USA
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, Gainesville, FL USA
| | - Aysegul Gunduz
- J. Crayton Pruitt Department of Biomedical Engineering, Gainesville, FL USA
- Department of Neuroscience, Norman Fixel Institute for Neurological Diseases, Gainesville, FL USA
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, Gainesville, FL USA
| |
Collapse
|
92
|
Guo S, Li J, Zhang Y, Li Y, Zhuang P. Optimal target localisation and eight-year outcome for subthalamic stimulation in patients with Parkinson's disease. Br J Neurosurg 2020; 35:151-156. [PMID: 32532160 DOI: 10.1080/02688697.2020.1775786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a useful therapy to improve motor functions and reduce dependence on medication in patients with Parkinson's disease (PD). The purpose of the study is to assess the long-term clinical outcomes of STN-DBS and to determine the optimal placement of electrodes that for the most positive outcomes. METHODS A consecutive series of 42 PD patients were evaluated using the Unified Parkinson's Disease Rating Scale (UPDRS) before and after STN-DBS lead implantation. Postoperatively, patients were evaluated during both the medication 'ON' period (medication suppressed symptoms) and the medication 'OFF' period (when medication failed to suppress symptoms), and the results were compared to the baseline values prior to surgery. Follow-up assessments, focusing on motor functions, were performed 1, 3, 5, and 8 years after the initial implantation surgery. The locations of electrodes were measured and compared against the clinical outcomes. RESULTS STN-DBS remarkably improved the UPDRS-II, -III, and -IV dyskinesia and motor fluctuation scores in the OFF-medication condition when compared to baseline values. In addition, the dose of levodopa needed to elicit an effect declined sharply in the OFF-medication condition. Over time, the axial signs progressively worsened even with continuous stimulation and a levodopa response. The location of electrodes correlated with the most beneficial outcomes was the dorsal STN margin. CONCLUSIONS Our results confirm that overall, stimulation-induced motor improvement is still evident after 8 years. However, the primary best outcome declines with the progressive loss of favourable axial signs.
Collapse
Affiliation(s)
- Song Guo
- Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Jianyu Li
- Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Yuqing Zhang
- Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Yongjie Li
- Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Ping Zhuang
- Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
93
|
Grover T, Georgiev D, Kalliola R, Mahlknecht P, Zacharia A, Candelario J, Hyam J, Zrinzo L, Hariz M, Foltynie T, Limousin P, Jahanshahi M, Tripoliti E. Effect of Low versus High Frequency Subthalamic Deep Brain Stimulation on Speech Intelligibility and Verbal Fluency in Parkinson's Disease: A Double-Blind Study. JOURNAL OF PARKINSONS DISEASE 2020; 9:141-151. [PMID: 30594934 DOI: 10.3233/jpd-181368] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Subthalamic deep brain stimulation (STN-DBS) is an established treatment for late stage Parkinson's disease (PD). Speech intelligibility (SI) and verbal fluency (VF) have been shown to deteriorate following chronic STN-DBS. It has been suggested that speech might respond favourably to low frequency stimulation (LFS). OBJECTIVE We examined how SI, perceptual speech characteristics, phonemic and semantic VF and processes underlying it (clustering and switching) respond to LFS of 60 and 80 Hz in comparison to high frequency stimulation (HFS) (110, 130 and 200 Hz). METHODS In this double-blind study, 15 STN-DBS PD patients (mean age 65, SD = 5.8, 14 right handed, three females), were assessed at five stimulation frequencies: 60 Hz, 80 Hz, 110 Hz, 130 Hz and 200 Hz. In addition to the clinical neurological assessment of speech, VF and SI were assessed. RESULTS SI and in particular articulation, respiration, phonation and prosody improved with LFS (all p < 0.05). Phonemic VF switching improved with LFS (p = 0.005) but this did not translate to an improved phonemic VF score. A trend for improved semantic VF was found. A negative correlation was found between perceptual characteristics of speech and duration of chronic stimulation (all p < 0.05). CONCLUSIONS These findings highlight the need for meticulous programming of frequency to maximise SI in chronic STN-DBS. The findings further implicate stimulation frequency in changes to specific processes underlying VF, namely phonemic switching and demonstrate the potential to address such deficits through advanced adjustment of stimulation parameters.
Collapse
Affiliation(s)
- Timothy Grover
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Dejan Georgiev
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK.,Department of Neurology, University Medical Centre Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Slovenia.,Faculty of Computer and Information Sciences, University of Ljubljana, Slovenia
| | - Rania Kalliola
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Philipp Mahlknecht
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK.,Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - André Zacharia
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Joseph Candelario
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Jonathan Hyam
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Ludvic Zrinzo
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Marwan Hariz
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Patricia Limousin
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Marjan Jahanshahi
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| | - Elina Tripoliti
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, National Hospital of Neurology and Neurosurgery, Queen Square, London, UK
| |
Collapse
|
94
|
Irmen F, Horn A, Mosley P, Perry A, Petry-Schmelzer JN, Dafsari HS, Barbe M, Visser-Vandewalle V, Schneider GH, Li N, Kübler D, Wenzel G, Kühn AA. Left Prefrontal Connectivity Links Subthalamic Stimulation with Depressive Symptoms. Ann Neurol 2020; 87:962-975. [PMID: 32239535 DOI: 10.1002/ana.25734] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD) not only stimulates focal target structures but also affects distributed brain networks. The impact this network modulation has on non-motor DBS effects is not well-characterized. By focusing on the affective domain, we systematically investigate the impact of electrode placement and associated structural connectivity on changes in depressive symptoms following STN-DBS, which have been reported to improve, worsen, or remain unchanged. METHODS Depressive symptoms before and after STN-DBS surgery were documented in 116 patients with PD from 3 DBS centers (Berlin, Queensland, and Cologne). Based on individual electrode reconstructions, the volumes of tissue activated (VTAs) were estimated and combined with normative connectome data to identify structural connections passing through VTAs. Berlin and Queensland cohorts formed a training and cross-validation dataset used to identify structural connectivity explaining change in depressive symptoms. The Cologne data served as the test-set for which depressive symptom change was predicted. RESULTS Structural connectivity was linked to depressive symptom change under STN-DBS. An optimal connectivity map trained on the Berlin cohort could predict changes in depressive symptoms in Queensland patients and vice versa. Furthermore, the joint training-set map predicted changes in depressive symptoms in the independent test-set. Worsening of depressive symptoms was associated with left prefrontal connectivity. INTERPRETATION Fibers connecting the electrode with left prefrontal areas were associated with worsening of depressive symptoms. Our results suggest that for the left STN-DBS lead, placement impacting fibers to left prefrontal areas should be avoided to maximize improvement of depressive symptoms. ANN NEUROL 2020;87:962-975.
Collapse
Affiliation(s)
- Friederike Irmen
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Biological Psychology and Cognitive Neuroscience, Freie Universität Berlin, Berlin, Germany
| | - Andreas Horn
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philip Mosley
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Herston, Australia.,Queensland Brain Institute, University of Queensland, St. Lucia, Australia
| | - Alistair Perry
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Jan Niklas Petry-Schmelzer
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Haidar S Dafsari
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Michael Barbe
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ningfei Li
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dorothee Kübler
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gregor Wenzel
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin, Germany
| |
Collapse
|
95
|
Leimbach F, Atkinson-Clement C, Wilkinson L, Cheung C, Jahanshahi M. Dissociable effects of subthalamic nucleus deep brain stimulation surgery and acute stimulation on verbal fluency in Parkinson's disease. Behav Brain Res 2020; 388:112621. [PMID: 32353395 DOI: 10.1016/j.bbr.2020.112621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
Abstract
OBJECT Verbal fluency (VF) is the cognitive test which shows the most consistent and persistent post-operative decline after subthalamic deep brain stimulation (STN-DBS) in Parkinson's disease (PD). However, the reasons are not completely understood, and the debate has focused on two hypotheses: a surgical effect or an acute STN-DBS effect. METHODS We recruited 3 PD samples: (1) a group assessed before and after STN-DBS surgery (2) a group assessed On vs. Off STN-DBS and (3) an unoperated PD control group. All groups performed letter, category and switching category VF tasks. The total number of correct words generated were noted and measures of clustering and switching were also obtained. RESULTS We found a significant effect of STN-DBS surgery on all VF tasks which was associated with a post-operative decline in the total number of words generated, and a reduction of phonemic switching during the letter and category VF tasks, and a reduction of semantic clustering for category VF. By contrast to the effects of surgery, acute On vs. Off stimulation did not influence the number of words generated on any of the VF tasks. Acute stimulation only produced two effects on the category VF task: increased semantic cluster size and decreased number of semantic switches when STN-DBS was switched On. CONCLUSIONS This study differentiates between the effects of STN-DBS surgery and acute stimulation on VF performance. Our findings indicate that the STN-DBS effect on VF are a surgical and not an acute STN stimulation effect.
Collapse
Affiliation(s)
- Friederike Leimbach
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, and the National Hospital for Neurology & Neurosurgery, London, United Kingdom
| | - Cyril Atkinson-Clement
- Brain and Spine Institute (ICM), Movement Investigation and Therapeutics Team, Paris, France
| | - Leonora Wilkinson
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, and the National Hospital for Neurology & Neurosurgery, London, United Kingdom; Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892-1430, United States
| | - Catherine Cheung
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, and the National Hospital for Neurology & Neurosurgery, London, United Kingdom
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, and the National Hospital for Neurology & Neurosurgery, London, United Kingdom; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
96
|
Full activation pattern mapping by simultaneous deep brain stimulation and fMRI with graphene fiber electrodes. Nat Commun 2020; 11:1788. [PMID: 32286290 PMCID: PMC7156737 DOI: 10.1038/s41467-020-15570-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/18/2020] [Indexed: 01/01/2023] Open
Abstract
Simultaneous deep brain stimulation (DBS) and functional magnetic resonance imaging (fMRI) constitutes a powerful tool for elucidating brain functional connectivity, and exploring neuromodulatory mechanisms of DBS therapies. Previous DBS-fMRI studies could not provide full activation pattern maps due to poor MRI compatibility of the DBS electrodes, which caused obstruction of large brain areas on MRI scans. Here, we fabricate graphene fiber (GF) electrodes with high charge-injection-capacity and little-to-no MRI artifact at 9.4T. DBS-fMRI with GF electrodes at the subthalamic nucleus (STN) in Parkinsonian rats reveal robust blood-oxygenation-level-dependent responses along the basal ganglia-thalamocortical network in a frequency-dependent manner, with responses from some regions not previously detectable. This full map indicates that STN-DBS modulates both motor and non-motor pathways, possibly through orthodromic and antidromic signal propagation. With the capability for full, unbiased activation pattern mapping, DBS-fMRI using GF electrodes can provide important insights into DBS therapeutic mechanisms in various neurological disorders. Combination of fMRI and deep brain stimulation (DBS) allows for large-scale mapping of brain responses to DBS. Here the authors develop highly MRI compatible graphene fiber electrodes for full brain activation pattern mapping under DBS in Parkinsonian rats.
Collapse
|
97
|
La stimulation cérébrale profonde, une option thérapeutique. ACTUALITES PHARMACEUTIQUES 2020. [DOI: 10.1016/j.actpha.2020.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
98
|
Lehto LJ, Canna A, Wu L, Sierra A, Zhurakovskaya E, Ma J, Pearce C, Shaio M, Filip P, Johnson MD, Low WC, Gröhn O, Tanila H, Mangia S, Michaeli S. Orientation selective deep brain stimulation of the subthalamic nucleus in rats. Neuroimage 2020; 213:116750. [PMID: 32198048 DOI: 10.1016/j.neuroimage.2020.116750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/22/2020] [Accepted: 03/13/2020] [Indexed: 11/28/2022] Open
Abstract
Deep brain stimulation (DBS) has become an important tool in the management of a wide spectrum of diseases in neurology and psychiatry. Target selection is a vital aspect of DBS so that only the desired areas are stimulated. Segmented leads and current steering have been shown to be promising additions to DBS technology enabling better control of the stimulating electric field. Recently introduced orientation selective DBS (OS-DBS) is a related development permitting sensitization of the stimulus to axonal pathways with different orientations by freely controlling the primary direction of the electric field using multiple contacts. Here, we used OS-DBS to stimulate the subthalamic nucleus (STN) in healthy rats while simultaneously monitoring the induced brain activity with fMRI. Maximal activation of the sensorimotor and basal ganglia-thalamocortical networks was observed when the electric field was aligned mediolaterally in the STN pointing in the lateral direction, while no cortical activation was observed with the electric field pointing medially to the opposite direction. Such findings are consistent with mediolateral main direction of the STN fibers, as seen with high resolution diffusion imaging and histology. The asymmetry of the OS-DBS dipolar field distribution using three contacts along with the potential stimulation of the internal capsule, are also discussed. We conclude that OS-DBS offers an additional degree of flexibility for optimization of DBS of the STN which may enable a better treatment response.
Collapse
Affiliation(s)
- Lauri J Lehto
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Antonietta Canna
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Lin Wu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Alejandra Sierra
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ekaterina Zhurakovskaya
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA; A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jun Ma
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Clairice Pearce
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Maple Shaio
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Pavel Filip
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA; First Department of Neurology, Faculty of Medicine, Masaryk University and University Hospital of St. Anne, Brno, Czech Republic
| | - Matthew D Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA
| | - Walter C Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heikki Tanila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Shalom Michaeli
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
99
|
Hansen AL, Krell-Roesch J, Kirlin KA, Limback-Stokin MM, Roesler K, Velgos SN, Lyons MK, Geda YE, Mehta SH. Deep Brain Stimulation and Cognitive Outcomes Among Patients With Parkinson's Disease: A Historical Cohort Study. J Neuropsychiatry Clin Neurosci 2020; 31:196-200. [PMID: 30791806 DOI: 10.1176/appi.neuropsych.18050118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an effective treatment for motor symptoms of Parkinson's disease; however, there is conflicting literature about the effect of DBS on cognitive function. The authors conducted a historical cohort study involving patients with Parkinson's disease who underwent DBS of the globus pallidus pars interna (GPi; N=12) or subthalamic nucleus (STN; N=17). METHODS The authors investigated differences in four neuropsychological test scores at 6 months post-DBS (follow-up) as compared with baseline (i.e., Boston Naming Test, WAIS Verbal Comprehension Index [WAIS-VCI], Working Memory Index [WAIS-WMI], and Processing Speed Index [WAIS-PSI]). RESULTS GPi DBS patients showed no difference between baseline and follow-up on any neuropsychological test. STN DBS patients had lower scores indicating decreased performance at follow-up as compared with baseline on WAIS-PSI (mean [SD], 91.47 [10.42] versus 81.65 [12.03]; p=0.03). There was a significant (p=0.008) difference between the change in baseline to follow-up scores on the WAIS-VCI for the STN DBS and GPi DBS groups (i.e., STN DBS patients scored lower at the 6-month follow-up compared with baseline, whereas GPi DBS patients scored higher). CONCLUSIONS GPi may be a preferred target for DBS in patients with Parkinson's disease when considering cognitive outcomes.
Collapse
Affiliation(s)
- Allison L Hansen
- The Translational Neuroscience and Aging Laboratory, Mayo Clinic, Phoenix, Ariz. (Krell-Roesch, Velgos, Geda); the Department of Psychiatry and Psychology, Mayo Clinic, Phoenix, Ariz. (Kirlin, Geda); the Department of Neurological Surgery, Phoenix, Ariz. (Lyons); and the Department of Neurology, Mayo Clinic, Phoenix, Ariz. (Geda, Mehta)
| | - Janina Krell-Roesch
- The Translational Neuroscience and Aging Laboratory, Mayo Clinic, Phoenix, Ariz. (Krell-Roesch, Velgos, Geda); the Department of Psychiatry and Psychology, Mayo Clinic, Phoenix, Ariz. (Kirlin, Geda); the Department of Neurological Surgery, Phoenix, Ariz. (Lyons); and the Department of Neurology, Mayo Clinic, Phoenix, Ariz. (Geda, Mehta)
| | - Kristin A Kirlin
- The Translational Neuroscience and Aging Laboratory, Mayo Clinic, Phoenix, Ariz. (Krell-Roesch, Velgos, Geda); the Department of Psychiatry and Psychology, Mayo Clinic, Phoenix, Ariz. (Kirlin, Geda); the Department of Neurological Surgery, Phoenix, Ariz. (Lyons); and the Department of Neurology, Mayo Clinic, Phoenix, Ariz. (Geda, Mehta)
| | - Martin M Limback-Stokin
- The Translational Neuroscience and Aging Laboratory, Mayo Clinic, Phoenix, Ariz. (Krell-Roesch, Velgos, Geda); the Department of Psychiatry and Psychology, Mayo Clinic, Phoenix, Ariz. (Kirlin, Geda); the Department of Neurological Surgery, Phoenix, Ariz. (Lyons); and the Department of Neurology, Mayo Clinic, Phoenix, Ariz. (Geda, Mehta)
| | - Kimberly Roesler
- The Translational Neuroscience and Aging Laboratory, Mayo Clinic, Phoenix, Ariz. (Krell-Roesch, Velgos, Geda); the Department of Psychiatry and Psychology, Mayo Clinic, Phoenix, Ariz. (Kirlin, Geda); the Department of Neurological Surgery, Phoenix, Ariz. (Lyons); and the Department of Neurology, Mayo Clinic, Phoenix, Ariz. (Geda, Mehta)
| | - Stefanie N Velgos
- The Translational Neuroscience and Aging Laboratory, Mayo Clinic, Phoenix, Ariz. (Krell-Roesch, Velgos, Geda); the Department of Psychiatry and Psychology, Mayo Clinic, Phoenix, Ariz. (Kirlin, Geda); the Department of Neurological Surgery, Phoenix, Ariz. (Lyons); and the Department of Neurology, Mayo Clinic, Phoenix, Ariz. (Geda, Mehta)
| | - Mark K Lyons
- The Translational Neuroscience and Aging Laboratory, Mayo Clinic, Phoenix, Ariz. (Krell-Roesch, Velgos, Geda); the Department of Psychiatry and Psychology, Mayo Clinic, Phoenix, Ariz. (Kirlin, Geda); the Department of Neurological Surgery, Phoenix, Ariz. (Lyons); and the Department of Neurology, Mayo Clinic, Phoenix, Ariz. (Geda, Mehta)
| | - Yonas E Geda
- The Translational Neuroscience and Aging Laboratory, Mayo Clinic, Phoenix, Ariz. (Krell-Roesch, Velgos, Geda); the Department of Psychiatry and Psychology, Mayo Clinic, Phoenix, Ariz. (Kirlin, Geda); the Department of Neurological Surgery, Phoenix, Ariz. (Lyons); and the Department of Neurology, Mayo Clinic, Phoenix, Ariz. (Geda, Mehta)
| | - Shyamal H Mehta
- The Translational Neuroscience and Aging Laboratory, Mayo Clinic, Phoenix, Ariz. (Krell-Roesch, Velgos, Geda); the Department of Psychiatry and Psychology, Mayo Clinic, Phoenix, Ariz. (Kirlin, Geda); the Department of Neurological Surgery, Phoenix, Ariz. (Lyons); and the Department of Neurology, Mayo Clinic, Phoenix, Ariz. (Geda, Mehta)
| |
Collapse
|
100
|
Parkinsonian Beta Dynamics during Rest and Movement in the Dorsal Pallidum and Subthalamic Nucleus. J Neurosci 2020; 40:2859-2867. [PMID: 32107277 DOI: 10.1523/jneurosci.2113-19.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 11/21/2022] Open
Abstract
In Parkinson's disease (PD), pathologically high levels of beta activity (12-30 Hz) reflect specific symptomatology and normalize with pharmacological or surgical intervention. Although beta characterization in the subthalamic nucleus (STN) of PD patients undergoing deep brain stimulation (DBS) has now been translated into adaptive DBS paradigms, a limited number of studies have characterized beta power in the globus pallidus internus (GPi), an equally effective DBS target. Our objective was to compare beta power in the STN and GPi during rest and movement in people with PD undergoing DBS. Thirty-seven human female and male participants completed a simple behavioral experiment consisting of periods of rest and button presses, leading to local field potential recordings from 19 (15 participants) STN and 26 (22 participants) GPi nuclei. We examined overall beta power as well as beta time-domain dynamics (i.e., beta bursts). We found higher beta power during rest and movement in the GPi, which also had more beta desynchronization during movement. Beta power was positively associated with bradykinesia and rigidity severity; however, these clinical associations were present only in the GPi cohort. With regards to beta dynamics, bursts were similar in duration and frequency in the GPi and STN, but GPi bursts were stronger and correlated to bradykinesia-rigidity severity. Beta dynamics therefore differ across basal ganglia nuclei. Relative to the STN, beta power in the GPi may be readily detected, modulates more with movement, and relates more to clinical impairment. Together, this could point to the GPi as a potentially effective target for beta-based adaptive DBS.SIGNIFICANCE STATEMENT It is known that subthalamic nucleus (STN) beta activity is linked to symptom severity in Parkinson's disease (PD), but few studies have characterized beta activity in the globus pallidus internus (GPi), another effective target for deep brain stimulation (DBS). We compared beta power in the STN and GPi during rest and movement in 37 people with PD undergoing DBS. We found that beta dynamics differed across basal ganglia nuclei. Our results show that, relative to the STN, beta power in the GPi may be readily detected, modulates more with movement, and relates more to clinical impairment. Together, this could point to the GPi as a potentially effective target for beta-based adaptive DBS.
Collapse
|