51
|
Toste FD, Sigman MS, Miller SJ. Pursuit of Noncovalent Interactions for Strategic Site-Selective Catalysis. Acc Chem Res 2017; 50:609-615. [PMID: 28945415 DOI: 10.1021/acs.accounts.6b00613] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Selective reactions on structures of high complexity can move beyond the mind's eye and proof-of-principle. Enhanced understanding of noncovalent interactions and their interdependence, revealed through analysis of multiple parameters, should accelerate the discovery of efficient reactions in highly complex molecular environments.
Collapse
Affiliation(s)
- F. Dean Toste
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthew S. Sigman
- Department
of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Scott J. Miller
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
52
|
Huang Z, Dong G. Site-Selectivity Control in Organic Reactions: A Quest To Differentiate Reactivity among the Same Kind of Functional Groups. Acc Chem Res 2017; 50:465-471. [PMID: 28945402 DOI: 10.1021/acs.accounts.6b00476] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
On our path to the perfection of organic synthesis lies the challenge of controlling site selectivity, which is the differentiation of reactivity among the same kind of functional groups. Overcoming this challenge would significantly enhance synthetic efficiency and minimize waste production, which in turn calls for the development of new catalysts, reagents, tactics, and innovative strategies.
Collapse
Affiliation(s)
- Zhongxing Huang
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
53
|
Abstract
One ultimate goal of synthetic chemistry is to install or manipulate any functional group at any position of a molecule. This Account discusses the potential and possible approaches to use catalysis to enable a reaction to occur at one of many C-H bonds or at one of several nearly identical functional groups.
Collapse
Affiliation(s)
- John F. Hartwig
- Division of Chemical Sciences,
Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
54
|
Davis HJ, Phipps RJ. Harnessing non-covalent interactions to exert control over regioselectivity and site-selectivity in catalytic reactions. Chem Sci 2017; 8:864-877. [PMID: 28572898 PMCID: PMC5452277 DOI: 10.1039/c6sc04157d] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/05/2016] [Indexed: 12/20/2022] Open
Abstract
Asymmetric catalysis has been revolutionised by the realisation that attractive non-covalent interactions such as hydrogen bonds and ion pairs can act as powerful controllers of enantioselectivity when incorporated into appropriate small molecule chiral scaffolds. Given these tremendous advances it is surprising that there are still a relatively limited number of examples of non-covalent interactions being harnessed for control of regioselectivity or site-selectivity in catalysis, two other fundamental selectivity aspects facing the synthetic chemist. This perspective examines the progress that has been made in this area thus far using non-covalent interactions in conjunction with transition metal catalysis as well as in the context of purely organic catalysts. We hope this will highlight the great potential in this approach for designing selective catalytic reactions.
Collapse
Affiliation(s)
- Holly J Davis
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Robert J Phipps
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| |
Collapse
|
55
|
Martin SC, Vohidov F, Wang H, Knudsen SE, Marzec AA, Ball ZT. Designing Selectivity in Dirhodium Metallopeptide Catalysts for Protein Modification. Bioconjug Chem 2017; 28:659-665. [DOI: 10.1021/acs.bioconjchem.6b00716] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samuel C. Martin
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Farrukh Vohidov
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Haopei Wang
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Sarah E. Knudsen
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Alex A. Marzec
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Zachary T. Ball
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
56
|
Metrano A, Abascal NC, Mercado BQ, Paulson EK, Hurtley AE, Miller SJ. Diversity of Secondary Structure in Catalytic Peptides with β-Turn-Biased Sequences. J Am Chem Soc 2017; 139:492-516. [PMID: 28029251 PMCID: PMC5312972 DOI: 10.1021/jacs.6b11348] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 11/30/2022]
Abstract
X-ray crystallography has been applied to the structural analysis of a series of tetrapeptides that were previously assessed for catalytic activity in an atroposelective bromination reaction. Common to the series is a central Pro-Xaa sequence, where Pro is either l- or d-proline, which was chosen to favor nucleation of canonical β-turn secondary structures. Crystallographic analysis of 35 different peptide sequences revealed a range of conformational states. The observed differences appear not only in cases where the Pro-Xaa loop-region is altered, but also when seemingly subtle alterations to the flanking residues are introduced. In many instances, distinct conformers of the same sequence were observed, either as symmetry-independent molecules within the same unit cell or as polymorphs. Computational studies using DFT provided additional insight into the analysis of solid-state structural features. Select X-ray crystal structures were compared to the corresponding solution structures derived from measured proton chemical shifts, 3J-values, and 1H-1H-NOESY contacts. These findings imply that the conformational space available to simple peptide-based catalysts is more diverse than precedent might suggest. The direct observation of multiple ground state conformations for peptides of this family, as well as the dynamic processes associated with conformational equilibria, underscore not only the challenge of designing peptide-based catalysts, but also the difficulty in predicting their accessible transition states. These findings implicate the advantages of low-barrier interconversions between conformations of peptide-based catalysts for multistep, enantioselective reactions.
Collapse
Affiliation(s)
- Anthony
J. Metrano
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Nadia C. Abascal
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Eric K. Paulson
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Anna E. Hurtley
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
57
|
Yang H, Cao KS, Zheng WH. A catalytic enantioselective approach to tetrol bearing vicinal all-carbon quaternary stereogenic centers. Chem Commun (Camb) 2017; 53:3737-3740. [DOI: 10.1039/c7cc00457e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The first highly enantioselective catalytic protocol for selective manipulation of tetrol benzylidene acetals through chiral phosphoric acid mediated oxidative desymmetrization is reported.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Kou-Sen Cao
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Wen-Hua Zheng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| |
Collapse
|
58
|
Tong ML, Huber F, Taghuo Kaptouom ES, Cellnik T, Kirsch SF. Enhanced site-selectivity in acylation reactions with substrate-optimized catalysts on solid supports. Chem Commun (Camb) 2017; 53:3086-3089. [DOI: 10.1039/c7cc00655a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A concept for site-selective acylation is presented, using substrate-optimized DMAP–peptide conjugates on a solid support.
Collapse
Affiliation(s)
- My Linh Tong
- Organic Chemistry
- Bergische Universität Wuppertal
- 42119 Wuppertal
- Germany
| | - Florian Huber
- Organic Chemistry
- Bergische Universität Wuppertal
- 42119 Wuppertal
- Germany
| | | | - Torsten Cellnik
- Organic Chemistry
- Bergische Universität Wuppertal
- 42119 Wuppertal
- Germany
| | - Stefan F. Kirsch
- Organic Chemistry
- Bergische Universität Wuppertal
- 42119 Wuppertal
- Germany
| |
Collapse
|
59
|
Karimov R, Sharma A, Hartwig JF. Late Stage Azidation of Complex Molecules. ACS CENTRAL SCIENCE 2016; 2:715-724. [PMID: 27800554 PMCID: PMC5084078 DOI: 10.1021/acscentsci.6b00214] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Indexed: 05/29/2023]
Abstract
Selective functionalization of complex scaffolds is a promising approach to alter the pharmacological profiles of natural products and their derivatives. We report the site-selective azidation of benzylic and aliphatic C-H bonds in complex molecules catalyzed by the combination of Fe(OAc)2 and a PyBox ligand. The same system also catalyzes the trifluoromethyl azidation of olefins to form derivatives of natural products containing both fluorine atoms and azides. In general, both reactions tolerate a wide range of functional groups and occur with predictable regioselectivity. Azides obtained by functionalization of C-H and C=C bonds were converted to the corresponding amines, amides, and triazoles, thus providing a wide variety of nitrogen-containing complex molecules.
Collapse
|
60
|
Kong C, Jana N, Jones C, Driver TG. Control of the Chemoselectivity of Metal N-Aryl Nitrene Reactivity: C–H Bond Amination versus Electrocyclization. J Am Chem Soc 2016; 138:13271-13280. [PMID: 27696844 DOI: 10.1021/jacs.6b07026] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chen Kong
- Department
of Chemistry, University of Illinois at Chicago, 845 West Taylor
Street, Chicago, Illinois 60607-7061, United States
| | - Navendu Jana
- Department
of Chemistry, University of Illinois at Chicago, 845 West Taylor
Street, Chicago, Illinois 60607-7061, United States
| | - Crystalann Jones
- Department
of Chemistry, University of Illinois at Chicago, 845 West Taylor
Street, Chicago, Illinois 60607-7061, United States
| | - Tom G. Driver
- Department
of Chemistry, University of Illinois at Chicago, 845 West Taylor
Street, Chicago, Illinois 60607-7061, United States
- Institute
of Next Generation Matter Transformation, College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| |
Collapse
|
61
|
Brill ZG, Grover HK, Maimone TJ. Enantioselective synthesis of an ophiobolin sesterterpene via a programmed radical cascade. Science 2016; 352:1078-82. [PMID: 27230373 DOI: 10.1126/science.aaf6742] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/26/2016] [Indexed: 01/14/2023]
Abstract
Cyclase enzymes weave simple polyprenyl chains into the elaborate polycyclic ring systems of terpenes, a sequence that is often difficult to emulate under abiotic conditions. Here we report a disparate synthetic approach to complex terpenes whereby simple prenyl-derived chains are cyclized using radical, rather than cationic, reaction pathways. This strategy allowed us to efficiently forge the intricate 5-8-5 fused ring systems found in numerous complex natural product classes and also enabled a nine-step total synthesis of (-)-6-epi-ophiobolin N, a member of the large family of cytotoxic ophiobolin sesterterpenes. A small-molecule thiol catalyst was found to override the inherent diastereoselectivity observed during a reductive radical cascade cyclization process. This work lays the foundation for efficient synthesis of terpenoid ring systems of interest in medicinal research, particularly those that have been historically challenging to access.
Collapse
Affiliation(s)
- Zachary G Brill
- Department of Chemistry, University of California, Berkeley, 826 Latimer Hall, Berkeley, CA 94702, USA
| | - Huck K Grover
- Department of Chemistry, University of California, Berkeley, 826 Latimer Hall, Berkeley, CA 94702, USA
| | - Thomas J Maimone
- Department of Chemistry, University of California, Berkeley, 826 Latimer Hall, Berkeley, CA 94702, USA.
| |
Collapse
|
62
|
Axelsson A, Ta L, Sundén H. Direct Highly Regioselective Functionalization of Carbohydrates: A Three-Component Reaction Combining the Dissolving and Catalytic Efficiency of Ionic Liquids. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anton Axelsson
- Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 41296 Göteborg Sweden
| | - Linda Ta
- Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 41296 Göteborg Sweden
| | - Henrik Sundén
- Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 41296 Göteborg Sweden
| |
Collapse
|
63
|
Udumula V, Nazari SH, Burt SR, Alfindee MN, Michaelis DJ. Chemo- and Site-Selective Alkyl and Aryl Azide Reductions with Heterogeneous Nanoparticle Catalysts. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Venkatareddy Udumula
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - S. Hadi Nazari
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Scott R. Burt
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Madher N. Alfindee
- Department
of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - David J. Michaelis
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
64
|
Cramer DL, Bera S, Studer A. Exploring Cooperative Effects in Oxidative NHC Catalysis: Regioselective Acylation of Carbohydrates. Chemistry 2016; 22:7403-7. [PMID: 27038068 DOI: 10.1002/chem.201601398] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 01/11/2023]
Abstract
The utility of oxidative NHC catalysis for both the regioselective and chemoselective functionalization of carbohydrates is explored. Chiral NHCs allow for the highly regioselective oxidative esterification of various carbohydrates using aldehydes as acylation precursors. The transformation was also shown to be amenable to both cis/trans diol isomers, free amino groups, and selective for specific sugar epimers in competition experiments. Efficiency and regioselectivity of the acylation can be improved upon using two different NHC catalysts that act cooperatively. The potential of the method is documented by the regioselective acylation of an amino-linked neodisaccharide.
Collapse
Affiliation(s)
- David L Cramer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Srikrishna Bera
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany.
| |
Collapse
|
65
|
Abstract
The acylation of alcohols catalyzed by N,N-dimethylamino pyridine (DMAP) is, despite its widespread use, sometimes confronted with substrate-specific problems: For example, target compounds with multiple hydroxy groups may show insufficient selectivity for one hydroxyl, and the resulting product mixtures are hardly separable. Here we describe a concept that aims at tailor-made catalysts for the site-specific acylation. To this end, we introduce a catalyst library where each entry is constructed by connecting a variable and readily tuned peptide scaffold with a catalytically active unit based on DMAP. For selected examples, we demonstrate how library screening leads to the identification of optimized catalysts, and the substrates of interest can be converted with a markedly enhanced site-selectivity compared with only DMAP. Furthermore, substrate-optimized catalysts of this type can be used to selectively convert "their" substrate in the presence of structurally similar compounds, an important requisite for reactions with mixtures of substances.
Collapse
Affiliation(s)
- Florian Huber
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| | - Stefan F Kirsch
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany.
| |
Collapse
|
66
|
Pelletier G, Zwicker A, Allen CL, Schepartz A, Miller SJ. Aqueous Glycosylation of Unprotected Sucrose Employing Glycosyl Fluorides in the Presence of Calcium Ion and Trimethylamine. J Am Chem Soc 2016; 138:3175-82. [PMID: 26859619 PMCID: PMC4817112 DOI: 10.1021/jacs.5b13384] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report a synthetic glycosylation reaction between sucrosyl acceptors and glycosyl fluoride donors to yield the derived trisaccharides. This reaction proceeds at room temperature in an aqueous solvent mixture. Calcium salts and a tertiary amine base promote the reaction with high site-selectivity for either the 3'-position or 1'-position of the fructofuranoside unit. Because nonenzymatic aqueous oligosaccharide syntheses are underdeveloped, mechanistic studies were carried out in order to identify the origin of the selectivity, which we hypothesized was related to the structure of the hydroxyl group array in sucrose. The solution conformation of various monodeoxysucrose analogs revealed the co-operative nature of the hydroxyl groups in mediating both this aqueous glycosyl bond-forming reaction and the site-selectivity at the same time.
Collapse
Affiliation(s)
- Guillaume Pelletier
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107
| | - Aaron Zwicker
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107
| | - C. Liana Allen
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107
| | - Alanna Schepartz
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107
| | - Scott J. Miller
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107
| |
Collapse
|
67
|
Zhang C, Welborn M, Zhu T, Yang NJ, Santos MS, Van Voorhis T, Pentelute BL. Π-Clamp-mediated cysteine conjugation. Nat Chem 2016; 8:120-8. [PMID: 26791894 PMCID: PMC4861612 DOI: 10.1038/nchem.2413] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 10/23/2015] [Indexed: 12/11/2022]
Abstract
Site-selective functionalization of complex molecules is one of the most significant challenges in chemistry. Typically, protecting groups or catalysts must be used to enable the selective modification of one site among many that are similarly reactive, and general strategies that selectively tune the local chemical environment around a target site are rare. Here, we show a four-amino-acid sequence (Phe-Cys-Pro-Phe), which we call the 'π-clamp', that tunes the reactivity of its cysteine thiol for site-selective conjugation with perfluoroaromatic reagents. We use the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues. These examples include antibodies and cysteine-based enzymes that would be difficult to modify selectively using standard cysteine-based methods. Antibodies modified using the π-clamp retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach to mediate site-selective chemistry and provides new avenues to modify biomolecules for research and therapeutics.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Matthew Welborn
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Tianyu Zhu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Nicole J. Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Michael S. Santos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
68
|
Liao RZ, Santoro S, Gotsev M, Marcelli T, Himo F. Origins of Stereoselectivity in Peptide-Catalyzed Kinetic Resolution of Alcohols. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02131] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Rong-Zhen Liao
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Stefano Santoro
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Martin Gotsev
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Tommaso Marcelli
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Fahmi Himo
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106
91 Stockholm, Sweden
| |
Collapse
|
69
|
Shin I, Krische MJ. Asymmetric Iridium-Catalyzed C-C Coupling of Chiral Diols via Site-Selective Redox-Triggered Carbonyl Addition. Top Curr Chem (Cham) 2016; 372:85-101. [PMID: 26187028 PMCID: PMC4716893 DOI: 10.1007/128_2015_651] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cyclometalated π-allyliridium C,O-benzoate complexes modified by axially chiral chelating phosphine ligands display a pronounced kinetic preference for primary alcohol dehydrogenation, enabling highly site-selective redox-triggered carbonyl additions of chiral primary-secondary 1,3-diols with exceptional levels of catalyst-directed diastereoselectivity. Unlike conventional methods for carbonyl allylation, the present redox-triggered alcohol C-H functionalizations bypass the use of protecting groups, premetalated reagents, and discrete alcohol-to-aldehyde redox reactions.
Collapse
Affiliation(s)
- Inji Shin
- Department of Chemistry, University of Texas at Austin, 1 University Station - A5300, Austin, TX, 78712-1167, USA
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, 1 University Station - A5300, Austin, TX, 78712-1167, USA.
| |
Collapse
|
70
|
Karukurichi KR, Fei X, Swyka RA, Broussy S, Shen W, Dey S, Roy SK, Berkowitz DB. Mini-ISES identifies promising carbafructopyranose-based salens for asymmetric catalysis: Tuning ligand shape via the anomeric effect. SCIENCE ADVANCES 2015; 1:e1500066. [PMID: 26501130 PMCID: PMC4613784 DOI: 10.1126/sciadv.1500066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 05/11/2015] [Indexed: 05/24/2023]
Abstract
This study introduces new methods of screening for and tuning chiral space and in so doing identifies a promising set of chiral ligands for asymmetric synthesis. The carbafructopyranosyl-1,2-diamine(s) and salens constructed therefrom are particularly compelling. It is shown that by removing the native anomeric effect in this ligand family, one can tune chiral ligand shape and improve chiral bias. This concept is demonstrated by a combination of (i) x-ray crystallographic structure determination, (ii) assessment of catalytic performance, and (iii) consideration of the anomeric effect and its underlying dipolar basis. The title ligands were identified by a new mini version of the in situ enzymatic screening (ISES) procedure through which catalyst-ligand combinations are screened in parallel, and information on relative rate and enantioselectivity is obtained in real time, without the need to quench reactions or draw aliquots. Mini-ISES brings the technique into the nanomole regime (200 to 350 nmol catalyst/20 μml organic volume) commensurate with emerging trends in reaction development/process chemistry. The best-performing β-d-carbafructopyranosyl-1,2-diamine-derived salen ligand discovered here outperforms the best known organometallic and enzymatic catalysts for the hydrolytic kinetic resolution of 3-phenylpropylene oxide, one of several substrates examined for which the ligand is "matched." This ligand scaffold defines a new swath of chiral space, and anomeric effect tunability defines a new concept in shaping that chiral space. Both this ligand set and the anomeric shape-tuning concept are expected to find broad application, given the value of chiral 1,2-diamines and salens constructed from these in asymmetric catalysis.
Collapse
|
71
|
Wang G, Franke J, Ngo CQ, Krische MJ. Diastereo- and Enantioselective Iridium Catalyzed Coupling of Vinyl Aziridines with Alcohols: Site-Selective Modification of Unprotected Diols and Synthesis of Substituted Piperidines. J Am Chem Soc 2015; 137:7915-20. [PMID: 26074091 DOI: 10.1021/jacs.5b04404] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The chiral cyclometalated π-allyliridium ortho-C,O-benzoate complex (R)-Ir-VIb derived from [Ir(cod)Cl]2, allyl acetate, 4-cyano-3-nitro-benzoic acid, and (R)-MeO-BIPHEP catalyzes the coupling of N-(p-nitrophenylsulfonyl) protected vinyl aziridine 3a with primary alcohols 1a-1l to furnish branched products of C-C bond formation 4a-4l with good levels of anti-diastereo- and enantioselectivity. In the presence of 2-propanol, but under otherwise identical conditions, vinyl aziridine 3a and aldehydes 2a-2l engage in reductive coupling to furnish an equivalent set of adducts 4a-4l with roughly equivalent levels of anti-diastereo- and enantioselectivity. Using enantiomeric iridium catalysts, vinyl aziridine 3a reacts with unprotected chiral 1,3-diols 1m-1o in a site-selective manner to deliver the diastereomeric products of C-allylation syn-4m, -4n, -4o and anti-4m, -4n, -4o, respectively, with good isolated yields and excellent levels of catalyst-directed diastereoselectivity. These adducts were directly converted to the diastereomeric 2,4,5-trisubstituted piperidines syn-5m, -5n, -5o and anti-5m, -5n, -5o.
Collapse
Affiliation(s)
- Gang Wang
- University of Texas at Austin, Department of Chemistry, Austin, Texas 78712, United States
| | - Jana Franke
- University of Texas at Austin, Department of Chemistry, Austin, Texas 78712, United States
| | - Chinh Q Ngo
- University of Texas at Austin, Department of Chemistry, Austin, Texas 78712, United States
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Austin, Texas 78712, United States
| |
Collapse
|
72
|
Thaker MN, Wright GD. Opportunities for synthetic biology in antibiotics: expanding glycopeptide chemical diversity. ACS Synth Biol 2015; 4:195-206. [PMID: 23654249 PMCID: PMC4384835 DOI: 10.1021/sb300092n] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Synthetic
biology offers a new path for the exploitation and improvement
of natural products to address the growing crisis in antibiotic resistance.
All antibiotics in clinical use are facing eventual obsolesce as a
result of the evolution and dissemination of resistance mechanisms,
yet there are few new drug leads forthcoming from the pharmaceutical
sector. Natural products of microbial origin have proven over the
past 70 years to be the wellspring of antimicrobial drugs. Harnessing
synthetic biology thinking and strategies can provide new molecules
and expand chemical diversity of known antibiotic scaffolds to provide
much needed new drug leads. The glycopeptide antibiotics offer paradigmatic
scaffolds suitable for such an approach. We review these strategies
here using the glycopeptides as an example and demonstrate how synthetic
biology can expand antibiotic chemical diversity to help address the
growing resistance crisis.
Collapse
Affiliation(s)
- Maulik N. Thaker
- M.G. DeGroote
Institute for
Infectious Disease Research, Department of Biochemistry and Biomedical
Sciences, McMaster University, Hamilton, ON, L8S 4K1 Canada
| | - Gerard D. Wright
- M.G. DeGroote
Institute for
Infectious Disease Research, Department of Biochemistry and Biomedical
Sciences, McMaster University, Hamilton, ON, L8S 4K1 Canada
| |
Collapse
|
73
|
|
74
|
Yamanaka M, Yoshida U, Sato M, Shigeta T, Yoshida K, Furuta T, Kawabata T. Origin of High E-Selectivity in 4-Pyrrolidinopyridine-Catalyzed Tetrasubstituted α,α′-Alkenediol: A Computational and Experimental Study. J Org Chem 2015; 80:3075-82. [DOI: 10.1021/jo5029453] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Masahiro Yamanaka
- Department
of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Urara Yoshida
- Department
of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Makoto Sato
- Department
of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Takashi Shigeta
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Keisuke Yoshida
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takumi Furuta
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takeo Kawabata
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
75
|
Yoganathan S, Miller SJ. Structure diversification of vancomycin through peptide-catalyzed, site-selective lipidation: a catalysis-based approach to combat glycopeptide-resistant pathogens. J Med Chem 2015; 58:2367-77. [PMID: 25671771 DOI: 10.1021/jm501872s] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The emergence of antibiotic-resistant infections highlights the need for novel antibiotic leads, perhaps with a broader spectrum of activity. Herein, we disclose a semisynthetic, catalytic approach for structure diversification of vancomycin. We have identified three unique peptide catalysts that exhibit site-selectivity for the lipidation of the aliphatic hydroxyls on vancomycin, generating three new derivatives 9a, 9b, and 9c. Incorporation of lipid chains into the vancomycin scaffold provides promising improvement of its bioactivity against vancomycin-resistant enterococci (Van A and Van B phenotypes of VRE). The MICs for 9a, 9b, and 9c against MRSA and VRE (Van B phenotype) range from 0.12 to 0.25 μg/mL. We have also performed a structure-activity relationship (SAR) study to investigate the effect of lipid chain length at the newly accessible G4-OH derivatization site.
Collapse
Affiliation(s)
- Sabesan Yoganathan
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | | |
Collapse
|
76
|
Vohidov F, Coughlin JM, Ball ZT. Rhodium(II) Metallopeptide Catalyst Design Enables Fine Control in Selective Functionalization of Natural SH3 Domains. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
77
|
Vohidov F, Coughlin JM, Ball ZT. Rhodium(II) Metallopeptide Catalyst Design Enables Fine Control in Selective Functionalization of Natural SH3 Domains. Angew Chem Int Ed Engl 2015; 54:4587-91. [DOI: 10.1002/anie.201411745] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/13/2015] [Indexed: 12/29/2022]
|
78
|
Organocatalytic Site-Selective Acylation of Carbohydrates and Polyol Compounds. SITE-SELECTIVE CATALYSIS 2015; 372:203-32. [DOI: 10.1007/128_2015_662] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
79
|
Undeela S, Thadkapally S, Nanubolu JB, Singarapu KK, Menon RS. Catalyst-controlled divergence in cycloisomerisation reactions of N-propargyl-N-vinyl sulfonamides: gold-catalysed synthesis of 2-sulfonylmethyl pyrroles and dihydropyridines. Chem Commun (Camb) 2015; 51:13748-51. [DOI: 10.1039/c5cc04871k] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gold-catalysed, divergent synthesis of 2-sulfonylmethyl pyrroles and dihydropyridines from readily available N-propargyl-N-vinyl sulfonamides is reported.
Collapse
Affiliation(s)
- Sridhar Undeela
- Medicinal Chemistry and Pharmacology Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - Srinivas Thadkapally
- Medicinal Chemistry and Pharmacology Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | | | - Kiran Kumar Singarapu
- Centre for Nuclear Magnetic Resonance
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - Rajeev S. Menon
- Medicinal Chemistry and Pharmacology Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| |
Collapse
|
80
|
Yudin AK. Macrocycles: lessons from the distant past, recent developments, and future directions. Chem Sci 2015; 6:30-49. [PMID: 28553456 PMCID: PMC5424464 DOI: 10.1039/c4sc03089c] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/01/2014] [Indexed: 12/20/2022] Open
Abstract
A noticeable increase in molecular complexity of drug targets has created an unmet need in the therapeutic agents that are larger than traditional small molecules. Macrocycles, which are cyclic compounds comprising 12 atoms or more, are now recognized as molecules that "are up to the task" to interrogate extended protein interfaces. However, because macrocycles (particularly the ones based on peptides) are equipped with large polar surface areas, achieving cellular permeability and bioavailability is anything but straightforward. While one might consider this to be the Achilles' heel of this class of compounds, the synthetic community continues to develop creative approaches toward the synthesis of macrocycles and their site-selective modification. This perspective provides an overview of both mechanistic and structural issues that bear on macrocycles as a unique class of molecules. The reader is offered a historical foray into some of the classic studies that have resulted in the current renaissance of macrocycles. In addition, an attempt is made to overview the more recent developments that give hope that macrocycles might indeed turn into a useful therapeutic modality.
Collapse
Affiliation(s)
- Andrei K Yudin
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada . ; Blog: http://www.amphoteros.com
| |
Collapse
|
81
|
Giuliano MW, Miller SJ. Site-Selective Reactions with Peptide-Based Catalysts. SITE-SELECTIVE CATALYSIS 2015; 372:157-201. [DOI: 10.1007/128_2015_653] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
82
|
Sakurai K, Takeshita T, Hiraizumi M, Yamada R. Synthesis of OSW-1 Derivatives by Site-Selective Acylation and Their Biological Evaluation. Org Lett 2014; 16:6318-21. [DOI: 10.1021/ol503044j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kaori Sakurai
- Tokyo University of Agriculture and Technology, Department of Biotechnology
and Life Science, Koganei-shi, Tokyo 184-8588, Japan
| | - Tomoya Takeshita
- Tokyo University of Agriculture and Technology, Department of Biotechnology
and Life Science, Koganei-shi, Tokyo 184-8588, Japan
| | - Masato Hiraizumi
- Tokyo University of Agriculture and Technology, Department of Biotechnology
and Life Science, Koganei-shi, Tokyo 184-8588, Japan
| | - Rika Yamada
- Tokyo University of Agriculture and Technology, Department of Biotechnology
and Life Science, Koganei-shi, Tokyo 184-8588, Japan
| |
Collapse
|
83
|
Shin I, Wang G, Krische MJ. Catalyst-directed diastereo- and site-selectivity in successive nucleophilic and electrophilic allylations of chiral 1,3-diols: protecting-group-free synthesis of substituted pyrans. Chemistry 2014; 20:13382-9. [PMID: 25169904 PMCID: PMC4177504 DOI: 10.1002/chem.201404065] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Indexed: 12/12/2022]
Abstract
The iridium-catalyzed, protecting group-free synthesis of 4-hydroxy-2,6-cis- or trans-pyrans through successive nucleophilic and electrophilic allylations of chiral 1,3-diols occurs with complete levels of catalyst-directed diastereoselectivity in the absence of protecting groups, premetallated reagents, or discrete alcohol-to-aldehyde redox reactions.
Collapse
Affiliation(s)
- Inji Shin
- University of Texas at Austin, Department of Chemistry, 1 University Station – A5300, Austin, TX 78712-1167 (USA)
| | - Gang Wang
- University of Texas at Austin, Department of Chemistry, 1 University Station – A5300, Austin, TX 78712-1167 (USA)
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, 1 University Station – A5300, Austin, TX 78712-1167 (USA)
| |
Collapse
|
84
|
Lewandowski B, Wennemers H. Asymmetric catalysis with short-chain peptides. Curr Opin Chem Biol 2014; 22:40-6. [DOI: 10.1016/j.cbpa.2014.09.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
|
85
|
Han S, Le BV, Hajare HS, Baxter RHG, Miller SJ. X-ray crystal structure of teicoplanin A₂-2 bound to a catalytic peptide sequence via the carrier protein strategy. J Org Chem 2014; 79:8550-6. [PMID: 25147913 PMCID: PMC4168787 DOI: 10.1021/jo501625f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
We
report the X-ray crystal structure of a site-selective peptide
catalyst moiety and teicoplanin A2-2 complex. The expressed
protein ligation technique was used to couple T4 lysozyme (T4L) and
a synthetic peptide catalyst responsible for the selective phosphorylation
of the N-acetylglucosamine sugar in a teicoplanin
A2-2 derivative. The T4L-Pmh-dPro-Aib-dAla-dAla construct was crystallized in the presence of teicoplanin
A2-2. The resulting 2.3 Å resolution protein–peptide–teicoplanin
complex crystal structure revealed that the nucleophilic nitrogen
of N-methylimidazole in the Pmh residue is in closer
proximity (7.6 Å) to the N-acetylglucosamine
than the two other sugar rings present in teicoplanin (9.3 and 20.3
Å, respectively). This molecular arrangement is consistent with
the observed selectivity afforded by the peptide-based catalyst when
it is applied to a site-selective phosphorylation reaction involving
a teicoplanin A2-2 derivative.
Collapse
Affiliation(s)
- Sunkyu Han
- Department of Chemistry, Yale University , New Haven, Connecticut 06511, United States
| | | | | | | | | |
Collapse
|
86
|
Akagawa K, Nishi N, Sen J, Kudo K. Peptide-catalyzed consecutive 1,6- and 1,4-additions of thiols to α,β,γ,δ-unsaturated aldehydes. Org Biomol Chem 2014; 12:3581-5. [PMID: 24769865 DOI: 10.1039/c4ob00565a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Regio- and enantioselective addition of thiols to α,β,γ,δ-unsaturated aldehydes was performed with a resin-supported peptide catalyst. It was shown that a 1,4-adduct was generated mainly at the initial stage of the reaction, and this was eventually converted to a thermodynamically stable 1,6- and 1,4-diadduct through retro-addition/addition reactions.
Collapse
Affiliation(s)
- Kengo Akagawa
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | | | | | | |
Collapse
|
87
|
Lu Y, Huang F, Wang J, Xia J. Affinity-Guided Covalent Conjugation Reactions Based on PDZ–Peptide and SH3–Peptide Interactions. Bioconjug Chem 2014; 25:989-99. [DOI: 10.1021/bc500134w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yao Lu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Feng Huang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jianpeng Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
88
|
Lichtor PA, Miller SJ. Experimental lineage and functional analysis of a remotely directed peptide epoxidation catalyst. J Am Chem Soc 2014; 136:5301-8. [PMID: 24690108 PMCID: PMC4333582 DOI: 10.1021/ja410567a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
We
describe mechanistic investigations of a catalyst (1)
that leads to selective epoxidation of farnesol at the 6,7-position,
remote from the hydroxyl directing group. The experimental lineage
of peptide 1 and a number of resin-bound peptide analogues
were examined to reveal the importance of four N-terminal residues.
We examined the selectivity of truncated analogues to find that a
trimer is sufficient to furnish the remote selectivity. Both 1D and
2D 1H NMR studies were used to determine possible catalyst
conformations, culminating in proposed models showing possible interactions
of farnesol with a protected Thr side chain and backbone NH. The models
were used to rationalize the selectivity of a modified catalyst (17) for the 6,7-position relative to an ether moiety in two
related substrates.
Collapse
Affiliation(s)
- Phillip A Lichtor
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520, United States
| | | |
Collapse
|
89
|
Chen IH, Kou KGM, Le DN, Rathbun CM, Dong VM. Recognition and site-selective transformation of monosaccharides by using copper(II) catalysis. Chemistry 2014; 20:5013-8. [PMID: 24623522 DOI: 10.1002/chem.201400133] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Indexed: 01/13/2023]
Abstract
We demonstrate copper(II)-catalyzed acylation and tosylation of monosaccharides. Various carbohydrate derivatives, including glucopyranosides and ribofuranosides, are obtained in high yields and regioselectivities. Using this versatile strategy, the site of acylation can be switched by choice of ligand. Preliminary mechanistic studies support nucleophilic addition of a copper-sugar complex to the acyl chloride to be turnover limiting.
Collapse
Affiliation(s)
- I-Hon Chen
- Department of Chemistry, University of California, Irvine, Natural Sciences 1, University of California, Irvine, California 92697 (USA)
| | | | | | | | | |
Collapse
|
90
|
Robles O, Romo D. Chemo- and site-selective derivatizations of natural products enabling biological studies. Nat Prod Rep 2014; 31:318-34. [PMID: 24468713 PMCID: PMC4041598 DOI: 10.1039/c3np70087a] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioactive natural products and derivatives remain an enduring starting point for the discovery of new cellular targets for disease intervention and lead compounds for the development of new therapeutic agents. The former goal is accomplished through the synthesis of bioactive cellular probes from natural products, enabling insights into the mechanism of action of these natural products by classical affinity chromatography or more recent proteome profiling methods. However, the direct and selective modification of native natural products for these purposes remains a challenge due to the structural complexity and the wide functional group diversity found in these natural substances. The lack of selective synthetic methods available to directly manipulate unprotected complex small molecules, in particular to perform structure-activity relationship studies and prepare appropriate cellular probes, has recently begun to be addressed, benefitting from the broader emerging area of chemoselective synthetic methodology. Thus, new reagents, catalysts and reaction processes are enabling both chemo- and site-selective modifications of complex, native natural products. In this review, we describe selected recent examples of these functionalization strategies in this emerging area.
Collapse
Affiliation(s)
- Omar Robles
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, USA.
| | | |
Collapse
|
91
|
Yamada R, Takeshita T, Hiraizumi M, Shinohe D, Ohta Y, Sakurai K. Fluorescent analog of OSW-1 and its cellular localization. Bioorg Med Chem Lett 2014; 24:1839-42. [PMID: 24613377 DOI: 10.1016/j.bmcl.2014.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 01/30/2014] [Accepted: 02/04/2014] [Indexed: 11/30/2022]
Abstract
OSW-1 is a steroidal saponin, which has emerged as an attractive anticancer agent with highly cancer cell selective activity. A fluorescent analog was prepared from the natural product to analyze its cellular uptake and localization. We found that the fluorescent analog is rapidly internalized into cells and is primarily distributed in endoplasmic reticulum and Golgi apparatus.
Collapse
Affiliation(s)
- Rika Yamada
- Tokyo University of Agriculture and Technology, School of Engineering, Koganei-shi, Tokyo 184-8588, Japan
| | - Tomoya Takeshita
- Tokyo University of Agriculture and Technology, School of Engineering, Koganei-shi, Tokyo 184-8588, Japan
| | - Masato Hiraizumi
- Tokyo University of Agriculture and Technology, School of Engineering, Koganei-shi, Tokyo 184-8588, Japan
| | - Daisuke Shinohe
- Tokyo University of Agriculture and Technology, School of Engineering, Koganei-shi, Tokyo 184-8588, Japan
| | - Yoshihiro Ohta
- Tokyo University of Agriculture and Technology, School of Engineering, Koganei-shi, Tokyo 184-8588, Japan
| | - Kaori Sakurai
- Tokyo University of Agriculture and Technology, School of Engineering, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
92
|
Akiyama M, Akagawa K, Seino H, Kudo K. Peptide-catalyzed kinetic resolution of planar-chiral metallocenes. Chem Commun (Camb) 2014; 50:7893-6. [DOI: 10.1039/c4cc03266g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kinetic resolution of racemic planar-chiral metallocenes was performed by a resin-supported peptide catalyst, in which low-molecular-weight organocatalysts were not effective.
Collapse
Affiliation(s)
- Midori Akiyama
- Institute of Industrial Science
- University of Tokyo
- Tokyo 153-8505, Japan
| | - Kengo Akagawa
- Institute of Industrial Science
- University of Tokyo
- Tokyo 153-8505, Japan
| | - Hidetake Seino
- Faculty of Education and Human Studies
- Akita University
- Akita 010-8502, Japan
| | - Kazuaki Kudo
- Institute of Industrial Science
- University of Tokyo
- Tokyo 153-8505, Japan
| |
Collapse
|
93
|
Hikawa H, Hamada M, Yokoyama Y, Azumaya I. Benzoyl methyl phosphate as an efficient reagent for the selective monobenzoylation of N-Bz-FTY720. RSC Adv 2014. [DOI: 10.1039/c4ra02401j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A novel and efficient method for the selective monobenzoylation of N-Bz-FTY720 with benzoyl methyl phosphate (BMP) promoted by Zn(OAc)2 and Cs2CO3 was developed. Benzoyl methyl phosphate plays an important role as a biomimetic acylating agent for the monobenzoylation of 1,3-diols.
Collapse
Affiliation(s)
- Hidemasa Hikawa
- Faculty of Pharmaceutical Sciences
- Toho University
- Funabashi, Japan
| | - Maiko Hamada
- Faculty of Pharmaceutical Sciences
- Toho University
- Funabashi, Japan
| | - Yuusaku Yokoyama
- Faculty of Pharmaceutical Sciences
- Toho University
- Funabashi, Japan
| | - Isao Azumaya
- Faculty of Pharmaceutical Sciences
- Toho University
- Funabashi, Japan
| |
Collapse
|
94
|
Wang J, Yu Y, Xia J. Short peptide tag for covalent protein labeling based on coiled coils. Bioconjug Chem 2013; 25:178-87. [PMID: 24341800 DOI: 10.1021/bc400498p] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To label proteins covalently, one faces a trade-off between labeling a protein specifically and using a small tag. Often one must compromise one parameter for the other or use additional components, such as an enzyme, to satisfy both requirements. Here, we report a new reaction that covalently labels proteins by using engineered coiled-coil peptides. Harnessing the concept of "proximity-induced reactivity", the 21-amino-acid three-heptad peptides CCE/CCK were modified with a nucleophilic cysteine and an α-chloroacetyl group at selected positions. When pairs of coiled coils associated, an irreversible covalent bond spontaneously formed between the peptides. The specificity of the cross-linking reaction was characterized, the probes were improved by making them bivalent, and the system was used to label a protein in vitro and receptors on the surface of mammalian cells.
Collapse
Affiliation(s)
- Jianpeng Wang
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| | | | | |
Collapse
|
95
|
Allen CL, Miller SJ. Chiral copper(II) complex-catalyzed reactions of partially protected carbohydrates. Org Lett 2013; 15:6178-81. [PMID: 24274325 DOI: 10.1021/ol4033072] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Catalyst-controlled regioselective functionalization of partially protected saccharide molecules is a highly important yet under-developed area of carbohydrate chemistry. Such reactions allow for the reduction of protecting group manipulation steps required in syntheses involving sugars. Herein, an approach to these processes using enantiopure copper-bis(oxazoline) catalysts to control couplings of electrophiles to various partially protected sugars is reported. In a number of cases, divergent regioselectivity was observed as a function of the enantiomer of catalyst that is used.
Collapse
Affiliation(s)
- C Liana Allen
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520, United States
| | | |
Collapse
|
96
|
Affiliation(s)
- Jared C. Lewis
- Searle
Chemistry Lab, Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
97
|
Mensah E, Camasso N, Kaplan W, Nagorny P. Chiral Phosphoric Acid Directed Regioselective Acetalization of Carbohydrate-Derived 1,2-Diols. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
98
|
Mensah E, Camasso N, Kaplan W, Nagorny P. Chiral Phosphoric Acid Directed Regioselective Acetalization of Carbohydrate-Derived 1,2-Diols. Angew Chem Int Ed Engl 2013; 52:12932-6. [DOI: 10.1002/anie.201304298] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/29/2013] [Indexed: 01/21/2023]
|
99
|
Gormisky PE, White MC. Catalyst-controlled aliphatic C-H oxidations with a predictive model for site-selectivity. J Am Chem Soc 2013; 135:14052-5. [PMID: 24020940 DOI: 10.1021/ja407388y] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selective aliphatic C-H bond oxidations may have a profound impact on synthesis because these bonds exist across all classes of organic molecules. Central to this goal are catalysts with broad substrate scope (small-molecule-like) that predictably enhance or overturn the substrate's inherent reactivity preference for oxidation (enzyme-like). We report a simple small-molecule, non-heme iron catalyst that achieves predictable catalyst-controlled site-selectivity in preparative yields over a range of topologically diverse substrates. A catalyst reactivity model quantitatively correlates the innate physical properties of the substrate to the site-selectivities observed as a function of the catalyst.
Collapse
Affiliation(s)
- Paul E Gormisky
- Department of Chemistry, University of Illinois Urbana-Champaign , Urbana, Illinois 61801, United States
| | | |
Collapse
|
100
|
Akagawa K, Sen J, Kudo K. Peptide-Catalyzed Regio- and Enantioselective Reduction of α,β,γ,δ-Unsaturated Aldehydes. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|