51
|
Chen J, Wang M, Bao Y, Xie X, Nie Y, Lv Y, Su X. Construction of a Sensing Platform Based on DNA-Encoded Magnetic Beads and Copper Nanoclusters for Viral Gene Analysis with Target Recycling Amplification. ACS APPLIED BIO MATERIALS 2021; 4:5669-5677. [PMID: 35006751 DOI: 10.1021/acsabm.1c00460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The rapid and accurate monitoring of viral genes plays an important role in the area of disease diagnosis, biomedical research, and food safety. Herein, we successfully designed a sensing system that combined the technologies of target DNA recycling amplification, magnetic separation, and in situ formation of fluorescent copper nanoclusters (CuNCs) for viral DNA analysis. In the presence of target viral DNA (tDNA), a large quantity of output DNA (oDNA) was produced from hairpin DNA (hDNA) through an exonuclease III-assisted target recycling amplification strategy. Magnetic beads (MBs) labeled with capture DNA (cDNA) were hybridized with oDNA, and the partially complementary oDNA served as a bridge that could link AT-rich dsDNA on the surface of MBs, which led to a decrease of AT-rich dsDNA in solution after magnetic separation. On account of the lack of AT-rich dsDNA as a template in solution, in situ formation of fluorescent CuNCs was blocked, which resulted in a decrease in the fluorescence intensity at 590 nm. Therefore, taking advantage of one-step magnetic separation and in situ formation of CuNCs, the target viral DNA was sensitively and specifically detected in a linear range from 5 pM to 5 nM with a detection limit of 1 pM. The MB-based platform was not only reusable but also achieved magnetic separation, which could eliminate interferences in complex samples. The assay combining the MB-based probe with fluorescent CuNCs provided a universal, label-free, and reusable platform for viral DNA detection.
Collapse
Affiliation(s)
- Junyang Chen
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Mengke Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ying Bao
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaolei Xie
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yixin Nie
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yuntai Lv
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
52
|
Lee WK, Kwon K, Choi Y, Lee JS. Dynamic metallization of spherical DNA via conformational transition into gold nanostructures with controlled sizes and shapes. J Colloid Interface Sci 2021; 594:160-172. [PMID: 33761393 DOI: 10.1016/j.jcis.2021.02.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Despite the reversible condensation properties of DNA, DNA metallization during controlled conformational transitions has been rarely investigated. We perform dynamic metallization of spherically condensed DNA nanoparticles (DNA NPs) via a globule-to-coil transition. A positively charged new Au3+ reagent is prepared via ligand-exchange of conventional complex Au3+ ions, which was used to synthesize spherically condensed DNA NPs simply based on the fundamental electrostatic and coordinative interactions between DNA and Au3+ions. Interestingly, the size of the Au3+-condensed DNA NPs (Au3+-DNA NPs) and the type of reducing agents lead to the formation of different Au nanostructures with unprecedented morphologies (cracked NPs, bowl-shaped NPs, and small NPs), owing to the controlled conformational changes in the Au3+-DNA NPs during metallization. The condensed DNA NPs play significant roles for Au nanostructures as (1) the dynamic template for the synthesis, (2) the reservoir and supply of Au3+ for the growth, and (3) the surface stabilizer. The synthesized Au nanostructures are remarkably stable against high ionic strength and exhibit catalytic activities and excellent SERS properties. This is the first study on the morphological control and concomitant dynamic metallization of spherically condensed DNA, proposing new synthetic routes for bioinorganic nanomaterials.
Collapse
Affiliation(s)
- Won Kyu Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kihun Kwon
- Department of Bioengineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yeonho Choi
- Department of Bioengineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Jae-Seung Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
53
|
Rival JV, Mymoona P, Lakshmi KM, Pradeep T, Shibu ES. Self-Assembly of Precision Noble Metal Nanoclusters: Hierarchical Structural Complexity, Colloidal Superstructures, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005718. [PMID: 33491918 DOI: 10.1002/smll.202005718] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/07/2020] [Indexed: 06/12/2023]
Abstract
Ligand protected noble metal nanoparticles are excellent building blocks for colloidal self-assembly. Metal nanoparticle self-assembly offers routes for a wide range of multifunctional nanomaterials with enhanced optoelectronic properties. The emergence of atomically precise monolayer thiol-protected noble metal nanoclusters has overcome numerous challenges such as uncontrolled aggregation, polydispersity, and directionalities faced in plasmonic nanoparticle self-assemblies. Because of their well-defined molecular compositions, enhanced stability, and diverse surface functionalities, nanoclusters offer an excellent platform for developing colloidal superstructures via the self-assembly driven by surface ligands and metal cores. More importantly, recent reports have also revealed the hierarchical structural complexity of several nanoclusters. In this review, the formulation and periodic self-assembly of different noble metal nanoclusters are focused upon. Further, self-assembly induced amplification of physicochemical properties, and their potential applications in molecular recognition, sensing, gas storage, device fabrication, bioimaging, therapeutics, and catalysis are discussed. The topics covered in this review are extensively associated with state-of-the-art achievements in the field of precision noble metal nanoclusters.
Collapse
Affiliation(s)
- Jose V Rival
- Smart Materials Lab, Electrochemical Power Sources (ECPS) Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR, Ghaziabad, Uttar Pradesh, 201002, India
| | - Paloli Mymoona
- Smart Materials Lab, Electrochemical Power Sources (ECPS) Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR, Ghaziabad, Uttar Pradesh, 201002, India
| | - Kavalloor Murali Lakshmi
- Smart Materials Lab, Electrochemical Power Sources (ECPS) Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR, Ghaziabad, Uttar Pradesh, 201002, India
| | - Thalappil Pradeep
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, 600036, India
| | - Edakkattuparambil Sidharth Shibu
- Smart Materials Lab, Electrochemical Power Sources (ECPS) Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR, Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
54
|
Wang HB, Mao AL, Tao BB, Zhang HD, Xiao ZL, Liu YM. L-Histidine-DNA interaction: a strategy for the improvement of the fluorescence signal of poly(adenine) DNA-templated gold nanoclusters. Mikrochim Acta 2021; 188:198. [PMID: 34041600 DOI: 10.1007/s00604-021-04853-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/11/2021] [Indexed: 11/25/2022]
Abstract
An interesting phenomenon is described that the fluorescence signal of poly(adenine) (A) DNA-templated gold nanoclusters (AuNCs) is greatly improved in the presence of L-histidine by means of L-histidine-DNA interaction. The modified nanoclusters display strong fluorescence emission with excitation/emission maxima at 290/475 nm. The fluorescence quantum yield (QY) is improved from 1.9 to 6.5%. Fluorescence enhancement is mainly ascribed to the L-histidine-DNA interaction leading to conformational changes of the poly(A) DNA template, which offer a better microenvironment to protect AuNCs. The assay enables L-histidine to be determined with good sensitivity and a linear response that covers the 1 to 50 nM L-histidine concentration range with a 0.3 nM limit of detection. The proposed method has been applied to the determination of imidazole-containing drugs in pharmaceutical samples. A turn-on fluorescent method has been designed for the sensitive detection of L-histidine as well as imidazole-containing drugs on the basis of the L-histidine-DNA interaction.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China.
| | - An-Li Mao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Bei-Bei Tao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Hong-Ding Zhang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Zhong-Liang Xiao
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| |
Collapse
|
55
|
Cui L, Zhou J, Yang XY, Dong J, Wang X, Zhang CY. Catalytic hairpin assembly-based electrochemical biosensor with tandem signal amplification for sensitive microRNA assay. Chem Commun (Camb) 2021; 56:10191-10194. [PMID: 32748919 DOI: 10.1039/d0cc04855k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We demonstrate for the first time the construction of a low background electrochemical biosensor with tandem signal amplification for sensitive microRNA assay based on target-activated catalytic hairpin assembly (CHA) of heteroduplex-templated copper nanoparticles. This electrochemical biosensor exhibits high sensitivity, good specificity, single-base mismatch discrimination capability, excellent stability and reproducibility, and it can sensitively detect microRNA in cancer cells.
Collapse
Affiliation(s)
- Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| | - Jinghua Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| | - Xiao-Yun Yang
- Department of Pathology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jing Dong
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China
| | - Xiaolei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
56
|
Baghdasaryan A, Bürgi T. Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. NANOSCALE 2021; 13:6283-6340. [PMID: 33885518 DOI: 10.1039/d0nr08489a] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Atomically precise metal nanoclusters (MNCs) have gained tremendous research interest in recent years due to their extraordinary properties. The molecular-like properties that originate from the quantized electronic states provide novel opportunities for the construction of unique nanomaterials possessing rich molecular-like absorption, luminescence, and magnetic properties. The field of monolayer-protected metal nanoclusters, especially copper, with well-defined molecular structures and compositions, is relatively new, about two to three decades old. Nevertheless, the massive progress in the field illustrates the importance of such nanoobjects as promising materials for various applications. In this respect, nanocluster-based catalysts have become very popular, showing high efficiencies and activities for the catalytic conversion of chemical compounds. Biomedical applications of clusters are an active research field aimed at finding better fluorescent contrast agents, therapeutic pharmaceuticals for the treatment and prevention of diseases, the early diagnosis of cancers and other potent diseases, especially at early stages. A huge library of structures and the compositions of copper nanoclusters (CuNCs) with atomic precisions have already been discovered during last few decades; however, there are many concerns to be addressed and questions to be answered. Hopefully, in future, with the combined efforts of material scientists, inorganic chemists, and computational scientists, a thorough understanding of the unique molecular-like properties of metal nanoclusters will be achieved. This, on the other hand, will allow the interdisciplinary researchers to design novel catalysts, biosensors, or therapeutic agents using highly structured, atomically precise, and stable CuNCs. Thus, we hope this review will guide the reader through the field of CuNCs, while discussing the main achievements and improvements, along with challenges and drawbacks that one needs to face and overcome.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
57
|
Xu W, He W, Du Z, Zhu L, Huang K, Lu Y, Luo Y. Functional Nucleic Acid Nanomaterials: Development, Properties, and Applications. Angew Chem Int Ed Engl 2021; 60:6890-6918. [PMID: 31729826 PMCID: PMC9205421 DOI: 10.1002/anie.201909927] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/29/2019] [Indexed: 01/01/2023]
Abstract
Functional nucleic acid (FNA) nanotechnology is an interdisciplinary field between nucleic acid biochemistry and nanotechnology that focuses on the study of interactions between FNAs and nanomaterials and explores the particular advantages and applications of FNA nanomaterials. With the goal of building the next-generation biomaterials that combine the advantages of FNAs and nanomaterials, the interactions between FNAs and nanomaterials as well as FNA self-assembly technologies have established themselves as hot research areas, where the target recognition, response, and self-assembly ability, combined with the plasmon properties, stability, stimuli-response, and delivery potential of various nanomaterials can give rise to a variety of novel fascinating applications. As research on the structural and functional group features of FNAs and nanomaterials rapidly develops, many laboratories have reported numerous methods to construct FNA nanomaterials. In this Review, we first introduce some widely used FNAs and nanomaterials along with their classification, structure, and application features. Then we discuss the most successful methods employing FNAs and nanomaterials as elements for creating advanced FNA nanomaterials. Finally, we review the extensive applications of FNA nanomaterials in bioimaging, biosensing, biomedicine, and other important fields, with their own advantages and drawbacks, and provide our perspective about the issues and developing trends in FNA nanotechnology.
Collapse
Affiliation(s)
- Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Wanchong He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Zaihui Du
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana, Illinois 61801 (USA)
| | - Yunbo Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| |
Collapse
|
58
|
Kim S, Park KS. Fluorescence resonance energy transfer using DNA-templated copper nanoparticles for ratiometric detection of microRNAs. Analyst 2021; 146:1844-1847. [PMID: 33606855 DOI: 10.1039/d0an02371j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We examined the effectiveness of a ratiometric method using DNA-templated copper nanoparticles, which can function as a probe for fluorescence resonance energy transfer. This method in combination with PCR successfully detected the target microRNA, which corresponded well with the results obtained by quantitative reverse transcription PCR.
Collapse
Affiliation(s)
- Seokjoon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | | |
Collapse
|
59
|
Qiao Z, Zhang J, Hai X, Yan Y, Song W, Bi S. Recent advances in templated synthesis of metal nanoclusters and their applications in biosensing, bioimaging and theranostics. Biosens Bioelectron 2021; 176:112898. [PMID: 33358287 DOI: 10.1016/j.bios.2020.112898] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/03/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
As a kind of promising nanomaterials, metal nanoclusters (MNCs) generally composed of several to hundreds of metal atoms have received increasing interest owing to their unique properties, such as ultrasmall size (<2 nm), fascinating physical and chemical properties, and so on. Recently, template-assisted synthesis of MNCs (e.g., Au, Ag, Cu, Pt and Cd) has attracted extensive attention in biological fields. Up to now, various templates (e.g., dendrimers, polymers, DNAs, proteins and peptides) with different configurations and spaces have been applied to prepare MNCs with the advantages of facile preparation, controllable size, good water-solubility and biocompatibility. Herein, we focus on the recent advances in the template-assisted synthesis of MNCs, including the templates used to synthesize MNCs, and their applications in biosensing, bioimaging, and disease theranostics. Finally, the challenges and future perspectives of template-assisted synthesized MNCs are highlighted. We believe that this review could not only arouse more interest in MNCs but also promote their further development and applications by presenting the recent advances in this area to researchers from various fields, such as chemistry, material science, physiology, biomedicine, and so on.
Collapse
Affiliation(s)
- Zhenjie Qiao
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Jian Zhang
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Xin Hai
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Yongcun Yan
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Weiling Song
- Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Sai Bi
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China.
| |
Collapse
|
60
|
N K R, Gorthi SS. dsDNA-templated fluorescent copper nanoparticles for the detection of lipopolysaccharides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:186-191. [PMID: 33325462 DOI: 10.1039/d0ay01906b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The introduction of lipopolysaccharides (LPS) or endotoxins that originate from Gram-negative bacteria into the human blood stream induces a severe immune response that can lead to septic shock, and even death. Hence, the accurate detection of LPS is of great importance in the medical and pharmaceutical sectors. This paper proposes a novel label-free fluorescence assay for the detection of LPS utilizing aptamers and the interference synthesis of dsDNA-templated copper nanoparticles. The assay can be performed at room temperature and does not require expensive reagents. The proposed assay has a limit of detection of 0.95 ng ml-1 of LPS, and the fluorescence emission from the copper nanoparticles was found to vary linearly with the concentration of LPS over a wide range (1 to 105 ng ml-1) with R2 = 0.9877.
Collapse
Affiliation(s)
- Radhika N K
- Department of Instrumentation and Applied Physics, Indian Institute of Science Bangalore, India.
| | - Sai Siva Gorthi
- Department of Instrumentation and Applied Physics, Indian Institute of Science Bangalore, India.
| |
Collapse
|
61
|
Kim J, Gang J. Double‐Stranded
DNA
‐Templated Copper Nanoclusters for Detection of
DNA
Polymerase Activity. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jungeun Kim
- Department of Nano Chemistry Gachon University Sungnam South Korea
| | - Jongback Gang
- Department of Nano Chemistry Gachon University Sungnam South Korea
| |
Collapse
|
62
|
Wang HB, Mao AL, Tao BB, Zhang HD, Liu YM. Fabrication of multiple molecular logic gates made of fluorescent DNA-templated Au nanoclusters. NEW J CHEM 2021. [DOI: 10.1039/d0nj06192a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A universal platform of label-free multiple molecular logic gates have been constructed by taking the advantage of DNA-AuNCs.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- China
| | - An-Li Mao
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- China
| | - Bei-Bei Tao
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- China
| | - Hong-Ding Zhang
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- China
| |
Collapse
|
63
|
Ma Q, Li SFY. Enzyme- and label-free fluorescence microRNA biosensor based on the distance-dependent photoinduced electron transfer of DNA/Cu nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
64
|
Ma J, Niu H, Gu S. The spatial organization of trace silver atoms on a DNA template. RSC Adv 2020; 11:1153-1163. [PMID: 35423706 PMCID: PMC8693506 DOI: 10.1039/d0ra08066g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
DNA with programmable information can be used to encode the spatial organization of silver atoms. Based on the primary structures of a DNA template containing a controllable base arrangement and number, the surrounding environment and cluster together can induce the folding of the DNA template into an appropriate secondary structure for forming AgNCs with different fluorescence emissions, such as i-motif, G-quadruplex, dimeric template, triplex, monomeric or dimeric C-loop, emitter pair, and G-enhancer/template conjugate. Stimuli can induce the dynamic structural transformation of the DNA template with a recognition site for favourably or unfavourably forming AgNCs, along with varied fluorescence intensities and colours. The array of several or more of the same and different clusters can be performed on simple and complex nanostructures, while maintaining their original properties. By sorting out this review, we systematically conclude the link between the performance of AgNCs and the secondary structure of the DNA template, and summarize the precise arrangement of nanoclusters on DNA nanotechnology. This clear review on the origin and controllability of AgNCs based on the secondary structure of the DNA template is beneficial for exploring the new probe and optical devices.
Collapse
Affiliation(s)
- Jinliang Ma
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Huawei Niu
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
| |
Collapse
|
65
|
Ma J, Li K, Gu S. Efficient Editing of Silver Nanoclusters by Changing Simply One Cytosine in a DNA Template. Chembiochem 2020; 22:1210-1214. [PMID: 33174392 DOI: 10.1002/cbic.202000640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/09/2020] [Indexed: 11/07/2022]
Abstract
DNA with genetic information was edited to regulate and repair the structure and function of a protein. In DNA nanotechnology, DNA with programmable information can be designed to edit the fluorescence intensity and emissive colors of DNA-stabilized silver nanoclusters (DNA/AgNCs). By introducing and moving one cytosine in the spacer of the emitter domain, we have built up a simple strategy to regulate the excitation and emission wavelengths of AgNCs. When replacing thymine in the spacer of the emitter with one cytosine, the expected excitation and emission change do not occur. However, after moving the introduced cytosine, DNA templates produce AgNCs with extremely different excitation and emission wavelengths from those of the initial template, leading to a template for near-infrared (NIR) emissive species with the highest fluorescence intensity. The formation of AgNCs induces the DNA template into condensed secondary structure based on an altered migration rate in PAGE. The simple strategy of moving one cytosine in a spacer in the emitter domain can enrich the library of templates for synthesizing diverse DNA/AgNCs and has great potential in bioimaging and probe design.
Collapse
Affiliation(s)
- Jinliang Ma
- College of Food and Bioengineering, Henan University of Science and Technology, 471023, Luoyang, Henan, P. R. China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, P. R. China
| | - Kexin Li
- College of Food and Bioengineering, Henan University of Science and Technology, 471023, Luoyang, Henan, P. R. China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, 471023, Luoyang, Henan, P. R. China
| |
Collapse
|
66
|
Wang HB, Mao AL, Li YH, Gan T, Liu YM. A turn-on fluorescence strategy for biothiols determination by blocking Hg(II)-mediated fluorescence quenching of adenine-rich DNA-templated gold nanoclusters. LUMINESCENCE 2020; 35:1296-1303. [PMID: 32510805 DOI: 10.1002/bio.3891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/12/2020] [Accepted: 06/03/2020] [Indexed: 01/27/2023]
Abstract
Fluorescent adenine (A)-rich DNA-templated gold nanoclusters were demonstrated to be a novel probe for determination of biothiols (including cysteine, glutathione, and homocysteine). Fluorescence intensity of adenine-rich DNA-templated gold nanoclusters could be greatly quenched by Hg(II) ions through the formation of a gold nanoclusters-Hg(II) system. When biothiols (cysteine as the model) were introduced into the system, the fluorescence intensity recovered due to the formation of a more stable Hg(II)-thiol coordination complex using Hg-S metal-ligand bonds, which inhibited the Hg(II)-mediated fluorescence quenching of adenine-rich DNA-templated gold nanoclusters. Based on this fluorescence phenomenon, an on-off-on fluorescence strategy was designed for the sensitive determination of biothiols. The method allowed sensitive detection of cysteine with a linear detection range from 100 nM to 5 μM and a limit of detection of 30 nM. Additionally, the assay can be applied for detection of biothiol levels in human plasma samples. Therefore, it can provide a simple and rapid fluorescent platform for biothiol detection.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - An-Li Mao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Yong-Hong Li
- School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Tian Gan
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
67
|
Pang J, Lu Y, Gao X, He L, Sun J, Yang F, Liu Y. Single-strand DNA-scaffolded copper nanoclusters for the determination of inorganic pyrophosphatase activity and screening of its inhibitor. Mikrochim Acta 2020; 187:672. [PMID: 33225389 DOI: 10.1007/s00604-020-04647-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/15/2020] [Indexed: 11/30/2022]
Abstract
A fluorescence method for the determination of inorganic pyrophosphatase (PPase) activity has been established based on copper nanoclusters (CuNCs). The polythymine of 40 mer (T40) acts as a template for the reduction reaction from Cu2+ to Cu0 by ascorbic acid (AA). This reaction leads to the formation of fluorescent CuNCs with excitation/emission peaks at 340/640 nm. However, the higher binding affinity between inorganic pyrophosphate (PPi) and Cu2+ hinders the effective formation of CuNCs. This shows low fluorescence intensity. PPase catalyzes the hydrolysis of PPi into Pi during which free Cu2+ ions are produced. This facilitates the formation of fluorescent CuNCs. Thus, the fluorescence intensity was restored. The fluorescence enhancement of the system has a linear relationship with PPase activity in the range 0.3 to 20 mU·mL-1, and the detection limit is0.2 mU·mL-1. The relative intensity (I/I0) at 640 nm for the analytical solution versus system is also employed to screen the inhibitor for PPase with high efficiency. Graphical abstract Schematic representation of a fluorescent assay for the determination of inorganic pyrophosphatase activity and screening its inhibitor based on single-strand polythymine-scaffolded copper nanoclusters.
Collapse
Affiliation(s)
- Jiawei Pang
- Department of Chemistry, Capital Normal University, Xisanhuan North Rd. 105, Beijing, 100048, People's Republic of China
| | - Yuexiang Lu
- Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Beijing Key Lab of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xinyu Gao
- Department of Chemistry, Capital Normal University, Xisanhuan North Rd. 105, Beijing, 100048, People's Republic of China
| | - Liuying He
- Department of Chemistry, Capital Normal University, Xisanhuan North Rd. 105, Beijing, 100048, People's Republic of China
| | - Jingwei Sun
- Department of Chemistry, Capital Normal University, Xisanhuan North Rd. 105, Beijing, 100048, People's Republic of China
| | - Fengyi Yang
- Department of Chemistry, Capital Normal University, Xisanhuan North Rd. 105, Beijing, 100048, People's Republic of China
| | - Yueying Liu
- Department of Chemistry, Capital Normal University, Xisanhuan North Rd. 105, Beijing, 100048, People's Republic of China.
| |
Collapse
|
68
|
Zhu Y, Liu X, Liu K, Bao X, Cheng S, Zhang L, Zhang Y, Zhang L, Cao F, Xing X. Enhanced-assay of alkaline phosphatase based on polyAT dsDNA-templated copper nanoclusters. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
69
|
Chai YL, Gao ZB, Li Z, He LL, Yu F, Yu SC, Wang J, Tian YM, Liu LE, Wang YL, Wu YJ. A novel fluorescent nanoprobe that based on poly(thymine) single strand DNA-templated copper nanocluster for the detection of hydrogen peroxide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118546. [PMID: 32505107 DOI: 10.1016/j.saa.2020.118546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
In this paper, a label-free fluorescence nanoprobe is constructed based on poly(thymine) single strand DNA-templated Copper nanocluster (denote as: T-CuNCs) for the detection of hydrogen peroxide. In the assay, the fluorescent T-CuNCs will generate though the reaction of Cu2+, poly(thymine) and sodium ascorbate. However, the hydroxyl radical (.OH) will generated in the presence of H2O2, which is able to induced the oxidative lesions of poly(thymine) single chain DNA and lead to the poly(thymine) being splitted into shorter or single oligonucleotide fragments and lose the ability to template the fluorescent T-CuNCs again. Therefore, H2O2 can be detected by monitoring the fluorescence strength change of T-CuNCs. The experimental results show that the fluorescence intensity change of T-CuNCs has fantastic linearity versus H2O2 concentration in the range of 1-30 μM (R2 = 0.9947) and 30-80 μM (R2 = 0.9972) with the limit of detection (LOD) as low as 0.5 μM (S/N = 3). More important, the fluorescent nanoprobe was also successfully utilized on the detection of H2O2 in serum samples. Therefore, a label-free, costless and effective fluorescence method has been established for the detection of H2O2, the intrinsic properties of the nanoprobe endow its more potential applications in chemical and biological study.
Collapse
Affiliation(s)
- Yi-Lin Chai
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zi-Bo Gao
- College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zhuang Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Lei-Liang He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Fei Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Song-Cheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Jia Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yong-Mei Tian
- College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Li-E Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yi-Lin Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Yong-Jun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| |
Collapse
|
70
|
Sasikumar T, Ilanchelian M. Water-soluble luminescent copper nanoclusters as a fluorescent quenching probe for the detection of rutin and quercetin based on the inner filter effect. LUMINESCENCE 2020; 36:326-335. [PMID: 32909349 DOI: 10.1002/bio.3945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022]
Abstract
In the present study, we proposed a simple, sensitive and selective fluorescence method for the detection of rutin (Rut) and quercetin (Que) based on the inner filter effect (IFE) utilizing water- soluble cysteine-stabilized copper nanoclusters (Cys-CuNCs) as a fluorescent probe. The Cys-CuNCs were successfully synthesized and characterized using UV-visible absorption, emission, Fourier-transform infrared (FT-IR) spectroscopy, fluorescence lifetime, high resolution transmission electron microscopy (HR-TEM) and zeta potential measurements. Cys-CuNCs exhibited bluish-green luminescence under UV light with characteristic emission maxima at 486 nm. Cys-CuNCs was successfully exploited as fluorescent probes for the detection of Rut/Que. The addition of increasing concentrations of Rut/Que led to a gradual decrease in the emission intensity of Cys-CuNCs. The decrease in Cys-CuNC emission intensities were attributed to the strong IFE and static quenching mechanism. The calculated limit of detection values for Rut and Que were as low as 0.021 μM and 0.035 μM, respectively. The Cys-CuNCs sensing probe exhibited excellent selectivity in the presence of other potential interfering compounds. Furthermore, the present method was successfully applied to the analysis of both Rut and Que in biological samples.
Collapse
|
71
|
Zhou X, Pu H, Sun DW. DNA functionalized metal and metal oxide nanoparticles: principles and recent advances in food safety detection. Crit Rev Food Sci Nutr 2020; 61:2277-2296. [PMID: 32897734 DOI: 10.1080/10408398.2020.1809343] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The frequent occurrence of food safety incidents has given rise to unprecedented concern about food contamination issues for both consumers and the industry. Various contaminations in food pose serious threats to food safety and human health. Many detection methods were studied to address the challenge. Recently, biosensors relying on deoxyribonucleic acid (DNA)-functionalized nanoparticles have been developed as an efficient and effective detection method. In the current review, the strategies for DNA assembly metal and metal oxide nanoparticles are elaborated, recent applications of the sensors based on DNA-functionalized nanoparticles in food contaminant detection are discussed. Pathogenic bacteria, heavy metal ions, mycotoxins, antibiotics, and pesticides are covered as food contaminants. Additionally, limitations and future trends of functionalized nanoparticles-based technology are also presented. The current review indicates that DNA-functionalized metal and metal oxide nanoparticles are a novel nanomaterial with unique biological and physical properties for developing electrochemical, fluorescent, colourimetric and surface-enhanced Raman spectroscopy (SERS) sensors, etc. Compared with conventional detection techniques, DNA-functionalized metal and metal oxide nanoparticles have considerable advantages with high accuracy, high specificity, micro-intelligence, and low cost. Nevertheless, the stability of these sensors and the limitations of real-time detection are still under discussion. Therefore, more tolerant, portable, and rapid DNA sensors should be developed to better the real-time monitoring of harmful contaminants.
Collapse
Affiliation(s)
- Xiyi Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin, Ireland
| |
Collapse
|
72
|
Xu W, He W, Du Z, Zhu L, Huang K, Lu Y, Luo Y. Funktionelle Nukleinsäure‐Nanomaterialien: Entwicklung, Eigenschaften und Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Wanchong He
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Zaihui Du
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Yi Lu
- Department of Chemistry University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Yunbo Luo
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| |
Collapse
|
73
|
Fluorescent detection of Cu (II) ions based on DNAzymatic cascaded cyclic amplification. Mikrochim Acta 2020; 187:443. [PMID: 32661732 DOI: 10.1007/s00604-020-04430-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
A fluorescent biosensor based on the cascaded cyclic amplification-lighted copper nanoparticles has been developed, optimized, and validated. In the double-modular cascaded cyclic amplification, a DNAzymatic cyclic amplification unit transforms metal ion signal to specific DNA sequences, and a linear/exponential integrated amplification unit converts as-prepared DNA codes to identical thymine (T)-rich DNA templates. T-rich scaffolds can induce the generation of red fluorescent copper nanoparticles, with fluorescence emission at 625 nm upon the excitation at 340 nm, as signal vehicles for quantitative detection of metal ions. Copper ions, selected as the model target, could be detected in a wide linear range from 10 to 104 nM depending on the increased fluorescent intensity, and the detection limit is 5.6 ± 0.52 nM (n = 3) within 40 min, which is 4 orders of magnitude lower than the limits set in drinking water. In the detection of Cu2+ in real tap and lake water, the results between inductively coupled plasma mass spectrometry (ICP-MS) and our proposed biosensor were consistent, illustrating the practicability of the fabricated method. In summary, the established fluorescent biosensor compensates the deficiency of immunoassays failing to analyze metal ions, broadens ranges of biomarkers responding to cleaved DNAzymes, provides an open platform sensing different metal ions, and meets the increasing need for the ultrasensitive detection in the field of food safety, environmental monitoring, and medical diagnosis.
Collapse
|
74
|
A Label-Free Fluorescent Sensor Based on the Formation of Poly(thymine)-Templated Copper Nanoparticles for the Sensitive and Selective Detection of MicroRNA from Cancer Cells. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8030052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this work, a simple and label-free fluorescence “off” to “on” platform was designed for the sensitive and selective detection of microRNA (miRNA) in cancer cells. This method utilized a padlock DNA-based rolling circle amplification (P-RCA) to synthesize fluorescent poly(thymine) (PolyT) which acted as a template for the synthesis of copper nanoparticles (CuNPs) within 10 minutes under mild conditions. While the repeated PolyT sequence was used as the template for CuNP synthesis, other non-PolyT parts (single strand-DNAs without the capacity to act as the template for CuNP formation) served as “smart glues” or rigid linkers to build complex nanostructures. Under the excitation wavelength of 340 nm, the synthesized CuNPs emitted strong red fluorescence effectively at 620 nm. To demonstrate the use of this method as a universal biosensor platform, lethal-7a (let-7a) miRNA was chosen as the standard target. This sensor could achieve highly sensitive and selective detection of miRNA in the presence of other homologous analogues for the combination of P-RCA with the fluorescent copper nanoparticle. Overall, this novel label-free method holds great potential in the sensitive detection of miRNA with high specificity in real samples.
Collapse
|
75
|
Nambannor Kunnath R, Venukumar A, Gorthi SS. Handheld fluorometer for in-situ melamine detection via interference synthesis of dsDNA-templated copper nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 235:118304. [PMID: 32251893 DOI: 10.1016/j.saa.2020.118304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Fluorescent copper nanoparticles templated by dsDNA have gained significant research interest as they are inexpensive and easy to synthesize, and have found applications in the detection of a wide range of analytes. The presence of the analyte in the reaction mixture interferes with the synthesis of the copper nanoparticles and the subsequent drop in fluorescence can be correlated to the concentration of the analyte present in the solution. Analyte detection using copper nanoparticle-based assays is amenable for in-situ applications as the test does not require expensive reagents and can be performed at room temperature. However, expensive and sophisticated detection systems are required for the detection of copper nanoparticles due to the low fluorescence emission signal from these nanoparticles. This restricts the use of the technology to centralized labs. Utilizing a recently developed chemical technique for fluorescence enhancement, this paper presents the first report of a handheld fluorometer capable of detecting DNA-templated copper nanoparticles. The fluorometer is portable and constructed with low-cost, off-the-shelf components like a UV-LED and a PIN photodiode. The performance of the developed system is demonstrated through the detection of melamine in milk samples via the interference synthesis of copper nanoparticles. Melamine is an adulterant used in dairy products that is harmful to human health if present in levels above 1 ppm. The developed system is capable of detecting up to 0.1 ppm of melamine in milk samples with a linear relationship observed between the detector output and concentration of melamine in the range from 0.1 ppm to 100 ppm (R2 = 0.9979).
Collapse
Affiliation(s)
| | - Aravind Venukumar
- Department of Instrumentation and Applied Physics, Indian Institute of Science Bangalore, India
| | - Sai Siva Gorthi
- Department of Instrumentation and Applied Physics, Indian Institute of Science Bangalore, India.
| |
Collapse
|
76
|
AS1411-Templated Fluorescent Cu Nanomaterial’s Synthesis and Its Application to Detecting Melamine. J CHEM-NY 2020. [DOI: 10.1155/2020/4067578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Herein, we report a novel approach to AS1411-templated formation of fluorescent copper nanomaterials and their application to melamine detection. Fluorescent copper nanomaterials were formed at room temperature by using AS1411 as a template and ascorbic acid as reductant. However, the fluorescence intensity decreased obviously in the presence of melamine. Under the optimized conditions, the quenching fluorescence intensities of copper nanomaterials showed a good linear relationship with the concentration of melamine in the range of 50 μmol/L–120 μmol/L, and the correlation coefficient was 0.9823. In addition, the method was successfully applied in the detection of melamine in milk samples. This method was cost-effective and convenient without any labels or complicated operations. Thus, this work successfully develops the capping AS1411 scaffolds of copper nanomaterials detection of melamine.
Collapse
|
77
|
Ouyang X, Wang M, Guo L, Cui C, Liu T, Ren Y, Zhao Y, Ge Z, Guo X, Xie G, Li J, Fan C, Wang L. DNA Nanoribbon-Templated Self-Assembly of Ultrasmall Fluorescent Copper Nanoclusters with Enhanced Luminescence. Angew Chem Int Ed Engl 2020; 59:11836-11844. [PMID: 32267600 DOI: 10.1002/anie.202003905] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Indexed: 01/23/2023]
Abstract
Fluorescent copper nanoclusters (CuNCs) have been widely used in chemical sensors, biological imaging, and light-emitting devices. However, individual fluorescent CuNCs have limitations in their capabilities arising from poor photostability and weak emission intensities. As one kind of aggregation-induced emission luminogen (AIEgen), the formation of aggregates with high compactness and good order can efficiently improve the emission intensity, stability, and tunability of CuNCs. Here, DNA nanoribbons, containing multiple specific binding sites, serve as a template for in situ synthesis and assembly of ultrasmall CuNCs (0.6 nm). These CuNC self-assemblies exhibit enhanced luminescence and excellent fluorescence stability because of tight and ordered arrangement through DNA nanoribbons templating. Furthermore, the stable and bright CuNC assemblies are demonstrated in the high-sensitivity detection and intracellular fluorescence imaging of biothiols.
Collapse
Affiliation(s)
- Xiangyuan Ouyang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Meifang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Linjie Guo
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengjun Cui
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Yongan Ren
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Yan Zhao
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiniu Guo
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Jiang Li
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lihua Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
78
|
Ouyang X, Wang M, Guo L, Cui C, Liu T, Ren Y, Zhao Y, Ge Z, Guo X, Xie G, Li J, Fan C, Wang L. DNA Nanoribbon‐Templated Self‐Assembly of Ultrasmall Fluorescent Copper Nanoclusters with Enhanced Luminescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiangyuan Ouyang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an Shaanxi 710127 P. R. China
| | - Meifang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an Shaanxi 710127 P. R. China
| | - Linjie Guo
- Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chengjun Cui
- Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ting Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an Shaanxi 710127 P. R. China
| | - Yongan Ren
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an Shaanxi 710127 P. R. China
| | - Yan Zhao
- Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200127 China
| | - Xiniu Guo
- Instrumental Analysis Center Shanghai Jiao Tong University Shanghai China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an Shaanxi 710127 P. R. China
| | - Jiang Li
- Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200127 China
| | - Lihua Wang
- Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
79
|
Nain A, Tseng YT, Wei SC, Periasamy AP, Huang CC, Tseng FG, Chang HT. Capping 1,3-propanedithiol to boost the antibacterial activity of protein-templated copper nanoclusters. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121821. [PMID: 31879116 DOI: 10.1016/j.jhazmat.2019.121821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
We have prepared copper nanoclusters (Cu NCs) in the presence of bovine serum albumin (BSA) and 1,3-propanedithiol (PDT). The PDT/BSA-Cu NCs possess great activities against different types of bacteria, including non-multidrug-resistant bacteria (Escherichia coli, Salmonella Enteritidis, Pseudomonas aeruginosa, and Staphylococcus aureus) and multidrug-resistant bacteria (methicillin-resistant S. aureus). Their minimal inhibitory concentration (MIC) values are at least 242-fold and 10-fold lower than that of the free PDT and BSA-Cu NCs, respectively. The PDT/BSA-Cu NCs are strongly bound to the bacterial membrane, in which they induce the generation of ascorbyl (Asc) and perhydroxyl (HOO) radicals that result in disruption of their membrane integrity. At a concentration of 100-fold higher than their MIC for Escherichia coli, the PDT/BSA-Cu NCs exhibit negligible cytotoxicity towards the tested mammalian cells and show insignificant hemolysis. We have further demonstrated that low-cost PDT/BSA-Cu NCs-coated carbon fiber fabrics (CFFs) are effective against antibacterial growth, showing their great potential for antifouling applications.
Collapse
Affiliation(s)
- Amit Nain
- Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan; Nano Science and Technology Program, Taiwan International Graduate Program, Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan; Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Ting Tseng
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Shih-Chun Wei
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | | | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan; Research Center for Applied Sciences Academia Sinica, Taipei, 11529, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan; Department of Chemistry, Chung Yuan Christian University, Chungli District, Taoyuan City, 32023, Taiwan.
| |
Collapse
|
80
|
Zhao H, Yan Y, Chen M, Hu T, Wu K, Liu H, Ma C. Exonuclease III-assisted signal amplification strategy for sensitive fluorescence detection of polynucleotide kinase based on poly(thymine)-templated copper nanoparticles. Analyst 2020; 144:6689-6697. [PMID: 31598619 DOI: 10.1039/c9an01659g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A sensitive and label-free fluorometric method has been developed for the determination of polynucleotide kinase (PNK) activity, by employing exonuclease III (Exo III)-assisted cyclic signal amplification and poly(thymine)-templated copper nanoparticles (polyT-CuNPs). In the presence of PNK, cDNA with 5'-hydroxyl termini was phosphorylated and then hybridized with tDNA to form the cDNA/tDNA duplex, which subsequently triggered the λ exonuclease cleavage reaction, eventually resulting in the release of tDNA. The released tDNA could unfold the hairpin structure of HP DNA to generate partially complementary duplex (tDNA/HP DNA), wherein the HP DNA possessed T-rich sequences (T30) and tDNA recognition sequence. With the help of Exo III digestion, the tDNA was able to initiate the cycle for the generation of T-rich sequences, the template for the formation of fluorescent CuNPs. Conversely, the cDNA could not be cleaved by λ exonuclease without PNK and individual HP DNA could not be hydrolyzed by Exo III. The T-rich sequence was caged in HP DNA, resulting in a weak fluorescence signal. Under optimized conditions, the fluorescence intensity was linearly correlated to a concentration range of 0.001 to 1 U mL-1 with a low detection limit of 2 × 10-4 U mL-1. Considering the intriguing analytical performance, this approach could be explored to screen T4 PNK inhibitors and hold promising applications in drug discovery and disease therapy.
Collapse
Affiliation(s)
- Han Zhao
- School of Life Sciences, Central South University, Changsha 410013, China.
| | | | | | | | | | | | | |
Collapse
|
81
|
Molecular inversion probe-rolling circle amplification with single-strand poly-T luminescent copper nanoclusters for fluorescent detection of single-nucleotide variant of SMN gene in diagnosis of spinal muscular atrophy. Anal Chim Acta 2020; 1123:56-63. [PMID: 32507240 DOI: 10.1016/j.aca.2020.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/31/2020] [Accepted: 04/10/2020] [Indexed: 11/21/2022]
Abstract
In this study, a simple fluorescent detection of survival motor neuron gene (SMN) in diagnosis of spinal muscular atrophy (SMA) based on nucleic acid amplification test and the poly-T luminescent copper nanoclusters (CuNCs) was established. SMA is a severely genetic diseases to cause infant death in clinical, and detection of SMN gene is a powerful tool for pre- and postnatal diagnosis of this disease. This study utilized the molecular inversion probe for recognition of nucleotide variant between SMN1 (c.840 C) and SMN2 (c.840 C > T) genes, and rolling circle amplification with a universal primer for production of poly-T single-strand DNA. Finally, the fluorescent CuNCs were formed on the poly-T single-strand DNA template with addition of CuSO4 and sodium ascorbate. The fluorescence of CuNCs was only detected in the samples with the presence of SMN1 gene controlling the disease of SMA. After optimization of experimental conditions, this highly efficient method was performed under 50 °C for DNA ligation temperature by using 2U Ampligase, 3 h for rolling circle amplification, and the formation of the CuNCs by mixing 500 μM Cu2+ and 4 mM sodium ascorbate. Additionally, this highly efficient method was successfully applied for 65 clinical DNA samples, including 4 SMA patients, 4 carriers and 57 wild individuals. This label-free detection strategy has the own potential to not only be a general method for detection of SMN1 gene in diagnosis of SMA disease, but also served as a tool for detection of other single nucleotide polymorphisms or nucleotide variants in genetic analysis through designing the different sensing probes.
Collapse
|
82
|
Beyond native deoxyribonucleic acid, templating fluorescent nanomaterials for bioanalytical applications: A review. Anal Chim Acta 2020; 1105:11-27. [DOI: 10.1016/j.aca.2020.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/16/2022]
|
83
|
Sensitivity Comparison of Refractive Index Transducer Optical Fiber Based on Surface Plasmon Resonance Using Ag, Cu, and Bimetallic Ag-Cu Layer. MICROMACHINES 2020; 11:mi11010077. [PMID: 32284498 PMCID: PMC7019253 DOI: 10.3390/mi11010077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/03/2019] [Accepted: 11/14/2019] [Indexed: 11/16/2022]
Abstract
A single-mode optical fiber sensor uses surface plasmon resonance (SPR) with a bimetallic silver-copper (Ag-Cu) coating compared to a single layer of Ag and Cu itself. Bimetallic Ag-Cu sensors are constructed by simple fabrication on a side-polished optical fiber, followed by an electron beam evaporation of Ag and Cu films. For this investigation, the thickness of the single Ag layer was set to 30 nm and the single Cu layer was set to 30 nm; whereas for the bimetallic combined Ag-Cu layer the thickness of Ag was 7 nm and Cu 23 nm. The sensor performance was analyzed and compared experimentally and numerically using the COMSOL Multiphysics. A white light source was used with a broad optical bandwidth to provide a range of wavelengths to the optical fiber. The characteristics of the thin layers of Ag, Cu, and Ag-Cu as alcohol sensors were evaluated. We found that Cu was the most sensitive metallic layer compared to the Ag and the bimetallic Ag-Cu layers. For a 100% alcohol concentration, Cu showed a sensitivity of 425 nm/RIU followed by the bimetallic Ag-Cu layer with 108.33 nm/RIU, whereas the Ag layer was not detected. Interestingly, sensitivity reached saturation beyond the 20 nm thick layer of Ag. This shows that the Cu and the bimetallic Ag-Cu layers are suitable for an alcohol-based optical sensor.
Collapse
|
84
|
Gu J, Qiao Z, He X, Yu Y, Lei Y, Tang J, Shi H, He D, Wang K. Enzyme-free amplified detection of miRNA based on target-catalyzed hairpin assembly and DNA-stabilized fluorescent silver nanoclusters. Analyst 2020; 145:5194-5199. [DOI: 10.1039/d0an00545b] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A simple, cost-effective, sensitive, and selective strategy was developed for microRNA analysis using target-catalyzed hairpin assembly and fluorescent silver nanoclusters.
Collapse
Affiliation(s)
- Jinqing Gu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Zhenzhen Qiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Yanru Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Yanli Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Jinlu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Dinggeng He
- State Key Laboratory of Developmental Biology of Freshwater Fish
- College of Life Sciences
- Hunan Normal University
- Changsha 410081
- China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| |
Collapse
|
85
|
Lei T, Huang T, Wang T, Yu P, Qing T, Nie B. Nano-fluorescent probes based on DNA-templated copper nanoclusters for fast sensing of thiocyanate. NEW J CHEM 2020. [DOI: 10.1039/d0nj03742g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A fast and label-free fluorescent sensor was developed to determine SCN−via inhibiting the formation of DNA-templated copper nanoclusters (CuNCs).
Collapse
Affiliation(s)
- Tao Lei
- School of Materials Science and Engineering
- Xiangtan University
- Xiangtan 411105
- P. R. China
| | - Ting Huang
- School of Materials Science and Engineering
- Xiangtan University
- Xiangtan 411105
- P. R. China
| | - Tianze Wang
- School of Materials Science and Engineering
- Xiangtan University
- Xiangtan 411105
- P. R. China
| | - Peng Yu
- School of Materials Science and Engineering
- Xiangtan University
- Xiangtan 411105
- P. R. China
| | - Taiping Qing
- College of Environment and Resources
- Xiangtan University
- Xiangtan 411105
- P. R. China
| | - Beixi Nie
- School of Materials Science and Engineering
- Xiangtan University
- Xiangtan 411105
- P. R. China
| |
Collapse
|
86
|
Li J, Li Y, Zhai X, Cao Y, Zhao J, Tang Y, Han K. Sensitive electrochemical detection of hepatitis C virus subtype based on nucleotides assisted magnetic reduced graphene oxide-copper nano-composite. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2019.106601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
87
|
DNA-templated copper nanoparticles as signalling probe for electrochemical determination of microRNA-222. Mikrochim Acta 2019; 187:4. [DOI: 10.1007/s00604-019-4011-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
|
88
|
Chen C, Geng F, Wang Y, Yu H, Li L, Yang S, Liu J, Huang W. Design of a nanoswitch for sequentially multi-species assay based on competitive interaction between DNA-templated fluorescent copper nanoparticles, Cr3+ and pyrophosphate and ALP. Talanta 2019; 205:120132. [DOI: 10.1016/j.talanta.2019.120132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 11/15/2022]
|
89
|
Nanoparticles as Emerging Labels in Electrochemical Immunosensors. SENSORS 2019; 19:s19235137. [PMID: 31771201 PMCID: PMC6928605 DOI: 10.3390/s19235137] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
This review shows recent trends in the use of nanoparticles as labels for electrochemical immunosensing applications. Some general considerations on the principles of both the direct detection based on redox properties and indirect detection through electrocatalytic properties, before focusing on the applications for mainly proteins detection, are given. Emerging use as blocking tags in nanochannels-based immunosensing systems is also covered in this review. Finally, aspects related to the analytical performance of the developed devices together with prospects for future improvements and applications are discussed.
Collapse
|
90
|
Tsai TT, Chen CA, Yi-Ju Ho N, Yang S, Chen CF. Fluorescent Double-Stranded DNA-Templated Copper Nanoprobes for Rapid Diagnosis of Tuberculosis. ACS Sens 2019; 4:2885-2892. [PMID: 31576745 DOI: 10.1021/acssensors.9b01163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this work, we investigate highly sensitive fluorescent Cu nanoparticles for use as rapid and specific nucleic acid amplification nanoprobes (NPs) for the diagnosis of tuberculosis. After applying polymerase chain reaction (PCR) to a tuberculosis (TB) sample, we demonstrate that the presence of the targeted IS6110 DNA sequence of TB can be easily and directly detected through the in situ formation of DNA-templated fluorescent Cu NPs and subsequently quantified using only a smartphone. Compared to traditional DNA analysis, this sensing platform does not require purification steps and eliminates the need for electrophoresis to confirm the PCR results. After optimization, this dsDNA-Cu NP-PCR method has the ability to analyze clinical TB nucleic acid samples at a detection limit of 5 fg/μL, and the fluorescent signal can be distinguished in only ∼3 min after the DNA has been amplified. Moreover, with the combination of smartphone-assisted imaging analysis, we can further reduce the instrument size/cost and enhance the portability. In this manner, we are able to eliminate the need for a fluorescent spectrophotometer to measure the clinical sample. These results demonstrate this platform's practical applicability, combining a smartphone and on-site analysis while retaining the detection performance, making it suitable for clinical DNA applications in resource-limited regions of the world.
Collapse
Affiliation(s)
- Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chung-An Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Natalie Yi-Ju Ho
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Shuan Yang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
91
|
Song C, Xu J, Chen Y, Zhang L, Lu Y, Qing Z. DNA-Templated Fluorescent Nanoclusters for Metal Ions Detection. Molecules 2019; 24:E4189. [PMID: 31752270 PMCID: PMC6891495 DOI: 10.3390/molecules24224189] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
DNA-templated fluorescent nanoclusters (NCs) have attracted increasing research interest on account of their prominent features, such as DNA sequence-dependent fluorescence, easy functionalization, wide availability, water solubility, and excellent biocompatibility. Coupling DNA templates with complementary DNA, aptamers, G-quadruplex, and so on has generated a large number of sensors. Additionally, the preparation and applications of DNA-templated fluorescent NCs in these sensing have been widely studied. This review firstly focuses on the properties of DNA-templated fluorescent NCs, and the synthesis of DNA-templated fluorescent NCs with different metals is then discussed. In the third part, we mainly introduce the applications of DNA-templated fluorescent NCs for sensing metal ions. At last, we further discuss the future perspectives of DNA-templated fluorescent NCs in the synthesis and sensing metal ions in the environmental and biological fields.
Collapse
Affiliation(s)
- Chunxia Song
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China; (C.S.); (Y.C.); (L.Z.); (Y.L.)
| | - Jingyuan Xu
- Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China;
| | - Ying Chen
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China; (C.S.); (Y.C.); (L.Z.); (Y.L.)
| | - Liangliang Zhang
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China; (C.S.); (Y.C.); (L.Z.); (Y.L.)
| | - Ying Lu
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China; (C.S.); (Y.C.); (L.Z.); (Y.L.)
| | - Zhihe Qing
- Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China;
| |
Collapse
|
92
|
Recent progress in copper nanocluster-based fluorescent probing: a review. Mikrochim Acta 2019; 186:670. [PMID: 31489488 DOI: 10.1007/s00604-019-3747-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/10/2019] [Indexed: 10/26/2022]
Abstract
Copper nanoclusters (CuNCs) are an attractive alternative to other metal nanoclusters. The synthesis of CuNCs is highly efficient and fast, with low-cost and without any complicated manipulation. Because of their tunable fluorescence and low toxicity, CuNCs have been highly exploited for biochemical sensing. This review (with 172 refs.) summarizes the progress that has been made in the field in the past years. Following an introduction into the fundamentals of CuNCs, the review first focuses on synthetic methods and the fluorescence properties of CuNCs (with subsections on the use of proteins, peptides, DNA and other molecules as templates). This is followed by a section on the use of CuNCs in fluorometric assays, with subsections on the detection of small molecules, proteins, nucleic acids, various other biomolecules including drugs, and of pH values. A further large chapter summarizes the work related to environmental analyses, specifically on determination of metal ions, anions and pollutants. Graphical abstract Schematic representation of the synthesis and potential applications of copper nanocluster (CuNCs) in biochemical analysis, emphatically reflected in some vital areas such as small molecule analysis, biomacromolecule monitoring, cell imaging, ions detection, toxic pollutant, etc.
Collapse
|
93
|
Zhang Y, Zhu Z, Teng X, Lai Y, Pu S, Pang P, Wang H, Yang C, Barrow CJ, Yang W. Enzyme-free fluorescent detection of microcystin-LR using hairpin DNA-templated copper nanoclusters as signal indicator. Talanta 2019; 202:279-284. [DOI: 10.1016/j.talanta.2019.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
|
94
|
Song Q, Chen C, Yu W, Yang L, Zhang K, Zheng J, Du X, Chen H. In situ formation of DNA-templated copper nanoparticles as fluorescent indicator for hydroxylamine detection. RSC Adv 2019; 9:25976-25980. [PMID: 35531001 PMCID: PMC9070379 DOI: 10.1039/c9ra04476k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/14/2019] [Indexed: 11/21/2022] Open
Abstract
Herein, we develop a facile method for selective and sensitive detection of hydroxylamine (HA) based on the in situ formation of DNA templated copper nanoparticles (DNA-CuNPs) as fluorescent probes. It is firstly found that HA as a reducing agent can play a key role in the in situ formation of fluorescent DNA-CuNPs. This special optical property of DNA-CuNPs with (λ ex = 340 nm, λ em = 588 nm) with a mega-Stokes shifting (248 nm) makes it applicable for the turn-on detection of HA. In addition, this fluorescent method has several advantages such as being simple, rapid, and environmentally friendly, because it avoids the traditional organic dye molecules and complex procedures. Under optimized conditions, this platform achieves a fluorescent response for HA with a detection limit of 0.022 mM. Especially, successful detection capability in tap waters and ground waters exhibits its potential to be general method.
Collapse
Affiliation(s)
- Quanwei Song
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Changzhao Chen
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Wenhe Yu
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Lixia Yang
- Beijing Key Laboratory of Metal Material Characterization, Central Iron and Steel Research Institute Beijing 100081 China
| | - Kunfeng Zhang
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Jin Zheng
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Xianyuan Du
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Hongkun Chen
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| |
Collapse
|
95
|
Nakhaeepour Z, Mashreghi M, Matin MM, NakhaeiPour A, Housaindokht MR. Multifunctional CuO nanoparticles with cytotoxic effects on KYSE30 esophageal cancer cells, antimicrobial and heavy metal sensing activities. Life Sci 2019; 234:116758. [PMID: 31421083 DOI: 10.1016/j.lfs.2019.116758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/04/2019] [Accepted: 08/12/2019] [Indexed: 12/27/2022]
Abstract
In this work, fluorescent copper oxide nanoparticles (CuO NPs) were green synthesized using viable cells, cell lysate supernatant (CLS) and protein extracts of luminescent Vibrio sp. VLC. Biogenic CuO NPs were then characterized by XRD, FTIR, UV/Vis spectroscopy, TEM, DLS, and PL spectroscopy. Results showed that CLS method was more efficient for CuO NPs production, therefore CuO NPs synthesized by this method from copper sulfate (CuO NPs-1) and/or copper nitrate (CuO NPs-2) were used for further studies. The crystallite size of polydispersed CuO NPs-1 and CuO NPs-2 were about 8.83 and 8.77 nm, respectively indicating their suitability for biological applications. Antibacterial activity of CuO NPs was determined using broth microdilution, well diffusion agar, and time-kill curves methods. Both CuO NP-1 and CuO NP-2 inhibited bacterial growth at the minimum inhibitory concentration (MIC) of 625 mg/L except St. mutants (MIC = 1250 mg/L). Emission of fluorescent light from the surface of NPs was increased when exposed to Cd2+, As2+ and Hg2+ ions but decreased by Pb2+ ions. Results showed that CuO NP-1 had anticancer properties against KYSE30 esophageal cancer cell line (IC50 = 13.96 mg/L) while no higher cytotoxic effects were observed on Human Dermal Fibroblasts (HDF) (IC50 = 48.88 mg/L).
Collapse
Affiliation(s)
- Zahra Nakhaeepour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mansour Mashreghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Novel Diagnostic and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Center of Nano Research, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Novel Diagnostic and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | - Ali NakhaeiPour
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | | |
Collapse
|
96
|
Chen P, Huang K, Dai R, Sawyer E, Sun K, Ying B, Wei X, Geng J. Sensitive CVG-AFS/ICP-MS label-free nucleic acid and protein assays based on a selective cation exchange reaction and simple filtration separation. Analyst 2019; 144:2797-2802. [PMID: 30882111 DOI: 10.1039/c8an01926f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nowadays, label-free atomic spectrometric bioassays are attracting great research interest because of their advantages of low cost, simple design and operation, etc. Herein, a novel and simple chemical vapor generation-atomic fluorescence spectrometry (CVG-AFS)/inductively coupled plasma-mass spectrometry (ICP-MS) label-free detection method is presented for highly sensitive and selective assay of DNA and proteins. This work mainly combined a phenomenon that CdTe quantum dots (QDs) can be used to selectively differentiate free Hg2+ and the T-Hg2+-T complex, with the use of simple membrane filtration separation to improve the performance of the label-free bioassay methods. Upon hybridization with the DNA/protein (carcinoembryonic antigen, CEA) target, the T-Hg2+-T hairpin structure was opened and Hg2+ was released; this initiated the cation exchange reaction between Hg2+ and CdTe QDs which released Cd2+ simultaneously. Subsequently, the free Cd2+ was separated by the filtration membrane without separating the CdTe QDs, which could then be separated from the sample matrices for the CVG-AFS/ICP-MS assay. Under the optimal conditions, this method possessed high sensitivity for DNA and CEA determination with limits of detection (LODs) of 0.2 nM and 0.2 ng mL-1, and linear dynamic ranges of 1-160 nM and 0.5-20 ng mL-1, respectively, and exhibited excellent DNA sequence specificity and protein selectivity. This method preserves the advantages of the label-free atomic spectrometric bioassay, and combined with the selective cation exchange reaction and simple filtration separation to improve the performance.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China.
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Chen C, Chen S, Shiddiky MJA, Chen C, Wu KC. DNA‐Templated Copper Nanoprobes: Overview, Feature, Application, and Current Development in Detection Technologies. CHEM REC 2019; 20:174-186. [DOI: 10.1002/tcr.201900022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/22/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Chung‐An Chen
- Institute of Applied MechanicsNational Taiwan University, No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan
| | - Shih‐Chia Chen
- Institute of Applied MechanicsNational Taiwan University, No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan
| | - Muhammad J. A. Shiddiky
- School of Environment and Science & Queensland Micro- and Nanotechnology CentreNathan campus, Griffith University 170 Kessels Road QLD 4111 Australia
| | - Chien‐Fu Chen
- Institute of Applied MechanicsNational Taiwan University, No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan
| | - Kevin C.‐W. Wu
- Department of Chemical EngineeringNational Taiwan University, No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan
- Division of Medical Engineering Research, National Health
| |
Collapse
|
98
|
Nucleic acid-based fluorescent methods for the determination of DNA repair enzyme activities: A review. Anal Chim Acta 2019; 1060:30-44. [DOI: 10.1016/j.aca.2018.12.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/09/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022]
|
99
|
Synthesis of DNA-templated copper nanoparticles with enhanced fluorescence stability for cellular imaging. Mikrochim Acta 2019; 186:479. [PMID: 31250120 DOI: 10.1007/s00604-019-3620-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/15/2019] [Indexed: 12/14/2022]
Abstract
Fluorescence of DNA-templated copper nanoparticles (DNA-CuNPs) is not stable over time which limits applications in cellular imaging. This is due to the presence of oxygen during synthesis which oxidizes Cu(0) to Cu(II) and also produces the free hydroxyl radical. The authors have prepared DNA-CuNPs with enhanced temporal stability of fluorescence by optimizing the reaction conditions so as to minimize the deleterious effects of oxygen. The operational lifetime of DNA-CuNPs was increased from 25 min to 200 min. Fluorescence spectra of DNA-CuNPs in optimized condition show an emission peak at 650 nm when excited at 340 nm. DNA-CuNPs synthesized in this manner were used for cell imaging. As a proof of concept, the nucleus of a human colon cell line (HCT116) was stained. The method does not involve any chemicals other that copper sulfate and ascorbate. This new approach for generating DNA-CuNPs improves imaging of biological processes and provides a basis for developing other types of DNA-templated nanomaterials. Graphical abstract Schematic presentation of the formation of fluorescent DNA-templated copper nanoparticles (DNA-CuNPs). A large amount of ascorbate provides long operational lifetime for cellular imaging under the condition exposed to oxygen. *Asc- and **DHA stand for ascorbate and dehydroascorbic acid.
Collapse
|
100
|
Askari MS, Lachance-Brais C, Rizzuto FJ, Toader V, Sleiman H. Remote control of charge transport and chiral induction along a DNA-metallohelicate. NANOSCALE 2019; 11:11879-11884. [PMID: 31184682 DOI: 10.1039/c9nr03212f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein we present a new strategy to achieve chiral induction and redox switching along the backbone of metallohelicate architectures, wherein a DNA duplex directs the handedness and charge transport properties of a metal-organic assembly more than 60 bonds away (a distance of >10 nm). The quantitative and site-specific binding of copper(i) ions to DNA-templated coordination sites imparts enhanced thermodynamic stability to the assembly, while the DNA duplex transfers its natural right-handed helicity to the proximal and distal metal centers of the helicates. When copper(ii) ions are employed instead of copper(i) ions, spontaneous DNA-mediated reduction occurs, which we propose is followed by a slower change in coordination environment (from pentacoordinate CuII to tetrahedral CuI) to generate copper(i) helicates. We demonstrate that the reduction of the adjacent and distal bis-phenanthroline sites is dependent on their proximity to DNA guanine bases (which act as the electron source). The kinetics of helical charge transport can thus be tuned based on guanine-CuII separation, resulting in a sequence- and distance-dependent redox switch that transfers electronic information from DNA to multiple linearly-arranged metal centers.
Collapse
Affiliation(s)
- Mohammad S Askari
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|