51
|
Xin D, Burgess K. Anthranilic acid-containing cyclic tetrapeptides: at the crossroads of conformational rigidity and synthetic accessibility. Org Biomol Chem 2016; 14:5049-58. [PMID: 27173439 PMCID: PMC4916954 DOI: 10.1039/c6ob00693k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Each amino acid in a peptide contributes three atom units to main-chains, hence natural cyclic peptides can be 9, 12, 15, …. i.e. 3n membered-rings, where n is the number of amino acids. Cyclic peptides that are 9 or 12-membered ring compounds tend to be hard to prepare because of strain, while their one amino acid homologs (15-membered cyclic pentapeptides) are not conformationally homogeneous unless constrained by strategically placed proline or d-amino acid residues. We hypothesized that replacing one genetically encoded amino acid in a cyclic tetrapeptide with a rigid β-amino acid would render peptidomimetic designs that rest at a useful crossroads between synthetic accessibility and conformational rigidity. Thus this research explored non-proline containing 13-membered ring peptides 1 featuring one anthranilic acid (Anth) residue. Twelve cyclic peptides of this type were prepared, and in doing so the viability of both solution- and solid-phase methods was demonstrated. The library produced contained a complete set of four diastereoisomers of the sequence 1aaf (i.e. cyclo-AlaAlaPheAnth). Without exception, these four diastereoisomers each adopted one predominant conformation in solution; basically these conformations feature amide N-H vectors puckering above and below the equatorial plane, and approximately oriented their N-H[combining low line] atoms towards the polar axis. Moreover, the shapes of these conformers varied in a logical and predictable way (NOE, temperature coefficient, D/H exchange, circular dichroism). Comparisons were made of the side-chain orientations presented by compounds 1aaa in solution with ideal secondary structures and protein-protein interaction interfaces. Various 1aaa stereoisomers in solution present side-chains in similar orientations to regular and inverse γ-turns, and to the most common β-turns (types I and II). Consistent with this, compounds 1aaa have a tendency to mimic various turns and bends at protein-protein interfaces. Finally, proteolytic- and hydrolytic stabilities of the compounds at different pHs indicate they are robust relative to related linear peptides, and rates of permeability through an artificial membrane indicate their structures are conducive to cell permeability.
Collapse
Affiliation(s)
- Dongyue Xin
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA.
| | | |
Collapse
|
52
|
Mifune Y, Nakamura H, Fuse S. A rapid and clean synthetic approach to cyclic peptides via micro-flow peptide chain elongation and photochemical cyclization: synthesis of a cyclic RGD peptide. Org Biomol Chem 2016; 14:11244-11249. [DOI: 10.1039/c6ob02391f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A cyclic RGD peptide was efficiently synthesized based on micro-flow, triphosgene-mediated peptide chain elongation and micro-flow photochemical macrolactamization.
Collapse
Affiliation(s)
- Yuto Mifune
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Shinichiro Fuse
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| |
Collapse
|
53
|
Nevola L, Giralt E. Modulating protein-protein interactions: the potential of peptides. Chem Commun (Camb) 2015; 51:3302-15. [PMID: 25578807 DOI: 10.1039/c4cc08565e] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein-protein interactions (PPIs) have emerged as important and challenging targets in chemical biology and medicinal chemistry. The main difficulty encountered in the discovery of small molecule modulators derives from the large contact surfaces involved in PPIs when compared with those that participate in protein-small molecule interactions. Because of their intrinsic features, peptides can explore larger surfaces and therefore represent a useful alternative to modulate PPIs. The use of peptides as therapeutics has been held back by their instability in vivo and poor cell internalization. However, more than 200 peptide drugs and homologous compounds (proteins or antibodies) containing peptide bonds are (or have been) on the market, and many alternatives are now available to tackle these limitations. This review will focus on the latest progress in the field, spanning from "lead" identification methods to binding evaluation techniques, through an update of the most successful examples described in the literature.
Collapse
Affiliation(s)
- Laura Nevola
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, 08028 Barcelona, Spain.
| | | |
Collapse
|
54
|
Fouché M, Masse F, Roth HJ. Hydroxymethyl Salicylaldehyde Auxiliary for a Glycine-Dependent Amide-Forming Ligation. Org Lett 2015; 17:4936-9. [DOI: 10.1021/acs.orglett.5b02350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Marianne Fouché
- Global Discovery Chemistry, Novartis Institute for BioMedical Research, Basel CH-4002, Switzerland
| | - Florence Masse
- Global Discovery Chemistry, Novartis Institute for BioMedical Research, Basel CH-4002, Switzerland
| | - Hans-Jörg Roth
- Global Discovery Chemistry, Novartis Institute for BioMedical Research, Basel CH-4002, Switzerland
| |
Collapse
|
55
|
Chow HY, Li X. Development of thiol-independent peptide ligations for protein chemical synthesis. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.04.086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
56
|
De Leon Rodriguez LM, Weidkamp AJ, Brimble MA. An update on new methods to synthesize cyclotetrapeptides. Org Biomol Chem 2015; 13:6906-21. [PMID: 26022908 DOI: 10.1039/c5ob00880h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclotetrapeptides are important bioactive lead drug molecules that display a wide spectrum of pharmacological activities. However, the synthesis of cyclotetrapeptides from their linear precursors is challenging due to the highly constrained conformation required for cyclisation, thus hampering their progress to a clinical setting. This review provides an account of the reported methods used for the synthesis of cyclotetrapeptides.
Collapse
Affiliation(s)
- Luis M De Leon Rodriguez
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
57
|
Tung CL, Wong CTT, Li X. Peptide 2-formylthiophenol esters do not proceed through a Ser/Thr ligation pathway, but participate in a peptide aminolysis to enable peptide condensation and cyclization. Org Biomol Chem 2015; 13:6922-6. [DOI: 10.1039/c5ob00825e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptide thiol salicylaldehyde esters unexpectedly do not follow a Ser/Thr ligation pathway, but proceed towards a peptide aminolysis in DMSO.
Collapse
Affiliation(s)
- Chun Ling Tung
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- China
- Chong Yuet Ming Chemistry Building
| | - Clarence T. T. Wong
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- China
- Chong Yuet Ming Chemistry Building
| | - Xuechen Li
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- China
- Chong Yuet Ming Chemistry Building
| |
Collapse
|
58
|
Lee CL, Lam HY, Li X. Serine/threonine ligation for natural cyclic peptide syntheses. Nat Prod Rep 2015; 32:1274-9. [DOI: 10.1039/c5np00001g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effectiveness of Ser/Thr ligation-mediated peptide cyclization has been demonstrated by the synthesis of cyclic peptide natural products, such as daptomycin, cyclomontanin B, yunnanin C and mahafacyclin B.
Collapse
Affiliation(s)
- Chi Lung Lee
- Department of Chemistry
- The University of Hong Kong
- Hong Kong SAR
- China
- Shenzhen Institute of Research and Innovation of The University of Hong Kong
| | - Hiu Yung Lam
- Department of Chemistry
- The University of Hong Kong
- Hong Kong SAR
- China
- Shenzhen Institute of Research and Innovation of The University of Hong Kong
| | - Xuechen Li
- Department of Chemistry
- The University of Hong Kong
- Hong Kong SAR
- China
- State Key Laboratory of Synthetic Chemistry
| |
Collapse
|
59
|
Effective synthesis of cyclic peptide yunnanin C and analogues via Ser/Thr ligation (STL)-mediated peptide cyclization. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
60
|
Lee CL, Li X. Serine/threonine ligation for the chemical synthesis of proteins. Curr Opin Chem Biol 2014; 22:108-14. [DOI: 10.1016/j.cbpa.2014.09.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/19/2014] [Accepted: 09/19/2014] [Indexed: 11/26/2022]
|
61
|
Lam HY, Gaarden RI, Li X. A Journey to the Total Synthesis of Daptomycin. CHEM REC 2014; 14:1086-99. [PMID: 25205345 DOI: 10.1002/tcr.201402049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Hiu Yung Lam
- Department of Chemistry; The University of Hong Kong; Hong Kong SAR P. R. China
| | | | - Xuechen Li
- Department of Chemistry; The University of Hong Kong; Hong Kong SAR P. R. China
| |
Collapse
|
62
|
Liu H, Li X. Development and application of serine/threonine ligation for synthetic protein chemistry. Org Biomol Chem 2014; 12:3768-73. [PMID: 24788202 DOI: 10.1039/c4ob00392f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Chemical synthesis of proteins, especially those with post-translational modifications, has offered new opportunities to study the protein structure-function relationship. In the past four years, we have developed the serine/threonine ligation (STL), which involves the chemoselective reaction between peptide salicylaldehyde esters and peptides with N-terminal serine or threonine. The method has been successfully applied to the synthesis of both linear and cyclic peptides/proteins.
Collapse
Affiliation(s)
- Han Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
| | | |
Collapse
|
63
|
Wong CTT, Li T, Lam HY, Zhang Y, Li X. Realizing serine/threonine ligation: scope and limitations and mechanistic implication thereof. Front Chem 2014; 2:28. [PMID: 24904921 PMCID: PMC4033038 DOI: 10.3389/fchem.2014.00028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/29/2014] [Indexed: 11/13/2022] Open
Abstract
Serine/Threonine ligation (STL) has emerged as an alternative tool for protein chemical synthesis, bioconjugations as well as macrocyclization of peptides of various sizes. Owning to the high abundance of Ser/Thr residues in natural peptides and proteins, STL is expected to find a wide range of applications in chemical biology research. Herein, we have fully investigated the compatibility of the STL strategy for X-Ser/Thr ligation sites, where X is any of the 20 naturally occurring amino acids. Our studies have shown that 17 amino acids are suitable for ligation, while Asp, Glu, and Lys are not compatible. Among the working 17 C-terminal amino acids, the retarded reaction resulted from the bulky β-branched amino acid (Thr, Val, and Ile) is not seen under the current ligation condition. We have also investigated the chemoselectivity involving the amino group of the internal lysine which may compete with the N-terminal Ser/Thr for reaction with the C-terminal salicylaldehyde (SAL) ester aldehyde group. The result suggested that the free internal amino group does not adversely slow down the ligation rate.
Collapse
Affiliation(s)
- Clarence T T Wong
- Department of Chemistry, The University of Hong Kong Hong Kong, China ; State Key Laboratory of Synthetic Chemistry, University of Hong Kong Hong Kong, China
| | - Tianlu Li
- Department of Chemistry, The University of Hong Kong Hong Kong, China ; State Key Laboratory of Synthetic Chemistry, University of Hong Kong Hong Kong, China
| | - Hiu Yung Lam
- Department of Chemistry, The University of Hong Kong Hong Kong, China ; State Key Laboratory of Synthetic Chemistry, University of Hong Kong Hong Kong, China
| | - Yinfeng Zhang
- Department of Chemistry, The University of Hong Kong Hong Kong, China ; State Key Laboratory of Synthetic Chemistry, University of Hong Kong Hong Kong, China
| | - Xuechen Li
- Department of Chemistry, The University of Hong Kong Hong Kong, China ; State Key Laboratory of Synthetic Chemistry, University of Hong Kong Hong Kong, China ; Shenzhen Institute of Research and Innovation of The University of Hong Kong Shenzhen, China
| |
Collapse
|
64
|
Zhang Y, Farrants H, Li X. Adding a Functional Handle to Nature′s Building Blocks: The Asymmetric Synthesis of β-Hydroxy-α-Amino Acids. Chem Asian J 2014; 9:1752-64. [DOI: 10.1002/asia.201400111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/25/2014] [Indexed: 11/06/2022]
|
65
|
Efficient synthesis of trypsin inhibitor SFTI-1 via intramolecular ligation of peptide hydrazide. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.03.093] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
66
|
Zhao JF, Zhang XH, Ding YJ, Yang YS, Bi XB, Liu CF. Facile Synthesis of Peptidyl Salicylaldehyde Esters and Its Use in Cyclic Peptide Synthesis. Org Lett 2013; 15:5182-5. [DOI: 10.1021/ol402279h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jun-Feng Zhao
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Xiao-Hong Zhang
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Ying-Jie Ding
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Yong-Sheng Yang
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Xiao-Bao Bi
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Chuan-Fa Liu
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|