51
|
Qi YL, Wang HR, Chen LL, Yang B, Yang YS, He ZX, Zhu HL. Multifunctional Fluorescent Probe for Simultaneously Detecting Microviscosity, Micropolarity, and Carboxylesterases and Its Application in Bioimaging. Anal Chem 2022; 94:4594-4601. [PMID: 35255210 DOI: 10.1021/acs.analchem.1c04286] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Based on OR logic gate, we proposed a smart near-infrared (NIR) fluorescent probe, named VPCPP, for simultaneously monitoring local microviscosity, micropolarity, and carboxylesterases (CEs) in living cells through blue and red channels. This proposed probe was capable of distinguishing cancer cells from normal cells and had good potential for identifying living liver cell lines. Furthermore, the fluctuations of the three analytes of interest in different cell status was successfully explored. Particularly, facilitated with high-content analysis (HCA) and VPCPP, a simple and efficient high-throughput screening (HTS) platform was first constructed for screening antitumor drugs and studying their effect on the analytes. For the first time, we found that sorafenib-induced ferroptosis led to an increase in the microviscosity and up-regulation of CEs at the same time. Additionally, the procedure that aristolochic acid (AA) induced the overexpression of CEs was verified. Besides, VPCPP was utilized for imaging the variations of the two microenvironment parameters and CEs in the inflammation model. Finally, VPCPP was able to image the tumor ex vivo and in vivo through two channels and one channel separately, as well as to visualize the kidneys and liver ex vivo with dual emissions, which indicated that the probe had great potential for imaging applications such as medical diagnosis, preclinical research, and imaging-guided surgery.
Collapse
Affiliation(s)
- Ya-Lin Qi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hai-Rong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Li-Li Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bing Yang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.,Jinhua Advanced Research Institute, Jinhua 321019, China
| | - Zhen-Xiang He
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
52
|
Han C, Zhang ZH, Wang L, Chen XQ, Qu J, Liu K, Wang JY. Two reasonably designed polarity-viscosity sensitive fluorescent probes with large Stokes shift for lighting up lipid droplets in cells. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
53
|
|
54
|
Yang X, Zhang D, Ye Y, Zhao Y. Recent advances in multifunctional fluorescent probes for viscosity and analytes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214336] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
55
|
Cai S, Guo R, Liu Q, Gong X, Li X, Yang Y, Lin W. A novel mitochondria-targeted fluorescent probe for detecting viscosity in living cells and zebrafishes†. NEW J CHEM 2022. [DOI: 10.1039/d2nj00402j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the twisted intramolecular charge transfer (TICT) mechanism, a new mitochondria-targeted fluorescent probe CSS-1 for detection of viscosity variations was developed. The probe featured in a strong response to...
Collapse
|
56
|
Zhang X, Zhang L, Liu F, Hu S, Xu Q, Li F, Li H, Zhang G, Xu J. A unique red-emitting molecular rotor for high-fidelity visualizing and long-term tracking mitochondria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119979. [PMID: 34052766 DOI: 10.1016/j.saa.2021.119979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Visualizing and tracking mitochondrial changes is the key to understand the processes of diseases related to mitochondria, which is meaningful to physiology, pathology, and pharmacology. So, a great deal of mitochondrial probes was designed and synthesized according to the principle that probes with a positive charge can target mitochondria through mitochondrial membrane potential (MMP). However, these traditional mitochondrial probes are not able to visualize and track mitochondrial changes, because their targeting abilities depend on high MMP. Once MMP decreases, they will leak from mitochondria. Herein, we designed and synthesized a red-emitting molecule rotor (SQ, sensitive to viscosity) that could visualize mitochondria with high-fidelity. The rotor was able to firmly immobilize in mitochondrial inner membrane through the cooperation of MMP and the high viscosity property of mitochondrial membrane, and it could still stain mitochondria with long-term regardless of MMP changes. Hence, the probe is able to real-time image and distinguish four kinds of mitochondria with high-fidelity in muscle tissues. In addition, SQ can monitor mitochondrial autophagy in real time. These results demonstrate that SQ is a powerful tool for high-fidelity visualizing and long-term tracking mitochondria in vitro and in vivo.
Collapse
Affiliation(s)
- Xinxin Zhang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Long Zhang
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Fang Liu
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Shuxin Hu
- School of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Quan Xu
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Fei Li
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Hui Li
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Ge Zhang
- School of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China.
| | - Jingkun Xu
- School of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, PR China.
| |
Collapse
|
57
|
Yin J, Huang L, Wu L, Li J, James TD, Lin W. Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions. Chem Soc Rev 2021; 50:12098-12150. [PMID: 34550134 DOI: 10.1039/d1cs00645b] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microenvironment (local environment), including viscosity, temperature, polarity, hypoxia, and acidic-basic status (pH), plays indispensable roles in cellular processes. Significantly, organelles require an appropriate microenvironment to perform their specific physiological functions, and disruption of the microenvironmental homeostasis could lead to malfunctions of organelles, resulting in disorder and disease development. Consequently, monitoring the microenvironment within specific organelles is vital to understand organelle-related physiopathology. Over the past few years, many fluorescent probes have been developed to help reveal variations in the microenvironment within specific cellular regions. Given that a comprehensive understanding of the microenvironment in a particular cellular region is of great significance for further exploration of life events, a thorough summary of this topic is urgently required. However, there has not been a comprehensive and critical review published recently on small-molecule fluorescent chemosensors for the cellular microenvironment. With this review, we summarize the recent progress since 2015 towards small-molecule based fluorescent probes for imaging the microenvironment within specific cellular regions, including the mitochondria, lysosomes, lipid drops, endoplasmic reticulum, golgi, nucleus, cytoplasmic matrix and cell membrane. Further classifications at the suborganelle level, according to detection of microenvironmental factors by probes, including polarity, viscosity, temperature, pH and hypoxia, are presented. Notably, in each category, design principles, chemical synthesis, recognition mechanism, fluorescent signals, and bio-imaging applications are summarized and compared. In addition, the limitations of the current microenvironment-sensitive probes are analyzed and the prospects for future developments are outlined. In a nutshell, this review comprehensively summarizes and highlights recent progress towards small molecule based fluorescent probes for sensing and imaging the microenvironment within specific cellular regions since 2015. We anticipate that this summary will facilitate a deeper understanding of the topic and encourage research directed towards the development of probes for the detection of cellular microenvironments.
Collapse
Affiliation(s)
- Junling Yin
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, People's Republic of China
| | - Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Jiangfeng Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
58
|
Wang H, Fu X, Shi J, Li L, Sun J, Zhang X, Han Q, Deng Y, Gan X. Nutrient Element Decorated Polyetheretherketone Implants Steer Mitochondrial Dynamics for Boosted Diabetic Osseointegration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101778. [PMID: 34396715 PMCID: PMC8529468 DOI: 10.1002/advs.202101778] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/29/2021] [Indexed: 02/05/2023]
Abstract
As a chronic metabolic disease, diabetes mellitus (DM) creates a hyperglycemic micromilieu around implants, resulting inthe high complication and failure rate of implantation because of mitochondrial dysfunction in hyperglycemia. To address the daunting issue, the authors innovatively devised and developed mitochondria-targeted orthopedic implants consisted of nutrient element coatings and polyetheretherketone (PEEK). Dual nutrient elements, in the modality of ZnO and Sr(OH)2 , are assembled onto the sulfonated PEEK surface (Zn&Sr-SPEEK). The results indicate the synergistic liberation of Zn2+ and Sr2+ from coating massacres pathogenic bacteria and dramatically facilitates cyto-activity of osteoblasts upon the hyperglycemic niche. Intriguingly, Zn&Sr-SPEEK implants are demonstrated to have a robust ability to recuperate hyperglycemia-induced mitochondrial dynamic disequilibrium and dysfunction by means of Dynamin-related protein 1 (Drp1) gene down-regulation, mitochondrial membrane potential (MMP) resurgence, and reactive oxygen species (ROS) elimination, ultimately enhancing osteogenicity of osteoblasts. In vivo evaluations utilizing diabetic rat femoral/tibia defect model at 4 and 8 weeks further confirm that nutrient element coatings substantially augment bone remodeling and osseointegration. Altogether, this study not only reveals the importance of Zn2+ and Sr2+ modulation on mitochondrial dynamics that contributes to bone formation and osseointegration, but also provides a novel orthopedic implant for diabetic patients with mitochondrial modulation capability.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Xinliang Fu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Jiacheng Shi
- School of Chemical EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Limei Li
- Science and Technology Achievement Incubation CenterKunming Medical UniversityKunming650500China
| | - Jiyu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Xidan Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Qiuyang Han
- School of Chemical EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Yi Deng
- School of Chemical EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- Department of Mechanical EngineeringThe University of Hong KongHong Kong SARChina
| | - Xueqi Gan
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|
59
|
Kong F, Li Y, Li X, Wang X, Fu G, Zhao Q, Tang B. Screening of dicyanoisophorone-based probes for highly sensitive detection of viscosity changes in living cells and zebrafish. Chem Commun (Camb) 2021; 57:9554-9557. [PMID: 34546236 DOI: 10.1039/d1cc03738b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, seven viscosity-sensitive probes were developed via simple structural modification of dicyanoisophorone (DCO)-derived dyes. Among them, DCO-5 significantly enhances (180-fold) the response signal in highly viscous aqueous media while showing insensitivity to polarity changes or pH variations, and enables the successful detection of viscosity changes in nystatin-treated HepG2 cells, PC 12 cells and zebrafish.
Collapse
Affiliation(s)
- Fanpeng Kong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Ying Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Xiao Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Xiaoxiu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Guanyu Fu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Qiuyue Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China.
| |
Collapse
|
60
|
Liang Z, Sun Y, Duan R, Yang R, Qu L, Zhang K, Li Z. Low Polarity-Triggered Basic Hydrolysis of Coumarin as an AND Logic Gate for Broad-Spectrum Cancer Diagnosis. Anal Chem 2021; 93:12434-12440. [PMID: 34473470 DOI: 10.1021/acs.analchem.1c02591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability to accurately diagnose cancer is the cornerstone of early cancer treatment. The mitochondria in cancer cells maintain a higher pH and lower polarity relative to that in normal cells. A probe that reports signals only when both conditions are met may provide a reliable method for cancer detection with reduced false positives. Here, we construct an AND logic gate fluorescent probe using mitochondrial microenvironments as inputs. Utilizing the hydrolysis of a coumarin scaffold, the probe generates fluorescence signals ("ON") only when high pH (>7.0) and low polarity conditions exist simultaneously. Additionally, the higher mitochondrial membrane potential in cancer cells provides an additional level of selectivity because probe has increased affinity for cancer cell mitochondria. These capabilities endow the probe with a high contrast fluorescence diagnosis ability of cancer at cellular and tissue levels (as high as 51.9 fold), which is far exceeding the clinic threshold of 2.0 fold.
Collapse
Affiliation(s)
- Zengqiang Liang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanqiang Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Ruihong Duan
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Ran Yang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
61
|
Wang K, Liu L, Mao D, Xu S, Tan C, Cao Q, Mao Z, Liu B. A Polarity‐Sensitive Ratiometric Fluorescence Probe for Monitoring Changes in Lipid Droplets and Nucleus during Ferroptosis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kang‐Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Liu‐Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Duo Mao
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Cai‐Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
62
|
Wang KN, Liu LY, Mao D, Xu S, Tan CP, Cao Q, Mao ZW, Liu B. A Polarity-Sensitive Ratiometric Fluorescence Probe for Monitoring Changes in Lipid Droplets and Nucleus during Ferroptosis. Angew Chem Int Ed Engl 2021; 60:15095-15100. [PMID: 33835669 DOI: 10.1002/anie.202104163] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 01/08/2023]
Abstract
Ferroptosis regulates cell death through reactive oxygen species (ROS)-associated lipid peroxide accumulation, which is expected to affect the structure and polarity of lipid droplets (LDs), but with no clear evidence. Herein, we report the first example of an LD/nucleus dual-targeted ratiometric fluorescent probe, CQPP, for monitoring polarity changes in the cellular microenvironment. Due to the donor-acceptor structure of CQPP, it offers ratiometric fluorescence emission and fluorescence lifetime signals that reflect polarity variations. Using nucleus imaging as a reference, CQPP was applied to report the increase in LD polarity and the homogenization of polarity between LDs and cytoplasm in the ferroptosis model. This LD/nucleus dual-targeted fluorescent probe shows the great potential of using fluorescence imaging to study ferroptosis and ferroptosis-related diseases.
Collapse
Affiliation(s)
- Kang-Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Duo Mao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
63
|
Raja SO, Sivaraman G, Biswas S, Singh G, Kalim F, Kandaswamy P, Gulyani A. A Tunable Palette of Molecular Rotors Allows Multicolor, Ratiometric Fluorescence Imaging and Direct Mapping of Mitochondrial Heterogeneity. ACS APPLIED BIO MATERIALS 2021; 4:4361-4372. [PMID: 35006848 DOI: 10.1021/acsabm.1c00135] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Environment-sensitive molecular probes offer the potential for a comprehensive mapping of the complex cellular milieu. We present here a radically new strategy of multiplexing highly sensitive, spectrally tuned fluorescent dyes for sensing cellular microenvironment. To achieve this multicolor, ratiometric cellular imaging, we first developed a series of highly sensitive, tunable molecular rotors for mitochondrial imaging, with emission wavelengths spanning the visible spectrum. These fluorogenic merocyanine dyes are all sensitive to solvent viscosity despite distinctive photophysical features. Our results show that merocyanine dyes can show a rotor-like behavior despite significant changes to the conventional donor-acceptor or push-pull scaffolds, thereby revealing conserved features of rotor dye chemistry. Developing closely related but spectrally separated dyes that have distinct response functions allows us to do ″two-color, two-dye″ imaging of the mitochondrial microenvironment. Our results with multidye, combinatorial imaging provide a direct visualization of the intrinsic heterogeneity of the mitochondrial microenvironment. The overall mitochondrial microenvironment (including contributions from local membrane order) as reported through two-color fluorescence ″ratio″ changes of multiplexed rotor dyes shows dynamic heterogeneity with distinct spatiotemporal signatures that evolve over time and respond to chemical perturbations. Our results offer a powerful illustration of how multiplexed dye imaging allows the quantitative imaging of mitochondrial membrane order and cellular microenvironment.
Collapse
Affiliation(s)
- Sufi O Raja
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Post, Bellary Road, Bengaluru 560065, India.,Department of Physics, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Gandhi Sivaraman
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Post, Bellary Road, Bengaluru 560065, India.,Gandhigram Rural Institute, Gandhigram, Tamil Nadu 624302, India
| | - Sayan Biswas
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Post, Bellary Road, Bengaluru 560065, India
| | - Gaurav Singh
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Post, Bellary Road, Bengaluru 560065, India
| | - Fouzia Kalim
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Post, Bellary Road, Bengaluru 560065, India.,National Centre for Biological Sciences, GKVK Post, Bellary Road, Bengaluru 560065, India
| | - Ponnuvel Kandaswamy
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Post, Bellary Road, Bengaluru 560065, India
| | - Akash Gulyani
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Post, Bellary Road, Bengaluru 560065, India.,Department of Biochemistry, School of Life Sciences, University of Hyderabad, Central University Post, Prof. C.R. Rao, Gachibowli, Hyderabad, Telengana 500046, India
| |
Collapse
|
64
|
Monitoring of the decreased mitochondrial viscosity during heat stroke with a mitochondrial AIE probe. Anal Bioanal Chem 2021; 413:3823-3831. [PMID: 33934190 DOI: 10.1007/s00216-021-03335-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Heat stroke is a fatal condition which usually results in central nervous system dysfunction, organism damage and even death. The relationship between heat stroke and mitochondria is still relatively unknown due to a lack of suitable tools. Herein, an aggregation-induced emission (AIE) probe CSP, by introducing a pyridinium cation as the mitochondria-targeted group to an AIE active core cyanostilbene skeleton, is highly sensitive to viscosity changes due to the restriction of intramolecular motion (RIM) and inhibition of twisted intramolecular charge transfer (TICT) in high-viscosity systems. As expected, with the viscosity increasing from 0.903 cP (0% glycerol) to 965 cP (99% glycerol), CSP exhibited a significant enhancement (more than 117-fold) in fluorescence intensity at 625 nm, with an excellent linear relationship between log I 625 nm and log η (R2 = 0.9869, slope as high as 0.6727). More importantly, using CSP we have successfully monitored the decreased mitochondrial viscosity during heat stroke for the first time. All these features render the probe a promising candidate for further understanding the mechanism underlying mitochondria-associated heat stroke.
Collapse
|
65
|
Piazzolla F, Mercier V, Assies L, Sakai N, Roux A, Matile S. Fluorescent Membrane Tension Probes for Early Endosomes. Angew Chem Int Ed Engl 2021; 60:12258-12263. [DOI: 10.1002/anie.202016105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Francesca Piazzolla
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Vincent Mercier
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Lea Assies
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Aurelien Roux
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| |
Collapse
|
66
|
García-González MC, Espinosa-Rocha J, Rodríguez-Cortés LA, Amador-Sánchez YA, Miranda LD, Rodríguez-Molina B. Pairing multicomponent stators with aromatic rotators for new emissive molecular rotors. Org Biomol Chem 2021; 19:3404-3412. [PMID: 33899881 DOI: 10.1039/d1ob00161b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We demonstrate here that the Ugi-Sonogashira protocol can be successfully used to obtain five new molecular rotors 10a-e with strong emission. They have been synthesized by combining multicomponent Ugi stators and several aromatic rotary components: phenylene, p-xylene, naphthalene and anthracene. The synthesized conjugated rotors are highly fluorescent (Φf = 0.39 to Φf = 0.10), and changes in their emission were observed upon variations of the surrounding media. Particularly, we found that they are sensitive to aggregation (THF/water) or high viscosity (methanol/glycerol) conditions. This work paves the way to develop new emissive rotors with exciting photophysical properties.
Collapse
Affiliation(s)
- Ma Carmen García-González
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S.N., Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico.
| | - Jorge Espinosa-Rocha
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S.N., Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico.
| | - Lizbeth A Rodríguez-Cortés
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S.N., Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico.
| | - Yoarhy A Amador-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S.N., Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico.
| | - Luis D Miranda
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S.N., Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico.
| | - Braulio Rodríguez-Molina
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S.N., Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico.
| |
Collapse
|
67
|
Piazzolla F, Mercier V, Assies L, Sakai N, Roux A, Matile S. Fluorescent Membrane Tension Probes for Early Endosomes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Francesca Piazzolla
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Vincent Mercier
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Lea Assies
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Aurelien Roux
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| |
Collapse
|
68
|
Fan L, Zan Q, Wang X, Wang S, Zhang Y, Dong W, Shuang S, Dong C. A
Mitochondria‐Specific
Orange/
Near‐Infrared‐Emissive
Fluorescent Probe for
Dual‐Imaging
of Viscosity and
H
2
O
2
in Inflammation and Tumor Models. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000725] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Li Fan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University Taiyuan Shanxi 030006 China
| | - Qi Zan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University Taiyuan Shanxi 030006 China
| | - Xiaodong Wang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University Taiyuan Shanxi 030006 China
| | - Shuohang Wang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology Jilin Jilin 132022 China
| | - Yuewei Zhang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology Jilin Jilin 132022 China
| | - Wenjuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University Taiyuan Shanxi 030006 China
| | - Shaomin Shuang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University Taiyuan Shanxi 030006 China
| | - Chuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University Taiyuan Shanxi 030006 China
| |
Collapse
|
69
|
Ma C, Sun W, Xu L, Qian Y, Dai J, Zhong G, Hou Y, Liu J, Shen B. A minireview of viscosity-sensitive fluorescent probes: design and biological applications. J Mater Chem B 2021; 8:9642-9651. [PMID: 32986068 DOI: 10.1039/d0tb01146k] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microenvironment-related parameters like viscosity, polarity, and pH play important roles in controlling the physical or chemical behaviors of local molecules, which determine the physical or chemical behaviors of surrounding molecules. In general, changes of the internal microenvironment will usually lead to cellular malfunction or the occurrence of relevant diseases. In the last few decades, the field of chemicobiology has received great attention. Also, remarkable progress has been made in developing viscosity-sensitive fluorescent probes. These probes were particularly efficient for imaging viscosity in biomembranes as well as lighting up specific organelles, such as mitochondria and lysosome. Besides, there are some fluorescent probes that can be used to quantify intracellular viscosity when combined with fluorescence lifetime (FLIM) and ratiometric imaging under water-free conditions. In this review, we summarized the majority of viscosity-sensitive chemosensors that have been reported thus far.
Collapse
Affiliation(s)
- Chenggong Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Wen Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Limin Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Ying Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jianan Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Guoyan Zhong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Yadan Hou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Jialong Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Baoxing Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
70
|
Liu X, Xiang MH, Zhou WJ, Wang F, Chu X, Jiang JH. Clicking of organelle-enriched probes for fluorogenic imaging of autophagic and endocytic fluxes. Chem Sci 2021; 12:5834-5842. [PMID: 34168808 PMCID: PMC8179685 DOI: 10.1039/d0sc07057b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/18/2021] [Indexed: 01/07/2023] Open
Abstract
Autophagy and endocytosis are essential in regulating cellular homeostasis and cancer immunotherapeutic responses. Existing methods for autophagy and endocytosis imaging are susceptible to cellular micro-environmental changes, and direct fluorogenic visualization of their fluxes remains challenging. We develop a novel strategy via clicking of organelle-enriched probes (COP), which comprises a pair of trans-cyclooctenol (TCO) and tetrazine probes separately enriched in lysosomes and mitochondria (in autophagy) or plasma membrane (in endocytosis). These paired probes are merged and boost a fluorogenic click reaction in response to autophagic or endocytic flux that ultimately fuses mitochondria or plasma membrane into lysosomes. We demonstrate that this strategy enables direct visualization of autophagic and endocytic fluxes, and confer insight into correlation of autophagic or endocytic flux to cell surface expression of immunotherapeutic targets such as MHC-I and PD-L1. The COP strategy provides a new paradigm for imaging autophagic and endocytic fluxes, and affords potential for improved cancer immunotherapy using autophagy or endocytosis inhibitors.
Collapse
Affiliation(s)
- Xianjun Liu
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University Changsha 410082 China
| | - Mei-Hao Xiang
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University Changsha 410082 China
| | - Wen-Jing Zhou
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University Changsha 410082 China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University Changsha 410082 China
| | - Xia Chu
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University Changsha 410082 China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University Changsha 410082 China
| |
Collapse
|
71
|
López-Andarias J, Straková K, Martinent R, Jiménez-Rojo N, Riezman H, Sakai N, Matile S. Genetically Encoded Supramolecular Targeting of Fluorescent Membrane Tension Probes within Live Cells: Precisely Localized Controlled Release by External Chemical Stimulation. JACS AU 2021; 1:221-232. [PMID: 34467286 PMCID: PMC8395630 DOI: 10.1021/jacsau.0c00069] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Indexed: 05/12/2023]
Abstract
To image membrane tension in selected membranes of interest (MOI) inside living systems, the field of mechanobiology requires increasingly elaborated small-molecule chemical tools. We have recently introduced HaloFlipper, i.e., a mechanosensitive flipper probe that can localize in the MOI using HaloTag technology to report local membrane tension changes using fluorescence lifetime imaging microscopy. However, the linker tethering the probe to HaloTag hampers the lateral diffusion of the probe in all the lipid domains of the MOI. For a more global membrane tension measurement in any MOI, we present here a supramolecular chemistry strategy for selective localization and controlled release of flipper into the MOI, using a genetically encoded supramolecular tag. SupraFlippers, functionalized with a desthiobiotin ligand, can selectively accumulate in the organelle having expressed streptavidin. The addition of biotin as a biocompatible external stimulus with a higher affinity for Sav triggers the release of the probe, which spontaneously partitions into the MOI. Freed in the lumen of endoplasmic reticulum (ER), SupraFlippers report the membrane orders along the secretory pathway from the ER over the Golgi apparatus to the plasma membrane. Kinetics of the process are governed by both the probe release and the transport through lipid domains. The concentration of biotin can control the former, while the expression level of a transmembrane protein (Sec12) involved in the stimulation of the vesicular transport from ER to Golgi influences the latter. Finally, the generation of a cell-penetrating and fully functional Sav-flipper complex using cyclic oligochalcogenide (COC) transporters allows us to combine the SupraFlipper strategy and HaloTag technology.
Collapse
|
72
|
Xiao H, Li P, Tang B. Small Molecular Fluorescent Probes for Imaging of Viscosity in Living Biosystems. Chemistry 2021; 27:6880-6898. [DOI: 10.1002/chem.202004888] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Haibin Xiao
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
- College of Chemistry, Chemical Engineering and Materials Science Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
73
|
Liu X, Wu M, Wang M, Duan Y, Phan CU, Chen H, Tang G, Liu B. AIEgen-Lipid Conjugate for Rapid Labeling of Neutrophils and Monitoring of Their Behavior. Angew Chem Int Ed Engl 2021; 60:3175-3181. [PMID: 33084214 DOI: 10.1002/anie.202012594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/13/2020] [Indexed: 12/31/2022]
Abstract
Studies on neutrophil-based nanotherapeutic engineering have shown great potentials in treating infection and inflammation disorders. Conventional neutrophil labeling methods are time-consuming and often result in undesired contamination and activation since neutrophils are terminal-differentiated cells with a half-life span of only 7 h. A simple, fast, and biocompatible strategy to construct engineered neutrophils is highly desirable but remains difficult to achieve. In this study, we present an AIEgen-lipid conjugate, which can efficiently label harvested neutrophils in 30 s with no washing step required. This fast labeling method does not affect the activation and transmigration property of neutrophils, which has been successfully used to monitor neutrophil behaviors such as the chemotaxis process and migrating function towards inflammation sites both in vitro and in vivo, offering a tantalizing prospect for neutrophil-based nanotherapeutics studies.
Collapse
Affiliation(s)
- Xingang Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Min Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Meng Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310003, China
| | - Yukun Duan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Chi Uyen Phan
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| | - Huan Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
74
|
Wang X, Fan L, Wang S, Zhang Y, Li F, Zan Q, Lu W, Shuang S, Dong C. Real-Time Monitoring Mitochondrial Viscosity during Mitophagy Using a Mitochondria-Immobilized Near-Infrared Aggregation-Induced Emission Probe. Anal Chem 2021; 93:3241-3249. [PMID: 33539094 DOI: 10.1021/acs.analchem.0c04826] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitophagy plays a crucial role in maintaining intracellular homeostasis through the removal of dysfunctional mitochondria and recycling their constituents in a lysosome-degradative pathway, which leads to microenvironmental changes within mitochondria, such as the pH, viscosity, and polarity. However, most of the mitochondrial fluorescence viscosity probes only rely on electrostatic attraction and readily leak out from the mitochondria during mitophagy with a decreased membrane potential, thus easily leading to an inaccurate detection of viscosity changes. In this work, we report a mitochondria-immobilized NIR-emissive aggregation-induced emission (AIE) probe CS-Py-BC, which allows for an off-on fluorescence response to viscosity, thus enabling the real-time monitoring viscosity variation during mitophagy. This system consists of a cyanostilbene skeleton as the AIE active core and viscosity-sensitive unit, a pyridinium cation for the mitochondria-targeting group, and a benzyl chloride subunit that induces mitochondrial immobilization. As the viscosity increased from 0.903 cP (0% glycerol) to 965 cP (99% glycerol), CS-Py-BC exhibited an about 92-fold increase in fluorescence intensity at 650 nm, which might be attributed to the restriction of rotation and inhibition of twisted intramolecular charge transfer in a high viscosity system. We also revealed that CS-Py-BC could be well immobilized onto mitochondria, regardless of the mitochondrial membrane potential fluctuation. Most importantly, using CS-Py-BC, we have successfully visualized the increased mitochondrial viscosity during starvation or rapamycin-induced mitophagy in real time. All these features render CS-Py-BC a promising candidate to investigate mitophagy-associated dynamic physiological and pathological processes.
Collapse
Affiliation(s)
- Xiaodong Wang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Li Fan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Shuohang Wang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Yuewei Zhang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Feng Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Qi Zan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Wenjing Lu
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Shaomin Shuang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Chuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|
75
|
Dong B, Song W, Lu Y, Sun Y, Lin W. Revealing the Viscosity Changes in Lipid Droplets during Ferroptosis by the Real-Time and In Situ Near-Infrared Imaging. ACS Sens 2021; 6:22-26. [PMID: 33378164 DOI: 10.1021/acssensors.0c02015] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ferroptosis is characterized by the massive lipid peroxidation, and recently has been demonstrated to be closely associated with lipid droplets (LDs). However, the changes of LDs viscosity during ferroptosis are still unrevealed. Herein, we present the changes of the LDs viscosity during ferroptosis by a novel viscosity-sensitive near-infrared (NIR) fluorescent probe (BDHT). Probe BDHT (2-(benzo[d]thiazol-2-yl)-7-(4-(dimethylamino)phenyl)hepta-2,4,6-trienenitrile, C22H19N3S) showed highly sensitive and selective response to viscosity, mainly distributed in cellular LDs. By means of the real-time and in situ NIR imaging, we discovered that the LDs viscosity showed an obvious increase in HeLa cells during the erastin-induced ferroptosis process, while it displayed nearly no change when the cells were simultaneously treated with ferrostatin-1, which is a common inhibitor of ferroptosis. It is also confirmed that the LDs viscosity increased in several types of the cancer cells of erastin-induced and RSL3-induced ferroptosis. We expect that this new NIR probe could provide an effective approach to rapidly monitor ferroptosis, and these findings could greatly promote the in-depth understanding of the biological effects of LDs during ferroptosis.
Collapse
Affiliation(s)
- Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People’s Republic of China
| | - Wenhui Song
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People’s Republic of China
| | - Yaru Lu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People’s Republic of China
| | - Yaru Sun
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People’s Republic of China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People’s Republic of China
- Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People’s Republic of China
| |
Collapse
|
76
|
Danylchuk DI, Jouard PH, Klymchenko AS. Targeted Solvatochromic Fluorescent Probes for Imaging Lipid Order in Organelles under Oxidative and Mechanical Stress. J Am Chem Soc 2021; 143:912-924. [DOI: 10.1021/jacs.0c10972] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Dmytro I. Danylchuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Pierre-Henri Jouard
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Andrey S. Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| |
Collapse
|
77
|
Ramesh M, Rajasekhar K, Gupta K, Babagond V, Saini DK, Govindaraju T. A matrix targeted fluorescent probe to monitor mitochondrial dynamics. Org Biomol Chem 2021; 19:801-808. [PMID: 33410855 DOI: 10.1039/d0ob02128h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mitochondria are an indispensable organelle for energy production and regulation of cellular metabolism. The structural and functional alterations to mitochondria instigate pathological conditions of cancer, and aging-associated and neurodegenerative disorders. The normal functioning of mitochondria is maintained by quality control mechanisms involving dynamic fission, fusion, biogenesis and mitophagy. Under conditions of mitophagy and neurodegenerative diseases, mitochondria are exposed to different acidic environments and high levels of reactive oxygen species (ROS). Therefore stable molecular tools and methods are required to monitor the pathways linked to mitochondrial dysfunction and disease conditions. Herein, we report a far-red fluorescent probe (Mito-TG) with excellent biocompatibility, biostability, photostability, chemical stability and turn on emission for selective targeting of the mitochondrial matrix in different live cells. The probe was successfully employed for monitoring dynamic processes of mitophagy and amyloid beta (Aβ) induced mitochondrial structural changes.
Collapse
Affiliation(s)
- Madhu Ramesh
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064 Karnataka, India.
| | - Kolla Rajasekhar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064 Karnataka, India.
| | - Kavya Gupta
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Vardhaman Babagond
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064 Karnataka, India.
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Thimmaiah Govindaraju
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064 Karnataka, India. and VNIR Biotechnologies Pvt. Ltd, Bangalore Bioinnovation Center, Helix Biotech Park, Electronic City Phase I, Bengaluru 560100, Karnataka, India
| |
Collapse
|
78
|
Choi NE, Lee JY, Park EC, Lee JH, Lee J. Recent Advances in Organelle-Targeted Fluorescent Probes. Molecules 2021; 26:E217. [PMID: 33406634 PMCID: PMC7795030 DOI: 10.3390/molecules26010217] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/27/2022] Open
Abstract
Recent advances in fluorescence imaging techniques and super-resolution microscopy have extended the applications of fluorescent probes in studying various cellular processes at the molecular level. Specifically, organelle-targeted probes have been commonly used to detect cellular metabolites and transient chemical messengers with high precision and have become invaluable tools to study biochemical pathways. Moreover, several recent studies reported various labeling strategies and novel chemical scaffolds to enhance target specificity and responsiveness. In this review, we will survey the most recent reports of organelle-targeted fluorescent probes and assess their general strategies and structural features on the basis of their target organelles. We will discuss the advantages of the currently used probes and the potential challenges in their application as well as future directions.
Collapse
Affiliation(s)
| | | | | | | | - Jiyoun Lee
- Department of Next-Generation Applied Science, and Global Medical Science, Sungshin University, Seoul 01133, Korea; (N.-E.C.); (J.-Y.L.); (E.-C.P.); (J.-H.L.)
| |
Collapse
|
79
|
Analysing the mechanism of mitochondrial oxidation-induced cell death using a multifunctional iridium(III) photosensitiser. Nat Commun 2021; 12:26. [PMID: 33397915 PMCID: PMC7782791 DOI: 10.1038/s41467-020-20210-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial oxidation-induced cell death, a physiological process triggered by various cancer therapeutics to induce oxidative stress on tumours, has been challenging to investigate owing to the difficulties in generating mitochondria-specific oxidative stress and monitoring mitochondrial responses simultaneously. Accordingly, to the best of our knowledge, the relationship between mitochondrial protein oxidation via oxidative stress and the subsequent cell death-related biological phenomena has not been defined. Here, we developed a multifunctional iridium(III) photosensitiser, Ir-OA, capable of inducing substantial mitochondrial oxidative stress and monitoring the corresponding change in viscosity, polarity, and morphology. Photoactivation of Ir-OA triggers chemical modifications in mitochondrial protein-crosslinking and oxidation (i.e., oxidative phosphorylation complexes and channel and translocase proteins), leading to microenvironment changes, such as increased microviscosity and depolarisation. These changes are strongly related to cell death by inducing mitochondrial swelling with excessive fission and fusion. We suggest a potential mechanism from mitochondrial oxidative stress to cell death based on proteomic analyses and phenomenological observations.
Collapse
|
80
|
Yukawa-Takamatsu K, Wang Y, Watanabe M, Takamura Y, Fujihara M, Nakamura-Nakayama M, Yamada S, Kikuzawa S, Makishima M, Kawasaki M, Ito S, Nakano S, Kakuta H. Convenient Retinoid X Receptor Binding Assay Based on Fluorescence Change of the Antagonist NEt-C343. J Med Chem 2020; 64:861-870. [PMID: 33378197 DOI: 10.1021/acs.jmedchem.0c01883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Retinoid X receptor (RXR) modulators (rexinoids) are considered to have therapeutic potential for multiple diseases, such as Alzheimer's disease and Parkinson's disease. To overcome various disadvantages of prior screening methods, we previously developed an RXR binding assay using a fluorescent RXR ligand, CU-6PMN (4). However, this ligand binds not only at the ligand-binding domain (LBD) but also at the dimer-dimer interface of hRXRα. Here, we present a new fluorescent RXR antagonist 6-[N-ethyl-N-(5-isobutoxy-4-isopropyl-2-(11-oxo-2,3,6,7-tetrahydro-1H,5H,11H-pyrano[2,3-f]pyrido[3,2,1-ij]quinoline-10-carboxamido)phenyl)amino]nicotinic acid (NEt-C343, 7), which emits strong fluorescence only when bound to the RXR-LBD. It allows us to perform a rapid, simple, and nonhazardous binding assay that does not require bound/free separation and uses a standard plate reader. The obtained Ki values of known compounds were correlated with the Ki values obtained using the standard [3H]9cis-retinoic acid assay. This assay should be useful for drug discovery as well as for research on endocrine disruptors, functional foods, and natural products.
Collapse
Affiliation(s)
- Kayo Yukawa-Takamatsu
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yifei Wang
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Masaki Watanabe
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuta Takamura
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Michiko Fujihara
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.,AIBIOS Co. Ltd., Tri-Seven Roppongi 8F 7-7-7 Roppongi, Minato-ku, Tokyo 106-0032 Japan
| | - Mariko Nakamura-Nakayama
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Shoya Yamada
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.,Research Fellowship Division, Japan Society for the Promotion of Science, Sumitomo-Ichibancho FS Bldg., 8 Ichibancho, Chiyoda-ku, Tokyo 102-8472, Japan
| | - Shota Kikuzawa
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Mayu Kawasaki
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
81
|
Chen Q, Fang H, Shao X, Tian Z, Geng S, Zhang Y, Fan H, Xiang P, Zhang J, Tian X, Zhang K, He W, Guo Z, Diao J. A dual-labeling probe to track functional mitochondria-lysosome interactions in live cells. Nat Commun 2020; 11:6290. [PMID: 33293545 PMCID: PMC7722883 DOI: 10.1038/s41467-020-20067-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
Mitochondria–lysosome interactions are essential for maintaining intracellular homeostasis. Although various fluorescent probes have been developed to visualize such interactions, they remain unable to label mitochondria and lysosomes simultaneously and dynamically track their interaction. Here, we introduce a cell-permeable, biocompatible, viscosity-responsive, small organic molecular probe, Coupa, to monitor the interaction of mitochondria and lysosomes in living cells. Through a functional fluorescence conversion, Coupa can simultaneously label mitochondria with blue fluorescence and lysosomes with red fluorescence, and the correlation between the red–blue fluorescence intensity indicates the progress of mitochondria–lysosome interplay during mitophagy. Moreover, because its fluorescence is sensitive to viscosity, Coupa allowed us to precisely localize sites of mitochondria–lysosome contact and reveal increases in local viscosity on mitochondria associated with mitochondria–lysosome contact. Thus, our probe represents an attractive tool for the localization and dynamic tracking of functional mitochondria–lysosome interactions in living cells. Dynamic labeling and tracking of organelle–organelle contacts is essential to understand the formation and function of these interactions. Here the authors present a small molecule probe, Coupa, that labels mitochondria and lysosomes with blue and red fluorescence, respectively.
Collapse
Affiliation(s)
- Qixin Chen
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.,Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hongbao Fang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.,Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xintian Shao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Shanshan Geng
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yuming Zhang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Huaxun Fan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Pan Xiang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, China
| | - Jie Zhang
- Advanced Medical Research Institute/Translational Medicine Core Facility of Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Xiaohe Tian
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, China
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
82
|
Liu X, Wu M, Wang M, Duan Y, Phan CU, Chen H, Tang G, Liu B. AIEgen‐Lipid Conjugate for Rapid Labeling of Neutrophils and Monitoring of Their Behavior. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xingang Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Min Wu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Meng Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310003 China
| | - Yukun Duan
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Chi Uyen Phan
- Department of Chemistry Zhejiang University Hangzhou 310028 China
| | - Huan Chen
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Guping Tang
- Department of Chemistry Zhejiang University Hangzhou 310028 China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
| |
Collapse
|
83
|
Zhou J, Jangili P, Son S, Ji MS, Won M, Kim JS. Fluorescent Diagnostic Probes in Neurodegenerative Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001945. [PMID: 32902000 DOI: 10.1002/adma.202001945] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Indexed: 05/22/2023]
Abstract
Neurodegenerative diseases are debilitating disorders that feature progressive and selective loss of function or structure of anatomically or physiologically associated neuronal systems. Both chronic and acute neurodegenerative diseases are associated with high morbidity and mortality along with the death of neurons in different areas of the brain; moreover, there are few or no effective curative therapy options for treating these disorders. There is an urgent need to diagnose neurodegenerative disease as early as possible, and to distinguish between different disorders with overlapping symptoms that will help to decide the best clinical treatment. Recently, in neurodegenerative disease research, fluorescent-probe-mediated biomarker visualization techniques have been gaining increasing attention for the early diagnosis of neurodegenerative diseases. A survey of fluorescent probes for sensing and imaging biomarkers of neurodegenerative diseases is provided. These imaging probes are categorized based on the different potential biomarkers of various neurodegenerative diseases, and their advantages and disadvantages are discussed. Guides to develop new sensing strategies, recognition mechanisms, as well as the ideal features to further improve neurodegenerative disease fluorescence imaging are also explored.
Collapse
Affiliation(s)
- Jin Zhou
- College of Pharmacy, Weifang Medical University, Weifang, 261053, China
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Paramesh Jangili
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Subin Son
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Myung Sun Ji
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Miae Won
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
84
|
Liu F, Zhang L, Li F, Zhang X, Zou L, Chai J, Xin X, Xu J, Zhang G. A noteworthy interface-targeting fluorescent probe for long-term tracking mitochondria and visualizing mitophagy. Biosens Bioelectron 2020; 168:112526. [DOI: 10.1016/j.bios.2020.112526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022]
|
85
|
Labra‐Vázquez P, Flores‐Cruz R, Galindo‐Hernández A, Cabrera‐González J, Guzmán‐Cedillo C, Jiménez‐Sánchez A, Lacroix PG, Santillan R, Farfán N, Núñez R. Tuning the Cell Uptake and Subcellular Distribution in BODIPY–Carboranyl Dyads: An Experimental and Theoretical Study. Chemistry 2020; 26:16530-16540. [PMID: 32608048 DOI: 10.1002/chem.202002600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Pablo Labra‐Vázquez
- Facultad de Química Departamento de Química Orgánica Universidad Nacional Autónoma de México 04510 Ciudad de México México
- Laboratoire de Chimie de Coordination du CNRS 205 route de Narbonne 31077 Toulouse France
| | - Ricardo Flores‐Cruz
- Instituto de Química Universidad Nacional Autónoma de México 04510 Ciudad de México México
| | - Aylin Galindo‐Hernández
- Facultad de Química Departamento de Química Orgánica Universidad Nacional Autónoma de México 04510 Ciudad de México México
| | - Justo Cabrera‐González
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus de la UAB 08193 Bellaterra, Barcelona Spain
| | - Cristian Guzmán‐Cedillo
- Facultad de Química Departamento de Química Orgánica Universidad Nacional Autónoma de México 04510 Ciudad de México México
| | - Arturo Jiménez‐Sánchez
- Instituto de Química Universidad Nacional Autónoma de México 04510 Ciudad de México México
| | - Pascal G. Lacroix
- Laboratoire de Chimie de Coordination du CNRS 205 route de Narbonne 31077 Toulouse France
| | - Rosa Santillan
- Departamento de Química Centro de Investigación y de Estudios Avanzados del IPN Apdo. Postal 14-740 07000 Ciudad de México México
| | - Norberto Farfán
- Facultad de Química Departamento de Química Orgánica Universidad Nacional Autónoma de México 04510 Ciudad de México México
| | - Rosario Núñez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus de la UAB 08193 Bellaterra, Barcelona Spain
| |
Collapse
|
86
|
Deng Y, Feng G. Visualization of ONOO - and Viscosity in Drug-Induced Hepatotoxicity with Different Fluorescence Signals by a Sensitive Fluorescent Probe. Anal Chem 2020; 92:14667-14675. [PMID: 33090768 DOI: 10.1021/acs.analchem.0c03199] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Drug-induced liver injury (DILI) is considered gradually as a serious public health issue, and hepatotoxicity has been regarded as the main clinical problem caused by it. We suspected that both the intracellular viscosity and peroxynitrite (ONOO-) levels in drug-induced hepatotoxicity tissue are higher than those in a healthy liver. For this reason, we have presented a fluorescent probe VO for multichannel imaging viscosity and ONOO- simultaneously. Experimental results showed that VO has satisfactory detection performance for both viscosity and ONOO-, and based on the advantages of its lower cytotoxicity and pH-stabilities, VO was successfully employed to image viscosity and ONOO- in living cells and animals. More importantly, we use the probe to successfully showcase drug-induced hepatotoxicity by imaging viscosity and ONOO- induced by acetaminophen (APAP). All the results indicate that VO has great potential for the detection of viscosity and ONOO- and to assay drug-induced hepatotoxicity. Overall, this work offers a new detection tool/method for a deeper understanding of drug-induced organism injury.
Collapse
Affiliation(s)
- Yingzhen Deng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Guoqiang Feng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| |
Collapse
|
87
|
Engineering a double-rotor-based fluorescent molecule to sensitively track mitochondrial viscosity in living cells and zebrafish with high signal-to-background ratio (S/B). J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
88
|
Morimoto N, Oishi Y, Yamamoto M. Control of Mitochondrial Localization Using Thermoresponsive Sulfobetaine Polymer. Macromol Biosci 2020; 20:e2000205. [PMID: 32924287 DOI: 10.1002/mabi.202000205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/26/2020] [Indexed: 11/06/2022]
Abstract
Fast intracellular migration and controlled localization of molecules represent significant challenges for future applications of drug discovery and related fields. In this study, thermoresponsive sulfobetaine polymers with pyridinium cations are evaluated as biocompatible and mitochondria-localizing agents. Among the polymers, poly(3-(4-(2-methacrylamido)ethyl pyridinio-1-yl)propane-1-sulfonate), P(E-PySMAAm)14k (Mn = 14 000 g mol-1 ) exhibit thermoresponsiveness with an upper critical solution temperature like behavior in cell culture medium containing serum with minimal cytotoxicity. Upon the addition of P(E-PySMAAm)14k to HeLa cells at temperatures above the clearing point at 37 °C, effective localization is observed in mitochondria. However, increased intensity but nonspecific localization is observed below the clearing point at 4 °C. Doxorubicin is conjugated to the P(E-PySMAAm) and achieves effective mitochondrial delivery while maintaining drug efficacy. Such sulfobetaine polymers represent promising tools for intracellular delivery of molecules.
Collapse
Affiliation(s)
- Nobuyuki Morimoto
- Department of Material Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Yoshifumi Oishi
- Department of Material Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Masaya Yamamoto
- Department of Material Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan.,Graduate School of Medical Engineering, Tohoku University, 6-6-12 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| |
Collapse
|
89
|
Straková K, López-Andarias J, Jiménez-Rojo N, Chambers JE, Marciniak SJ, Riezman H, Sakai N, Matile S. HaloFlippers: A General Tool for the Fluorescence Imaging of Precisely Localized Membrane Tension Changes in Living Cells. ACS CENTRAL SCIENCE 2020; 6:1376-1385. [PMID: 32875078 PMCID: PMC7453570 DOI: 10.1021/acscentsci.0c00666] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Indexed: 05/03/2023]
Abstract
Tools to image membrane tension in response to mechanical stimuli are badly needed in mechanobiology. We have recently introduced mechanosensitive flipper probes to report quantitatively global membrane tension changes in fluorescence lifetime imaging microscopy (FLIM) images of living cells. However, to address specific questions on physical forces in biology, the probes need to be localized precisely in the membrane of interest (MOI). Herein we present a general strategy to image the tension of the MOI by tagging our newly introduced HaloFlippers to self-labeling HaloTags fused to proteins in this membrane. The critical challenge in the construction of operational HaloFlippers is the tether linking the flipper and the HaloTag: It must be neither too taut nor too loose, be hydrophilic but lipophilic enough to passively diffuse across membranes to reach the HaloTags, and allow partitioning of flippers into the MOI after the reaction. HaloFlippers with the best tether show localized and selective fluorescence after reacting with HaloTags that are close enough to the MOI but remain nonemissive if the MOI cannot be reached. Their fluorescence lifetime in FLIM images varies depending on the nature of the MOI and responds to myriocin-mediated sphingomyelin depletion as well as to osmotic stress. The response to changes in such precisely localized membrane tension follows the validated principles, thus confirming intact mechanosensitivity. Examples covered include HaloTags in the Golgi apparatus, peroxisomes, endolysosomes, and the ER, all thus becoming accessible to the selective fluorescence imaging of membrane tension.
Collapse
Affiliation(s)
- Karolína Straková
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Javier López-Andarias
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
- (J.L.-A.)
| | - Noemi Jiménez-Rojo
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Joseph E. Chambers
- Cambridge
Institute for Medical Research, University
of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Stefan J. Marciniak
- Cambridge
Institute for Medical Research, University
of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Howard Riezman
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Naomi Sakai
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Stefan Matile
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
- (S.M.)
| |
Collapse
|
90
|
Pal K, Kumar P, Koner AL. Deciphering interior polarity of lysosome in live cancer and normal cells using spectral scanning microscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 206:111848. [PMID: 32203725 DOI: 10.1016/j.jphotobiol.2020.111848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
A lysosome specific, pH tolerant, and polarity-sensitive fluorescent probe (LyPol) is designed and synthesized for the determination of lysosomal polarity in live cells. LyPol possesses an intramolecular charge transfer (ICT) properties with high quantum yield in water and in other polar solvents such as methanol, ethanol, dimethyl sulfoxide, acetonitrile, etc. The fluorescence maxima and lifetime increase linearly with a non-specific manner with an increase in the polarity of its surrounding environment. A morpholine group connected with an alkyl linker acts as a lysosome directing moiety, which is attached to the fluorescent core of LyPol. The selective localization of LyPol inside the lysosome was confirmed with live-cell confocal imaging. Further, the spectral scanning confocal technique was utilized to determine the emission spectrum of LyPol inside lysosome, and the polarity turns out to be quite lower as compared to water. Moreover, the combined spectroscopic and live-cell microscopy confirms that the interior of the lysosome is significantly non-polar in cancer cells compared to normal cells. We believe that this report on the measuring polarity inside the biological system with a solvatofluorochromic probe will be of immense interest to researchers working in the multidisciplinary area of biophysics, microscopy, chemical biology, and organelle biology.
Collapse
Affiliation(s)
- Kaushik Pal
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Prashant Kumar
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Apurba Lal Koner
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India.
| |
Collapse
|
91
|
Meng F, Zhang C, Li D, Tian Y. Aggregation induced emission-active two-photon absorption zwitterionic chromophore for bioimaging application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117571. [PMID: 31622830 DOI: 10.1016/j.saa.2019.117571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/18/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
The fabrication of two-photon absorption material is a versatile approach to achieve high resolution bioimaging with low phototoxicity yet remain sophisticated. Herein, a zwitterionic chromophore, MF, with D-π-A configuration has been rational designed and synthesized. Remarkably, MF exhibited enhanced one- and two-photon fluorescent in the aggregation states. Additionally, the obtained MFNPs encapsulated by Pluronic F-127, could be employed as a two-photon fluorescent probe for bioimaging. The results reveal that MFNPs could target mitochondria by using two-photon confocal microscopy and stimulated emission depletion nanoscopy methods.
Collapse
Affiliation(s)
- Fei Meng
- Institute of Physics Science and Information Technology, College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, PR China; Department of Food and Environmental Engineering, Chuzhou Vocational and Technical College, Chuzhou, 239000, PR China
| | - Chengkai Zhang
- Institute of Physics Science and Information Technology, College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, PR China
| | - Dandan Li
- Institute of Physics Science and Information Technology, College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, PR China.
| | - Yupeng Tian
- Institute of Physics Science and Information Technology, College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, PR China.
| |
Collapse
|
92
|
Li L, Xu Y, Chen Y, Zheng J, Zhang J, Li R, Wan H, Yin J, Yuan Z, Chen H. A family of push-pull bio-probes for tracking lipid droplets in living cells with the detection of heterogeneity and polarity. Anal Chim Acta 2020; 1096:166-173. [DOI: 10.1016/j.aca.2019.10.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 01/04/2023]
|
93
|
Palacios-Serrato E, Araiza-Olivera D, Jiménez-Sánchez A. Fluorescent Probe for Transmembrane Dynamics during Osmotic Effects. Anal Chem 2020; 92:3888-3895. [DOI: 10.1021/acs.analchem.9b05390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Eva Palacios-Serrato
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior sin número, Coyoacán, Ciudad de México 04510, Mexico
| | - Daniela Araiza-Olivera
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior sin número, Coyoacán, Ciudad de México 04510, Mexico
| | - Arturo Jiménez-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior sin número, Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
94
|
Zhang X, Sakai N, Matile S. Methyl Scanning for Mechanochemical Chalcogen-Bonding Cascade Switches. ChemistryOpen 2020; 9:18-22. [PMID: 31921541 PMCID: PMC6946998 DOI: 10.1002/open.201900288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Chalcogen-bonding cascade switching was introduced recently to produce the chemistry tools needed to image physical forces in biological systems. In the original flipper probe, one methyl group appeared to possibly interfere with the cascade switch. In this report, this questionable methyl group is replaced by a hydrogen. The deletion of this methyl group in planarizable push-pull probes was not trivial because it required the synthesis of dithienothiophenes with four different substituents on the four available carbons. The mechanosensitivity of the resulting demethylated flipper probe was nearly identical to that of the original. Thus methyl groups in the switching region are irrelevant for function, whereas those in the twisting region are essential. This result supports the chalcogen-bonding cascade switching concept and, most importantly, removes significant synthetic demands from future probe development.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| | - Naomi Sakai
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
95
|
Chen W, Han J, She J, Wang F, Zhu L, Yu RQ, Jiang JH. Simultaneous imaging of lysosomal and mitochondrial viscosity during mitophagy using molecular rotors with dual-color emission. Chem Commun (Camb) 2020; 56:7797-7800. [DOI: 10.1039/d0cc00868k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A schematic illustration of rotors to detect mitochondrial and lysosomal viscosity during mitophagy.
Collapse
Affiliation(s)
- Wen Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Junyan Han
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Jiaxin She
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Lei Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
96
|
Yu L, Zhang JF, Li M, Jiang D, Zhou Y, Verwilst P, Kim JS. Combining viscosity-restricted intramolecular motion and mitochondrial targeting leads to selective tumor visualization. Chem Commun (Camb) 2020; 56:6684-6687. [DOI: 10.1039/d0cc02943b] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We report a novel fluorescent molecular conjugate,V-M1,enabling an accurate visualization of tumor tissues.
Collapse
Affiliation(s)
- Le Yu
- College of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- P. R. China
- Department of Chemistry
| | - Jun Feng Zhang
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- P. R. China
| | - Mingle Li
- Department of Chemistry
- Korea University
- Seoul 02841
- Korea
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province
- Kunming Institute of Zoology
- Kunming 650223
- P. R. China
| | - Ying Zhou
- College of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- P. R. China
| | - Peter Verwilst
- KU Leuven
- Rega Institute for Medical Research
- Medicinal Chemistry
- Leuven 3000
- Belgium
| | | |
Collapse
|
97
|
Ren M, Xu Q, Wang S, Liu L, Kong F. A biotin-guided fluorescent probe for dual-mode imaging of viscosity in cancerous cells and tumor tissues. Chem Commun (Camb) 2020; 56:13351-13354. [DOI: 10.1039/d0cc05039c] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new tumor-targeted fluorescent viscosity probe Biotin-V was developed, which can be used for dual-mode imaging of viscosity in cancerous cells and tumor tissues.
Collapse
Affiliation(s)
- Mingguang Ren
- State Key Laboratory of Biobased Material and Green Papermaking
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education
- Shandong Academy of Sciences
- Qilu University of Technology
- Jinan 250353
| | - Qingyu Xu
- State Key Laboratory of Biobased Material and Green Papermaking
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education
- Shandong Academy of Sciences
- Qilu University of Technology
- Jinan 250353
| | - Shoujuan Wang
- State Key Laboratory of Biobased Material and Green Papermaking
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education
- Shandong Academy of Sciences
- Qilu University of Technology
- Jinan 250353
| | - Lu Liu
- Shandong Management University
- Jinan
- China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education
- Shandong Academy of Sciences
- Qilu University of Technology
- Jinan 250353
| |
Collapse
|
98
|
Li X, Li X, Ma H. A near-infrared fluorescent probe reveals decreased mitochondrial polarity during mitophagy. Chem Sci 2019; 11:1617-1622. [PMID: 34084390 PMCID: PMC8148031 DOI: 10.1039/c9sc05505c] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitophagy is a selective form of autophagy by which dysfunctional and damaged mitochondria are degraded in autolysosomes. Since defective mitophagy is closely related to various pathological processes, investigation on the detailed mitophagy process is of great importance. In this respect, disclosing the alterations of mitochondrial microenvironments is expected to be a promising way. However, an appropriate method for monitoring the fluctuations of mitochondrial polarity during mitophagy is still lacking. Here, we report a near-infrared hydroxyl-hemicyanine fluorescent probe that responds to polarity exclusively. Both the shift of emission maxima and the fluorescence intensity ratios at two different wavelengths of the probe can be applied to quantifying the polarity accurately. With ratiometric fluorescence imaging, the polarity differences of normal and cancer cells are clearly discriminated. Most importantly, the mitochondrial polarity variations during starvation and drug-induced mitophagy are determined for the first time. The observed decrease of mitochondrial polarity during mitophagy, together with the rationally designed probe, may facilitate the study on the vital role of mitophagy in physiological and pathological bioprocesses.
Collapse
Affiliation(s)
- Xiaoyi Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China .,University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
99
|
Macchione M, Goujon A, Strakova K, Humeniuk HV, Licari G, Tajkhorshid E, Sakai N, Matile S. A Chalcogen-Bonding Cascade Switch for Planarizable Push-Pull Probes. Angew Chem Int Ed Engl 2019; 58:15752-15756. [PMID: 31539191 PMCID: PMC7035594 DOI: 10.1002/anie.201909741] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Indexed: 11/08/2022]
Abstract
Planarizable push-pull probes have been introduced to demonstrate physical forces in biology. However, the donors and acceptors needed to polarize mechanically planarized probes are incompatible with their twisted resting state. The objective of this study was to overcome this "flipper dilemma" with chalcogen-bonding cascade switches that turn on donors and acceptors only in response to mechanical planarization of the probe. This concept is explored by molecular dynamics simulations as well as chemical double-mutant cycle analysis. Cascade switched flipper probes turn out to excel with chemical stability, red shifts adding up to high significance, and focused mechanosensitivity. Most important, however, is the introduction of a new, general and fundamental concept that operates with non-trivial supramolecular chemistry, solves an important practical problem and opens a wide chemical space.
Collapse
Affiliation(s)
- Mariano Macchione
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Antoine Goujon
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Karolina Strakova
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Heorhii V Humeniuk
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Giuseppe Licari
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
100
|
Strakova K, Poblador‐Bahamonde AI, Sakai N, Matile S. Fluorescent Flipper Probes: Comprehensive Twist Coverage. Chemistry 2019; 25:14935-14942. [DOI: 10.1002/chem.201903604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/01/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Karolina Strakova
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| | | | - Naomi Sakai
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| |
Collapse
|