51
|
Xu SH, Yan DM, Rao L, Jiang M, Wu YL, Xiao WJ, Chen JR. Photocatalytic selective 1,2-hydroxyacylmethylation of 1,3-dienes with sulfur ylides as source of alkyl radicals. Org Chem Front 2022. [DOI: 10.1039/d2qo00383j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exploration of the zwitterionic property of sulfur ylides has long been known as a flexible strategy in a wide range of chemical transformations for different ring-sized construction. By contrast, their...
Collapse
|
52
|
You C, Studer A. Three-component 1,2-carboamination of vinyl boronic esters via amidyl radical induced 1,2-migration. Chem Sci 2021; 12:15765-15769. [PMID: 35003609 PMCID: PMC8654000 DOI: 10.1039/d1sc05811h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 12/25/2022] Open
Abstract
Three-component 1,2-carboamination of vinyl boronic esters with alkyl/aryl lithium reagents and N-chloro-carbamates/carboxamides is presented. Vinylboron ate complexes generated in situ from the boronic ester and an organo lithium reagent are shown to react with readily available N-chloro-carbamates/carboxamides to give valuable 1,2-aminoboronic esters. These cascades proceed in the absence of any catalyst upon simple visible light irradiation. Amidyl radicals add to the vinylboron ate complexes followed by oxidation and 1,2-alkyl/aryl migration from boron to carbon to give the corresponding carboamination products. These practical cascades show high functional group tolerance and accordingly exhibit broad substrate scope. Gram-scale reaction and diverse follow-up transformations convincingly demonstrate the synthetic potential of this method.
Collapse
Affiliation(s)
- Cai You
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Corrensstraβe 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Corrensstraβe 40 48149 Münster Germany
| |
Collapse
|
53
|
Chen X, Wei W, Li C, Zhou H, Qiao B, Jiang Z. Photoredox-Catalyzed Synthesis of Remote Fluoroalkylated Azaarene Derivatives and the α-Deuterated Analogues via 1, n-Hydrogen-Atom-Transfer-Involving Radical Reactions. Org Lett 2021; 23:8744-8749. [PMID: 34723556 DOI: 10.1021/acs.orglett.1c03204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A modular strategy to access the remote fluoroalkylated azaarene derivatives and the α-deuterated analogues, which are the isosteres of many pharmaceutically important compounds, is reported. Transformations under the sustainable photoredox catalysis platform could efficiently experience cascade radical addition, 1,n-hydrogen atom transfer (HAT), and single-electron reduction to offer the crucial anions α to azaarenes. Through reacting with H2O or the inexpensive D2O, two series of valuable products were obtained in high yields with substantial deuterium incorporation. The work demonstrates that the HAT of the α-sp3 C-H of the electron-withdrawing azaarenes with alkyl radicals is viable.
Collapse
Affiliation(s)
- Xiaowei Chen
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Wenhui Wei
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Chunyang Li
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Hongwei Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Baokun Qiao
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Zhiyong Jiang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
54
|
Li J, Huang CY, Han JT, Li CJ. Development of a Quinolinium/Cobaloxime Dual Photocatalytic System for Oxidative C–C Cross-Couplings via H2 Release. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jianbin Li
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Chia-Yu Huang
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Jing-Tan Han
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
55
|
Zhang YL, Wang GH, Wu Y, Zhu CY, Wang P. Construction of α-Amino Azines via Thianthrenation-Enabled Photocatalyzed Hydroarylation of Azine-Substituted Enamides with Arenes. Org Lett 2021; 23:8522-8526. [PMID: 34662135 DOI: 10.1021/acs.orglett.1c03229] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
α-Amino azines are widely found in pharmaceuticals and ligands. Herein, we report a practical method for accessing this class of compounds via photocatalyzed hydroarylation of azine-substituted enamides with the in situ-generated aryl thianthrenium salts as the radical precursor. This reaction features a broad substrate scope, good functional group tolerance, and mild conditions and is suitable for the late-stage installation of α-amino azines in complex structures.
Collapse
Affiliation(s)
- Yu-Lan Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China
| | - Gang-Hu Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China
| | - Chun-Yin Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China.,CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
56
|
Guan YQ, Min XT, He GC, Ji DW, Guo SY, Hu YC, Chen QA. The serendipitous effect of KF in Ritter reaction: Photo-induced amino-alkylation of alkenes. iScience 2021; 24:102969. [PMID: 34466792 PMCID: PMC8383004 DOI: 10.1016/j.isci.2021.102969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 12/04/2022] Open
Abstract
Ritter reaction has been recognized as an elegant strategy to construct the C−N bond. Its key feature is forming the carbocation for nucleophilic attack by nitriles. Herein, we report a complementary visible-light-induced three-component Ritter reaction of alkenes, nitriles, and α-bromo nitriles/esters, thereby providing mild and rapid access to various γ-amino nitriles/acids. Mechanistic studies indicated that traceless fluoride relay, transforming KF into imidoyl fluoride intermediate, is critical for the efficient reaction switch from atom transfer radical addition (ATRA) to the Ritter reaction. This approach to amino-alkylation of alkenes is chemoselective and operationally simple. Using light irradiation to promote amino-alkylation of alkenes Using KF to facilitate three-component Ritter reaction Access functionalized amides under mild conditions
Collapse
Affiliation(s)
- Yu-Qing Guan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiang-Ting Min
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gu-Cheng He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shi-Yu Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
57
|
Zhang C, Wang DS, Lee WCC, McKillop AM, Zhang XP. Controlling Enantioselectivity and Diastereoselectivity in Radical Cascade Cyclization for Construction of Bicyclic Structures. J Am Chem Soc 2021; 143:11130-11140. [PMID: 34260202 PMCID: PMC8399859 DOI: 10.1021/jacs.1c04719] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Radical cascade cyclization reactions are highly attractive synthetic tools for the construction of polycyclic molecules in organic synthesis. While it has been successfully implemented in diastereoselective synthesis of natural products and other complex compounds, radical cascade cyclization faces a major challenge of controlling enantioselectivity. As the first application of metalloradical catalysis (MRC) for controlling enantioselectivity as well as diastereoselectivity in radical cascade cyclization, we herein report the development of a Co(II)-based catalytic system for asymmetric radical bicyclization of 1,6-enynes with diazo compounds. Through the fine-tuning of D2-symmetric chiral amidoporphyrins as the supporting ligands, the Co(II)-catalyzed radical cascade process, which proceeds in a single operation under mild conditions, enables asymmetric construction of multisubstituted cyclopropane-fused tetrahydrofurans bearing three contiguous stereogenic centers, including two all-carbon quaternary centers, in high yields with excellent stereoselectivities. Combined computational and experimental studies have shed light on the underlying stepwise radical mechanism for this new Co(II)-based cascade bicyclization that involves the relay of several Co-supported C-centered radical intermediates, including α-, β-, γ-, and ε-metalloalkyl radicals. The resulting enantioenriched cyclopropane-fused tetrahydrofurans that contain a trisubstituted vinyl group at the bridgehead, as showcased in several stereospecific transformations, may serve as useful intermediates for stereoselective organic synthesis. The successful demonstration of this new asymmetric radical process via Co(II)-MRC points out a potentially general approach for controlling enantioselectivity as well as diastereoselectivity in synthetically attractive radical cascade reactions.
Collapse
Affiliation(s)
- Congzhe Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Duo-Sheng Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Alexander M McKillop
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
58
|
Kwon Y, Zhang W, Wang Q. Copper-Catalyzed Aminoheteroarylation of Unactivated Alkenes through Distal Heteroaryl Migration. ACS Catal 2021; 11:8807-8817. [PMID: 36381639 PMCID: PMC9648721 DOI: 10.1021/acscatal.1c01001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a copper-catalyzed aminoheteroarylation of unactivated alkenes to access valuable heteroarylethylamine motif. The developed reaction features a copper-catalyzed intermolecular electrophilic amination of the alkenes followed by a migratory heteroarylation. The method applies on alcohol-, amide-, and ether-containing alkenes, overcoming the common requirement of a hydroxyl motif in previous migratory difunctionalization reactions. This reaction is effective for the introduction of diverse aliphatic amines and has good functional group tolerance, which is particularly useful for richly functionalized heteroarenes. This migration-involved reaction was found well suited as a powerful ring expansion approach for the construction of medium-sized rings that are in great demand in medicinal chemistry.
Collapse
Affiliation(s)
- Yungeun Kwon
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Wei Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
59
|
Divergent asymmetric synthesis of azaarene-functionalized cyclic alcohols through stereocontrolled Beckwith-Enholm cyclizations. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1019-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
60
|
Yu JM, Zhu LW, Hong XY, Gao H, Chen TT. Visible light-induced alkylpyridylation of styrenes via a reductive radical three-component coupling. Org Biomol Chem 2021; 19:5642-5648. [PMID: 34105570 DOI: 10.1039/d1ob00498k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A visible light-induced and metal-free strategy for the intermolecular three-compoment alkylpyridylation of styrenes is reported. Hantzsch ester was found to be key to initiate the overall reductive radical coupling reaction. This radical process realized difunctionalization of styrenes, selectively yielding alkylated pyridines in good to excellent yields with a wide tolerance of functional groups, mild reaction conditions and simple operation. This new reaction complements existing visible light-induced variants of styrenes with NHP esters and expands the capabilities of radical-based cross-coupling reactions of pyridines.
Collapse
Affiliation(s)
- Jing-Miao Yu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Li-Wen Zhu
- School of Pharmaceutical and Materials Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Xiao-Yuan Hong
- School of Pharmaceutical and Materials Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Huan Gao
- School of Pharmaceutical and Materials Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Ting-Ting Chen
- School of Pharmaceutical and Materials Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| |
Collapse
|
61
|
A cross-dehydrogenative C(sp 3)-H heteroarylation via photo-induced catalytic chlorine radical generation. Nat Commun 2021; 12:4010. [PMID: 34188034 PMCID: PMC8241867 DOI: 10.1038/s41467-021-24280-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/10/2021] [Indexed: 12/03/2022] Open
Abstract
Hydrogen atom abstraction (HAT) from C(sp3)–H bonds of naturally abundant alkanes for alkyl radical generation represents a promising yet underexplored strategy in the alkylation reaction designs since involving stoichiometric oxidants, excessive alkane loading, and limited scope are common drawbacks. Here we report a photo-induced and chemical oxidant-free cross-dehydrogenative coupling (CDC) between alkanes and heteroarenes using catalytic chloride and cobalt catalyst. Couplings of strong C(sp3)–H bond-containing substrates and complex heteroarenes, have been achieved with satisfactory yields. This dual catalytic platform features the in situ engendered chlorine radical for alkyl radical generation and exploits the cobaloxime catalyst to enable the hydrogen evolution for catalytic turnover. The practical value of this protocol was demonstrated by the gram-scale synthesis of alkylated heteroarene with merely 3 equiv. alkane loading. Hydrogen atom abstraction from C(sp3)–H bonds of naturally abundant alkanes for alkyl radical generation represents a promising yet underexplored strategy in the alkylation reaction designs. Here the authors show a photo-induced and chemical oxidant-free cross-dehydrogenative coupling between alkanes and heteroarenes using catalytic chloride and cobalt catalyst.
Collapse
|
62
|
Fang K, Huang W, Shan C, Qu J, Chen Y. Synthesis of 3,3-Dialkyl-Substituted Isoindolinones Enabled by Nickel-Catalyzed Reductive Dicarbofunctionalization of Enamides. Org Lett 2021; 23:5523-5527. [PMID: 34181428 DOI: 10.1021/acs.orglett.1c01871] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we report the nickel-catalyzed reductive dicarbofunctionalization of 1,1-disubstituted enamides with unactivated alkyl iodides to access the 3,3-dialkyl-substituted isoindolinone frameworks. This tandem cyclization/reductive coupling protocol exhibits broad functional group tolerance under mild conditions. The utilization of commercially accessible chiral Bn-Biox ligand allows excellent enantioselectivities to forge the tetrasubstituted stereocenters.
Collapse
Affiliation(s)
- Ke Fang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chunxiao Shan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
63
|
Proctor RJ, Chuentragool P, Colgan AC, Phipps RJ. Hydrogen Atom Transfer-Driven Enantioselective Minisci Reaction of Amides. J Am Chem Soc 2021; 143:4928-4934. [PMID: 33780237 PMCID: PMC8033566 DOI: 10.1021/jacs.1c01556] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 01/20/2023]
Abstract
Minisci-type reactions constitute one of the most powerful methods for building up complexity around basic heteroarenes. The most desirable variants involve formal oxidative coupling of a C-H bond on each partner, leading back to the simplest possible starting materials. We herein disclose a method that enables such a coupling of linear amides and heteroarenes with full control of enantioselectivity at the newly formed stereocenter as well as site selectivity on both the heteroarene and the amide. This is achieved by the use of a chiral phosphoric acid catalyst in conjunction with diacetyl as a combined hydrogen atom transfer reagent and oxidant. Diacetyl is directly photoexcitable, and thus, no extraneous photocatalyst is required: an added feature that contributes to the simplicity and practicality of the protocol.
Collapse
Affiliation(s)
- Rupert
S. J. Proctor
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Padon Chuentragool
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Avene C. Colgan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Robert J. Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
64
|
Wang PZ, Gao Y, Chen J, Huan XD, Xiao WJ, Chen JR. Asymmetric three-component olefin dicarbofunctionalization enabled by photoredox and copper dual catalysis. Nat Commun 2021; 12:1815. [PMID: 33753736 PMCID: PMC7985521 DOI: 10.1038/s41467-021-22127-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/24/2021] [Indexed: 11/09/2022] Open
Abstract
The intermolecular three-component alkene vicinal dicarbofunctionalization (DCF) reaction allows installation of two different carbon fragments. Despite extensive investigation into its ionic chemistry, the enantioseletive radical-mediated versions of DCF reactions remain largely unexplored. Herein, we report an intermolecular, enantioselective three-component radical vicinal dicarbofunctionalization reaction of olefins enabled by merger of radical addition and cross-coupling using photoredox and copper dual catalysis. Key to the success of this protocol relies on chemoselective addition of acyl and cyanoalkyl radicals, generated in situ from the redox-active oxime esters by a photocatalytic N-centered iminyl radical-triggered C-C bond cleavage event, onto the alkenes to form new carbon radicals. Single electron metalation of such newly formed carbon radicals to TMSCN-derived L1Cu(II)(CN)2 complex leads to asymmetric cross-coupling. This three-component process proceeds under mild conditions, and tolerates a diverse range of functionalities and synthetic handles, leading to valuable optically active β-cyano ketones and alkyldinitriles, respectively, in a highly enantioselective manner (>60 examples, up to 97% ee).
Collapse
Affiliation(s)
- Peng-Zi Wang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, China
| | - Yuan Gao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, China
| | - Jun Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, China
| | - Xiao-Die Huan
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, China.
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China.
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, China.
| |
Collapse
|
65
|
Zhang J, Xu Y, Wang Z, Zhong R, Wang Y. Organocatalyzed Cascade Aza-Michael/Aldol Reaction for Atroposelective Construction of 4-Naphthylquinoline-3-carbaldehydes. J Org Chem 2021; 86:4262-4273. [PMID: 33625226 DOI: 10.1021/acs.joc.1c00163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An organocatalyzed cascade aza-Michael/Aldol reaction of alkynals with N-(2-(1-naphthoyl)phenyl)benzenesulfonamides has been disclosed. In the presence of a secondary amine catalyst, this method enables the construction of a series of axially chiral 4-naphthylquinoline-3-carbaldehydes in yields of up to 97% with enantioselectivities of up to 96%. Several further transformations of the synthesized products were investigated to demonstrate their synthetic applications.
Collapse
Affiliation(s)
- Jing Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, People's Republic of China
| | - Yong Xu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, People's Republic of China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, People's Republic of China
| | - Rong Zhong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, People's Republic of China
| | - Yurong Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, People's Republic of China
| |
Collapse
|
66
|
Cai J, Bai LG, Zhang Y, Wang ZK, Yao F, Peng JH, Yan W, Wang Y, Zheng C, Liu WB. Ni-catalyzed enantioselective [2 + 2 + 2] cycloaddition of malononitriles with alkynes. Chem 2021. [DOI: 10.1016/j.chempr.2021.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
67
|
Photogenerated electrophilic radicals for the umpolung of enolate chemistry. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2020.100387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
68
|
Friestad GK, Cullen STJ. Synthesis of Chiral Amines by C–C Bond Formation with Photoredox Catalysis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1396-8343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractChiral amines are key substructures of biologically active natural products and drug candidates. The advent of photoredox catalysis has changed the way synthetic chemists think about building these substructures, opening new pathways that were previously unavailable. New developments in this area are reviewed, with an emphasis on C–C bond constructions involving radical intermediates generated through photoredox processes.1 Introduction2 Radical–Radical Coupling of α-Amino Radicals2.1 Radical–Radical Coupling Involving Amine Oxidation2.2 Radical–Radical Coupling Involving Imine Reduction2.3 Couplings Involving both Amine Oxidation and Imine Reduction3 Addition Reactions of α-Amino Radicals3.1 Conjugate Additions of α-Amino Radicals3.2 Addition of α-Amino Radicals to Heteroaromatic Systems3.3 Cross Coupling via Additions to Transition Metal Complexes4 Radical Addition to C=N Bonds Using Photoredox Catalysis4.1 Intramolecular Radical Addition to C=N Bonds4.2 Intermolecular Radical Addition to C=N Bonds5 Conclusion
Collapse
|
69
|
Aguilar Troyano FJ, Merkens K, Anwar K, Gómez‐Suárez A. Radical-Based Synthesis and Modification of Amino Acids. Angew Chem Int Ed Engl 2021; 60:1098-1115. [PMID: 32841470 PMCID: PMC7820943 DOI: 10.1002/anie.202010157] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 12/30/2022]
Abstract
Amino acids (AAs) are key structural motifs with widespread applications in organic synthesis, biochemistry, and material sciences. Recently, with the development of milder and more versatile radical-based procedures, the use of strategies relying on radical chemistry for the synthesis and modification of AAs has gained increased attention, as they allow rapid access to libraries of novel unnatural AAs containing a wide range of structural motifs. In this Minireview, we provide a broad overview of the advancements made in this field during the last decade, focusing on methods for the de novo synthesis of α-, β-, and γ-AAs, as well as for the selective derivatisation of canonical and non-canonical α-AAs.
Collapse
Affiliation(s)
| | - Kay Merkens
- Organic ChemistryBergische Universität WuppertalGaussstrasse 2042119WuppertalGermany
| | - Khadijah Anwar
- Organic ChemistryBergische Universität WuppertalGaussstrasse 2042119WuppertalGermany
| | - Adrián Gómez‐Suárez
- Organic ChemistryBergische Universität WuppertalGaussstrasse 2042119WuppertalGermany
| |
Collapse
|
70
|
Zhou K, Bao M, Sha H, Dong G, Hong K, Xu X, Hu W. Highly diastereoselective synthesis of vicinal diamines via a Rh-catalyzed three-component reaction of diazo compounds with diarylmethanimines and ketimines. Org Chem Front 2021. [DOI: 10.1039/d1qo00083g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Rh-catalyzed selective three-component reaction of diazo compounds with diarylmethanimines and ketimines is reported that offers an efficient and convenient access to vicinal diamine derivatives with two tertiary stereocenters in high yields.
Collapse
Affiliation(s)
- Kai Zhou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ming Bao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Hongkai Sha
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Guizhi Dong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Kemiao Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
71
|
Huang W, Shrestha M, Wang C, Fang K, Teng Y, Qu J, Chen Y. Asymmetric synthesis of 3-benzyl and allyl isoindolinones by Pd-catalyzed dicarbofunctionalization of 1,1-disubstituted enamides. Org Chem Front 2021. [DOI: 10.1039/d1qo00589h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Pd-catalyzed enantioselective Heck/Suzuki reaction of 1,1-disubstituted enamides with aryl/vinyl boronic acids has been developed to access 3-benzyl/allyl substituted isoindolinones bearing a tetrasubstituted stereogenic carbon center.
Collapse
Affiliation(s)
- Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Mohini Shrestha
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Chenchen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Ke Fang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Yaxin Teng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| |
Collapse
|
72
|
Pradhan KC, Kisan HK, Pal S. Unexpected ortho C–H bond activation in coordinated 7,8-benzoquinoline: synthesis and characterisation of heteroleptic Ir( iii)-7,8-benzoquinoline complexes. RSC Adv 2021; 11:12578-12582. [PMID: 35423828 PMCID: PMC8697031 DOI: 10.1039/d1ra00860a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/01/2021] [Indexed: 01/18/2023] Open
Abstract
Unusual ortho C–H activation observed in a 7,8 benzoquinoline ring coordinated to Ir(iii) centre.
Collapse
|
73
|
|
74
|
Ermanis K, Colgan AC, Proctor RSJ, Hadrys BW, Phipps RJ, Goodman JM. A Computational and Experimental Investigation of the Origin of Selectivity in the Chiral Phosphoric Acid Catalyzed Enantioselective Minisci Reaction. J Am Chem Soc 2020; 142:21091-21101. [PMID: 33252228 PMCID: PMC7747223 DOI: 10.1021/jacs.0c09668] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
Minisci reaction is one of the most valuable methods for directly
functionalizing basic heteroarenes to form carbon–carbon bonds.
Use of prochiral, heteroatom-substituted radicals results in stereocenters
being formed adjacent to the heteroaromatic system, generating motifs
which are valuable in medicinal chemistry and chiral ligand design.
Recently a highly enantioselective and regioselective protocol for
the Minisci reaction was developed, using chiral phosphoric acid catalysis.
However, the precise mechanism by which this process operated and
the origin of selectivity remained unclear, making it challenging
to develop the reaction more generally. Herein we report further experimental
mechanistic studies which feed into detailed DFT calculations that
probe the precise nature of the stereochemistry-determining step.
Computational and experimental evidence together support Curtin–Hammett
control in this reaction, with initial radical addition being quick
and reversible, and enantioselectivity being achieved in the subsequent
slower, irreversible deprotonation. A detailed survey via DFT calculations
assessed a number of different possibilities for selectivity-determining
deprotonation of the radical cation intermediate. Computations point
to a clear preference for an initially unexpected mode of internal
deprotonation enacted by the amide group, which is a crucial structural
feature of the radical precursor, with the assistance of the associated
chiral phosphate. This unconventional stereodetermining step underpins
the high enantioselectivities and regioselectivities observed. The
mechanistic model was further validated by applying it to a test set
of substrates possessing varied structural features.
Collapse
Affiliation(s)
- Kristaps Ermanis
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Avene C Colgan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Rupert S J Proctor
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Barbara W Hadrys
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Robert J Phipps
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Jonathan M Goodman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
75
|
Xi Y, Wang C, Zhang Q, Qu J, Chen Y. Palladium‐Catalyzed Regio‐, Diastereo‐, and Enantioselective 1,2‐Arylfluorination of Internal Enamides. Angew Chem Int Ed Engl 2020; 60:2699-2703. [DOI: 10.1002/anie.202012882] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Yang Xi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Chenchen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Qian Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
76
|
Xi Y, Wang C, Zhang Q, Qu J, Chen Y. Palladium‐Catalyzed Regio‐, Diastereo‐, and Enantioselective 1,2‐Arylfluorination of Internal Enamides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yang Xi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Chenchen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Qian Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
77
|
Wang C, Xi Y, Huang W, Qu J, Chen Y. Nickel-Catalyzed Regioselective Hydroarylation of Internal Enamides. Org Lett 2020; 22:9319-9324. [DOI: 10.1021/acs.orglett.0c03542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chenchen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yang Xi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
78
|
|
79
|
Meng Q, Döben N, Studer A. Cooperative NHC and Photoredox Catalysis for the Synthesis of β-Trifluoromethylated Alkyl Aryl Ketones. Angew Chem Int Ed Engl 2020; 59:19956-19960. [PMID: 32700458 PMCID: PMC7693039 DOI: 10.1002/anie.202008040] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 01/12/2023]
Abstract
Despite the great potential of radical chemistry in organic synthesis, N-heterocyclic carbene (NHC)-catalyzed reactions involving radical intermediates are not well explored. This communication reports the three-component coupling of aroyl fluorides, styrenes and the Langlois reagent (CF3 SO2 Na) to give various β-trifluoromethylated alkyl aryl ketones with good functional group tolerance in moderate to high yields by cooperative photoredox/NHC catalysis. The alkene acyltrifluoromethylation proceeds via radical/radical cross coupling of ketyl radicals with benzylic C-radicals. The ketyl radicals are generated via SET reduction of in situ formed acylazolium ions whereas the benzylic radicals derive from trifluoromethyl radical addition onto styrenes.
Collapse
Affiliation(s)
- Qing‐Yuan Meng
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Nadine Döben
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
80
|
Exploiting attractive non-covalent interactions for the enantioselective catalysis of reactions involving radical intermediates. Nat Chem 2020; 12:990-1004. [DOI: 10.1038/s41557-020-00561-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/03/2020] [Indexed: 01/28/2023]
|
81
|
Zeng Y, Chiou MF, Zhu X, Cao J, Lv D, Jian W, Li Y, Zhang X, Bao H. Copper-Catalyzed Enantioselective Radical 1,4-Difunctionalization of 1,3-Enynes. J Am Chem Soc 2020; 142:18014-18021. [PMID: 33035049 DOI: 10.1021/jacs.0c06177] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chiral allenes are important structural motifs frequently found in natural products, pharmaceuticals, and other organic compounds. Asymmetric 1,4-difunctionalization of 1,3-enynes is a promising strategy to construct axial chirality and produce substituted chiral allenes from achiral substrates. However, the previous state of the art in 1,4-difunctionalization of 1,3-enynes focused on the allenyl anion pathway. Because of this, only electrophiles can be introduced into the allene backbones in the second functionalization step, consequently limiting the reaction and allene product types. The development of asymmetric 1,4-difunctionalization of 1,3-enynes via a radical pathway would complement previous methods and support expansion of the toolbox for the synthesis of asymmetric allenes. Herein, we report the first radical enantioselective allene formation via a group transfer pathway in the context of copper-catalyzed radical 1,4-difunctionalization of 1,3-enynes. This method addresses a longstanding unsolved problem in asymmetric radical chemistry, provides an important strategy for stereocontrol with free allenyl radicals, and offers a novel approach to the valuable, but previously inaccessible, chiral allenes. This work should shed light on asymmetric radical reactions and may lead to other enantioselective group transfer reactions.
Collapse
Affiliation(s)
- Yuehua Zeng
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People's Republic of China
| | - Mong-Feng Chiou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People's Republic of China
| | - Xiaotao Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jie Cao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People's Republic of China
| | - Daqi Lv
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People's Republic of China
| | - Wujun Jian
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People's Republic of China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People's Republic of China
| | - Xinhao Zhang
- Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China.,Shenzhen Bay Laboratory, Shenzhen 518055, People's Republic of China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
82
|
Prentice C, Morrisson J, Smith AD, Zysman-Colman E. Recent developments in enantioselective photocatalysis. Beilstein J Org Chem 2020; 16:2363-2441. [PMID: 33082877 PMCID: PMC7537410 DOI: 10.3762/bjoc.16.197] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 01/02/2023] Open
Abstract
Enantioselective photocatalysis has rapidly grown into a powerful tool for synthetic chemists. This review describes the various strategies for creating enantioenriched products through merging enantioselective catalysis and photocatalysis, with a focus on the most recent developments and a particular interest in the proposed mechanisms for each. With the aim of understanding the scope of each strategy, to help guide and inspire further innovation in this field.
Collapse
Affiliation(s)
- Callum Prentice
- Organic Semiconductor Centre, EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, United Kingdom
| | - James Morrisson
- Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield SK102NA, United Kingdom
| | - Andrew D Smith
- Organic Semiconductor Centre, EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, United Kingdom
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, United Kingdom
| |
Collapse
|
83
|
|
84
|
Zhang G, Zhou S, Fu L, Chen P, Li Y, Zou J, Liu G. Asymmetric Coupling of Carbon‐Centered Radicals Adjacent to Nitrogen: Copper‐Catalyzed Cyanation and Etherification of Enamides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Guoyu Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry and Chemical Engineering Soochow University Jiangsu 215123 China
| | - Song Zhou
- School of Biotechnology and Health Science Wuyi University Jiangmen 529020 China
| | - Liang Fu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yibiao Li
- School of Biotechnology and Health Science Wuyi University Jiangmen 529020 China
| | - Jianping Zou
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry and Chemical Engineering Soochow University Jiangsu 215123 China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
85
|
Zhang G, Zhou S, Fu L, Chen P, Li Y, Zou J, Liu G. Asymmetric Coupling of Carbon‐Centered Radicals Adjacent to Nitrogen: Copper‐Catalyzed Cyanation and Etherification of Enamides. Angew Chem Int Ed Engl 2020; 59:20439-20444. [DOI: 10.1002/anie.202008338] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Guoyu Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry and Chemical Engineering Soochow University Jiangsu 215123 China
| | - Song Zhou
- School of Biotechnology and Health Science Wuyi University Jiangmen 529020 China
| | - Liang Fu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yibiao Li
- School of Biotechnology and Health Science Wuyi University Jiangmen 529020 China
| | - Jianping Zou
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry and Chemical Engineering Soochow University Jiangsu 215123 China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
86
|
Meng Q, Döben N, Studer A. Kooperative NHC‐ und Photoredox‐Katalyse zur Synthese β‐trifluormethylierter Alkylarylketone. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008040] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qing‐Yuan Meng
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Deutschland
| | - Nadine Döben
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Deutschland
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Deutschland
| |
Collapse
|
87
|
Yin Y, Zhao X, Jiang Z. Advances in the Synthesis of Imine‐Containing Azaarene Derivatives via Photoredox Catalysis. ChemCatChem 2020. [DOI: 10.1002/cctc.202000741] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yanli Yin
- College of Bioengineering Henan University of Technology Zhengzhou Henan 450001 P. R. China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Xiaowei Zhao
- College of Pharmacy Henan University Kaifeng Henan 475004 P. R. China
| | - Zhiyong Jiang
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
88
|
Shen Y, Shen ML, Wang PS. Light-Mediated Chiral Phosphate Catalysis for Asymmetric Dicarbofunctionalization of Enamides. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02660] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yang Shen
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Meng-Lan Shen
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Pu-Sheng Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
89
|
Wei X, Shu W, García-Domínguez A, Merino E, Nevado C. Asymmetric Ni-Catalyzed Radical Relayed Reductive Coupling. J Am Chem Soc 2020; 142:13515-13522. [DOI: 10.1021/jacs.0c05254] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaofeng Wei
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Wei Shu
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Andrés García-Domínguez
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Estíbaliz Merino
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Cristina Nevado
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| |
Collapse
|
90
|
Luo W, Yang Y, Liu B, Yin B. Iron-Catalyzed Oxidative Decarbonylative α-Alkylation of Acyl-Substituted Furans with Aliphatic Aldehydes as the Alkylating Agents. J Org Chem 2020; 85:9396-9404. [PMID: 32524818 DOI: 10.1021/acs.joc.0c01002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A protocol for FeCl2-catalyzed oxidative decarbonylative α-alkylation of acyl furans using alkyl aldehydes as the alkylating agents has been developed. This protocol affords α-alkyl-α-acylfurans in moderate to good yields in a practical and sustainable fashion. Mechanistic studies suggest that the reaction proceeds via generation of an alkyl radical from the alkyl aldehyde, addition of the radical to the furan ring, and subsequent rearomatization.
Collapse
Affiliation(s)
- Wenkun Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yongjie Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Bo Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
91
|
Li T, Liang K, Zhang Y, Hu D, Ma Z, Xia C. Three-Component Minisci Reaction with 1,3-Dicarbonyl Compounds Induced by Visible Light. Org Lett 2020; 22:2386-2390. [DOI: 10.1021/acs.orglett.0c00584] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Tao Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology, and Yunnan University Library, Yunnan University, 2 North Cuihu Road, Kunming 650091, China
| | - Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology, and Yunnan University Library, Yunnan University, 2 North Cuihu Road, Kunming 650091, China
| | - Yang Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology, and Yunnan University Library, Yunnan University, 2 North Cuihu Road, Kunming 650091, China
| | - Dongyan Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology, and Yunnan University Library, Yunnan University, 2 North Cuihu Road, Kunming 650091, China
| | - Zhixian Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology, and Yunnan University Library, Yunnan University, 2 North Cuihu Road, Kunming 650091, China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology, and Yunnan University Library, Yunnan University, 2 North Cuihu Road, Kunming 650091, China
| |
Collapse
|
92
|
Luo W, Jiang K, Li Y, Jiang H, Yin B. Direct Alkoxycarbonylation of Heteroarenes via Cu-Mediated Trichloromethylation and In Situ Alcoholysis. Org Lett 2020; 22:2093-2098. [DOI: 10.1021/acs.orglett.0c00582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Wenkun Luo
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan, Tianhe, Guangzhou 510640, China
| | - Kai Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan, Tianhe, Guangzhou 510640, China
| | - Yingwei Li
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan, Tianhe, Guangzhou 510640, China
| | - Huanfeng Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan, Tianhe, Guangzhou 510640, China
| | - Biaolin Yin
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan, Tianhe, Guangzhou 510640, China
| |
Collapse
|
93
|
Abstract
Vicinal alkene carboamination is a highly efficient and practical synthetic strategy for the straightforward preparation of diverse and valuable amine derivatives starting from simple compounds. During the last decade that approach has found continuous research interests and various practical methods have been developed using transition-metal catalysis. Driven by the renaissance of synthetic radical chemistry, intermolecular radical alkene carboamination comprising a C-C bond and a C-N bond forming step has been intensively investigated recently culminating in novel strategies and improved protocols which complement existing methodologies. Radical alkene carboamination can be achieved via three different reaction modes. Such cascades can proceed through N-radical addition to an alkene with subsequent C-C bond formation leading to 2,1-carboamination products. Alternatively, the C-C bond can be installed prior to the C-N bond via initial C-radical addition to the alkene with subsequent β-amination resulting in 1,2-carboamination. The third mode comprises initial single electron oxidation of the alkene to the corresponding alkene radical cation that gets trapped by an N-nucleophile and the cascade is terminated by radical C-C bond formation. In this review, the three different conceptual approaches will be discussed and examples from the recent literature will be presented. Further, the reader will get insights into the mechanism of the different transformations.
Collapse
Affiliation(s)
- Heng Jiang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany.
| | | |
Collapse
|
94
|
Li S, Xiang S, Tan B. Chiral Phosphoric Acid Creates Promising Opportunities for Enantioselective Photoredox Catalysis. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900472] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shaoyu Li
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong 518055 China
- Academy for Advanced Interdisciplinary Studies and Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Shao‐Hua Xiang
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong 518055 China
- Academy for Advanced Interdisciplinary Studies and Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Bin Tan
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
95
|
Nunes PSG, Vidal HDA, Corrêa AG. Recent advances in catalytic enantioselective multicomponent reactions. Org Biomol Chem 2020; 18:7751-7773. [PMID: 32966520 DOI: 10.1039/d0ob01631d] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multicomponent reactions (MCRs) undoubtedly correspond to one of the synthetic strategies that best fit the new demands of chemistry for presenting high atom economy and enabling molecular diversity. However, many challenges still exist when products possessing stereogenic centres are formed. The field of asymmetric catalytic reactions has achieved significant progress in recent decades; new applications for chiral ligands and catalysts have been demonstrated and new catalysts have been specifically designed for challenging chemical conversions. In this sense, highly efficient approaches for classic multicomponent reactions such as the Ugi reaction and a number of new asymmetric MCRs have been described. In this review we discuss the recent developments that enable catalytic enantioselective MCRs including the proposed mechanistic pathways.
Collapse
Affiliation(s)
- Paulo Sérgio Gonçalves Nunes
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil.
| | | | | |
Collapse
|
96
|
Takagi R, Tabuchi C. Enantioselective intramolecular [2 + 2] photocycloaddition using phosphoric acid as a chiral template. Org Biomol Chem 2020; 18:9261-9267. [PMID: 33150919 DOI: 10.1039/d0ob02054k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enantioselective intramolecular [2 + 2] photocycloaddition of 4-bishomoally-2-quinolone (quinolinone) using phosphoric acid as a chiral template has been developed. Mechanistic studies using several NMR measurement techniques and density functional theory (DFT) calculations indicate that π-π interactions between the phenyl ring on phosphoric acid and quinolinone play important roles in the enantioselectivity.
Collapse
Affiliation(s)
- Ryukichi Takagi
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | - Chihiro Tabuchi
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| |
Collapse
|
97
|
Yin Y, Zhao X, Qiao B, Jiang Z. Cooperative photoredox and chiral hydrogen-bonding catalysis. Org Chem Front 2020. [DOI: 10.1039/d0qo00276c] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chiral hydrogen-bonding catalysis is a classic strategy in asymmetric organocatalysis. Recently, it has been used to cooperate with photoredox catalysis, becoming a powerful tool to access optical pure compounds via radical-based transformations.
Collapse
Affiliation(s)
- Yanli Yin
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
- College of Bioengineering
| | - Xiaowei Zhao
- Henan University
- Jinming Campus
- Kaifeng
- P. R. China
| | - Baokun Qiao
- Henan University
- Jinming Campus
- Kaifeng
- P. R. China
| | - Zhiyong Jiang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
- Henan University
| |
Collapse
|
98
|
Dong DQ, Yang H, Shi JL, Si WJ, Wang ZL, Xu XM. Promising reagents for difluoroalkylation. Org Chem Front 2020. [DOI: 10.1039/d0qo00567c] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes recent advances in difluoroalkylation reactions using different substrates.
Collapse
Affiliation(s)
- Dao-Qing Dong
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Huan Yang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Jun-Lian Shi
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Wen-Jia Si
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Zu-Li Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Xin-Ming Xu
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| |
Collapse
|