51
|
Novaes LFT, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Electrocatalysis as an enabling technology for organic synthesis. Chem Soc Rev 2021; 50:7941-8002. [PMID: 34060564 PMCID: PMC8294342 DOI: 10.1039/d1cs00223f] [Citation(s) in RCA: 485] [Impact Index Per Article: 121.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electrochemistry has recently gained increased attention as a versatile strategy for achieving challenging transformations at the forefront of synthetic organic chemistry. Electrochemistry's unique ability to generate highly reactive radical and radical ion intermediates in a controlled fashion under mild conditions has inspired the development of a number of new electrochemical methodologies for the preparation of valuable chemical motifs. Particularly, recent developments in electrosynthesis have featured an increased use of redox-active electrocatalysts to further enhance control over the selective formation and downstream reactivity of these reactive intermediates. Furthermore, electrocatalytic mediators enable synthetic transformations to proceed in a manner that is mechanistically distinct from purely chemical methods, allowing for the subversion of kinetic and thermodynamic obstacles encountered in conventional organic synthesis. This review highlights key innovations within the past decade in the area of synthetic electrocatalysis, with emphasis on the mechanisms and catalyst design principles underpinning these advancements. A host of oxidative and reductive electrocatalytic methodologies are discussed and are grouped according to the classification of the synthetic transformation and the nature of the electrocatalyst.
Collapse
Affiliation(s)
- Luiz F T Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
52
|
Chen K, Deng J, Zhao J, Liu X, Imhanria S, Wang W. Electrocatalytic Production of Tunable Syngas from CO 2 via a Metal-Free Porous Nitrogen-Doped Carbon. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Keyu Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jie Deng
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jiao Zhao
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xi Liu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Sarah Imhanria
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Wei Wang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
53
|
Kinzel NW, Werlé C, Leitner W. Transition Metal Complexes as Catalysts for the Electroconversion of CO 2 : An Organometallic Perspective. Angew Chem Int Ed Engl 2021; 60:11628-11686. [PMID: 33464678 PMCID: PMC8248444 DOI: 10.1002/anie.202006988] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Indexed: 12/17/2022]
Abstract
The electrocatalytic transformation of carbon dioxide has been a topic of interest in the field of CO2 utilization for a long time. Recently, the area has seen increasing dynamics as an alternative strategy to catalytic hydrogenation for CO2 reduction. While many studies focus on the direct electron transfer to the CO2 molecule at the electrode material, molecular transition metal complexes in solution offer the possibility to act as catalysts for the electron transfer. C1 compounds such as carbon monoxide, formate, and methanol are often targeted as the main products, but more elaborate transformations are also possible within the coordination sphere of the metal center. This perspective article will cover selected examples to illustrate and categorize the currently favored mechanisms for the electrochemically induced transformation of CO2 promoted by homogeneous transition metal complexes. The insights will be corroborated with the concepts and elementary steps of organometallic catalysis to derive potential strategies to broaden the molecular diversity of possible products.
Collapse
Affiliation(s)
- Niklas W. Kinzel
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| |
Collapse
|
54
|
Yamahira T, Onodera G, Fukuda T, Kimura M. Ni-catalyzed Direct Carboxylation of Propargylic Alcohols with Carbon Dioxide. CHEM LETT 2021. [DOI: 10.1246/cl.210008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tatsuya Yamahira
- Department of Advanced Technology and Science for Sustainable Development, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Gen Onodera
- Department of Advanced Technology and Science for Sustainable Development, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Tsutomu Fukuda
- Department of Advanced Technology and Science for Sustainable Development, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masanari Kimura
- Department of Advanced Technology and Science for Sustainable Development, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
55
|
Zhu C, Ang NWJ, Meyer TH, Qiu Y, Ackermann L. Organic Electrochemistry: Molecular Syntheses with Potential. ACS CENTRAL SCIENCE 2021; 7:415-431. [PMID: 33791425 PMCID: PMC8006177 DOI: 10.1021/acscentsci.0c01532] [Citation(s) in RCA: 316] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 05/05/2023]
Abstract
Efficient and selective molecular syntheses are paramount to inter alia biomolecular chemistry and material sciences as well as for practitioners in chemical, agrochemical, and pharmaceutical industries. Organic electrosynthesis has undergone a considerable renaissance and has thus in recent years emerged as an increasingly viable platform for the sustainable molecular assembly. In stark contrast to early strategies by innate reactivity, electrochemistry was recently merged with modern concepts of organic synthesis, such as transition-metal-catalyzed transformations for inter alia C-H functionalization and asymmetric catalysis. Herein, we highlight the unique potential of organic electrosynthesis for sustainable synthesis and catalysis, showcasing key aspects of exceptional selectivities, the synergism with photocatalysis, or dual electrocatalysis, and novel mechanisms in metallaelectrocatalysis until February of 2021.
Collapse
Affiliation(s)
- Cuiju Zhu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Nate W. J. Ang
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tjark H. Meyer
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Youai Qiu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| |
Collapse
|
56
|
Liu D, Xu Z, Yu H, Fu Y. Mechanistic Insights into the Nickel-Catalyzed Regioselective Carboxylation of Allylic Alcohols. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- DeGuang Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - ZheYuan Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Haizhu Yu
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui Provence Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
57
|
Ang NWJ, Ackermann L. Electroreductive Nickel-Catalyzed Thiolation: Efficient Cross-Electrophile Coupling for C-S Formation. Chemistry 2021; 27:4883-4887. [PMID: 33370483 PMCID: PMC7986068 DOI: 10.1002/chem.202005449] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Sulfur-containing molecules are of utmost topical importance towards the effective development of pharmaceuticals and functional materials. Herein, we present an efficient and mild electrochemical thiolation by cross-electrophile coupling of alkyl bromides with functionalized bench-stable thiosulfonates to access alkyl sulfides with excellent efficacy and broad functional group tolerance. Cyclic voltammetry and potentiostatic analysis were performed to elucidate mechanistic insights into this electrocatalytic thiolation reaction.
Collapse
Affiliation(s)
- Nate W. J. Ang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
58
|
Kinzel NW, Werlé C, Leitner W. Übergangsmetallkomplexe als Katalysatoren für die elektrische Umwandlung von CO
2
– eine metallorganische Perspektive. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202006988] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Niklas W. Kinzel
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| | - Christophe Werlé
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Walter Leitner
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| |
Collapse
|
59
|
Zhong JS, Yu Y, Shi Z, Ye KY. An electrochemical perspective on the roles of ligands in the merger of transition-metal catalysis and electrochemistry. Org Chem Front 2021. [DOI: 10.1039/d0qo01227k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A perspective on the roles of ligands in transition-metal catalysis under electrochemical conditions is provided.
Collapse
Affiliation(s)
- Jun-Song Zhong
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | - Yi Yu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | - Zhaojiang Shi
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| |
Collapse
|
60
|
Wu LX, Deng FJ, Wu L, Wang H, Chen TJ, Guan YB, Lu JX. Nickel-catalyzed electrocarboxylation of allylic halides with CO 2. NEW J CHEM 2021. [DOI: 10.1039/d1nj02006d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nickel catalysts were synthesized and used for regioselective electrocarboxylation of allylic halides and atmospheric CO2. β,γ-Unsaturated carboxylic acids were obtained with moderate to good yield and good functional group tolerance.
Collapse
Affiliation(s)
- La-Xia Wu
- AnHui Province Key Laboratory of Functional Coordination Compounds
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Fang-Jie Deng
- AnHui Province Key Laboratory of Functional Coordination Compounds
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Lin Wu
- AnHui Province Key Laboratory of Functional Coordination Compounds
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Huan Wang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Tai-jie Chen
- AnHui Province Key Laboratory of Functional Coordination Compounds
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Ye-Bin Guan
- AnHui Province Key Laboratory of Functional Coordination Compounds
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Jia-Xing Lu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| |
Collapse
|
61
|
Shi Z, Jiao J, Han Q, Xiao Y, Huang L, Li M. Synthesis Cu(I)–CN-based MOF with in-situ generated cyanogroup by cleavage of acetonitrile: Highly efficient for catalytic cyclization of propargylic alcohols with CO2. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
62
|
Schmalzbauer M, Svejstrup TD, Fricke F, Brandt P, Johansson MJ, Bergonzini G, König B. Redox-Neutral Photocatalytic C−H Carboxylation of Arenes and Styrenes with CO2. Chem 2020. [DOI: 10.1016/j.chempr.2020.08.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
63
|
|
64
|
Samanta RC, Meyer TH, Siewert I, Ackermann L. Renewable resources for sustainable metallaelectro-catalysed C-H activation. Chem Sci 2020; 11:8657-8670. [PMID: 34123124 PMCID: PMC8163351 DOI: 10.1039/d0sc03578e] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
The necessity for more sustainable industrial chemical processes has internationally been agreed upon. During the last decade, the scientific community has responded to this urgent need by developing novel sustainable methodologies targeted at molecular transformations that not only produce reduced amounts of byproducts, but also by the use of cleaner and renewable energy sources. A prime example is the electrochemical functionalization of organic molecules, by which toxic and costly chemicals can be replaced by renewable electricity. Unrivalled levels of resource economy can thereby be achieved via the merger of metal-catalyzed C-H activation with electrosynthesis. This perspective aims at highlighting the most relevant advances in metallaelectro-catalysed C-H activations, with a particular focus on the use of green solvents and sustainable wind power and solar energy until June 2020.
Collapse
Affiliation(s)
- Ramesh C Samanta
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Tjark H Meyer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Inke Siewert
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstraße 4 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| |
Collapse
|
65
|
Ang NWJ, Oliveira JCA, Ackermann L. Electroreductive Cobalt-Catalyzed Carboxylation: Cross-Electrophile Electrocoupling with Atmospheric CO 2. Angew Chem Int Ed Engl 2020; 59:12842-12847. [PMID: 32329560 PMCID: PMC7496797 DOI: 10.1002/anie.202003218] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Indexed: 11/11/2022]
Abstract
The chemical use of CO2 as an inexpensive, nontoxic C1 synthon is of utmost topical interest in the context of carbon capture and utilization (CCU). We present the merger of cobalt catalysis and electrochemical synthesis for mild catalytic carboxylations of allylic chlorides with CO2 . Styrylacetic acid derivatives were obtained with moderate to good yields and good functional group tolerance. The thus-obtained products are useful as versatile synthons of γ-arylbutyrolactones. Cyclic voltammetry and in operando kinetic analysis were performed to provide mechanistic insights into the electrocatalytic carboxylation with CO2 .
Collapse
Affiliation(s)
- Nate W. J. Ang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
66
|
Sheta AM, Mashaly MA, Said SB, Elmorsy SS, Malkov AV, Buckley BR. Selective α,δ-hydrocarboxylation of conjugated dienes utilizing CO 2 and electrosynthesis. Chem Sci 2020; 11:9109-9114. [PMID: 34123160 PMCID: PMC8163448 DOI: 10.1039/d0sc03148h] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/13/2020] [Indexed: 01/03/2023] Open
Abstract
To date the majority of diene carboxylation processes afford the α,δ-dicarboxylated product, the selective mono-carboxylation of dienes is a significant challenge and the major product reported under transition metal catalysis arises from carboxylation at the α-carbon. Herein we report a new electrosynthetic approach, that does not rely on a sacrificial electrode, the reported method allows unprecedented direct access to carboxylic acids derived from dienes at the δ-position. In addition, the α,δ-dicarboxylic acid or the α,δ-reduced alkene can be easily accessed by simple modification of the reaction conditions.
Collapse
Affiliation(s)
- Ahmed M Sheta
- Department of Chemistry Loughborough University Ashby Road Loughborough Leicestershire LE11 3TU UK
- Department of Chemistry, Damietta University Damietta El-Gadeeda City, Kafr Saad Damietta Governorate 34511 Egypt
| | - Mohammad A Mashaly
- Department of Chemistry, Damietta University Damietta El-Gadeeda City, Kafr Saad Damietta Governorate 34511 Egypt
| | - Samy B Said
- Department of Chemistry, Damietta University Damietta El-Gadeeda City, Kafr Saad Damietta Governorate 34511 Egypt
| | - Saad S Elmorsy
- Department of Chemistry, Mansoura University 25 El Gomhouria St Dakahlia Governorate 35516 Egypt
| | - Andrei V Malkov
- Department of Chemistry Loughborough University Ashby Road Loughborough Leicestershire LE11 3TU UK
| | - Benjamin R Buckley
- Department of Chemistry Loughborough University Ashby Road Loughborough Leicestershire LE11 3TU UK
| |
Collapse
|
67
|
Zhang P, Zhou Z, Zhang R, Zhao Q, Zhang C. Cu-Catalyzed highly regioselective 1,2-hydrocarboxylation of 1,3-dienes with CO 2. Chem Commun (Camb) 2020; 56:11469-11472. [PMID: 32856640 DOI: 10.1039/d0cc05056c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical copper-catalyzed highly regioselective 1,2-hydrocarboxylation of terminal 1,3-diene with carbon dioxide has been developed. Under mild reaction conditions, this chemistry afforded 2-benzyl-β,γ-unsaturated acid derivatives as products, which are a kind of important unit for bio-active molecules and versatile precursors for organic synthesis, with good functional group tolerance. The key intermediate in this transformation is illustrated by control experiments.
Collapse
Affiliation(s)
- Penglin Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Sciences, Tianjin University, Weijin Rd. 92, Tianjin 300072, China.
| | | | | | | | | |
Collapse
|