51
|
Cooper-Knock J, Moll T, Ramesh T, Castelli L, Beer A, Robins H, Fox I, Niedermoser I, Van Damme P, Moisse M, Robberecht W, Hardiman O, Panades MP, Assialioui A, Mora JS, Basak AN, Morrison KE, Shaw CE, Al-Chalabi A, Landers JE, Wyles M, Heath PR, Higginbottom A, Walsh T, Kazoka M, McDermott CJ, Hautbergue GM, Kirby J, Shaw PJ. Mutations in the Glycosyltransferase Domain of GLT8D1 Are Associated with Familial Amyotrophic Lateral Sclerosis. Cell Rep 2019; 26:2298-2306.e5. [PMID: 30811981 PMCID: PMC7003067 DOI: 10.1016/j.celrep.2019.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disorder without effective neuroprotective therapy. Known genetic variants impair pathways, including RNA processing, axonal transport, and protein homeostasis. We report ALS-causing mutations within the gene encoding the glycosyltransferase GLT8D1. Exome sequencing in an autosomal-dominant ALS pedigree identified p.R92C mutations in GLT8D1, which co-segregate with disease. Sequencing of local and international cohorts demonstrated significant ALS association in the same exon, including additional rare deleterious mutations in conserved amino acids. Mutations are associated with the substrate binding site, and both R92C and G78W changes impair GLT8D1 enzyme activity. Mutated GLT8D1 exhibits in vitro cytotoxicity and induces motor deficits in zebrafish consistent with ALS. Relative toxicity of mutations in model systems mirrors clinical severity. In conclusion, we have linked ALS pathophysiology to inherited mutations that diminish the activity of a glycosyltransferase enzyme.
Collapse
Affiliation(s)
- Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK.
| | - Tobias Moll
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Tennore Ramesh
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Lydia Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Alexander Beer
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Henry Robins
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Ian Fox
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Isabell Niedermoser
- Department of Molecular Evolution and Development Department, University of Vienna, Vienna 1090, Austria
| | - Philip Van Damme
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven, Belgium; University Hospitals Leuven, Department of Neurology, Leuven, Belgium
| | - Matthieu Moisse
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven, Belgium
| | - Wim Robberecht
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven, Belgium; University Hospitals Leuven, Department of Neurology, Leuven, Belgium
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | - A Nazli Basak
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul 34342, Turkey
| | - Karen E Morrison
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Christopher E Shaw
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Ammar Al-Chalabi
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - John E Landers
- University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Matthew Wyles
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Theresa Walsh
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Mbombe Kazoka
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK.
| |
Collapse
|
52
|
Characterization and evolutionary dynamics of complex regions in eukaryotic genomes. SCIENCE CHINA-LIFE SCIENCES 2019; 62:467-488. [PMID: 30810961 DOI: 10.1007/s11427-018-9458-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/05/2018] [Indexed: 01/07/2023]
Abstract
Complex regions in eukaryotic genomes are typically characterized by duplications of chromosomal stretches that often include one or more genes repeated in a tandem array or in relatively close proximity. Nevertheless, the repetitive nature of these regions, together with the often high sequence identity among repeats, have made complex regions particularly recalcitrant to proper molecular characterization, often being misassembled or completely absent in genome assemblies. This limitation has prevented accurate functional and evolutionary analyses of these regions. This is becoming increasingly relevant as evidence continues to support a central role for complex genomic regions in explaining human disease, developmental innovations, and ecological adaptations across phyla. With the advent of long-read sequencing technologies and suitable assemblers, the development of algorithms that can accommodate sample heterozygosity, and the adoption of a pangenomic-like view of these regions, accurate reconstructions of complex regions are now within reach. These reconstructions will finally allow for accurate functional and evolutionary studies of complex genomic regions, underlying the generation of genotype-phenotype maps of unprecedented resolution.
Collapse
|
53
|
Zhang R, Geng S, Qin Z, Tang Z, Liu C, Liu D, Song G, Li Y, Zhang S, Li W, Gao J, Han X, Li G. The genome-wide transcriptional consequences of the nullisomic-tetrasomic stocks for homoeologous group 7 in bread wheat. BMC Genomics 2019; 20:29. [PMID: 30630423 PMCID: PMC6327598 DOI: 10.1186/s12864-018-5421-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/27/2018] [Indexed: 11/16/2022] Open
Abstract
Background Hexaploid bread wheat (Triticum aestivum L) arose by two polyploidisation events from three diploid species with homoeologous genomes. Nullisomic-tetrasomic (nulli-tetra or NT) lines are aneuploid wheat plants lacking two and adding two of six homoeologous chromosomes. These plants can grow normally, but with significantly morphological variations because the adding two chromosomes or the remaining four chromosomes compensate for those absent. Despite these interesting phenomena, detailed molecular mechanisms underlying dosage deletion and compensation in these useful genetic materials have not been determined. Results By sequencing the transcriptomes of leaves in two-week-old seedlings, we showed that the profiles of differentially expressed genes between NT stocks for homoeologous group 7 and the parent hexaploid Chinese Spring (CS) occurred throughout the whole genome with a subgenome and chromosome preference. The deletion effect of nulli-chromosomes was compensated partly by the tetra-chromosomes via the dose level of expressed genes, according to the types of homoeologous genes. The functions of differentially regulated genes primarily focused on carbon metabolic process, photosynthesis process, hormone metabolism, and responding to stimulus, and etc., which might be related to the defective phenotypes that included reductions in plant height, flag leaf length, spikelet number, and kernels per spike. Conclusions The perturbation of the expression levels of transcriptional genes among the NT stocks for homoeologous group 7 demonstrated the gene dosage effect of the subgenome at the genome-wide level. The gene dosage deletion and compensation can be used as a model to elucidate the functions of the subgenomes in modern polyploid plants. Electronic supplementary material The online version of this article (10.1186/s12864-018-5421-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rongzhi Zhang
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China.
| | - Shuaifeng Geng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhengrui Qin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zongxiang Tang
- Agronomy College, Sichuan Agricultural University, Wenjiang, Chengdu, 610054, China
| | - Cheng Liu
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China
| | - Dongfeng Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Guoqi Song
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China
| | - Yulian Li
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China
| | - Shujuan Zhang
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China
| | - Wei Li
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China
| | - Jie Gao
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China
| | - Xiaodong Han
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China
| | - Genying Li
- Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China.
| |
Collapse
|
54
|
Hou J, Shi X, Chen C, Islam MS, Johnson AF, Kanno T, Huettel B, Yen MR, Hsu FM, Ji T, Chen PY, Matzke M, Matzke AJM, Cheng J, Birchler JA. Global impacts of chromosomal imbalance on gene expression in Arabidopsis and other taxa. Proc Natl Acad Sci U S A 2018; 115:E11321-E11330. [PMID: 30429332 PMCID: PMC6275517 DOI: 10.1073/pnas.1807796115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Changes in dosage of part of the genome (aneuploidy) have long been known to produce much more severe phenotypic consequences than changes in the number of whole genomes (ploidy). To examine the basis of these differences, global gene expression in mature leaf tissue for all five trisomies and in diploids, triploids, and tetraploids of Arabidopsis thaliana was studied. The trisomies displayed a greater spread of expression modulation than the ploidy series. In general, expression of genes on the varied chromosome ranged from compensation to dosage effect, whereas genes from the remainder of the genome ranged from no effect to reduced expression approaching the inverse level of chromosomal imbalance (2/3). Genome-wide DNA methylation was examined in each genotype and found to shift most prominently with trisomy 4 but otherwise exhibited little change, indicating that genetic imbalance is generally mechanistically unrelated to DNA methylation. Independent analysis of gene functional classes demonstrated that ribosomal, proteasomal, and gene body methylated genes were less modulated compared with all classes of genes, whereas transcription factors, signal transduction components, and organelle-targeted protein genes were more tightly inversely affected. Comparing transcription factors and their targets in the trisomies and in expression networks revealed considerable discordance, illustrating that altered regulatory stoichiometry is a major contributor to genetic imbalance. Reanalysis of published data on gene expression in disomic yeast and trisomic mouse cells detected similar stoichiometric effects across broad phylogenetic taxa, and indicated that these effects reflect normal gene regulatory processes.
Collapse
Affiliation(s)
- Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211
| | - Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211
| | - Md Soliman Islam
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211
| | - Adam F Johnson
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam 550000
| | - Tatsuo Kanno
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding, Cologne, Germany 50829
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529
| | - Fei-Man Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, MO 65211
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529
| | - Marjori Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529;
| | - Antonius J M Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529;
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211;
| |
Collapse
|
55
|
Hao Y, Washburn JD, Rosenthal J, Nielsen B, Lyons E, Edger PP, Pires JC, Conant GC. Patterns of Population Variation in Two Paleopolyploid Eudicot Lineages Suggest That Dosage-Based Selection on Homeologs Is Long-Lived. Genome Biol Evol 2018; 10:999-1011. [PMID: 29617811 PMCID: PMC5887293 DOI: 10.1093/gbe/evy061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2018] [Indexed: 11/21/2022] Open
Abstract
Genes that are inherently subject to strong selective constraints tend to be overretained in duplicate after polyploidy. They also continue to experience similar, but somewhat relaxed, constraints after that polyploidy event. We sought to assess for how long the influence of polyploidy is felt on these genes’ selective pressures. We analyzed two nested polyploidy events in Brassicaceae: the At-α genome duplication that is the most recent polyploidy in the model plant Arabidopsis thaliana and a more recent hexaploidy shared by the genus Brassica and its relatives. By comparing the strength and direction of the natural selection acting at the population and at the species level, we find evidence for continued intensified purifying selection acting on retained duplicates from both polyploidies even down to the present. The constraint observed in preferentially retained genes is not a result of the polyploidy event: the orthologs of such genes experience even stronger constraint in nonpolyploid outgroup genomes. In both the Arabidopsis and Brassica lineages, we further find evidence for segregating mildly deleterious variants, confirming that the population-level data uncover patterns not visible with between-species comparisons. Using the A. thaliana metabolic network, we also explored whether network position was correlated with the measured selective constraint. At both the population and species level, nodes/genes tended to show similar constraints to their neighbors. Our results paint a picture of the long-lived effects of polyploidy on plant genomes, suggesting that even yesterday’s polyploids still have distinct evolutionary trajectories.
Collapse
Affiliation(s)
- Yue Hao
- Bioinformatics Research Center, North Carolina State University
| | | | | | - Brandon Nielsen
- Department of Biology and Geosciences, Clarion University of Pennsylvania
| | - Eric Lyons
- School of Plant Sciences, University of Arizona
| | - Patrick P Edger
- Department of Horticulture, Michigan State University.,Ecology, Evolutionary Biology and Behavior Program, Michigan State University
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri- Columbia.,Informatics Institute, University of Missouri- Columbia
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University.,Informatics Institute, University of Missouri- Columbia.,Division of Animal Sciences, University of Missouri- Columbia.,Program in Genetics, North Carolina State University.,Department of Biological Sciences, North Carolina State University
| |
Collapse
|
56
|
Liu J, Robinson-Rechavi M. Developmental Constraints on Genome Evolution in Four Bilaterian Model Species. Genome Biol Evol 2018; 10:2266-2277. [PMID: 30137380 PMCID: PMC6130771 DOI: 10.1093/gbe/evy177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
Developmental constraints on genome evolution have been suggested to follow either an early conservation model or an "hourglass" model. Both models agree that late development strongly diverges between species, but debate on which developmental period is the most conserved. Here, based on a modified "Transcriptome Age Index" approach, that is, weighting trait measures by expression level, we analyzed the constraints acting on three evolutionary traits of protein coding genes (strength of purifying selection on protein sequences, phyletic age, and duplicability) in four species: Nematode worm Caenorhabditis elegans, fly Drosophila melanogaster, zebrafish Danio rerio, and mouse Mus musculus. In general, we found that both models can be supported by different genomic properties. Sequence evolution follows an hourglass model, but the evolution of phyletic age and of duplicability follow an early conservation model. Further analyses indicate that stronger purifying selection on sequences in the middle development are driven by temporal pleiotropy of these genes. In addition, we report evidence that expression in late development is enriched with retrogenes, which usually lack efficient regulatory elements. This implies that expression in late development could facilitate transcription of new genes, and provide opportunities for acquisition of function. Finally, in C. elegans, we suggest that dosage imbalance could be one of the main factors that cause depleted expression of high duplicability genes in early development.
Collapse
Affiliation(s)
- Jialin Liu
- Department of Ecology and Evolution, University of Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
57
|
Rody HVS, Oliveira LOD. Evolutionary history of the cobalamin-independent methionine synthase gene family across the land plants. Mol Phylogenet Evol 2018; 120:33-42. [PMID: 29222062 DOI: 10.1016/j.ympev.2017.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/04/2017] [Indexed: 01/26/2023]
Abstract
Plants are successful paleopolyploids. The wide diversity of land plants is driven strongly by their gene duplicates undergoing distinct evolutionary fates after duplication. We used genomic resources from 35 model plant species to unravel the evolutionary fate of gene copies (paralogs) of the cobalamin-independent methionine synthase (metE) gene family across the land plants. To explore genealogical relationships and characterize positive selection as a driving force in the evolution of metE paralogs within a single species, we carried out complementary analyses on genomic data of 32 genotypes of soybean. The size of the metE gene family remained small across the land plants; most of the studied species possessed 1-6 paralogs. Gene products were either cytosolic or chloroplastic; this dual subcellular distribution arose early during the divergence of the land plants and reached all extant lineages. Biased gene loss and gene retention events took place multiple times; recurrent evolution remodeled redundant metE paralogs to recover and maintain the dual subcellular distribution of MetE. Shared whole-genome duplication events gave rise to the metE paralogs of both soybean and Medicago truncatula. In soybean, the ancestral paralog pair GlymaPP2A encoded a cytosolic isoform of MetE, was under strong purifying selection, and retained high levels of expression across eight RNA-seq expression libraries. The daughters GlymaPP1 and GlymaPP2B showed accelerated rates of evolution, accumulated many sites predicted to be under positive selection, and possessed low levels of expression. Our results suggest that the metE paralogs of soybean follow Ohno's neofunctionalization model of gene duplicate evolution.
Collapse
Affiliation(s)
- Hugo Vianna Silva Rody
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Luiz Orlando de Oliveira
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
58
|
Short SP, Kondo J, Smalley-Freed WG, Takeda H, Dohn MR, Powell AE, Carnahan RH, Washington MK, Tripathi M, Payne DM, Jenkins NA, Copeland NG, Coffey RJ, Reynolds AB. p120-Catenin is an obligate haploinsufficient tumor suppressor in intestinal neoplasia. J Clin Invest 2017; 127:4462-4476. [PMID: 29130932 PMCID: PMC5707165 DOI: 10.1172/jci77217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/03/2017] [Indexed: 11/17/2022] Open
Abstract
p120-Catenin (p120) functions as a tumor suppressor in intestinal cancer, but the mechanism is unclear. Here, using conditional p120 knockout in Apc-sensitized mouse models of intestinal cancer, we have identified p120 as an "obligatory" haploinsufficient tumor suppressor. Whereas monoallelic loss of p120 was associated with a significant increase in tumor multiplicity, loss of both alleles was never observed in tumors from these mice. Moreover, forced ablation of the second allele did not further enhance tumorigenesis, but instead induced synthetic lethality in combination with Apc loss of heterozygosity. In tumor-derived organoid cultures, elimination of both p120 alleles resulted in caspase-3-dependent apoptosis that was blocked by inhibition of Rho kinase (ROCK). With ROCK inhibition, however, p120-ablated organoids exhibited a branching phenotype and a substantial increase in cell proliferation. Access to data from Sleeping Beauty mutagenesis screens afforded an opportunity to directly assess the tumorigenic impact of p120 haploinsufficiency relative to other candidate drivers. Remarkably, p120 ranked third among the 919 drivers identified. Cofactors α-catenin and epithelial cadherin (E-cadherin) were also among the highest scoring candidates, indicating a mechanism at the level of the intact complex that may play an important role at very early stages of of intestinal tumorigenesis while simultaneously restricting outright loss via synthetic lethality.
Collapse
Affiliation(s)
| | - Jumpei Kondo
- Department of Medicine, Vanderbilt University Medical School, Nashville, Tennessee, USA
| | | | - Haruna Takeda
- Division of Genetics and Genomics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Department of Oncologic Pathology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Michael R. Dohn
- Department of Cancer Biology, and
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Anne E. Powell
- Department of Medicine, Vanderbilt University Medical School, Nashville, Tennessee, USA
| | | | - Mary K. Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - D. Michael Payne
- CU Systems Biology Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nancy A. Jenkins
- Division of Genetics and Genomics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Cancer Research Program, The Methodist Hospital Research Institute, Houston, Texas, USA
| | - Neal G. Copeland
- Division of Genetics and Genomics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Cancer Research Program, The Methodist Hospital Research Institute, Houston, Texas, USA
| | - Robert J. Coffey
- Department of Medicine, Vanderbilt University Medical School, Nashville, Tennessee, USA
- Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | | |
Collapse
|
59
|
Sekine M, Makino T. Inference of Causative Genes for Alzheimer's Disease Due to Dosage Imbalance. Mol Biol Evol 2017; 34:2396-2407. [PMID: 28666362 DOI: 10.1093/molbev/msx183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Copy number variations (CNVs) have recently drawn attention as an important genetic factor for diseases, especially common neuropsychiatric disorders including Alzheimer's disease (AD). Because most of the pathogenic CNV regions overlap with multiple genes, it has been challenging to identify the true disease-causing genes amongst them. Notably, a recent study reported that CNV regions containing ohnologs, which are dosage-sensitive genes, are likely to be deleterious. Utilizing the unique feature of ohnologs could be useful for identifying causative genes with pathogenic CNVs, however its effectiveness is still unclear. Although it has been reported that AD is strongly affected by CNVs, most of AD-causing genes with pathogenic CNVs have not been identified yet. Here, we show that dosage-sensitive ohnologs within CNV regions reported in patients with AD are related to the nervous system and are highly expressed in the brain, similar to other known susceptible genes for AD. We found that CNV regions in patients with AD contained dosage-sensitive genes, which are ohnologs not overlapping with control CNV regions, frequently. Furthermore, these dosage-sensitive genes in pathogenic CNV regions had a strong enrichment in the nervous system for mouse knockout phenotype and high expression in the brain similar to the known susceptible genes for AD. Our results demonstrated that selecting dosage-sensitive ohnologs out of multiple genes with pathogenic CNVs is effective in identifying the causative genes for AD. This methodology can be applied to other diseases caused by dosage imbalance and might help to establish the medical diagnosis by analysis of CNVs.
Collapse
Affiliation(s)
- Mizuka Sekine
- Department of Biology, Faculty of Science, Tohoku University, Sendai, Japan
| | - Takashi Makino
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
60
|
Garcia N, Messing J. TTT and PIKK Complex Genes Reverted to Single Copy Following Polyploidization and Retain Function Despite Massive Retrotransposition in Maize. FRONTIERS IN PLANT SCIENCE 2017; 8:1723. [PMID: 29163555 PMCID: PMC5681926 DOI: 10.3389/fpls.2017.01723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
The TEL2, TTI1, and TTI2 proteins are co-chaperones for heat shock protein 90 (HSP90) to regulate the protein folding and maturation of phosphatidylinositol 3-kinase-related kinases (PIKKs). Referred to as the TTT complex, the genes that encode them are highly conserved from man to maize. TTT complex and PIKK genes exist mostly as single copy genes in organisms where they have been characterized. Members of this interacting protein network in maize were identified and synteny analyses were performed to study their evolution. Similar to other species, there is only one copy of each of these genes in maize which was due to a loss of the duplicated copy created by ancient allotetraploidy. Moreover, the retained copies of the TTT complex and the PIKK genes tolerated extensive retrotransposon insertion in their introns that resulted in increased gene lengths and gene body methylation, without apparent effect in normal gene expression and function. The results raise an interesting question on whether the reversion to single copy was due to selection against deleterious unbalanced gene duplications between members of the complex as predicted by the gene balance hypothesis, or due to neutral loss of extra copies. Uneven alteration of dosage either by adding extra copies or modulating gene expression of complex members is being proposed as a means to investigate whether the data supports the gene balance hypothesis or not.
Collapse
|
61
|
Banerjee S, Feyertag F, Alvarez-Ponce D. Intrinsic protein disorder reduces small-scale gene duplicability. DNA Res 2017; 24:435-444. [PMID: 28430886 PMCID: PMC5737077 DOI: 10.1093/dnares/dsx015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/28/2017] [Indexed: 01/23/2023] Open
Abstract
Whereas the rate of gene duplication is relatively high, only certain duplications survive the filter of natural selection and can contribute to genome evolution. However, the reasons why certain genes can be retained after duplication whereas others cannot remain largely unknown. Many proteins contain intrinsically disordered regions (IDRs), whose structures fluctuate between alternative conformational states. Due to their high flexibility, IDRs often enable protein–protein interactions and are the target of post-translational modifications. Intrinsically disordered proteins (IDPs) have characteristics that might either stimulate or hamper the retention of their encoding genes after duplication. On the one hand, IDRs may enable functional diversification, thus promoting duplicate retention. On the other hand, increased IDP availability is expected to result in deleterious unspecific interactions. Here, we interrogate the proteomes of human, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Arabidopsis thaliana and Escherichia coli, in order to ascertain the impact of protein intrinsic disorder on gene duplicability. We show that, in general, proteins encoded by duplicated genes tend to be less disordered than those encoded by singletons. The only exception is proteins encoded by ohnologs, which tend to be more disordered than those encoded by singletons or genes resulting from small-scale duplications. Our results indicate that duplication of genes encoding IDPs outside the context of whole-genome duplication (WGD) is often deleterious, but that IDRs facilitate retention of duplicates in the context of WGD. We discuss the potential evolutionary implications of our results.
Collapse
Affiliation(s)
- Sanghita Banerjee
- Department of Biology, University of Nevada, Reno, NV 89557, USA.,Machine Intelligence Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Felix Feyertag
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
62
|
Veitia RA, Caburet S, Birchler JA. Mechanisms of Mendelian dominance. Clin Genet 2017; 93:419-428. [PMID: 28755412 DOI: 10.1111/cge.13107] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 01/12/2023]
Abstract
Genetic dominance has long been considered as a qualitative reflection of interallelic interactions. Dominance arises from many multiple sources whose unifying theme is the existence of non-linear relationships between the genotypic and phenotypic values. One of the clearest examples are dominant negative mutations (DNMs) in which a defective subunit poisons a macromolecular complex. Dominance can also be due to the presence of a heterozygous null allele, as is the case of haploinsufficiency. Dominance can also be influenced by epistatic (interloci) interactions. For instance, a pre-existing genetic variant can make possible the expression of a pathogenic variant in a seemingly "dominant" fashion. Such interactions, which can make an individual more or less sensitive to a particular pathogenic variant, will also be discussed here.
Collapse
Affiliation(s)
- R A Veitia
- Institut Jacques Monod, CNRS-UMR 7592, Paris Cedex 13, France.,Université Paris Diderot, Paris, France
| | - S Caburet
- Institut Jacques Monod, CNRS-UMR 7592, Paris Cedex 13, France.,Université Paris Diderot, Paris, France
| | - J A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
63
|
Abstract
For a subset of genes in our genome a change in gene dosage, by duplication or deletion, causes a phenotypic effect. These dosage-sensitive genes may confer an advantage upon copy number change, but more typically they are associated with disease, including heart disease, cancers and neuropsychiatric disorders. This gene copy number sensitivity creates characteristic evolutionary constraints that can serve as a diagnostic to identify dosage-sensitive genes. Though the link between copy number change and disease is well-established, the mechanism of pathogenicity is usually opaque. We propose that gene expression level may provide a common basis for the pathogenic effects of many copy number variants.
Collapse
Affiliation(s)
- Alan M Rice
- Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
| | - Aoife McLysaght
- Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin 2, Ireland.
| |
Collapse
|
64
|
Genome Editing in hPSCs Reveals GATA6 Haploinsufficiency and a Genetic Interaction with GATA4 in Human Pancreatic Development. Cell Stem Cell 2017; 20:675-688.e6. [PMID: 28196600 DOI: 10.1016/j.stem.2017.01.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/08/2016] [Accepted: 01/03/2017] [Indexed: 01/19/2023]
Abstract
Human disease phenotypes associated with haploinsufficient gene requirements are often not recapitulated well in animal models. Here, we have investigated the association between human GATA6 haploinsufficiency and a wide range of clinical phenotypes that include neonatal and adult-onset diabetes using CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9-mediated genome editing coupled with human pluripotent stem cell (hPSC) directed differentiation. We found that loss of one GATA6 allele specifically affects the differentiation of human pancreatic progenitors from the early PDX1+ stage to the more mature PDX1+NKX6.1+ stage, leading to impaired formation of glucose-responsive β-like cells. In addition to this GATA6 haploinsufficiency, we also identified dosage-sensitive requirements for GATA6 and GATA4 in the formation of both definitive endoderm and pancreatic progenitor cells. Our work expands the application of hPSCs from studying the impact of individual gene loci to investigation of multigenic human traits, and it establishes an approach for identifying genetic modifiers of human disease.
Collapse
|
65
|
Dosage sensitivity is a major determinant of human copy number variant pathogenicity. Nat Commun 2017; 8:14366. [PMID: 28176757 PMCID: PMC5309798 DOI: 10.1038/ncomms14366] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/20/2016] [Indexed: 01/22/2023] Open
Abstract
Human copy number variants (CNVs) account for genome variation an order of magnitude larger than single-nucleotide polymorphisms. Although much of this variation has no phenotypic consequences, some variants have been associated with disease, in particular neurodevelopmental disorders. Pathogenic CNVs are typically very large and contain multiple genes, and understanding the cause of the pathogenicity remains a major challenge. Here we show that pathogenic CNVs are significantly enriched for genes involved in development and genes that have greater evolutionary copy number conservation across mammals, indicative of functional constraints. Conversely, genes found in benign CNV regions have more variable copy number. These evolutionary constraints are characteristic of genes in pathogenic CNVs and can only be explained by dosage sensitivity of those genes. These results implicate dosage sensitivity of individual genes as a common cause of CNV pathogenicity. These evolutionary metrics suggest a path to identifying disease genes in pathogenic CNVs. Copy number variants (CNVs) cause significant genomic variation in humans and may be benign or may cause disease. Here, the authors show that pathogenic CNVs are evolutionarily constrained compared with benign, pointing to dosage sensitivity as a potential cause of disease.
Collapse
|
66
|
Rody HVS, Baute GJ, Rieseberg LH, Oliveira LO. Both mechanism and age of duplications contribute to biased gene retention patterns in plants. BMC Genomics 2017; 18:46. [PMID: 28061859 PMCID: PMC5219802 DOI: 10.1186/s12864-016-3423-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/14/2016] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND All extant seed plants are successful paleopolyploids, whose genomes carry duplicate genes that have survived repeated episodes of diploidization. However, the survival of gene duplicates is biased with respect to gene function and mechanism of duplication. Transcription factors, in particular, are reported to be preferentially retained following whole-genome duplications (WGDs), but disproportionately lost when duplicated by tandem events. An explanation for this pattern is provided by the Gene Balance Hypothesis (GBH), which posits that duplicates of highly connected genes are retained following WGDs to maintain optimal stoichiometry among gene products; but such connected gene duplicates are disfavored following tandem duplications. RESULTS We used genomic data from 25 taxonomically diverse plant species to investigate the roles of duplication mechanism, gene function, and age of duplication in the retention of duplicate genes. Enrichment analyses were conducted to identify Gene Ontology (GO) functional categories that were overrepresented in either WGD or tandem duplications, or across ranges of divergence times. Tandem paralogs were much younger, on average, than WGD paralogs and the most frequently overrepresented GO categories were not shared between tandem and WGD paralogs. Transcription factors were overrepresented among ancient paralogs regardless of mechanism of origin or presence of a WGD. Also, in many cases, there was no bias toward transcription factor retention following recent WGDs. CONCLUSIONS Both the fixation and the retention of duplicated genes in plant genomes are context-dependent events. The strong bias toward ancient transcription factor duplicates can be reconciled with the GBH if selection for optimal stoichiometry among gene products is strongest following the earliest polyploidization events and becomes increasingly relaxed as gene families expand.
Collapse
Affiliation(s)
- Hugo V S Rody
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Gregory J Baute
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Luiz O Oliveira
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil.
| |
Collapse
|
67
|
Park JS, Lee HJ, Park CH. A novel mutation of ABCC8 gene in a patient with diazoxide-unresponsive congenital hyperinsulinism. KOREAN JOURNAL OF PEDIATRICS 2016; 59:S116-S120. [PMID: 28018462 PMCID: PMC5177692 DOI: 10.3345/kjp.2016.59.11.s116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/15/2014] [Accepted: 09/25/2014] [Indexed: 12/04/2022]
Abstract
Congenital hyperinsulinism (CHI) is a rare condition that can cause irreversible brain damage during the neonatal period owing to the associated hypoglycemia. Hypoglycemia in CHI occurs secondary to the dysregulation of insulin secretion. CHI has been established as a genetic disorder of islet-cell hyperplasia, associated with a mutation of the ABCC8 or KCNJ11 genes, which encode the sulfonylurea receptor 1 and the inward rectifying potassium channel (Kir6.2) subunit of the ATP-sensitive potassium channel, respectively. We report the case of a female newborn infant who presented with repetitive seizures and episodes of apnea after birth, because of hypoglycemia. Investigations revealed hypoglycemia with hyperinsulinemia, but no ketone bodies, and a low level of free fatty acids. High dose glucose infusion, enteral feeding, and medications could not maintain the patient's serum glucose level. Genetic testing revealed a new variation of ABCC8 mutation. Therefore, we report this case of CHI caused by a novel mutation of ABCC8 in a half-Korean newborn infant with diazoxide-unresponsive hyperinsulinemic hypoglycemia.
Collapse
Affiliation(s)
- Ji Sook Park
- Department of Pediatrics, Gyeongsang National Unviersity School of Medicine, Jinju, Korea
| | - Hong-Jun Lee
- Department of Pediatrics, Gyeongsang National Unviersity School of Medicine, Jinju, Korea
| | - Chan-Hoo Park
- Department of Pediatrics, Gyeongsang National Unviersity School of Medicine, Jinju, Korea
| |
Collapse
|
68
|
Lehti-Shiu MD, Panchy N, Wang P, Uygun S, Shiu SH. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:3-20. [PMID: 27522016 DOI: 10.1016/j.bbagrm.2016.08.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/21/2016] [Accepted: 08/06/2016] [Indexed: 12/19/2022]
Abstract
Plant transcription factors (TFs) that interact with specific sequences via DNA-binding domains are crucial for regulating transcriptional initiation and are fundamental to plant development and environmental response. In addition, expansion of TF families has allowed functional divergence of duplicate copies, which has contributed to novel, and in some cases adaptive, traits in plants. Thus, TFs are central to the generation of the diverse plant species that we see today. Major plant agronomic traits, including those relevant to domestication, have also frequently arisen through changes in TF coding sequence or expression patterns. Here our goal is to provide an overview of plant TF evolution by first comparing the diversity of DNA-binding domains and the sizes of these domain families in plants and other eukaryotes. Because TFs are among the most highly expanded gene families in plants, the birth and death process of TFs as well as the mechanisms contributing to their retention are discussed. We also provide recent examples of how TFs have contributed to novel traits that are important in plant evolution and in agriculture.This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
| | - Nicholas Panchy
- The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Peipei Wang
- Department of Plant Biology, East Lansing, MI 48824, USA
| | - Sahra Uygun
- The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Shin-Han Shiu
- Department of Plant Biology, East Lansing, MI 48824, USA; The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
69
|
Birchler JA. Parallel Universes for Models of X Chromosome Dosage Compensation in Drosophila: A Review. Cytogenet Genome Res 2016; 148:52-67. [PMID: 27166165 DOI: 10.1159/000445924] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 11/19/2022] Open
Abstract
Dosage compensation in Drosophila involves an approximately 2-fold increase in expression of the single X chromosome in males compared to the per gene expression in females with 2 X chromosomes. Two models have been considered for an explanation. One proposes that the male-specific lethal (MSL) complex that is associated with the male X chromosome brings histone modifiers to the sex chromosome to increase its expression. The other proposes that the inverse effect which results from genomic imbalance would tend to upregulate the genome approximately 2-fold, but the MSL complex sequesters histone modifiers from the autosomes to the X to mute this autosomal male-biased expression. On the X, the MSL complex must override the high level of resulting histone modifications to prevent overcompensation of the X chromosome. Each model is evaluated in terms of fitting classical genetic and recent molecular data. Potential paths toward resolving the models are suggested.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Mo., USA
| |
Collapse
|
70
|
Piñero J, Berenstein A, Gonzalez-Perez A, Chernomoretz A, Furlong LI. Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing. Sci Rep 2016; 6:24570. [PMID: 27080396 PMCID: PMC4832203 DOI: 10.1038/srep24570] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 03/31/2016] [Indexed: 12/25/2022] Open
Abstract
Characterizing the behavior of disease genes in the context of biological networks has the potential to shed light on disease mechanisms, and to reveal both new candidate disease genes and therapeutic targets. Previous studies addressing the network properties of disease genes have produced contradictory results. Here we have explored the causes of these discrepancies and assessed the relationship between the network roles of disease genes and their tolerance to deleterious germline variants in human populations leveraging on: the abundance of interactome resources, a comprehensive catalog of disease genes and exome variation data. We found that the most salient network features of disease genes are driven by cancer genes and that genes related to different types of diseases play network roles whose centrality is inversely correlated to their tolerance to likely deleterious germline mutations. This proved to be a multiscale signature, including global, mesoscopic and local network centrality features. Cancer driver genes, the most sensitive to deleterious variants, occupy the most central positions, followed by dominant disease genes and then by recessive disease genes, which are tolerant to variants and isolated within their network modules.
Collapse
Affiliation(s)
- Janet Piñero
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), DCEXS, Pompeu Fabra University (UPF). C/Dr. Aiguader, 88. 08003- Barcelona, Spain
| | - Ariel Berenstein
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina.,Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas. Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina
| | - Abel Gonzalez-Perez
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), DCEXS, Pompeu Fabra University (UPF). C/Dr. Aiguader, 88. 08003- Barcelona, Spain
| | - Ariel Chernomoretz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina.,Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas. Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina.,Laboratorio de Biología de Sistemas Integrativa, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Laura I Furlong
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), DCEXS, Pompeu Fabra University (UPF). C/Dr. Aiguader, 88. 08003- Barcelona, Spain
| |
Collapse
|
71
|
Bottani S, Veitia RA. Hill function-based models of transcriptional switches: impact of specific, nonspecific, functional and nonfunctional binding. Biol Rev Camb Philos Soc 2016; 92:953-963. [PMID: 27061969 DOI: 10.1111/brv.12262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 12/25/2022]
Abstract
We explore minimalist models of transcription in which we take into account that a cis-regulatory sequence is embedded in, and interacts with, a complex genome. The classical Hill equation is the simplest way to represent a transcriptional response. However, it may overlook the fact that a transcription factor (TF) establishes specific and nonspecific nonfunctional interactions with chromatin. Classical papers have shown that nonfunctional binding (not leading to transcription) may influence gene expression. We examine how the presence of additional binding sites for a TF, besides those on the gene(s) of interest, affect the shape and parameters of the transcriptional response. We consider two conditions: at equilibrium and at steady-state. In many cases the TF level is determined by the position of the cell within a spatial or temporal gradient. We show that such gradients can be adjusted by evolutionary selection to compensate for the alteration of the gene transcription response by the presence of nonfunctional binding sites. Finally, we analyse how the transcriptional response is affected by a decrease in TF concentration, as in cases of haploinsufficiency. We show that the nonlinearity of the transcriptional response as a function of [TF] exacerbates the effect of a decrease in the latter, at least for weakly expressed TFs. Although decades of work on TFs have led to the impression that almost everything is known about the control of gene expression, we show that even the simplest models of transcription control have not delivered all their secrets yet.
Collapse
Affiliation(s)
- Samuel Bottani
- Matière et Systèmes Complexes CNRS UMR 7057, 75013 Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Reiner A Veitia
- Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.,Institut Jacques Monod, CNRS UMR 7592, 75013 Paris, France
| |
Collapse
|
72
|
Birchler JA, Johnson AF, Veitia RA. Kinetics genetics: Incorporating the concept of genomic balance into an understanding of quantitative traits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 245:128-34. [PMID: 26940497 DOI: 10.1016/j.plantsci.2016.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 05/21/2023]
Abstract
While most mutations are recessive, variants that affect quantitative traits are largely semi-dominant in their action making hybrids between divergent genotypes intermediate. In parallel, changes in chromosomal dosage (aneuploidy) for multiple regions of the genome modulate quantitative characters. We have previously argued that these observations are a reflection of a common process, originating from the more or less subtle effects of changes in dosage on the action of multi-subunit regulatory machineries. Kinetic analyses that vary the amount of one subunit of a complex while holding others constant do not always predict a linear response for the production of the whole. Indeed, in many instances, strong non-linear effects are expected. Here, we advocate that these kinetic observations and predictions should be incorporated into quantitative genetics thought.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States.
| | - Adam F Johnson
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Reiner A Veitia
- Institut Jacques Monod, 15 rue Helene Brion, 75013 Paris, France; Universite Paris Diderot, Paris, France
| |
Collapse
|
73
|
Teufel AI, Liu L, Liberles DA. Models for gene duplication when dosage balance works as a transition state to subsequent neo-or sub-functionalization. BMC Evol Biol 2016; 16:45. [PMID: 26897341 PMCID: PMC4761171 DOI: 10.1186/s12862-016-0616-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/12/2016] [Indexed: 01/29/2023] Open
Abstract
Background Dosage balance has been described as an important process for the retention of duplicate genes after whole genome duplication events. However, dosage balance is only a temporary mechanism for duplicate gene retention, as it ceases to function following the stochastic loss of interacting partners, as dosage balance itself is lost with this event. With the prolonged period of retention, on the other hand, there is the potential for the accumulation of substitutions which upon release from dosage balance constraints, can lead to either subsequent neo-functionalization or sub-functionalization. Mechanistic models developed to date for duplicate gene retention treat these processes independently, but do not describe dosage balance as a transition state to eventual functional change. Results Here a model for these processes (dosage plus neofunctionalization and dosage plus subfunctionalization) has been built within an existing framework. Because of the computational complexity of these models, a simpler modeling framework that captures the same information is also proposed. This model is integrated into a phylogenetic birth-death model, expanding the range of available models. Conclusions Including further levels of biological reality in methods for gene tree/species tree reconciliation should not only increase the accuracy of estimates of the timing and evolutionary history of genes but can also offer insight into how genes and genomes evolve. These new models add to the tool box for characterizing mechanisms of duplicate gene retention probabilistically.
Collapse
Affiliation(s)
- Ashley I Teufel
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA. .,Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA.
| | - Liang Liu
- Department of Statistics, University of Georgia, Athens, GA, 30602, USA.
| | - David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA. .,Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA.
| |
Collapse
|
74
|
Compensatory Drift and the Evolutionary Dynamics of Dosage-Sensitive Duplicate Genes. Genetics 2015; 202:765-74. [PMID: 26661114 DOI: 10.1534/genetics.115.178137] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/06/2015] [Indexed: 11/18/2022] Open
Abstract
Dosage-balance selection preserves functionally redundant duplicates (paralogs) at the optimum for their combined expression. Here we present a model of the dynamics of duplicate genes coevolving under dosage-balance selection. We call this the compensatory drift model. Results show that even when strong dosage-balance selection constrains total expression to the optimum, expression of each duplicate can diverge by drift from its original level. The rate of divergence slows as the strength of stabilizing selection, the size of the mutation effect, and/or the size of the population increases. We show that dosage-balance selection impedes neofunctionalization early after duplication but can later facilitate it. We fit this model to data from sodium channel duplicates in 10 families of teleost fish; these include two convergent lineages of electric fish in which one of the duplicates neofunctionalized. Using the model, we estimated the strength of dosage-balance selection for these genes. The results indicate that functionally redundant paralogs still may undergo radical functional changes after a prolonged period of compensatory drift.
Collapse
|
75
|
Kaltenegger E, Ober D. Paralogue Interference Affects the Dynamics after Gene Duplication. TRENDS IN PLANT SCIENCE 2015; 20:814-821. [PMID: 26638775 DOI: 10.1016/j.tplants.2015.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
Proteins tend to form homomeric complexes of identical subunits, which act as functional units. By definition, the subunits are encoded from a single genetic locus. When such a gene is duplicated, the gene products are suggested initially to cross-interact when coexpressed, thus resulting in the phenomenon of paralogue interference. In this opinion article, we explore how paralogue interference can shape the fate of a duplicated gene. One important outcome is a prolonged time window in which both copies remain under selection increasing the chance to accumulate mutations and to develop new properties. Thereby, paralogue interference can mediate the coevolution of duplicates and here we illustrate the potential of this phenomenon in light of recent new studies.
Collapse
Affiliation(s)
- Elisabeth Kaltenegger
- Department of Biochemical Ecology and Molecular Evolution, Botanical Institute, Christian-Albrechts-University, 24098 Kiel, Germany.
| | - Dietrich Ober
- Department of Biochemical Ecology and Molecular Evolution, Botanical Institute, Christian-Albrechts-University, 24098 Kiel, Germany
| |
Collapse
|
76
|
Cava C, Bertoli G, Castiglioni I. Integrating genetics and epigenetics in breast cancer: biological insights, experimental, computational methods and therapeutic potential. BMC SYSTEMS BIOLOGY 2015; 9:62. [PMID: 26391647 PMCID: PMC4578257 DOI: 10.1186/s12918-015-0211-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/15/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Development of human cancer can proceed through the accumulation of different genetic changes affecting the structure and function of the genome. Combined analyses of molecular data at multiple levels, such as DNA copy-number alteration, mRNA and miRNA expression, can clarify biological functions and pathways deregulated in cancer. The integrative methods that are used to investigate these data involve different fields, including biology, bioinformatics, and statistics. RESULTS These methodologies are presented in this review, and their implementation in breast cancer is discussed with a focus on integration strategies. We report current applications, recent studies and interesting results leading to the identification of candidate biomarkers for diagnosis, prognosis, and therapy in breast cancer by using both individual and combined analyses. CONCLUSION This review presents a state of art of the role of different technologies in breast cancer based on the integration of genetics and epigenetics, and shares some issues related to the new opportunities and challenges offered by the application of such integrative approaches.
Collapse
Affiliation(s)
- Claudia Cava
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy.
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy.
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy.
| |
Collapse
|
77
|
Veitia RA, Birchler JA. Models of buffering of dosage imbalances in protein complexes. Biol Direct 2015; 10:42. [PMID: 26275824 PMCID: PMC4537584 DOI: 10.1186/s13062-015-0063-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background Stoichiometric imbalances in macromolecular complexes can lead to altered function. Such imbalances stem from under- or over-expression of a subunit of a complex consequent to a deletion, duplication or regulatory mutation of an allele encoding the relevant protein. In some cases, the phenotypic perturbations induced by such alterations can be subtle or be lacking because nonlinearities in the process of protein complex assembly can provide some degree of buffering. Results We explore with biochemical models of increasing plausibility how buffering can be elicited. Specifically, we analyze the formation of a dimer AB and show that there are particular sets of parameters so that decreasing/increasing the input amount of either A or B translates into a non proportional (buffered) change of AB. The buffer effect also appears in higher-order structures provided that there are intermediate subcomplexes in the assembly process. Conclusions We highlight the importance of protein degradation and/or conformational inactivation for buffering to appear. The models sketched here have experimental support but can be further tested with existing biological resources. Reviewers This article was reviewed by Eugene Koonin, Berend Snel and Csaba Pal.
Collapse
Affiliation(s)
- Reiner A Veitia
- Institut Jacques Monod, 15 rue Hélène Brion, 75013, Paris, France. .,Université Paris Diderot, Paris, France.
| | - James A Birchler
- University of Missouri, Division of Biological Sciences, Columbia, MO, 65211, USA.
| |
Collapse
|
78
|
Tassano E, Gamucci A, Celle ME, Ronchetto P, Cuoco C, Gimelli G. Clinical and Molecular Cytogenetic Characterization of a de novo Interstitial 1p31.1p31.3 Deletion in a Boy with Moderate Intellectual Disability and Severe Language Impairment. Cytogenet Genome Res 2015; 146:39-43. [DOI: 10.1159/000431391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2015] [Indexed: 11/19/2022] Open
Abstract
Interstitial 1p deletions are rare events. Very few cases of 1p31.1p31.3 deletions characterized by variable phenotypes have been reported. No clear genotype-phenotype correlation has been determined yet. We present a child with a de novo interstitial 1p31.1p31.3 deletion, identified by array CGH, associated with intellectual disability and severe language impairment. The deleted region contains 20 OMIM genes, but we focused on GADD45A (MIM 126335; growth arrest- and DNA damage-inducible gene), LRRC7 (MIM 614453; leucine-rich repeat-containing protein 7), and NEGR1 (MIM 613173; neuronal growth regulator 1). We discuss whether these genes play a role in determining the phenotype of our patient in order to investigate the possibility of a genotype-phenotype correlation.
Collapse
|
79
|
Veitia RA, Potier MC. Gene dosage imbalances: action, reaction, and models. Trends Biochem Sci 2015; 40:309-17. [PMID: 25937627 DOI: 10.1016/j.tibs.2015.03.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/17/2015] [Accepted: 03/27/2015] [Indexed: 12/29/2022]
Abstract
Single-gene deletions, duplications, and misregulation, as well as aneuploidy, can lead to stoichiometric imbalances within macromolecular complexes and cellular networks, causing their malfunction. Such alterations can be responsible for inherited or somatic genetic disorders including Mendelian diseases, aneuploid syndromes, and cancer. We review the effects of gene dosage alterations at the transcriptomic and proteomic levels, and the various responses of the cell to counteract their effects. Furthermore, we explore several biochemical models and ideas that can provide the rationale for treatments modulating the effects of gene dosage imbalances.
Collapse
Affiliation(s)
- Reiner A Veitia
- Institut Jacques Monod, Paris, France; Université Paris Diderot, Paris, France.
| | - Marie Claude Potier
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, Institut National de la Santé et de la Recherche Médicale (INSERM) and Centre National de la Recherche Scientifique (CNRS) Unités de Recherche U75, U1127, U7225, and Institut du Cerveau et de la Moelle Épinière (ICM), 75013 Paris, France
| |
Collapse
|
80
|
Veitia RA, Veyrunes F, Bottani S, Birchler JA. X chromosome inactivation and active X upregulation in therian mammals: facts, questions, and hypotheses. J Mol Cell Biol 2015; 7:2-11. [PMID: 25564545 DOI: 10.1093/jmcb/mjv001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
X chromosome inactivation is a mechanism that modulates the expression of X-linked genes in eutherian females (XX). Ohno proposed that to achieve a proper balance between X-linked and autosomal genes, those on the active X should also undergo a 2-fold upregulation. Although some support for Ohno's hypothesis has been provided through the years, recent genomic studies testing this hypothesis have brought contradictory results and fueled debate. Thus far, there are as many results in favor as against Ohno's hypothesis, depending on the nature of the datasets and the various assumptions and thresholds involved in the analyses. However, they have confirmed the importance of dosage balance between X-linked and autosomal genes involved in stoichiometric relationships. These facts as well as questions and hypotheses are discussed below.
Collapse
Affiliation(s)
- Reiner A Veitia
- Institut Jacques Monod, Paris, France Université Paris Diderot, Paris, France
| | - Frédéric Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, CNRS/Université Montpellier II, Montpellier, France
| | - Samuel Bottani
- Université Paris Diderot, Paris, France Matière et Systèmes Complexes, Paris, France
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
81
|
Devis D, Firth SM, Liang Z, Byrne ME. Dosage Sensitivity of RPL9 and Concerted Evolution of Ribosomal Protein Genes in Plants. FRONTIERS IN PLANT SCIENCE 2015; 6:1102. [PMID: 26734020 PMCID: PMC4679983 DOI: 10.3389/fpls.2015.01102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/22/2015] [Indexed: 05/19/2023]
Abstract
The ribosome in higher eukaryotes is a large macromolecular complex composed of four rRNAs and eighty different ribosomal proteins. In plants, each ribosomal protein is encoded by multiple genes. Duplicate genes within a family are often necessary to provide a threshold dose of a ribosomal protein but in some instances appear to have non-redundant functions. Here, we addressed whether divergent members of the RPL9 gene family are dosage sensitive or whether these genes have non-overlapping functions. The RPL9 family in Arabidopsis thaliana comprises two nearly identical members, RPL9B and RPL9C, and a more divergent member, RPL9D. Mutations in RPL9C and RPL9D genes lead to delayed growth early in development, and loss of both genes is embryo lethal, indicating that these are dosage-sensitive and redundant genes. Phylogenetic analysis of RPL9 as well as RPL4, RPL5, RPL27a, RPL36a, and RPS6 family genes in the Brassicaceae indicated that multicopy ribosomal protein genes have been largely retained following whole genome duplication. However, these gene families also show instances of tandem duplication, small scale deletion, and evidence of gene conversion. Furthermore, phylogenetic analysis of RPL9 genes in angiosperm species showed that genes within a species are more closely related to each other than to RPL9 genes in other species, suggesting ribosomal protein genes undergo convergent evolution. Our analysis indicates that ribosomal protein gene retention following whole genome duplication contributes to the number of genes in a family. However, small scale rearrangements influence copy number and likely drive concerted evolution of these dosage-sensitive genes.
Collapse
|
82
|
McGrath CL, Gout JF, Johri P, Doak TG, Lynch M. Differential retention and divergent resolution of duplicate genes following whole-genome duplication. Genome Res 2014; 24:1665-75. [PMID: 25085612 PMCID: PMC4199370 DOI: 10.1101/gr.173740.114] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Paramecium aurelia complex is a group of 15 species that share at least three past whole-genome duplications (WGDs). The macronuclear genome sequences of P. biaurelia and P. sexaurelia are presented and compared to the published sequence of P. tetraurelia. Levels of duplicate-gene retention from the recent WGD differ by >10% across species, with P. sexaurelia losing significantly more genes than P. biaurelia or P. tetraurelia. In addition, historically high rates of gene conversion have homogenized WGD paralogs, probably extending the paralogs’ lifetimes. The probability of duplicate retention is positively correlated with GC content and expression level; ribosomal proteins, transcription factors, and intracellular signaling proteins are overrepresented among maintained duplicates. Finally, multiple sources of evidence indicate that P. sexaurelia diverged from the two other lineages immediately following, or perhaps concurrent with, the recent WGD, with approximately half of gene losses between P. tetraurelia and P. sexaurelia representing divergent gene resolutions (i.e., silencing of alternative paralogs), as expected for random duplicate loss between these species. Additionally, though P. biaurelia and P. tetraurelia diverged from each other much later, there are still more than 100 cases of divergent resolution between these two species. Taken together, these results indicate that divergent resolution of duplicate genes between lineages acts to reinforce reproductive isolation between species in the Paramecium aurelia complex.
Collapse
Affiliation(s)
- Casey L McGrath
- Department of Biology, Indiana University, Bloomington, Indiana 47408, USA
| | - Jean-Francois Gout
- Department of Biology, Indiana University, Bloomington, Indiana 47408, USA
| | - Parul Johri
- Department of Biology, Indiana University, Bloomington, Indiana 47408, USA
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington, Indiana 47408, USA; National Center for Genome Analysis Support at Indiana University, Bloomington, Indiana 47408, USA
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, Indiana 47408, USA;
| |
Collapse
|
83
|
Liu P, Qi M, Wang Y, Chang M, Liu C, Sun M, Yang W, Ren H. Arabidopsis RAN1 mediates seed development through its parental ratio by affecting the onset of endosperm cellularization. MOLECULAR PLANT 2014; 7:1316-1328. [PMID: 24719465 DOI: 10.1093/mp/ssu041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although previous studies have demonstrated that endosperm development is influenced by its parental genome constitution, the genetic basis and molecular mechanisms that control parent-of-origin effects require further elucidation. Here we show that the Ras-related nuclear protein 1 (RAN1) regulates endosperm development in Arabidopsis thaliana. Reciprocal crosses between wild-type (WT) and transgenic lines misexpressing RAN1 (msRAN1) gave rise to small F1 seeds when RAN1 down-regulated/up-regulated individuals were used as a male/female parent; in contrast, F1 seeds were aborted when RAN1 down-regulated/up-regulated plants were used as a female/male parent, suggesting that seed development is affected by the parental genome ratio of RAN1. Whereas RAN1 expression in wild-type plants is reduced before the onset of endosperm cellularization, F1 seeds from reciprocal crosses between WT and msRAN1 showed abnormal endosperm cellularization and ectopic expression of RAN1. The expression of MINISEED3 (MINI3)-a gene that also controls endosperm cellularization-was also affected in these reciprocal crosses, and the misregulation of MINI3 activity rescued F1 seeds when msRAN1 plants were used in reciprocal crosses. Taken together, our results suggest that the parental ratio of RAN1 regulates the onset of endosperm cellularization through its genetic interaction with MINI3.
Collapse
Affiliation(s)
- Peiwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ming Qi
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuqian Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Mingqin Chang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Chang Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Mengxiang Sun
- Department of Cell and Development Biology, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China
| | - Weicai Yang
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
84
|
Birchler JA. Facts and artifacts in studies of gene expression in aneuploids and sex chromosomes. Chromosoma 2014; 123:459-69. [DOI: 10.1007/s00412-014-0478-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 12/18/2022]
|
85
|
Sharkhuu A, Narasimhan ML, Merzaban JS, Bressan RA, Weller S, Gehring C. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:916-26. [PMID: 24654847 PMCID: PMC4260087 DOI: 10.1111/tpj.12513] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 05/13/2023]
Abstract
Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide.
Collapse
Affiliation(s)
- Altanbadralt Sharkhuu
- Department of Biological and Environmental Science and Engineering, King Abdullah University of Science and TechnologyThuwal, 23955-6900, Jeddah, Saudi Arabia
- Department of Horticulture and Landscape Architecture, Purdue University47907, West Lafayette, Indiana, USA
| | - Meena L Narasimhan
- Department of Horticulture and Landscape Architecture, Purdue University47907, West Lafayette, Indiana, USA
| | - Jasmeen S Merzaban
- Department of Biological and Environmental Science and Engineering, King Abdullah University of Science and TechnologyThuwal, 23955-6900, Jeddah, Saudi Arabia
| | - Ray A Bressan
- Department of Biological and Environmental Science and Engineering, King Abdullah University of Science and TechnologyThuwal, 23955-6900, Jeddah, Saudi Arabia
- Department of Horticulture and Landscape Architecture, Purdue University47907, West Lafayette, Indiana, USA
| | - Steve Weller
- Department of Horticulture and Landscape Architecture, Purdue University47907, West Lafayette, Indiana, USA
| | - Chris Gehring
- Department of Biological and Environmental Science and Engineering, King Abdullah University of Science and TechnologyThuwal, 23955-6900, Jeddah, Saudi Arabia
| |
Collapse
|
86
|
Tamate SC, Kawata M, Makino T. Contribution of nonohnologous duplicated genes to high habitat variability in mammals. Mol Biol Evol 2014; 31:1779-86. [PMID: 24714078 DOI: 10.1093/molbev/msu128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mechanism by which genetic systems affect environmental adaptation is a focus of considerable attention in the fields of ecology, evolution, and conservation. However, the genomic characteristics that constrain adaptive evolution have remained unknown. A recent study showed that the proportion of duplicated genes in whole Drosophila genomes correlated with environmental variability within habitat, but it remains unclear whether the correlation is observed even in vertebrates whose genomes including a large number of duplicated genes generated by whole-genome duplication (WGD). Here, we focus on fully sequenced mammalian genomes that experienced WGD in early vertebrate lineages and show that the proportion of small-scale duplication (SSD) genes in the genome, but not that of WGD genes, is significantly correlated with habitat variability. Moreover, species with low habitat variability have a higher proportion of lost duplicated genes, particularly SSD genes, than those with high habitat variability. These results indicate that species that inhabit variable environments may maintain more SSD genes in their genomes and suggest that SSD genes are important for adapting to novel environments and surviving environmental changes. These insights may be applied to predicting invasive and endangered species.
Collapse
Affiliation(s)
- Satoshi C Tamate
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Masakado Kawata
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Takashi Makino
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, JapanDepartment of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| |
Collapse
|
87
|
Makino T, McLysaght A, Kawata M. Genome-wide deserts for copy number variation in vertebrates. Nat Commun 2014; 4:2283. [PMID: 23917329 DOI: 10.1038/ncomms3283] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 07/10/2013] [Indexed: 01/14/2023] Open
Abstract
Most copy number variations are neutral, but some are deleterious and associated with various human diseases. Copy number variations are distributed non-randomly in vertebrate genomes, and it was recently reported that ohnologs, which are duplicated genes derived from whole genome duplication, are refractory to copy number variations. However, it is unclear what genomic factors affect the deleterious effects of copy number variations and the biological significance of the biased genomic distribution of copy number variations remains poorly understood. Here we show that non-ohnologs neighbouring ohnologs are unlikely to have copy number variations, resulting in ohnolog-rich regions in vertebrate genomes being copy number variation deserts. Our results suggest that the genomic location of ohnologs is a determining factor in the retention of copy number variations and that the dosage-balanced ohnologs are likely to cause the deleterious effects of copy number variations in these regions. We propose that investigating copy number variation of genes in regions that are typically copy number variation deserts is an efficient means to find disease-related copy number variations.
Collapse
Affiliation(s)
- Takashi Makino
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-ku 980-8578, Japan.
| | | | | |
Collapse
|
88
|
Malaguti G, Singh PP, Isambert H. On the retention of gene duplicates prone to dominant deleterious mutations. Theor Popul Biol 2014; 93:38-51. [PMID: 24530892 DOI: 10.1016/j.tpb.2014.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/06/2014] [Accepted: 01/29/2014] [Indexed: 01/23/2023]
Abstract
Recent studies have shown that gene families from different functional categories have been preferentially expanded either by small scale duplication (SSD) or by whole-genome duplication (WGD). In particular, gene families prone to dominant deleterious mutations and implicated in cancers and other genetic diseases in human have been greatly expanded through two rounds of WGD dating back from early vertebrates. Here, we strengthen this intriguing observation, showing that human oncogenes involved in different primary tumors have retained many WGD duplicates compared to other human genes. In order to rationalize this evolutionary outcome, we propose a consistent population genetics model to analyze the retention of SSD and WGD duplicates taking into account their propensity to acquire dominant deleterious mutations. We solve a deterministic haploid model including initial duplicated loci, their retention through sub-functionalization or their neutral loss-of-function or deleterious gain-of-function at one locus. Extensions to diploid genotypes are presented and population size effects are analyzed using stochastic simulations. The only difference between the SSD and WGD scenarios is the initial number of individuals with duplicated loci. While SSD duplicates need to spread through the entire population from a single individual to reach fixation, WGD duplicates are de facto fixed in the small initial post-WGD population arising through the ploidy incompatibility between post-WGD individuals and the rest of the pre-WGD population. WGD duplicates prone to dominant deleterious mutations are then shown to be indirectly selected through purifying selection in post-WGD species, whereas SSD duplicates typically require positive selection. These results highlight the long-term evolution mechanisms behind the surprising accumulation of WGD duplicates prone to dominant deleterious mutations and are shown to be consistent with cancer genome data on the prevalence of human oncogenes with WGD duplicates.
Collapse
Affiliation(s)
- Giulia Malaguti
- Institut Curie, CNRS-UMR168, UPMC, 26 rue d'Ulm, 75005 Paris, France
| | - Param Priya Singh
- Institut Curie, CNRS-UMR168, UPMC, 26 rue d'Ulm, 75005 Paris, France
| | - Hervé Isambert
- Institut Curie, CNRS-UMR168, UPMC, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
89
|
Abstract
The concept of genomic balance traces to the early days of genetics. In recent years, studies of gene expression have found parallels to the classical phenotypic studies in that aneuploid changes have greater effects than whole genome changes. This has an explanation in terms of potential stoichiometric imbalances of the gene products encoded in the aneuploid regions. Studies of transcriptional factor mutations indicated that they tend to be haplo-insufficient as heterozygotes. Molecular evolution studies found that genes encoding members of macromolecular complexes were preferentially retained following polyploidy and underrepresented in copy number variants. In this review chapter, we synthesize these observations under the rubric of the Gene Balance Hypothesis.
Collapse
|
90
|
Abstract
A number of rare copy number variants (CNVs), including both deletions and duplications, have been associated with developmental disorders, including schizophrenia, autism, intellectual disability, and epilepsy. Pathogenicity may derive from dosage sensitivity of one or more genes contained within the CNV locus. To understand pathophysiology, the specific disease-causing gene(s) within each CNV need to be identified. In the present study, we test the hypothesis that ohnologs (genes retained after ancestral whole-genome duplication events, which are frequently dosage sensitive) are overrepresented in pathogenic CNVs. We selected three sets of genes implicated in copy number pathogenicity: (i) genes mapping within rare disease-associated CNVs, (ii) genes within de novo CNVs under negative genetic selection, and (iii) genes identified by clinical array comparative genome hybridization studies as potentially pathogenic. We compared the proportion of ohnologs between these gene sets and control genes, mapping to CNVs not known to be disease associated. We found that ohnologs are significantly overrepresented in genes mapping to pathogenic CNVs, irrespective of how CNVs were identified, with over 90% containing an ohnolog, compared with control CNVs >100 kb, where only about 30% contained an ohnolog. In some CNVs, such as del15p11.2 (CYFIP1) and dup/del16p13.11 (NDE1), the most plausible prior candidate gene was also an ohnolog, as were the genes VIPR2 and NRXN1, each found in short CNVs containing no other genes. Our results support the hypothesis that ohnologs represent critical dosage-sensitive elements of the genome, possibly responsible for some of the deleterious phenotypes observed for pathogenic CNVs and as such are readily identifiable candidate genes for further study.
Collapse
|
91
|
Uebbing S, Künstner A, Mäkinen H, Ellegren H. Transcriptome sequencing reveals the character of incomplete dosage compensation across multiple tissues in flycatchers. Genome Biol Evol 2013; 5:1555-66. [PMID: 23925789 PMCID: PMC3762201 DOI: 10.1093/gbe/evt114] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sex chromosome divergence, which follows the cessation of recombination and degeneration of the sex-limited chromosome, can cause a reduction in expression level for sex-linked genes in the heterozygous sex, unless some mechanisms of dosage compensation develops to counter the reduction in gene dose. Because large-scale perturbations in expression levels arising from changes in gene dose might have strong deleterious effects, the evolutionary response should be strong. However, in birds and in at least some other female heterogametic organisms, wholesale sex chromosome dosage compensation does not seem to occur. Using RNA-seq of multiple tissues and individuals, we investigated male and female expression levels of Z-linked and autosomal genes in the collared flycatcher, a bird for which a draft genome sequence recently has been reported. We found that male expression of Z-linked genes was on average 50% higher than female expression, although there was considerable variation in the male-to-female ratio among genes. The ratio for individual genes was well correlated among tissues and there was also a correlation in the extent of compensation between flycatcher and chicken orthologs. The relative excess of male expression was positively correlated with expression breadth, expression level, and number of interacting proteins (protein connectivity), and negatively correlated with variance in expression. These observations lead to a model of compensation occurring on a gene-by-gene basis, supported by an absence of clustering of genes on the Z chromosome with respect to the extent of compensation. Equal mean expression level of autosomal and Z-linked genes in males, and 50% higher expression of autosomal than Z-linked genes in females, is compatible with that partial compensation is achieved by hypertranscription from females' single Z chromosome. A comparison with male-to-female expression ratios in orthologous Z-linked genes of ostriches, where Z-W recombination still occurs, suggests that male-biased expression of Z-linked genes is a derived trait after avian sex chromosome divergence.
Collapse
Affiliation(s)
- Severin Uebbing
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
92
|
Bost B, Veitia RA. Dominance and interloci interactions in transcriptional activation cascades: models explaining compensatory mutations and inheritance patterns. Bioessays 2013; 36:84-92. [PMID: 24242332 DOI: 10.1002/bies.201300109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mutations in human genes encoding transcription factors are often dominant because one active allele cannot ensure a normal phenotype (haploinsufficiency). In other instances, heterozygous mutations of two genes are required for a phenotype to appear (combined haploinsufficiency). Here, we explore with models (i) the basis of haploinsufficiency and combined haploinsufficiency owing to mutations in transcription activators, and (ii) how the effects of such mutations can be amplified or buffered by subsequent steps in a transcription cascade. We propose that the non-linear (sigmoidal) response of transcription to the concentration of activators can explain haploinsufficiency. We further show that the sigmoidal character of the output of a cascade increases with the number of steps involved, the settings of which will determine the buffering or enhancement of the effects of a decreased concentration of an upstream activator. This exploration provides insights into the bases of compensatory mutations and on interloci interactions underlying oligogenic inheritance patterns.
Collapse
Affiliation(s)
- Bruno Bost
- Université Paris-Sud, IGM, UMR8621, Orsay, France; CNRS, Orsay, France
| | | |
Collapse
|
93
|
Dikicioglu D, Pir P, Oliver SG. Predicting complex phenotype-genotype interactions to enable yeast engineering: Saccharomyces cerevisiae as a model organism and a cell factory. Biotechnol J 2013; 8:1017-34. [PMID: 24031036 PMCID: PMC3910164 DOI: 10.1002/biot.201300138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/15/2013] [Accepted: 08/07/2013] [Indexed: 11/08/2022]
Abstract
There is an increasing use of systems biology approaches in both "red" and "white" biotechnology in order to enable medical, medicinal, and industrial applications. The intricate links between genotype and phenotype may be explained through the use of the tools developed in systems biology, synthetic biology, and evolutionary engineering. Biomedical and biotechnological research are among the fields that could benefit most from the elucidation of this complex relationship. Researchers have studied fitness extensively to explain the phenotypic impacts of genetic variations. This elaborate network of dependencies and relationships so revealed are further complicated by the influence of environmental effects that present major challenges to our achieving an understanding of the cellular mechanisms leading to healthy or diseased phenotypes or optimized production yields. An improved comprehension of complex genotype-phenotype interactions and their accurate prediction should enable us to more effectively engineer yeast as a cell factory and to use it as a living model of human or pathogen cells in intelligent screens for new drugs. This review presents different methods and approaches undertaken toward improving our understanding and prediction of the growth phenotype of the yeast Saccharomyces cerevisiae as both a model and a production organism.
Collapse
Affiliation(s)
- Duygu Dikicioglu
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, CB2 1GA, Cambridge, UK
| | - Pınar Pir
- Babraham Institute, Babraham Research Campus, CB22 3AT, Cambridge, UK
| | - Stephen G Oliver
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, CB2 1GA, Cambridge, UK
| |
Collapse
|
94
|
Alvarez-Ponce D, Fares MA. Evolutionary rate and duplicability in the Arabidopsis thaliana protein-protein interaction network. Genome Biol Evol 2013; 4:1263-74. [PMID: 23160177 PMCID: PMC3542556 DOI: 10.1093/gbe/evs101] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genes show a bewildering variation in their patterns of molecular evolution, as a result of the action of different levels and types of selective forces. The factors underlying this variation are, however, still poorly understood. In the last decade, the position of proteins in the protein-protein interaction network has been put forward as a determinant factor of the evolutionary rate and duplicability of their encoding genes. This conclusion, however, has been based on the analysis of the limited number of microbes and animals for which interactome-level data are available (essentially, Escherichia coli, yeast, worm, fly, and humans). Here, we study, for the first time, the relationship between the position of proteins in the high-density interactome of a plant (Arabidopsis thaliana) and the patterns of molecular evolution of their encoding genes. We found that genes whose encoded products act at the center of the network are more evolutionarily constrained than those acting at the network periphery. This trend remains significant when potential confounding factors (gene expression level and breadth, duplicability, function, and length of the encoded products) are controlled for. Even though the correlation between centrality measures and rates of evolution is generally weak, for some functional categories, it is comparable in strength to (or even stronger than) the correlation between evolutionary rates and expression levels or breadths. In addition, genes encoding interacting proteins in the network evolve at relatively similar rates. Finally, Arabidopsis proteins encoded by duplicated genes are more highly connected than those encoded by singleton genes. This observation is in agreement with the patterns observed in humans, but in contrast with those observed in E. coli, yeast, worm, and fly (whose duplicated genes tend to act at the periphery of the network), implying that the relationship between duplicability and centrality inverted at least twice during eukaryote evolution. Taken together, these results indicate that the structure of the A. thaliana network constrains the evolution of its components at multiple levels.
Collapse
Affiliation(s)
- David Alvarez-Ponce
- Department of Abiotic Stress, Integrative and Systems Biology Laboratory, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicias (CSIC-UPV), Valencia, Spain.
| | | |
Collapse
|
95
|
Gene dosage effects: nonlinearities, genetic interactions, and dosage compensation. Trends Genet 2013; 29:385-93. [PMID: 23684842 DOI: 10.1016/j.tig.2013.04.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/23/2013] [Accepted: 04/15/2013] [Indexed: 11/20/2022]
Abstract
High-throughput genomic analyses have shown that many mutations, including loss-of-function (LOF) mutations, are present in diseased as well as in healthy individuals. Gene dosage effects due to deletions, duplications, and LOF mutations provide avenues to explore oligo- and multigenic inheritance. Here, we focus on several mechanisms that mediate gene dosage effects and analyze biochemical interactions among multiple gene products that are sources of nonlinear relations connecting genotypes and phenotypes. We also explore potential mechanisms that compensate for gene dosage effects. Understanding these issues is critical to understanding why an individual bearing a few damaging mutations can be severely diseased, whereas others harboring tens of potentially deleterious mutations can appear quite healthy.
Collapse
|
96
|
Schulz EG, Heard E. Role and control of X chromosome dosage in mammalian development. Curr Opin Genet Dev 2013; 23:109-15. [PMID: 23465885 DOI: 10.1016/j.gde.2013.01.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
Many species have evolved sex chromosomes with highly divergent gene content, such as the X and Y chromosomes in mammals. As most non sex-specific genes probably need to be expressed at similar levels in males and females, dosage compensation mechanisms are in place to equalize the gene dosage between the sexes, and possibly also between sex chromosomes and autosomes. In mammals, one out of two X chromosomes is inactivated early during development in a process called X-chromosome inactivation that has been investigated intensively in the 50 years since it was discovered. Less is known about the potential functional roles of X-linked gene dosage, for example in controlling development in a sex-specific manner. In this review, we discuss the evolution of dosage compensation and how it is controlled during embryogenesis of mammals. In addition we will summarize evidence on the potential role of X chromosome number during early development.
Collapse
Affiliation(s)
- Edda G Schulz
- Mammalian Developmental Epigenetics Group, Institut Curie, CNRS UMR 3215, INSERM U934, Paris 75248, France
| | | |
Collapse
|
97
|
Meinke DW. A survey of dominant mutations in Arabidopsis thaliana. TRENDS IN PLANT SCIENCE 2013; 18:84-91. [PMID: 22995285 DOI: 10.1016/j.tplants.2012.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/03/2012] [Accepted: 08/13/2012] [Indexed: 06/01/2023]
Abstract
Following the recent publication of a comprehensive dataset of 2400 genes with a loss-of-function mutant phenotype in Arabidopsis (Arabidopsis thaliana), questions remain concerning the diversity of dominant mutations in Arabidopsis. Most of these dominant phenotypes are expected to result from inappropriate gene expression, novel protein function, or disrupted protein complexes. This review highlights the major classes of dominant mutations observed in model organisms and presents a collection of 200 Arabidopsis genes associated with a dominant or semidominant phenotype. Emphasis is placed on mutants identified through forward genetic screens of mutagenized or activation-tagged populations. These datasets illustrate the variety of genetic changes and protein functions that underlie dominance in Arabidopsis and may ultimately contribute to phenotypic variation in flowering plants.
Collapse
Affiliation(s)
- David W Meinke
- Department of Botany, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
98
|
Tang YC, Amon A. Gene copy-number alterations: a cost-benefit analysis. Cell 2013; 152:394-405. [PMID: 23374337 PMCID: PMC3641674 DOI: 10.1016/j.cell.2012.11.043] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/22/2012] [Accepted: 11/01/2012] [Indexed: 11/25/2022]
Abstract
Changes in DNA copy number, whether confined to specific genes or affecting whole chromosomes, have been identified as causes of diseases and developmental abnormalities and as sources of adaptive potential. Here, we discuss the costs and benefits of DNA copy-number alterations. Changes in DNA copy number are largely detrimental. Amplifications or deletions of specific genes can elicit discrete defects. Large-scale changes in DNA copy number can also cause detrimental phenotypes that are due to the cumulative effects of copy-number alterations of many genes simultaneously. On the other hand, studies in microorganisms show that DNA copy-number alterations can be beneficial, increasing survival under selective pressure. As DNA copy-number alterations underlie many human diseases, we will end with a discussion of gene copy-number changes as therapeutic targets.
Collapse
Affiliation(s)
- Yun-Chi Tang
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-561, 500 Main Street, Cambridge, MA 02139, USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-561, 500 Main Street, Cambridge, MA 02139, USA
| |
Collapse
|
99
|
Hall DW, Wayne ML. Ohno's "peril of hemizygosity" revisited: gene loss, dosage compensation, and mutation. Genome Biol Evol 2013; 5:1-15. [PMID: 23193178 PMCID: PMC3607304 DOI: 10.1093/gbe/evs106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2012] [Indexed: 12/19/2022] Open
Abstract
We explore the evolutionary origins of dosage compensation (DC) in sex chromosomes in the context of metabolic control theory. We consider first the cost of gene loss (hemizygosity) per se in reducing flux, and examine two relationships between flux and fitness (linear and Gaussian) to calculate a fitness cost of hemizygosity. Recognizing that new sex chromosomes are derived from autosomes, we also calculate the cost of unmasking deleterious mutations segregating on the nascent sex chromosomes as loci become hemizygous. The importance of deleterious mutations to the fitness cost of hemizygosity depends on their frequency, and on the relative costs of halving gene dose for wild-type alleles. We then consider the evolution of DC in response to gene loss, and include a cost of overexpression (i.e., DC such that expression exceeds the wild-type homozygote). Even with costs to excess flux, hypomorphic mutations can cause the optimal level of DC to be higher than 2-fold when the absolute cost of hemizygosity is small. Finally, we propose a three-step model of DC evolution: 1) once recombination ceases and the Y begins to deteriorate, genes from longer metabolic pathways should be lost first, as halving these genes does not drastically reduce flux or, thereby, fitness; 2) both the cost of hemizygosity and the presence of hypomorphic mutations will drive an increase in expression, that is, DC; 3) existing DC will now permit loss of genes in short pathways.
Collapse
Affiliation(s)
- David W Hall
- Department of Genetics, University of Georgia, GA, USA.
| | | |
Collapse
|
100
|
Singh PP, Affeldt S, Cascone I, Selimoglu R, Camonis J, Isambert H. On the expansion of "dangerous" gene repertoires by whole-genome duplications in early vertebrates. Cell Rep 2012; 2:1387-98. [PMID: 23168259 DOI: 10.1016/j.celrep.2012.09.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 09/17/2012] [Accepted: 09/27/2012] [Indexed: 10/27/2022] Open
Abstract
The emergence and evolutionary expansion of gene families implicated in cancers and other severe genetic diseases is an evolutionary oddity from a natural selection perspective. Here, we show that gene families prone to deleterious mutations in the human genome have been preferentially expanded by the retention of "ohnolog" genes from two rounds of whole-genome duplication (WGD) dating back from the onset of jawed vertebrates. We further demonstrate that the retention of many ohnologs suspected to be dosage balanced is in fact indirectly mediated by their susceptibility to deleterious mutations. This enhanced retention of "dangerous" ohnologs, defined as prone to autosomal-dominant deleterious mutations, is shown to be a consequence of WGD-induced speciation and the ensuing purifying selection in post-WGD species. These findings highlight the importance of WGD-induced nonadaptive selection for the emergence of vertebrate complexity, while rationalizing, from an evolutionary perspective, the expansion of gene families frequently implicated in genetic disorders and cancers.
Collapse
Affiliation(s)
- Param Priya Singh
- CNRS UMR168, UPMC, Institut Curie, Research Center, 26, rue d'Ulm, 75248 Paris, France
| | | | | | | | | | | |
Collapse
|