51
|
Banerjee S, Mudliar S, Sen R, Giri B, Satpute D, Chakrabarti T, Pandey R. Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. BIOFUELS, BIOPRODUCTS AND BIOREFINING 2010; 4:77-93. [PMID: 0 DOI: 10.1002/bbb.188] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
52
|
Xu J, Thomsen MH, Thomsen AB. Investigation of acetic acid-catalyzed hydrothermal pretreatment on corn stover. Appl Microbiol Biotechnol 2009; 86:509-16. [DOI: 10.1007/s00253-009-2340-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/13/2009] [Accepted: 11/02/2009] [Indexed: 10/20/2022]
|
53
|
Jebaraj CS, Raghukumar C, Behnke A, Stoeck T. Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiol Ecol 2009; 71:399-412. [PMID: 20002178 DOI: 10.1111/j.1574-6941.2009.00804.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In order to study fungal diversity in oxygen minimum zones of the Arabian Sea, we analyzed 1440 cloned small subunit rRNA gene (18S rRNA gene) sequences obtained from environmental samples using three different PCR primer sets. Restriction fragment length polymorphism (RFLP) analyses yielded 549 distinct RFLP patterns, 268 of which could be assigned to fungi (Dikarya and zygomycetes) after sequence analyses. The remaining 281 RFLP patterns represented a variety of nonfungal taxa, even when using putatively fungal-specific primers. A substantial number of fungal sequences were closely related to environmental sequences from a range of other anoxic marine habitats, but distantly related to known sequences of described fungi. Community similarity analyses suggested distinctively different structures of fungal communities from normoxic sites, seasonally anoxic sites and permanently anoxic sites, suggesting different adaptation strategies of fungal communities to prevailing oxygen conditions. Additionally, we obtained 26 fungal cultures from the study sites, most of which were closely related (>97% sequence similarity) to well-described Dikarya. This indicates that standard cultivation mainly produces more of what is already known. However, two of these cultures were highly divergent to known sequences and seem to represent novel fungal groups on high taxonomic levels. Interestingly, none of the cultured isolates is identical to any of the environmental sequences obtained. Our study demonstrates the importance of a multiple-primer approach combined with cultivation to obtain deeper insights into the true fungal diversity in environmental samples and to enable adequate intersample comparisons of fungal communities.
Collapse
Affiliation(s)
- Cathrine S Jebaraj
- National Institute of Oceanography (Council of Scientific and Industrial Research), Dona Paula, Goa, India
| | | | | | | |
Collapse
|
54
|
Çakar ZP, Alkım C, Turanlı B, Tokman N, Akman S, Sarıkaya M, Tamerler C, Benbadis L, François JM. Isolation of cobalt hyper-resistant mutants of Saccharomyces cerevisiae by in vivo evolutionary engineering approach. J Biotechnol 2009; 143:130-8. [DOI: 10.1016/j.jbiotec.2009.06.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 06/21/2009] [Accepted: 06/25/2009] [Indexed: 10/20/2022]
|
55
|
Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 2009; 84:37-53. [DOI: 10.1007/s00253-009-2101-x] [Citation(s) in RCA: 272] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/18/2009] [Accepted: 06/18/2009] [Indexed: 12/20/2022]
|
56
|
Bertilsson M, Olofsson K, Lidén G. Prefermentation improves xylose utilization in simultaneous saccharification and co-fermentation of pretreated spruce. BIOTECHNOLOGY FOR BIOFUELS 2009; 2:8. [PMID: 19356227 PMCID: PMC2671495 DOI: 10.1186/1754-6834-2-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 04/08/2009] [Indexed: 05/13/2023]
Abstract
BACKGROUND Simultaneous saccharification and fermentation (SSF) is a promising process option for ethanol production from lignocellulosic materials. However, both the overall ethanol yield and the final ethanol concentration in the fermentation broth must be high. Hence, almost complete conversion of both hexoses and pentoses must be achieved in SSF at a high solid content. A principal difficulty is to obtain an efficient pentose uptake in the presence of high glucose and inhibitor concentrations. Initial glucose present in pretreated spruce decreases the xylose utilization by yeast, due to competitive inhibition of sugar transport. In the current work, prefermentation was studied as a possible means to overcome the problem of competitive inhibition. The free hexoses, initially present in the slurry, were in these experiments fermented before adding the enzymes, thereby lowering the glucose concentration. RESULTS This work shows that a high degree of xylose conversion and high ethanol yields can be achieved in SSF of pretreated spruce with a xylose fermenting strain of Saccharomyces cerevisiae (TMB3400) at 7% and 10% water insoluble solids (WIS). Prefermentation and fed-batch operation, both separately and in combination, improved xylose utilization. Up to 77% xylose utilization and 85% of theoretical ethanol yield (based on total sugars), giving a final ethanol concentration of 45 g L-1, were obtained in fed-batch SSF at 10% WIS when prefermentation was applied. CONCLUSION Clearly, the mode of fermentation has a high impact on the xylose conversion by yeast in SSF. Prefermentation enhances xylose uptake most likely because of the reduced transport inhibition, in both batch and fed-batch operation. The process significance of this will be even greater for xylose-rich feedstocks.
Collapse
Affiliation(s)
- Magnus Bertilsson
- Department of Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Kim Olofsson
- Department of Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
57
|
Matsushika A, Inoue H, Murakami K, Takimura O, Sawayama S. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2009; 100:2392-2398. [PMID: 19128960 DOI: 10.1016/j.biortech.2008.11.047] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Revised: 11/26/2008] [Accepted: 11/26/2008] [Indexed: 05/27/2023]
Abstract
In this study, five recombinant Saccharomyces cerevisiae strains were compared for their xylose-fermenting ability. The most efficient xylose-to-ethanol fermentation was found by using the industrial strain MA-R4, in which the genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis along with an endogenous xylulokinase gene were expressed by chromosomal integration of the flocculent yeast strain IR-2. The MA-R4 strain rapidly converted xylose to ethanol with a low xylitol yield. Furthermore, the MA-R4 strain had the highest ethanol production when fermenting not only a mixture of glucose and xylose, but also mixed sugars in the detoxified hydrolysate of wood chips. These results collectively suggest that MA-R4 may be a suitable recombinant strain for further study into large-scale ethanol production from mixed sugars present in lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Akinori Matsushika
- Biomass Technology Research Center (BTRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-2-2 Hirosuehiro, Kure, Hiroshima 737-0197, Japan.
| | | | | | | | | |
Collapse
|
58
|
Tang YJ, Sapra R, Joyner D, Hazen TC, Myers S, Reichmuth D, Blanch H, Keasling JD. Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanol-tolerantGeobacillusstrain. Biotechnol Bioeng 2009; 102:1377-86. [DOI: 10.1002/bit.22181] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
59
|
Efficient bioethanol production by a recombinant flocculent Saccharomyces cerevisiae strain with a genome-integrated NADP+-dependent xylitol dehydrogenase gene. Appl Environ Microbiol 2009; 75:3818-22. [PMID: 19329659 DOI: 10.1128/aem.02636-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recombinant industrial Saccharomyces cerevisiae strain MA-R5 was engineered to express NADP(+)-dependent xylitol dehydrogenase using the flocculent yeast strain IR-2, which has high xylulose-fermenting ability, and both xylose consumption and ethanol production remarkably increased. Furthermore, the MA-R5 strain produced the highest ethanol yield (0.48 g/g) from nonsulfuric acid hydrolysate of wood chips.
Collapse
|
60
|
Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST). Proc Natl Acad Sci U S A 2009; 106:1368-73. [PMID: 19164763 DOI: 10.1073/pnas.0812364106] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Current technology using corn stover (CS) as feedstock, Ammonia Fiber Expansion (AFEX) as the pretreatment technology, and Saccharomyces cerevisiae 424A(LNH-ST) as the ethanologenic strain in Separate Hydrolysis and Fermentation was able to achieve 191.5 g EtOH/kg untreated CS, at an ethanol concentration of 40.0 g/L (5.1 vol/vol%) without washing of pretreated biomass, detoxification, or nutrient supplementation. Enzymatic hydrolysis at high solids loading was identified as the primary bottleneck affecting overall ethanol yield and titer. Degradation compounds in AFEX-pretreated biomass were shown to increase metabolic yield and specific ethanol production while decreasing the cell biomass generation. Nutrients inherently present in CS and those resulting from biomass processing are sufficient to support microbial growth during fermentation. This platform offers the potential to improve the economics of cellulosic ethanol production by reducing the costs associated with raw materials, process water, and capital equipment.
Collapse
|
61
|
Bengtsson O, Jeppsson M, Sonderegger M, Parachin NS, Sauer U, Hahn-Hägerdal B, Gorwa-Grauslund MF. Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering. Yeast 2009; 25:835-47. [PMID: 19061191 DOI: 10.1002/yea.1638] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Four recombinant Saccharomyces cerevisiae strains with enhanced xylose growth (TMB3400, C1, C5 and BH42) were compared with two control strains (TMB3399, TMB3001) through genome-wide transcription analysis in order to identify novel targets for inverse metabolic engineering. A subset of 13 genes with changed expression levels in all improved strains was selected for further analysis. Thirteen validation strains and two reference strains were constructed to investigate the effect of overexpressing or deleting these genes in xylose-utilizing S. cerevisiae. Improved aerobic growth rates on xylose were observed in five cases. The strains overexpressing SOL3 and TAL1 grew 19% and 24% faster than their reference strain, and the strains carrying deletions of YLR042C, MNI1 or RPA49 grew 173%, 62% and 90% faster than their reference strain.
Collapse
Affiliation(s)
- Oskar Bengtsson
- Department of Applied Microbiology, Lund University, PO Box 124, 221 00 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
62
|
|
63
|
Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells. Appl Microbiol Biotechnol 2008; 80:655-64. [DOI: 10.1007/s00253-008-1588-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Revised: 05/30/2008] [Accepted: 06/17/2008] [Indexed: 11/25/2022]
|
64
|
Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2008; 81:243-55. [PMID: 18751695 DOI: 10.1007/s00253-008-1649-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 07/31/2008] [Accepted: 08/03/2008] [Indexed: 11/27/2022]
Abstract
A recombinant Saccharomyces cerevisiae strain transformed with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from Pichia stipitis has the ability to convert xylose to ethanol together with the unfavorable excretion of xylitol, which may be due to cofactor imbalance between NADPH-preferring XR and NAD(+)-dependent XDH. To reduce xylitol formation, we have already generated several XDH mutants with a reversal of coenzyme specificity toward NADP(+). In this study, we constructed a set of recombinant S. cerevisiae strains with xylose-fermenting ability, including protein-engineered NADP(+)-dependent XDH-expressing strains. The most positive effect on xylose-to-ethanol fermentation was found by using a strain named MA-N5, constructed by chromosomal integration of the gene for NADP(+)-dependent XDH along with XR and endogenous xylulokinase genes. The MA-N5 strain had an increase in ethanol production and decrease in xylitol excretion compared with the reference strain expressing wild-type XDH when fermenting not only xylose but also mixed sugars containing glucose and xylose. Furthermore, the MA-N5 strain produced ethanol with a high yield of 0.49 g of ethanol/g of total consumed sugars in the nonsulfuric acid hydrolysate of wood chips. The results demonstrate that glucose and xylose present in the lignocellulosic hydrolysate can be efficiently fermented by this redox-engineered strain.
Collapse
|
65
|
Heer D, Sauer U. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb Biotechnol 2008; 1:497-506. [PMID: 21261870 PMCID: PMC3815291 DOI: 10.1111/j.1751-7915.2008.00050.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The production of fuel ethanol from low‐cost lignocellulosic biomass currently suffers from several limitations. One of them is the presence of inhibitors in lignocellulosic hydrolysates that are released during pre‐treatment. These compounds inhibit growth and hamper the production of ethanol, thereby affecting process economics. To delineate the effects of such complex mixtures, we conducted a chemical analysis of four different real‐world lignocellulosic hydrolysates and determined their toxicological effect on yeast. By correlating the potential inhibitor abundance to the growth‐inhibiting properties of the corresponding hydrolysates, we identified furfural as an important contributor to hydrolysate toxicity for yeast. Subsequently, we conducted a targeted evolution experiment to improve growth behaviour of the half industrial Saccharomyces cerevisiae strain TMB3400 in the hydrolysates. After about 300 generations, representative clones from these evolved populations exhibited significantly reduced lag phases in medium containing the single inhibitor furfural, but also in hydrolysate‐supplemented medium. Furthermore, these strains were able to grow at concentrations of hydrolysates that effectively killed the parental strain and exhibited significantly improved bioconversion characteristics under industrially relevant conditions. The improved resistance of our evolved strains was based on their capacity to remain viable in a toxic environment during the prolonged, furfural induced lag phase.
Collapse
Affiliation(s)
- Dominik Heer
- ETH Zurich, Institute of Molecular Systems Biology, Zurich, Switzerland
| | | |
Collapse
|
66
|
Fischer CR, Klein-Marcuschamer D, Stephanopoulos G. Selection and optimization of microbial hosts for biofuels production. Metab Eng 2008; 10:295-304. [PMID: 18655844 DOI: 10.1016/j.ymben.2008.06.009] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Accepted: 06/20/2008] [Indexed: 11/25/2022]
Abstract
Currently, the predominant microbially produced biofuel is starch- or sugar-derived ethanol. However, ethanol is not an ideal fuel molecule, and lignocellulosic feedstocks are considerably more abundant than both starch and sugar. Thus, many improvements in both the feedstock and the fuel have been proposed. In this paper, we examine the prospects for bioproduction of four second-generation biofuels (n-butanol, 2-butanol, terpenoids, or higher lipids) from four feedstocks (sugars and starches, lignocellulosics, syngas, and atmospheric carbon dioxide). The principal obstacle to commercial production of these fuels is that microbial catalysts of robust yields, productivities, and titers have yet to be developed. Suitable microbial hosts for biofuel production must tolerate process stresses such as end-product toxicity and tolerance to fermentation inhibitors in order to achieve high yields and titers. We tested seven fast-growing host organisms for tolerance to production stresses, and discuss several metabolic engineering strategies for the improvement of biofuels production.
Collapse
Affiliation(s)
- Curt R Fischer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Room 56-469, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
67
|
Modig T, Almeida JRM, Gorwa-Grauslund MF, Lidén G. Variability of the response of Saccharomyces cerevisiae strains to lignocellulose hydrolysate. Biotechnol Bioeng 2008; 100:423-9. [PMID: 18438882 DOI: 10.1002/bit.21789] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The development of tolerant microorganisms is needed for the efficient fermentation of inhibitory lignocellulose hydrolysates. In the current work, the fermentation performance of six selected strains of Saccharomyces cerevisiae in dilute-acid spruce hydrolysate was compared using two different modes of fermentation; either single pulse addition of hydrolysate to exponentially growing cells or continuous feeding of the same amount of hydrolysate in a controlled fed-batch fermentation was made. All strains performed better in fed-batch mode than when all hydrolysate was added at once. However, the difference between strain performances varied significantly in the two fermentation modes. Large differences were observed between strains during the fed-batch experiments in the in vitro ability to reduce the furan compounds furfural and 5-hydroxymethyl furfural (HMF). A common feature among the strains was the induction of NADPH-coupled reduction of furfural and HMF, with the exception of strain CBS 8066. This strain also performed relatively poorly in both batch and fed-batch fermentations. Strain TMB3000--previously isolated from spent sulphite liquor fermentation--was by far the most efficient strain with respect to specific fermentation rate in both pulse addition and fed-batch mode. This strain was the only strain showing a significant constitutive NADH-coupled in vitro reduction of HMF. The ability to induce NADPH-coupled reduction together with the level of the apparently constitutive NADH-coupled reduction appeared to be key factors for selecting a suitable strain for fed-batch conversion of lignocellulose hydrolysate.
Collapse
Affiliation(s)
- Tobias Modig
- Department of Chemical Engineering, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
68
|
Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant. Appl Environ Microbiol 2008; 74:1748-56. [PMID: 18245248 DOI: 10.1128/aem.00186-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The construction of Saccharomyces cerevisiae strains that ferment lactose has biotechnological interest, particularly for cheese whey fermentation. A flocculent lactose-consuming S. cerevisiae recombinant expressing the LAC12 (lactose permease) and LAC4 (beta-galactosidase) genes of Kluyveromyces lactis was constructed previously but showed poor efficiency in lactose fermentation. This strain was therefore subjected to an evolutionary engineering process (serial transfer and dilution in lactose medium), which yielded an evolved recombinant strain that consumed lactose twofold faster, producing 30% more ethanol than the original recombinant. We identified two molecular events that targeted the LAC construct in the evolved strain: a 1,593-bp deletion in the intergenic region (promoter) between LAC4 and LAC12 and a decrease of the plasmid copy number by about 10-fold compared to that in the original recombinant. The results suggest that the intact promoter was unable to mediate the induction of the transcription of LAC4 and LAC12 by lactose in the original recombinant and that the deletion established the transcriptional induction of both genes in the evolved strain. We propose that the tuning of the expression of the heterologous LAC genes in the evolved recombinant was accomplished by the interplay between the decreased copy number of both genes and the different levels of transcriptional induction for LAC4 and LAC12 resulting from the changed promoter structure. Nevertheless, our results do not exclude other possible mutations that may have contributed to the improved lactose fermentation phenotype. This study illustrates the usefulness of simple evolutionary engineering approaches in strain improvement. The evolved strain efficiently fermented threefold-concentrated cheese whey, providing an attractive alternative for the fermentation of lactose-based media.
Collapse
|
69
|
Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermentingSaccharomyces cerevisiae strains. Biotechnol Bioeng 2008; 100:1122-31. [DOI: 10.1002/bit.21849] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
70
|
Panagiotou G, Olsson L. Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol Bioeng 2007; 96:250-8. [PMID: 16865730 DOI: 10.1002/bit.21100] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the process of producing ethanol from lignocellulosic materials such as wheat straw, compounds that can act inhibitory to enzymatic hydrolysis and to cellular growth may be generated during the pretreatment. Ethanol production was evaluated on pretreated wheat straw hydrolysate using four different recombinant Saccharomyces cerevisiae strains, CPB.CR4, CPB.CB4, F12, and FLX. The fermentation performance of the four S. cerevisiae strains was tested in hydrolysate of wheat straw that has been pretreated at high dry matter content (220 g/L dry matter). The results clearly showed that F12 was the most robust strain, whereas the other three strains were strongly inhibited when the fraction of hydrolysate in the fermentation medium was higher than 60% (v/v). Furthermore, the impact of different lignin derivatives commonly found in the hydrolysate of pretreated wheat straw, was tested on two different enzyme mixtures, a mixture of Celluclast 1.5 L FG and Novozym 188 (3:1) and one crude enzyme preparation produced from Penicillium brasilianum IBT 20888. From all the potential inhibiting compounds that were tested, formic acid had the most severe influence on the hydrolysis rate resulting in a complete inactivation of the two enzyme mixtures.
Collapse
Affiliation(s)
- Gianni Panagiotou
- Center for Microbial Biotechnology, BioCentrum-DTU, Building 223, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | |
Collapse
|
71
|
Kristensen JB, Börjesson J, Bruun MH, Tjerneld F, Jørgensen H. Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.07.014] [Citation(s) in RCA: 260] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
72
|
Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF. Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 2007; 74:937-53. [PMID: 17294186 DOI: 10.1007/s00253-006-0827-2] [Citation(s) in RCA: 369] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/21/2006] [Accepted: 12/25/2006] [Indexed: 10/23/2022]
Abstract
Production of bioethanol from forest and agricultural products requires a fermenting organism that converts all types of sugars in the raw material to ethanol in high yield and with a high rate. This review summarizes recent research aiming at developing industrial strains of Saccharomyces cerevisiae with the ability to ferment all lignocellulose-derived sugars. The properties required from the industrial yeast strains are discussed in relation to four benchmarks: (1) process water economy, (2) inhibitor tolerance, (3) ethanol yield, and (4) specific ethanol productivity. Of particular importance is the tolerance of the fermenting organism to fermentation inhibitors formed during fractionation/pretreatment and hydrolysis of the raw material, which necessitates the use of robust industrial strain background. While numerous metabolic engineering strategies have been developed in laboratory yeast strains, only a few approaches have been realized in industrial strains. The fermentation performance of the existing industrial pentose-fermenting S. cerevisiae strains in lignocellulose hydrolysate is reviewed. Ethanol yields of more than 0.4 g ethanol/g sugar have been achieved with several xylose-fermenting industrial strains such as TMB 3400, TMB 3006, and 424A(LNF-ST), carrying the heterologous xylose utilization pathway consisting of xylose reductase and xylitol dehydrogenase, which demonstrates the potential of pentose fermentation in improving lignocellulosic ethanol production.
Collapse
Affiliation(s)
- Bärbel Hahn-Hägerdal
- Department of Applied Microbiology, Lund University, PO Box 124, Lund 22100, Sweden.
| | | | | | | | | |
Collapse
|
73
|
Karhumaa K, Sanchez RG, Hahn-Hägerdal B, Gorwa-Grauslund MF. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact 2007; 6:5. [PMID: 17280608 PMCID: PMC1797182 DOI: 10.1186/1475-2859-6-5] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 02/05/2007] [Indexed: 11/28/2022] Open
Abstract
Background Two heterologous pathways have been used to construct recombinant xylose-fermenting Saccharomyces cerevisiae strains: i) the xylose reductase (XR) and xylitol dehydrogenase (XDH) pathway and ii) the xylose isomerase (XI) pathway. In the present study, the Pichia stipitis XR-XDH pathway and the Piromyces XI pathway were compared in an isogenic strain background, using a laboratory host strain with genetic modifications known to improve xylose fermentation (overexpressed xylulokinase, overexpressed non-oxidative pentose phosphate pathway and deletion of the aldose reductase gene GRE3). The two isogenic strains and the industrial xylose-fermenting strain TMB 3400 were studied regarding their xylose fermentation capacity in defined mineral medium and in undetoxified lignocellulosic hydrolysate. Results In defined mineral medium, the xylose consumption rate, the specific ethanol productivity, and the final ethanol concentration were significantly higher in the XR- and XDH-carrying strain, whereas the highest ethanol yield was achieved with the strain carrying XI. While the laboratory strains only fermented a minor fraction of glucose in the undetoxified lignocellulose hydrolysate, the industrial strain TMB 3400 fermented nearly all the sugar available. Xylitol was formed by the XR-XDH-carrying strains only in mineral medium, whereas in lignocellulose hydrolysate no xylitol formation was detected. Conclusion Despite by-product formation, the XR-XDH xylose utilization pathway resulted in faster ethanol production than using the best presently reported XI pathway in the strain background investigated. The need for robust industrial yeast strains for fermentation of undetoxified spruce hydrolysates was also confirmed.
Collapse
Affiliation(s)
- Kaisa Karhumaa
- Department of Applied Microbiology, Lund University, P.O.Box 124, SE-22100 Lund, Sweden
| | - Rosa Garcia Sanchez
- Department of Applied Microbiology, Lund University, P.O.Box 124, SE-22100 Lund, Sweden
| | - Bärbel Hahn-Hägerdal
- Department of Applied Microbiology, Lund University, P.O.Box 124, SE-22100 Lund, Sweden
| | | |
Collapse
|
74
|
Hahn-Hägerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007; 108:147-77. [PMID: 17846723 DOI: 10.1007/10_2007_062] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The introduction of pentose utilization pathways in baker's yeast Saccharomyces cerevisiae is summarized together with metabolic engineering strategies to improve ethanolic pentose fermentation. Bacterial and fungal xylose and arabinose pathways have been expressed in S. cerevisiae but do not generally convey significant ethanolic fermentation traits to this yeast. A large number of rational metabolic engineering strategies directed among others toward sugar transport, initial pentose conversion, the pentose phosphate pathway, and the cellular redox metabolism have been exploited. The directed metabolic engineering approach has often been combined with random approaches including adaptation, mutagenesis, and hybridization. The knowledge gained about pentose fermentation in S. cerevisiae is primarily limited to genetically and physiologically well-characterized laboratory strains. The translation of this knowledge to strains performing in an industrial context is discussed.
Collapse
|
75
|
van Zyl WH, Lynd LR, den Haan R, McBride JE. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007; 108:205-35. [PMID: 17846725 DOI: 10.1007/10_2007_061] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Consolidated bioprocessing (CBP) of lignocellulose to bioethanol refers to the combining of the four biological events required for this conversion process (production of saccharolytic enzymes, hydrolysis of the polysaccharides present in pretreated biomass, fermentation of hexose sugars, and fermentation of pentose sugars) in one reactor. CBP is gaining increasing recognition as a potential breakthrough for low-cost biomass processing. Although no natural microorganism exhibits all the features desired for CBP, a number of microorganisms, both bacteria and fungi, possess some of the desirable properties. This review focuses on progress made toward the development of baker's yeast (Saccharomyces cerevisiae) for CBP. The current status of saccharolytic enzyme (cellulases and hemicellulases) expression in S. cerevisiae to complement its natural fermentative ability is highlighted. Attention is also devoted to the challenges ahead to integrate all required enzymatic activities in an industrial S. cerevisiae strain(s) and the need for molecular and selection strategies pursuant to developing a yeast capable of CBP.
Collapse
Affiliation(s)
- Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, 7602, Matieland, South Africa.
| | | | | | | |
Collapse
|
76
|
Attfield PV, Bell PJL. Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Res 2006; 6:862-8. [PMID: 16911508 DOI: 10.1111/j.1567-1364.2006.00098.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
According to scientific dogma, Saccharomyces cerevisiae cannot grow utilizing xylose as a sole carbon source. Although recombinant DNA technology has overcome this deficiency to some degree, efficient utilization of xylose appears to require complex global changes in gene expression. This complexity provides a significant challenge to the development of yeasts suitable for the utilization of xylose-rich lignocellulosic substrates. In contrast to the dogma, we have found that native strains of S. cerevisiae can grow on xylose as a sole carbon source, albeit very slowly. This observation provided the basis for a new approach using natural selection to develop strains of S. cerevisiae with improved ability to utilize xylose. By applying natural selection and breeding over an extended period, we have developed S. cerevisiae strains that can double in less than 6 h using xylose as a sole carbon source. Strains with improved growth rate possessed increased xylose reductase and xylitol dehydrogenase activities, with the latter showing the greater improvement. This unique, completely nonrecombinant approach to developing xylose-utilizing strains of S. cerevisiae opens an alternative route to the development of yeast that can fully utilize lignocellulosic substrates.
Collapse
Affiliation(s)
- Paul V Attfield
- Microbiogen Pty Ltd., Macquarie University Campus, Sydney, New South Wales, Australia.
| | | |
Collapse
|
77
|
van Maris AJA, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MAH, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie van Leeuwenhoek 2006; 90:391-418. [PMID: 17033882 DOI: 10.1007/s10482-006-9085-7] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 05/11/2006] [Indexed: 11/25/2022]
Abstract
Fuel ethanol production from plant biomass hydrolysates by Saccharomyces cerevisiae is of great economic and environmental significance. This paper reviews the current status with respect to alcoholic fermentation of the main plant biomass-derived monosaccharides by this yeast. Wild-type S. cerevisiae strains readily ferment glucose, mannose and fructose via the Embden-Meyerhof pathway of glycolysis, while galactose is fermented via the Leloir pathway. Construction of yeast strains that efficiently convert other potentially fermentable substrates in plant biomass hydrolysates into ethanol is a major challenge in metabolic engineering. The most abundant of these compounds is xylose. Recent metabolic and evolutionary engineering studies on S. cerevisiae strains that express a fungal xylose isomerase have enabled the rapid and efficient anaerobic fermentation of this pentose. L: -Arabinose fermentation, based on the expression of a prokaryotic pathway in S. cerevisiae, has also been established, but needs further optimization before it can be considered for industrial implementation. In addition to these already investigated strategies, possible approaches for metabolic engineering of galacturonic acid and rhamnose fermentation by S. cerevisiae are discussed. An emerging and major challenge is to achieve the rapid transition from proof-of-principle experiments under 'academic' conditions (synthetic media, single substrates or simple substrate mixtures, absence of toxic inhibitors) towards efficient conversion of complex industrial substrate mixtures that contain synergistically acting inhibitors.
Collapse
Affiliation(s)
- Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628, BC, Delft, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Huber GW, Iborra S, Corma A. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chem Rev 2006; 106:4044-98. [PMID: 16967928 DOI: 10.1021/cr068360d] [Citation(s) in RCA: 3174] [Impact Index Per Article: 167.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- George W Huber
- Instituto de Tecnología Químicia, UPV-CSIC, Universidad Politénica de Valencia, Avda. de los Naranjos, s/n, Valencia, Spain
| | | | | |
Collapse
|
79
|
Jeffries TW. Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 2006; 17:320-6. [PMID: 16713243 DOI: 10.1016/j.copbio.2006.05.008] [Citation(s) in RCA: 255] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/25/2006] [Accepted: 05/05/2006] [Indexed: 01/11/2023]
Abstract
Technologies for the production of alternative fuels are receiving increased attention owing to concerns over the rising cost of petrol and global warming. One such technology under development is the use of yeasts for the commercial fermentation of xylose to ethanol. Several approaches have been employed to engineer xylose metabolism. These involve modeling, flux analysis, and expression analysis followed by the targeted deletion or altered expression of key genes. Expression analysis is increasingly being used to target rate-limiting steps. Quantitative metabolic models have also proved extremely useful: they can be calculated from stoichiometric balances or inferred from the labeling of intermediate metabolites. The recent determination of the genome sequence for P. stipitis is important, as its genome characteristics and regulatory patterns could serve as guides for further development in this natural xylose-fermenting yeast or in engineered Saccharomyces cerevisiae. Lastly, strain selection through mutagenesis, adaptive evolution or from nature can also be employed to further improve activity.
Collapse
Affiliation(s)
- Thomas W Jeffries
- USDA, Forest Service and University of Wisconsin - Madison, Forest Products Laboratory, 53726, USA.
| |
Collapse
|
80
|
Ohgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-Hägerdal B, Zacchi G. Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J Biotechnol 2006; 126:488-98. [PMID: 16828190 DOI: 10.1016/j.jbiotec.2006.05.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 04/20/2006] [Accepted: 05/04/2006] [Indexed: 11/22/2022]
Abstract
The two main sugars in the agricultural by-product corn stover are glucose and xylose. Co-fermentation of glucose and xylose at high content of water-insoluble solids (WIS) without detoxification is a prerequisite to obtain high ethanol concentration and to reduce production costs. A recombinant strain of Saccharomyces cerevisiae, TMB3400, was used in simultaneous saccharification and fermentation (SSF) of whole pretreated slurry of corn stover at high WIS. TMB3400 co-fermented glucose and xylose with relatively high ethanol yields giving high final ethanol concentration. The ethanol productivity increased with increasing concentration of pretreatment hydrolysate in the yeast production medium and when SSF was performed in a fed-batch mode.
Collapse
Affiliation(s)
- Karin Ohgren
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
81
|
Karhumaa K, Wiedemann B, Hahn-Hägerdal B, Boles E, Gorwa-Grauslund MF. Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb Cell Fact 2006; 5:18. [PMID: 16606456 PMCID: PMC1459190 DOI: 10.1186/1475-2859-5-18] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 04/10/2006] [Indexed: 11/17/2022] Open
Abstract
Background Fermentation of lignocellulosic biomass is an attractive alternative for the production of bioethanol. Traditionally, the yeast Saccharomyces cerevisiae is used in industrial ethanol fermentations. However, S. cerevisiae is naturally not able to ferment the pentose sugars D-xylose and L-arabinose, which are present in high amounts in lignocellulosic raw materials. Results We describe the engineering of laboratory and industrial S. cerevisiae strains to co-ferment the pentose sugars D-xylose and L-arabinose. Introduction of a fungal xylose and a bacterial arabinose pathway resulted in strains able to grow on both pentose sugars. Introduction of a xylose pathway into an arabinose-fermenting laboratory strain resulted in nearly complete conversion of arabinose into arabitol due to the L-arabinose reductase activity of the xylose reductase. The industrial strain displayed lower arabitol yield and increased ethanol yield from xylose and arabinose. Conclusion Our work demonstrates simultaneous co-utilization of xylose and arabinose in recombinant strains of S. cerevisiae. In addition, the co-utilization of arabinose together with xylose significantly reduced formation of the by-product xylitol, which contributed to improved ethanol production.
Collapse
Affiliation(s)
- Kaisa Karhumaa
- Department of Applied Microbiology, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Beate Wiedemann
- Institute of Molecular Biosciences Goethe-University Frankfurt am Main, Marie-Curie-Str. 9, D-60439 Frankfurt am Main, Germany
| | - Bärbel Hahn-Hägerdal
- Department of Applied Microbiology, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Eckhard Boles
- Institute of Molecular Biosciences Goethe-University Frankfurt am Main, Marie-Curie-Str. 9, D-60439 Frankfurt am Main, Germany
| | | |
Collapse
|
82
|
Abstract
Alternatives to petroleum-derived fuels are being sought in order to reduce the world's dependence on non-renewable resources. The most common renewable fuel today is ethanol derived from corn grain (starch) and sugar cane (sucrose). It is expected that there will be limits to the supply of these raw materials in the near future, therefore lignocellulosic biomass is seen as an attractive feedstock for future supplies of ethanol. However, there are technical and economical impediments to the development of a commercial processes utilizing biomass. Technologies are being developed that will allow cost-effective conversion of biomass into fuels and chemicals. These technologies include low-cost thermochemical pretreatment, highly effective cellulases and hemicellulases and efficient and robust fermentative microorganisms. Many advances have been made over the past few years that make commercialization more promising.
Collapse
Affiliation(s)
- Kevin A Gray
- Diversa Corporation, 4955 Directors Place, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
83
|
Tang Y, An M, Liu K, Nagai S, Shigematsu T, Morimura S, Kida K. Ethanol production from acid hydrolysate of wood biomass using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Process Biochem 2006. [DOI: 10.1016/j.procbio.2005.09.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
84
|
Katahira S, Mizuike A, Fukuda H, Kondo A. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 2006; 72:1136-43. [PMID: 16575564 DOI: 10.1007/s00253-006-0402-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 02/26/2006] [Accepted: 03/05/2006] [Indexed: 10/24/2022]
Abstract
The sulfuric acid hydrolysate of lignocellulosic biomass, such as wood chips, from the forest industry is an important material for fuel bioethanol production. In this study, we constructed a recombinant yeast strain that can ferment xylose and cellooligosaccharides by integrating genes for the intercellular expressions of xylose reductase and xylitol dehydrogenase from Pichia stipitis, and xylulokinase from Saccharomyces cerevisiae and a gene for displaying beta-glucosidase from Aspergillus acleatus on the cell surface. In the fermentation of the sulfuric acid hydrolysate of wood chips, xylose and cellooligosaccharides were completely fermented after 36 h by the recombinant strain, and then about 30 g/l ethanol was produced from 73 g/l total sugar added at the beginning. In this case, the ethanol yield of this recombinant yeast was much higher than that of the control yeast. These results demonstrate that the fermentation of the lignocellulose hydrolysate is performed efficiently by the recombinant Saccharomyces strain with abilities for xylose assimilation and cellooligosaccharide degradation.
Collapse
Affiliation(s)
- Satoshi Katahira
- Division of Molecular Science, Graduate School of Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | | | | | | |
Collapse
|
85
|
Hahn-Hägerdal B, Karhumaa K, Larsson CU, Gorwa-Grauslund M, Görgens J, van Zyl WH. Role of cultivation media in the development of yeast strains for large scale industrial use. Microb Cell Fact 2005; 4:31. [PMID: 16283927 PMCID: PMC1316877 DOI: 10.1186/1475-2859-4-31] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 11/10/2005] [Indexed: 12/03/2022] Open
Abstract
The composition of cultivation media in relation to strain development for industrial application is reviewed. Heterologous protein production and pentose utilization by Saccharomyces cerevisiae are used to illustrate the influence of media composition at different stages of strain construction and strain development. The effects of complex, defined and industrial media are compared. Auxotrophic strains and strain stability are discussed. Media for heterologous protein production and for bulk bio-commodity production are summarized.
Collapse
Affiliation(s)
| | - Kaisa Karhumaa
- Applied Microbiology, LTH/Lund University, P O Box 124, SE-221 00 Lund, Sweden
| | - Christer U Larsson
- Applied Microbiology, LTH/Lund University, P O Box 124, SE-221 00 Lund, Sweden
| | | | - Johann Görgens
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch
| |
Collapse
|
86
|
Cakar ZP, Seker UOS, Tamerler C, Sonderegger M, Sauer U. Evolutionary engineering of multiple-stress resistant. FEMS Yeast Res 2005; 5:569-78. [PMID: 15780656 DOI: 10.1016/j.femsyr.2004.10.010] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 10/14/2004] [Accepted: 10/15/2004] [Indexed: 11/19/2022] Open
Abstract
Various selection procedures in chemostats and batch cultures were systematically tested for their efficiency to select for a multiple-stress resistance phenotype in Saccharomyces cerevisiae. To determine the relative stress resistance phenotypes, mutant populations harvested at different time points and randomly chosen clones from selected populations were grown in batch cultures and exposed to oxidative, freezing-thawing, high-temperature and ethanol stress. For this purpose, we developed a high-throughput procedure in 96-well plates combined with a most-probable-number assay. Among all chemostat and batch selection strategies tested, the best selection strategy to obtain highly improved multiple-stress-resistant yeast was found to be batch selection for freezing-thawing stress. The final mutant populations selected for this particular stress were not only significantly improved in freezing-thawing stress resistance, but also in other stress resistances. The best isolated clone from these populations exhibited 102-, 89-, 62-, and 1429-fold increased resistance to freezing-thawing, temperature, ethanol, and oxidative stress, respectively. General selection guidelines for improving multiple-stress resistance in S. cerevisiae are presented and discussed.
Collapse
Affiliation(s)
- Z Petek Cakar
- Department of Molecular Biology and Genetics, Faculty of Science & Letters, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
87
|
Current awareness on yeast. Yeast 2005; 22:71-8. [PMID: 15685779 DOI: 10.1002/yea.1157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|