51
|
Corn DJ, Kim Y, Krebs MD, Mounts T, Molter J, Gerson S, Alsberg E, Dennis JE, Lee Z. Imaging early stage osteogenic differentiation of mesenchymal stem cells. J Orthop Res 2013; 31:871-9. [PMID: 23440976 DOI: 10.1002/jor.22328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/28/2013] [Indexed: 02/04/2023]
Abstract
Stem cells, such as mesenchymal stem cells (MSCs), contribute to bone fracture repair if they are delivered to the injury site. However, it is difficult to assess the retention and differentiation of these cells after implantation. Current options for non-invasively tracking the transplanted stem cells are limited. Cell-based therapies using MSCs would benefit greatly through the use of an imaging methodology that allows cells to be tracked in vivo and in a timely fashion. In this study, we implemented an in vivo imaging methodology to specifically track early events such as differentiation of implanted human MSCs (hMSCs). This system uses the collagen type 1 (Col1α1) promoter to drive expression of firefly luciferase (luc) in addition to a constitutively active promoter to drive the expression of green fluorescent protein (GFP). The resulting dual-promoter reporter gene system provides the opportunity for osteogenic differentiation-specific luc expression for in vivo imaging and constitutive expression of GFP for cell sorting. The function of this dual-promoter reporter gene was validated both in vitro and in vivo. In addition, the ability of this dual-promoter reporter system to image an early event of osteogenic differentiation of hMSCs was demonstrated in a murine segmental bone defect model in which reporter-labeled hMSCs were seeded into an alginate hydrogel scaffold and implanted directly into the defect. Bioluminescence imaging (BLI) was performed to visualize the turn-on of Col1α1 upon osteogenic differentiation and followed by X-ray imaging to assess the healing process for correlation with histological analyses.
Collapse
Affiliation(s)
- David J Corn
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, Ohio 44016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Matsa E, Dixon JE, Medway C, Georgiou O, Patel MJ, Morgan K, Kemp PJ, Staniforth A, Mellor I, Denning C. Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes. Eur Heart J 2013; 35:1078-87. [PMID: 23470493 PMCID: PMC3992427 DOI: 10.1093/eurheartj/eht067] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aims Long-QT syndromes (LQTS) are mostly autosomal-dominant congenital disorders associated with a 1:1000 mutation frequency, cardiac arrest, and sudden death. We sought to use cardiomyocytes derived from human-induced pluripotency stem cells (hiPSCs) as an in vitro model to develop and evaluate gene-based therapeutics for the treatment of LQTS. Methods and results We produced LQTS-type 2 (LQT2) hiPSC cardiomyocytes carrying a KCNH2 c.G1681A mutation in a IKr ion-channel pore, which caused impaired glycosylation and channel transport to cell surface. Allele-specific RNA interference (RNAi) directed towards the mutated KCNH2 mRNA caused knockdown, while leaving the wild-type mRNA unaffected. Electrophysiological analysis of patient-derived LQT2 hiPSC cardiomyocytes treated with mutation-specific siRNAs showed normalized action potential durations (APDs) and K+ currents with the concurrent rescue of spontaneous and drug-induced arrhythmias (presented as early-afterdepolarizations). Conclusions These findings provide in vitro evidence that allele-specific RNAi can rescue diseased phenotype in LQTS cardiomyocytes. This is a potentially novel route for the treatment of many autosomal-dominant-negative disorders, including those of the heart.
Collapse
Affiliation(s)
- Elena Matsa
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Vicentini FTMDC, Borgheti-Cardoso LN, Depieri LV, de Macedo Mano D, Abelha TF, Petrilli R, Bentley MVLB. Delivery systems and local administration routes for therapeutic siRNA. Pharm Res 2013; 30:915-31. [PMID: 23344907 PMCID: PMC7088712 DOI: 10.1007/s11095-013-0971-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 01/03/2013] [Indexed: 01/28/2023]
Abstract
With the increasing number of studies proposing new and optimal delivery strategies for the efficacious silencing of gene-related diseases by the local administration of siRNAs, the present review aims to provide a broad overview of the most important and latest developments of non-viral siRNA delivery systems for local administration. Moreover, the main disease targets for the local delivery of siRNA to specific tissues or organs, including the skin, the lung, the eye, the nervous system, the digestive system and the vagina, were explored.
Collapse
|
54
|
Ubuka T, Mizuno T, Fukuda Y, Bentley GE, Wingfield JC, Tsutsui K. RNA interference of gonadotropin-inhibitory hormone gene induces aggressive and sexual behaviors in birds. Gen Comp Endocrinol 2013; 181:179-86. [PMID: 23046601 DOI: 10.1016/j.ygcen.2012.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) was originally identified in the Japanese quail as a hypothalamic neuropeptide inhibitor of pituitary gonadotropin synthesis and release. GnIH neuronal fibers not only terminate in the median eminence to control anterior pituitary function but also extend widely in the brain, suggesting multiple roles in the regulation of behavior. To identify the role of GnIH neurons in the regulation of behavior, we tested the effect of RNA interference (RNAi) of the GnIH gene on aggressive and sexual behaviors of white-crowned sparrows and Japanese quail. Administration of small interfering RNA against GnIH precursor mRNA (GnIH siRNA) into the third ventricle of white-crowned sparrows reduced resting time, spontaneous production of complex vocalizations, and stimulated brief agonistic vocalizations. These behaviors resembled those of breeding birds during territorial defense. Central administration of GnIH siRNA induced aggressive and sexual behaviors and GnIH administration suppressed GnIH RNAi induced aggressive and sexual behaviors in the male quail. In summary, GnIH may function as a central nervous system suppressor of social interaction, thus playing an important role in the control of reproductive behavior, general aggression and territorial defense.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Department of Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan.
| | | | | | | | | | | |
Collapse
|
55
|
Nguyen K, Dang PN, Alsberg E. Functionalized, biodegradable hydrogels for control over sustained and localized siRNA delivery to incorporated and surrounding cells. Acta Biomater 2013; 9:4487-95. [PMID: 22902819 DOI: 10.1016/j.actbio.2012.08.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/08/2012] [Accepted: 08/08/2012] [Indexed: 01/08/2023]
Abstract
Currently, the most severe limitation to applying RNA interference technology is delivery, including localizing the molecules to a specific site of interest to target a specific cell population and sustaining the presentation of these molecules for a controlled period of time. In this study, we engineered a functionalized, biodegradable system created by covalent incorporation of cationic linear polyethyleneimine (LPEI) into photocrosslinked dextran (DEX) hydrogels through a biodegradable ester linkage. The key innovation of this system is that control over the sustained release of short interference RNA (siRNA) was achieved, as LPEI could electrostatically interact with siRNA to maintain siRNA within the hydrogels and degradation of the covalent ester linkages between the LPEI and the hydrogels led to tunable release of LPEI/siRNA complexes over time. The covalent conjugation of LPEI did not affect the swelling or degradation properties of the hydrogels, and the addition of siRNA and LPEI had minimal effect on their mechanical properties. These hydrogels exhibited low cytotoxicity against human embryonic kidney 293 cells (HEK293). The release profiles could be tailored by varying DEX (8 and 12% w/w) and LPEI (0, 5, 10 μg/100 μl gel) concentrations with nearly 100% cumulative release achieved at day 9 (8% w/w gel) and day 17 (12% w/w gel). The released siRNA exhibited high bioactivity with cells surrounding and inside the hydrogels over an extended time period. This controllable and sustained siRNA delivery hydrogel system that permits tailored siRNA release profiles may be valuable to guide cell fate for regenerative medicine and other therapeutic applications such as cancer treatment.
Collapse
|
56
|
Zhang L, Yin QH, Li JM, Huang HY, Wu Q, Mao ZW. Functionalization of dendritic polyethylene with cationic poly(p-phenylene ethynylene) enables efficient siRNA delivery for gene silencing. J Mater Chem B 2013; 1:2245-2251. [DOI: 10.1039/c3tb00480e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
57
|
Gelatin nanospheres incorporating siRNA for controlled intracellular release. Biomaterials 2012; 33:9097-104. [DOI: 10.1016/j.biomaterials.2012.08.032] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022]
|
58
|
Troiber C, Kasper JC, Milani S, Scheible M, Martin I, Schaubhut F, Küchler S, Rädler J, Simmel FC, Friess W, Wagner E. Comparison of four different particle sizing methods for siRNA polyplex characterization. Eur J Pharm Biopharm 2012; 84:255-64. [PMID: 23079135 DOI: 10.1016/j.ejpb.2012.08.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/02/2012] [Accepted: 08/22/2012] [Indexed: 10/27/2022]
Abstract
The ability to reliably determine the size of siRNA polyplexes is the key for the rational design of particles and their formulation, as well as, their safe application in vivo. At the moment, no standard technique for size measurements is available. Each method has different underlying principles and hence may give different results. Here, four different analytical methods were evaluated for their suitability to analyze the characteristics of homogeneous and heterogeneous siRNA polyplexes: dynamic light scattering (DLS), atomic force microscopy (AFM), nanoparticle trafficking analysis (NTA), and fluorescence correlation spectroscopy (FCS). Three different siRNA polyplex compositions generated with different, precise, and hydrophobically modified oligoaminoamides were used in this study. All of the evaluated methods were suitable for analysis of medium sized, homogeneous siRNA polyplexes (~120 nm). Small particles (<40 nm) could not be tracked with NTA, but with the other three methods. Heterogeneous polyplexes were generally difficult to analyze. Only by visualization with AFM, the heterogeneity of those polyplexes was observable. FCS was the only method suitable for measuring polyplex stability in 90% fetal bovine serum. Physico-chemical characteristics of polyplexes are important quality criterions for successful in vivo application and future formulation development. Therefore, a comprehensive analysis by more than one method is of particular importance.
Collapse
Affiliation(s)
- Christina Troiber
- Department of Pharmacy, Pharmaceutical Biotechnology, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Wang Y, Grainger DW. RNA therapeutics targeting osteoclast-mediated excessive bone resorption. Adv Drug Deliv Rev 2012; 64:1341-57. [PMID: 21945356 DOI: 10.1016/j.addr.2011.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/05/2011] [Indexed: 01/13/2023]
Abstract
RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing technique developed with dramatically increasing utility for both scientific and therapeutic purposes. Short interfering RNA (siRNA) is currently exploited to regulate protein expression relevant to many therapeutic applications, and commonly used as a tool for elucidating disease-associated genes. Osteoporosis and their associated osteoporotic fragility fractures in both men and women are rapidly becoming a global healthcare crisis as average life expectancy increases worldwide. New therapeutics are needed for this increasing patient population. This review describes the diversity of molecular targets suitable for RNAi-based gene knock down in osteoclasts to control osteoclast-mediated excessive bone resorption. We identify strategies for developing targeted siRNA delivery and efficient gene silencing, and describe opportunities and challenges of introducing siRNA as a therapeutic approach to hard and connective tissue disorders.
Collapse
|
60
|
Abstract
Gene therapy has long been regarded a promising treatment for many diseases, whether acquired (such as AIDS or cancer) or inherited through a genetic disorder. A drug based on a nucleic acid, however, must be delivered to the interior of the target cell while surviving an array of biological defenses honed by evolution. Successful gene therapy is thus dependent on the development of an efficient delivery vector. Researchers have pursued two major vehicles for gene delivery: viral and nonviral (synthetic) vectors. Although viral vectors currently offer greater efficiency, nonviral vectors, which are typically based on cationic lipids or polymers, are preferred because of safety concerns with viral vectors. So far, nonviral vectors can readily transfect cells in culture, but efficient nanomedicines remain far removed from the clinic. Overcoming the obstacles associated with nonviral vectors to improve the delivery efficiency and therapeutic effect of nucleic acids is thus an active area of current research. The difficulties are manifold, including the strong interaction of cationic delivery vehicles with blood components, uptake by the reticuloendothelial system (RES), toxicity, and managing the targeting ability of the carriers with respect to the cells of interest. Modifying the surface with poly(ethylene glycol), that is, PEGylation, is the predominant method used to reduce the binding of plasma proteins to nonviral vectors and minimize clearance by the RES after intravenous administration. Nanoparticles that are not rapidly cleared from the circulation accumulate in the tumors because of the enhanced permeability and retention effect, and the targeting ligands attached to the distal end of the PEGylated components allow binding to the receptors on the target cell surface. Neutral and anionic liposomes have been also developed for systemic delivery of nucleic acids in experimental animal models. Other approaches include (i) designing and synthesizing novel cationic lipids and polymers, (ii) chemically coupling the nucleic acid to peptides, targeting ligands, polymers, or environmentally sensitive moieties, and (iii) utilizing inorganic nanoparticles in nucleic acid delivery. Recently, the different classes of nonviral vectors appear to be converging, and the ability to combine features of different classes of nonviral vectors in a single strategy has emerged. With the strengths of several approaches working in concert, more hurdles associated with efficient nucleic acid delivery might therefore be overcome. In this Account, we focus on these novel nonviral vectors, which are classified as multifunctional hybrid nucleic acid vectors, novel membrane/core nanoparticles for nucleic acid delivery, and ultrasound-responsive nucleic acid vectors. We highlight systemic delivery studies and consider the future prospects for nucleic acid delivery. A better understanding of the fate of the nanoparticles inside the cell and of the interactions between the parts of hybrid particles should lead to a delivery system suitable for clinical use. We also underscore the value of sustained release of a nucleic acid in this endeavor; making vectors targeted to cells with sustained release in vivo should provide an interesting research challenge.
Collapse
Affiliation(s)
- Xia Guo
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Leaf Huang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
61
|
Ornelas-Megiatto C, Wich PR, Fréchet JMJ. Polyphosphonium polymers for siRNA delivery: an efficient and nontoxic alternative to polyammonium carriers. J Am Chem Soc 2012; 134:1902-5. [PMID: 22239619 DOI: 10.1021/ja207366k] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A water-soluble polyphosphonium polymer was synthesized and directly compared with its ammonium analog in terms of siRNA delivery. The triethylphosphonium polymer shows transfection efficiency up to 65% with 100% cell viability, whereas the best result obtained for the ammonium analog reaches only 25% transfection with 85% cell viability. Moreover, the nature of the alkyl substituents on the phosphonium cations is shown to have an important influence on the transfection efficiency and toxicity of the polyplexes. The present results show that the use of positively charged phosphonium groups is a worthy choice to achieve a good balance between toxicity and transfection efficiency in gene delivery systems.
Collapse
|
62
|
Ubuka T, Mukai M, Wolfe J, Beverly R, Clegg S, Wang A, Hsia S, Li M, Krause JS, Mizuno T, Fukuda Y, Tsutsui K, Bentley GE, Wingfield JC. RNA interference of gonadotropin-inhibitory hormone gene induces arousal in songbirds. PLoS One 2012; 7:e30202. [PMID: 22279571 PMCID: PMC3261185 DOI: 10.1371/journal.pone.0030202] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 12/12/2011] [Indexed: 11/20/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) was originally identified in quail as a hypothalamic neuropeptide inhibitor of pituitary gonadotropin synthesis and release. However, GnIH neuronal fibers do not only terminate in the median eminence to control anterior pituitary function but also extend widely in the brain, suggesting it has multiple roles in the regulation of behavior. To identify the role of GnIH neurons in the regulation of behavior, we investigated the effect of RNA interference (RNAi) of the GnIH gene on the behavior of white-crowned sparrows, a highly social songbird species. Administration of small interfering RNA against GnIH precursor mRNA into the third ventricle of male and female birds reduced resting time, spontaneous production of complex vocalizations, and stimulated brief agonistic vocalizations. GnIH RNAi further enhanced song production of short duration in male birds when they were challenged by playbacks of novel male songs. These behaviors resembled those of breeding birds during territorial defense. The overall results suggest that GnIH gene silencing induces arousal. In addition, the activities of male and female birds were negatively correlated with GnIH mRNA expression in the paraventricular nucleus. Density of GnIH neuronal fibers in the ventral tegmental area was decreased by GnIH RNAi treatment in female birds, and the number of gonadotropin-releasing hormone neurons that received close appositions of GnIH neuronal fiber terminals was negatively correlated with the activity of male birds. In summary, GnIH may decrease arousal level resulting in the inhibition of specific motivated behavior such as in reproductive contexts.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Department of Integrative Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Yau WWY, Rujitanaroj PO, Lam L, Chew SY. Directing stem cell fate by controlled RNA interference. Biomaterials 2011; 33:2608-28. [PMID: 22209557 DOI: 10.1016/j.biomaterials.2011.12.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 12/09/2011] [Indexed: 01/26/2023]
Abstract
Directing stem cell fate remains a major area of interest and also a hurdle to many, particularly in the field of regenerative medicine. Unfortunately, conventional methods of over-expressing inductive factors through the use of biochemical induction cocktails have led to sub-optimal outcomes. A potential alternative may be to adopt the opposite by selectively silencing genes or pathways that are pivotal to stem cell differentiation. Indeed, over recent years, there have been an increasing number of studies on directing stem cell fate through gene knockdown via RNA interference (RNAi). While the effectiveness of RNAi in controlling stem cell differentiation is evident from the myriad of studies, a chaotically vast collection of gene silencing targets have also been identified. Meanwhile, variations in methods of transfecting stem cells have also affected silencing efficiencies and the subsequent extent of stem cell differentiation. This review serves to unite the pioneers who have ventured into the emerging field of RNAi-enhanced stem cell differentiation by summarizing and evaluating the current approaches adopted in utilizing gene silencing to direct stem cell fate and their corresponding outcomes.
Collapse
Affiliation(s)
- Winifred Wing Yiu Yau
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | | | | | | |
Collapse
|
64
|
Nelson CE, Gupta MK, Adolph EJ, Shannon JM, Guelcher SA, Duvall CL. Sustained local delivery of siRNA from an injectable scaffold. Biomaterials 2011; 33:1154-61. [PMID: 22061489 DOI: 10.1016/j.biomaterials.2011.10.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 10/12/2011] [Indexed: 12/23/2022]
Abstract
Controlled gene silencing technologies have significant, unrealized potential for use in tissue regeneration applications. The design described herein provides a means to package and protect siRNA within pH-responsive, endosomolytic micellar nanoparticles (si-NPs) that can be incorporated into nontoxic, biodegradable, and injectable polyurethane (PUR) tissue scaffolds. The si-NPs were homogeneously incorporated throughout the porous PUR scaffolds, and they were shown to be released via a diffusion-based mechanism for over three weeks. The siRNA-loaded micelles were larger but retained nanoparticulate morphology of approximately 100 nm diameter following incorporation into and release from the scaffolds. PUR scaffold releasate collected in vitro in PBS at 37 °C for 1-4 days was able to achieve dose-dependent siRNA-mediated silencing with approximately 50% silencing achieved of the model gene GAPDH in NIH3T3 mouse fibroblasts. This promising platform technology provides both a research tool capable of probing the effects of local gene silencing and a potentially high-impact therapeutic approach for sustained, local silencing of deleterious genes within tissue defects.
Collapse
Affiliation(s)
- Christopher E Nelson
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235-1631, USA
| | | | | | | | | | | |
Collapse
|
65
|
Troiber C, Wagner E. Nucleic Acid Carriers Based on Precise Polymer Conjugates. Bioconjug Chem 2011; 22:1737-52. [DOI: 10.1021/bc200251r] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Christina Troiber
- Pharmaceutical Biotechnology, Center for System-based Drug Research and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 Munich, Germany
| |
Collapse
|
66
|
Zalachoras I, Evers MM, van Roon-Mom WMC, Aartsma-Rus AM, Meijer OC. Antisense-mediated RNA targeting: versatile and expedient genetic manipulation in the brain. Front Mol Neurosci 2011; 4:10. [PMID: 21811437 PMCID: PMC3142880 DOI: 10.3389/fnmol.2011.00010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 07/08/2011] [Indexed: 12/28/2022] Open
Abstract
A limiting factor in brain research still is the difficulty to evaluate in vivo the role of the increasing number of proteins implicated in neuronal processes. We discuss here the potential of antisense-mediated RNA targeting approaches. We mainly focus on those that manipulate splicing (exon skipping and exon inclusion), but will also briefly discuss mRNA targeting. Classic knockdown of expression by mRNA targeting is only one possible application of antisense oligonucleotides (AON) in the control of gene function. Exon skipping and inclusion are based on the interference of AONs with splicing of pre-mRNAs. These are powerful, specific and particularly versatile techniques, which can be used to circumvent pathogenic mutations, shift splice variant expression, knock down proteins, or to create molecular models using in-frame deletions. Pre-mRNA targeting is currently used both as a research tool, e.g., in models for motor neuron disease, and in clinical trials for Duchenne muscular dystrophy and amyotrophic lateral sclerosis. AONs are particularly promising in relation to brain research, as the modified AONs are taken up extremely fast in neurons and glial cells with a long residence, and without the need for viral vectors or other delivery tools, once inside the blood brain barrier. In this review we cover (1). The principles of antisense-mediated techniques, chemistry, and efficacy. (2) The pros and cons of AON approaches in the brain compared to other techniques of interfering with gene function, such as transgenesis and short hairpin RNAs, in terms of specificity of the manipulation, spatial, and temporal control over gene expression, toxicity, and delivery issues. (3) The potential applications for Neuroscience. We conclude that there is good evidence from animal studies that the central nervous system can be successfully targeted, but the potential of the diverse AON-based approaches appears to be under-recognized.
Collapse
Affiliation(s)
- Ioannis Zalachoras
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research Leiden, Netherlands
| | | | | | | | | |
Collapse
|
67
|
|