51
|
Özer E, Spöri C, Reier T, Strasser P. Iridium(1 1 1), Iridium(1 1 0), and Ruthenium(0 0 0 1) Single Crystals as Model Catalysts for the Oxygen Evolution Reaction: Insights into the Electrochemical Oxide Formation and Electrocatalytic Activity. ChemCatChem 2016. [DOI: 10.1002/cctc.201600423] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ebru Özer
- The Electrochemical Energy, Catalysis and Materials Science Laboratory; Department of Chemistry; Technical University Berlin; Straße des 17. Juni 124 10623 Berlin Germany
| | - Camillo Spöri
- The Electrochemical Energy, Catalysis and Materials Science Laboratory; Department of Chemistry; Technical University Berlin; Straße des 17. Juni 124 10623 Berlin Germany
| | - Tobias Reier
- The Electrochemical Energy, Catalysis and Materials Science Laboratory; Department of Chemistry; Technical University Berlin; Straße des 17. Juni 124 10623 Berlin Germany
| | - Peter Strasser
- The Electrochemical Energy, Catalysis and Materials Science Laboratory; Department of Chemistry; Technical University Berlin; Straße des 17. Juni 124 10623 Berlin Germany
- Ertl Center for Electrochemistry and Catalysis; Gwangju Institute of Science and Technology; Gwangju 500-712 South Korea
| |
Collapse
|
52
|
Shilpa N, Manna J, Rajput P, Rana RK. Water Oxidation Catalyst via Heterogenization of Iridium Oxides on Silica: A Polyamine-Mediated Route To Achieve Activity and Stability. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nagaraju Shilpa
- Nanomaterials Laboratory, I & PC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy
of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Joydeb Manna
- Nanomaterials Laboratory, I & PC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Parasmani Rajput
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Rohit Kumar Rana
- Nanomaterials Laboratory, I & PC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy
of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| |
Collapse
|
53
|
Durable Membrane Electrode Assemblies for Proton Exchange Membrane Electrolyzer Systems Operating at High Current Densities. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.04.164] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
54
|
Ortel E, Hertwig A, Berger D, Esposito P, Rossi AM, Kraehnert R, Hodoroaba VD. New Approach on Quantification of Porosity of Thin Films via Electron-Excited X-ray Spectra. Anal Chem 2016; 88:7083-7090. [PMID: 27334649 DOI: 10.1021/acs.analchem.6b00847] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the crucial characteristics of functionalized thin films is their porosity (i.e., the ratio between the pore volume and the volume of the whole film). Due to the very low amount of material per coated area corresponding to thin films, it is a challenge for analytics to measure the film porosity. In this work, we present an approach to determine the porosity of thin films by means of electron probe microanalysis (EPMA) either by wavelength-dispersive X-ray spectrometry (WDX) or by energy-dispersive X-ray spectrometry (EDX) with a scanning electron microscope (SEM). The procedure is based on the calculation of the film mass deposition from electron-excited X-ray spectra. The mass deposition is converted into film density by division of measured film thickness. Finally, the film porosity is calculated from the measured film density and the density of bulk, nonporous film material. The general applicability of the procedure to determine the porosity is demonstrated on thin templated mesoporous TiO2 films, dip-coated on silicon wafer, with controlled porosity in the range of 15 to 50%. The high accuracy of the mass deposition as determined from X-ray spectra was validated with independent methods (ICP-OES and weighing). Furthermore, for the validation of the porosity results, ellipsometry, interference fringes method (IFM), and focused ion beam (FIB) cross sectioning were employed as independent techniques. Hence, the approach proposed in the present study is proven to be suited as a new analytical tool for accurate and relatively fast determination of the porosity of thin films.
Collapse
Affiliation(s)
- Erik Ortel
- Federal Institute for Materials Research and Testing (BAM), Berlin 12200, Germany
| | - Andreas Hertwig
- Federal Institute for Materials Research and Testing (BAM), Berlin 12200, Germany
| | - Dirk Berger
- Technische Universität Berlin, Straße des 17. Juni 135, Berlin 10623, Germany
| | - Pasquale Esposito
- Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, Turin 10135, Italy
| | - Andrea M Rossi
- Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, Turin 10135, Italy
| | - Ralph Kraehnert
- Technische Universität Berlin, Straße des 17. Juni 135, Berlin 10623, Germany
| | - Vasile-Dan Hodoroaba
- Federal Institute for Materials Research and Testing (BAM), Berlin 12200, Germany
| |
Collapse
|
55
|
Pfeifer V, Jones TE, Wrabetz S, Massué C, Velasco Vélez JJ, Arrigo R, Scherzer M, Piccinin S, Hävecker M, Knop-Gericke A, Schlögl R. Reactive oxygen species in iridium-based OER catalysts. Chem Sci 2016; 7:6791-6795. [PMID: 28042464 PMCID: PMC5134683 DOI: 10.1039/c6sc01860b] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/18/2016] [Indexed: 12/23/2022] Open
Abstract
Exceptional reactivity of electrophilic oxygen species in highly OER-active IrIII/IV oxyhydroxides is evidenced by room temperature CO oxidation.
Tremendous effort has been devoted towards elucidating the fundamental reasons for the higher activity of hydrated amorphous IrIII/IV oxyhydroxides (IrOx) in the oxygen evolution reaction (OER) in comparison with their crystalline counterpart, rutile-type IrO2, by focusing on the metal oxidation state. Here we demonstrate that, through an analogy to photosystem II, the nature of this reactive species is not solely a property of the metal but is intimately tied to the electronic structure of oxygen. We use a combination of synchrotron-based X-ray photoemission and absorption spectroscopies, ab initio calculations, and microcalorimetry to show that holes in the O 2p states in amorphous IrOx give rise to a weakly bound oxygen that is extremely susceptible to nucleophilic attack, reacting stoichiometrically with CO already at room temperature. As such, we expect this species to play the critical role of the electrophilic oxygen involved in O–O bond formation in the electrocatalytic OER on IrOx. We propose that the dynamic nature of the Ir framework in amorphous IrOx imparts the flexibility in Ir oxidation state required for the formation of this active electrophilic oxygen.
Collapse
Affiliation(s)
- Verena Pfeifer
- Department of Inorganic Chemistry , Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , Berlin , 14195 , Germany . ; Catalysis for Energy , Group EM-GKAT , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Elektronenspeicherring BESSY II , Albert-Einstein-Str. 15 , Berlin , 12489 , Germany
| | - Travis E Jones
- Department of Inorganic Chemistry , Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , Berlin , 14195 , Germany .
| | - Sabine Wrabetz
- Department of Inorganic Chemistry , Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , Berlin , 14195 , Germany .
| | - Cyriac Massué
- Department of Inorganic Chemistry , Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , Berlin , 14195 , Germany . ; Department of Heterogeneous Reactions , Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , Mülheim a. d. Ruhr , 45470 , Germany
| | - Juan J Velasco Vélez
- Department of Inorganic Chemistry , Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , Berlin , 14195 , Germany . ; Department of Heterogeneous Reactions , Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , Mülheim a. d. Ruhr , 45470 , Germany
| | - Rosa Arrigo
- Diamond Light Source Ltd. , Harwell Science & Innovation Campus , Didcot , Oxfordshire OX 11 0DE , UK
| | - Michael Scherzer
- Department of Inorganic Chemistry , Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , Berlin , 14195 , Germany . ; Department of Heterogeneous Reactions , Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , Mülheim a. d. Ruhr , 45470 , Germany
| | - Simone Piccinin
- Consiglio Nazionale delle Ricerche - Istituto Officina dei Materiali , c/o SISSA, Via Bonomea 265 , Trieste , 34136 , Italy
| | - Michael Hävecker
- Department of Inorganic Chemistry , Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , Berlin , 14195 , Germany . ; Department of Heterogeneous Reactions , Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , Mülheim a. d. Ruhr , 45470 , Germany
| | - Axel Knop-Gericke
- Department of Inorganic Chemistry , Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , Berlin , 14195 , Germany .
| | - Robert Schlögl
- Department of Inorganic Chemistry , Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , Berlin , 14195 , Germany . ; Department of Heterogeneous Reactions , Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , Mülheim a. d. Ruhr , 45470 , Germany
| |
Collapse
|
56
|
Pfeifer V, Jones TE, Velasco Vélez JJ, Massué C, Greiner MT, Arrigo R, Teschner D, Girgsdies F, Scherzer M, Allan J, Hashagen M, Weinberg G, Piccinin S, Hävecker M, Knop-Gericke A, Schlögl R. The electronic structure of iridium oxide electrodes active in water splitting. Phys Chem Chem Phys 2016; 18:2292-6. [PMID: 26700139 DOI: 10.1039/c5cp06997a] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iridium oxide based electrodes are among the most promising candidates for electrocatalyzing the oxygen evolution reaction, making it imperative to understand their chemical/electronic structure. However, the complexity of iridium oxide's electronic structure makes it particularly difficult to experimentally determine the chemical state of the active surface species. To achieve an accurate understanding of the electronic structure of iridium oxide surfaces, we have combined synchrotron-based X-ray photoemission and absorption spectroscopies with ab initio calculations. Our investigation reveals a pre-edge feature in the O K-edge of highly catalytically active X-ray amorphous iridium oxides that we have identified as O 2p hole states forming in conjunction with Ir(III). These electronic defects in the near-surface region of the anionic and cationic framework are likely critical for the enhanced activity of amorphous iridium oxides relative to their crystalline counterparts.
Collapse
Affiliation(s)
- V Pfeifer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany. and Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronenspeicherring BESSY II, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - T E Jones
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - J J Velasco Vélez
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany. and Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim a. d. Ruhr, Germany
| | - C Massué
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany. and Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim a. d. Ruhr, Germany
| | - M T Greiner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - R Arrigo
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX 11 0DE, UK
| | - D Teschner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - F Girgsdies
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - M Scherzer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany. and Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim a. d. Ruhr, Germany
| | - J Allan
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - M Hashagen
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - G Weinberg
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - S Piccinin
- Instituto Officina dei Materiali (CNR-IOM), c/o SISSA - Scoula Internazionale Superiore di Studi Avanzati, Via Bonomea 267, 34136 Trieste, Italy
| | - M Hävecker
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany. and Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim a. d. Ruhr, Germany
| | - A Knop-Gericke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - R Schlögl
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany. and Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim a. d. Ruhr, Germany
| |
Collapse
|
57
|
Pfeifer V, Jones TE, Velasco Vélez JJ, Massué C, Arrigo R, Teschner D, Girgsdies F, Scherzer M, Greiner MT, Allan J, Hashagen M, Weinberg G, Piccinin S, Hävecker M, Knop-Gericke A, Schlögl R. The electronic structure of iridium and its oxides. SURF INTERFACE ANAL 2015. [DOI: 10.1002/sia.5895] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Verena Pfeifer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH; Elektronenspeicherring BESSY II; Albert-Einstein-Str. 15 12489 Berlin Germany
| | - Travis E. Jones
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
| | - Juan J. Velasco Vélez
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
- Max-Planck-Institut für Chemische Energiekonversion; Stiftstr. 34-36 45470 Mülheim a. d. Ruhr Germany
| | - Cyriac Massué
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
- Max-Planck-Institut für Chemische Energiekonversion; Stiftstr. 34-36 45470 Mülheim a. d. Ruhr Germany
| | - Rosa Arrigo
- Diamond Light Source Ltd.; Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Detre Teschner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
| | - Frank Girgsdies
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
| | - Michael Scherzer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
- Max-Planck-Institut für Chemische Energiekonversion; Stiftstr. 34-36 45470 Mülheim a. d. Ruhr Germany
| | - Mark T. Greiner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
| | - Jasmin Allan
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
| | - Maike Hashagen
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
| | - Gisela Weinberg
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
| | - Simone Piccinin
- Istituto Officina dei Materiali (CNR-IOM); c/o SISSA - Scuola Internazionale Superiore di Studi Avanzati; Via Bonomea 267 34136 Trieste Italy
| | - Michael Hävecker
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
- Max-Planck-Institut für Chemische Energiekonversion; Stiftstr. 34-36 45470 Mülheim a. d. Ruhr Germany
| | - Axel Knop-Gericke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
| | - Robert Schlögl
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
- Max-Planck-Institut für Chemische Energiekonversion; Stiftstr. 34-36 45470 Mülheim a. d. Ruhr Germany
| |
Collapse
|
58
|
Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat Commun 2015; 6:8625. [PMID: 26456525 PMCID: PMC4633955 DOI: 10.1038/ncomms9625] [Citation(s) in RCA: 419] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/12/2015] [Indexed: 12/13/2022] Open
Abstract
Water splitting catalysed by earth-abundant materials is pivotal for global-scale production of non-fossil fuels, yet our understanding of the active catalyst structure and reactivity is still insufficient. Here we report on the structurally reversible evolution of crystalline Co3O4 electrocatalysts during oxygen evolution reaction identified using advanced in situ X-ray techniques. At electrode potentials facilitating oxygen evolution, a sub-nanometre shell of the Co3O4 is transformed into an X-ray amorphous CoOx(OH)y which comprises di-μ-oxo-bridged Co(3+/4+) ions. Unlike irreversible amorphizations, here, the formation of the catalytically-active layer is reversed by re-crystallization upon return to non-catalytic electrode conditions. The Co3O4 material thus combines the stability advantages of a controlled, stable crystalline material with high catalytic activity, thanks to the structural flexibility of its active amorphous oxides. We propose that crystalline oxides may be tailored for generating reactive amorphous surface layers at catalytic potentials, just to return to their stable crystalline state under rest conditions.
Collapse
|