51
|
Finlay CM, Walsh KP, Mills KHG. Induction of regulatory cells by helminth parasites: exploitation for the treatment of inflammatory diseases. Immunol Rev 2014; 259:206-30. [PMID: 24712468 DOI: 10.1111/imr.12164] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Helminth parasites are highly successful pathogens, chronically infecting a quarter of the world's population, causing significant morbidity but rarely causing death. Protective immunity and expulsion of helminths is mediated by T-helper 2 (Th2) cells, type 2 (M2) macrophages, type 2 innate lymphoid cells, and eosinophils. Failure to mount these type 2 immune responses can result in immunopathology mediated by Th1 or Th17 cells. Helminths have evolved a wide variety of approaches for immune suppression, especially the generation of regulatory T cells and anti-inflammatory cytokines interleukin-10 and transforming growth factor-β. This is a very effective strategy for subverting protective immune responses to prolong their survival in the host but has the bystander effect of modulating immune responses to unrelated antigens. Epidemiological studies in humans have shown that infection with helminth parasites is associated with a low incidence of allergy/asthma and autoimmunity in developing countries. Experimental studies in mice have demonstrated that regulatory immune responses induced by helminth can suppress Th2 and Th1/Th17 responses that mediate allergy and autoimmunity, respectively. This has provided a rational explanation of the 'hygiene hypothesis' and has also led to the exploitation of helminths or their immunomodulatory products in the development of new immunosuppressive therapies for inflammatory diseases in humans.
Collapse
Affiliation(s)
- Conor M Finlay
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
52
|
Thomé R, Issayama LK, Alves da Costa T, Gangi RD, Ferreira IT, Rapôso C, Lopes SCP, da Cruz Höfling MA, Costa FTM, Verinaud L. Dendritic cells treated with crude Plasmodium berghei extracts acquire immune-modulatory properties and suppress the development of autoimmune neuroinflammation. Immunology 2014; 143:164-73. [PMID: 24689455 DOI: 10.1111/imm.12298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 01/02/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells specifically targeted during Plasmodium infection. Upon infection, DCs show impaired antigen presentation and T-cell activation abilities. In this study, we aimed to evaluate whether cellular extracts obtained from Plasmodium berghei-infected erythrocytes (PbX) modulate DCs phenotypically and functionally and the potential therapeutic usage of PbX-modulated DCs in the control of experimental autoimmune encephalomyelitis (EAE, the mouse model for human multiple sclerosis). We found that PbX-treated DCs have impaired maturation and stimulated the generation of regulatory T cells when cultured with naive T lymphocytes in vitro. When adoptively transferred to C57BL/6 mice the EAE severity was reduced. Disease amelioration correlated with a diminished infiltration of cytokine-producing T cells in the central nervous system as well as the suppression of encephalitogenic T cells. Our study shows that extracts obtained from P. berghei-infected erythrocytes modulate DCs towards an immunosuppressive phenotype. In addition, the adoptive transfer of PbX-modulated DCs was able to ameliorate EAE development through the suppression of specific cellular immune responses towards neuro-antigens. To our knowledge, this is the first study to present evidence that DCs treated with P. berghei extracts are able to control autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Rodolfo Thomé
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
The mechanisms behind helminth's immunomodulation in autoimmunity. Autoimmun Rev 2014; 14:98-104. [PMID: 25449677 DOI: 10.1016/j.autrev.2014.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/23/2014] [Indexed: 12/16/2022]
Abstract
The incidence of autoimmune diseases has risen throughout the last half a century, mostly in the industrialized world. Helminths and their derivatives were found to have a protective role in autoimmunity and inflammatory conditions, as they manipulate the immune network, attenuating the host's cellular and humoral responses. Indeed, various helminth species used in several human and animal models were shown to limit inflammatory activity in a variety of diseases including inflammatory bowel disease, multiple sclerosis, type 1 diabetes, and rheumatoid arthritis. Our review will focus on the main mechanisms by which helminths and their secreted molecules modulate the host's immune system. The main pathways induce a shift from Th1 to Th2 phenotype, accelerate T regulatory and B regulatory phenotypes, and attenuate the levels of the inflammatory cytokines, leading to a tolerable scenario.
Collapse
|
54
|
Heylen M, Ruyssers NE, Gielis EM, Vanhomwegen E, Pelckmans PA, Moreels TG, De Man JG, De Winter BY. Of worms, mice and man: an overview of experimental and clinical helminth-based therapy for inflammatory bowel disease. Pharmacol Ther 2014; 143:153-167. [PMID: 24603369 DOI: 10.1016/j.pharmthera.2014.02.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/17/2022]
Abstract
The incidence of inflammatory and autoimmune disorders is highest in well-developed countries which is directly related to their higher hygienic standards: it is suggested that the lack of exposure to helminths contributes to the susceptibility for immune-related diseases. Epidemiological, experimental and clinical data support the idea that helminths provide protection against immune-mediated diseases such as inflammatory bowel disease (IBD). The most likely mechanism for the suppression of immune responses by helminths is the release of helminth-derived immunomodulatory molecules. This article reviews the experimental and clinical studies investigating the therapeutic potential of helminth-based therapy in IBD and also focuses on the current knowledge of its immunomodulatory mechanisms of action highlighting innate as well as adaptive immune mechanisms. Identifying the mechanisms by which these helminths and helminth-derived molecules modulate the immune system will help in creating novel drugs for the treatment of IBD and other disorders that result from an overactive immune response.
Collapse
Affiliation(s)
- Marthe Heylen
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Nathalie E Ruyssers
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Els M Gielis
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Els Vanhomwegen
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Paul A Pelckmans
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium; Antwerp University Hospital, Division of Gastroenterology & Hepatology, Antwerp, Belgium
| | - Tom G Moreels
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium; Antwerp University Hospital, Division of Gastroenterology & Hepatology, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
55
|
Wammes LJ, Mpairwe H, Elliott AM, Yazdanbakhsh M. Helminth therapy or elimination: epidemiological, immunological, and clinical considerations. THE LANCET. INFECTIOUS DISEASES 2014; 14:1150-1162. [PMID: 24981042 DOI: 10.1016/s1473-3099(14)70771-6] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Deworming is rightly advocated to prevent helminth-induced morbidity. Nevertheless, in affluent countries, the deliberate infection of patients with worms is being explored as a possible treatment for inflammatory diseases. Several clinical trials are currently registered, for example, to assess the safety or efficacy of Trichuris suis ova in allergies, inflammatory bowel diseases, multiple sclerosis, rheumatoid arthritis, psoriasis, and autism, and the Necator americanus larvae for allergic rhinitis, asthma, coeliac disease, and multiple sclerosis. Studies in animals provide strong evidence that helminths can not only downregulate parasite-specific immune responses, but also modulate autoimmune and allergic inflammatory responses and improve metabolic homoeostasis. This finding suggests that deworming could lead to the emergence of inflammatory and metabolic conditions in countries that are not prepared for these new epidemics. Further studies in endemic countries are needed to assess this risk and to enhance understanding of how helminths modulate inflammatory and metabolic pathways. Studies are similarly needed in non-endemic countries to move helminth-related interventions that show promise in animals, and in phase 1 and 2 studies in human beings, into the therapeutic development pipeline.
Collapse
Affiliation(s)
- Linda J Wammes
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Harriet Mpairwe
- MRC/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Alison M Elliott
- MRC/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda; London School of Hygiene and Tropical Medicine, London, UK
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
56
|
Sofi MH, Gudi R, Karumuthil-Melethil S, Perez N, Johnson BM, Vasu C. pH of drinking water influences the composition of gut microbiome and type 1 diabetes incidence. Diabetes 2014; 63:632-44. [PMID: 24194504 PMCID: PMC3900548 DOI: 10.2337/db13-0981] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nonobese diabetic (NOD) mice spontaneously develop type 1 diabetes (T1D), progression of which is similar to that in humans, and therefore are widely used as a model for understanding the immunological basis of this disease. The incidence of T1D in NOD mice is influenced by the degree of cleanliness of the mouse colony and the gut microflora. In this report, we show that the T1D incidence and rate of disease progression are profoundly influenced by the pH of drinking water, which also affects the composition and diversity of commensal bacteria in the gut. Female NOD mice that were maintained on acidic pH water (AW) developed insulitis and hyperglycemia rapidly compared with those on neutral pH water (NW). Interestingly, forced dysbiosis by segmented filamentous bacteria (SFB)-positive fecal transfer significantly suppressed the insulitis and T1D incidence in mice that were on AW but not in those on NW. The 16S rDNA-targeted pyrosequencing revealed a significant change in the composition and diversity of gut flora when the pH of drinking water was altered. Importantly, autoantigen-specific T-cell frequencies in the periphery and proinflammatory cytokine response in the intestinal mucosa are significantly higher in AW-recipient mice compared with their NW counterparts. These observations suggest that pH of drinking water affects the composition of gut microflora, leading to an altered autoimmune response and T1D incidence in NOD mice.
Collapse
Affiliation(s)
- M. Hanief Sofi
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Radhika Gudi
- Department of Surgery, Medical University of South Carolina, Charleston, SC
| | | | - Nicolas Perez
- Department of Surgery, University of Illinois at Chicago, Chicago, IL
| | - Benjamin M. Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Medical University of South Carolina, Charleston, SC
- Corresponding author: Chenthamarakshan Vasu,
| |
Collapse
|
57
|
Lund ME, O'Brien BA, Hutchinson AT, Robinson MW, Simpson AM, Dalton JP, Donnelly S. Secreted proteins from the helminth Fasciola hepatica inhibit the initiation of autoreactive T cell responses and prevent diabetes in the NOD mouse. PLoS One 2014; 9:e86289. [PMID: 24466007 PMCID: PMC3897667 DOI: 10.1371/journal.pone.0086289] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/13/2013] [Indexed: 12/26/2022] Open
Abstract
Infections with helminth parasites prevent/attenuate auto-inflammatory disease. Here we show that molecules secreted by a helminth parasite could prevent Type 1 Diabetes (T1D) in nonobese diabetic (NOD) mice. When delivered at 4 weeks of age (coincident with the initiation of autoimmunity), the excretory/secretory products of Fasciola hepatica (FhES) prevented the onset of T1D, with 84% of mice remaining normoglycaemic and insulitis-free at 30 weeks of age. Disease protection was associated with suppression of IFN-γ secretion from autoreactive T cells and a switch to the production of a regulatory isotype (from IgG2a to IgG1) of autoantibody. Following FhES injection, peritoneal macrophages converted to a regulatory M2 phenotype, characterised by increased expression levels of Ym1, Arg-1, TGFβ and PD-L1. Expression of these M2 genetic markers increased in the pancreatic lymph nodes and the pancreas of FhES-treated mice. In vitro, FhES-stimulated M2 macrophages induced the differentiation of Tregs from splenocytes isolated from naïve NOD mice. Collectively, our data shows that FhES contains immune-modulatory molecules that mediate protection from autoimmune diabetes via the induction and maintenance of a regulatory immune environment.
Collapse
Affiliation(s)
- Maria E. Lund
- School of Medical and Molecular Biosciences, University of Technology Sydney, New South Wales, Australia
| | - Bronwyn A. O'Brien
- School of Medical and Molecular Biosciences, University of Technology Sydney, New South Wales, Australia
| | - Andrew T. Hutchinson
- School of Medical and Molecular Biosciences, University of Technology Sydney, New South Wales, Australia
| | - Mark W. Robinson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Ann M. Simpson
- School of Medical and Molecular Biosciences, University of Technology Sydney, New South Wales, Australia
| | - John P. Dalton
- Institute of Parasitology, McDonald Campus, McGill University, St. Anne de Bellevue, Quebec, Canada
| | - Sheila Donnelly
- The i3 Institute, University of Technology Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
58
|
Molecular characterization and immune modulation properties of Clonorchis sinensis-derived RNASET2. Parasit Vectors 2013; 6:360. [PMID: 24365605 PMCID: PMC3878043 DOI: 10.1186/1756-3305-6-360] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clonorchis sinensis (C. sinensis, Cs) is a trematode parasite that often causes chronic cumulative infections in the hepatobiliary ducts of the host and can lead to pathological changes by continuously released excretory/secretory proteins (ESPs). A T2 ribonuclease in trematode ESPs, has been identified as a potent regulator of dendritic cell (DCs) modulation. We wondered whether there was a counterpart present in CsESPs with similar activity. To gain a better understanding of CsESPs associated immune responses, we identified and characterized RNASET2 of C. sinensis (CsRNASET2) in this paper. METHODS We expressed CsRNASET2 in Pichia pastoris and identified its molecular characteristics using bioinformatic analysis and experimental approaches. The immune modulation activities of CsRNASET2 were confirmed by evaluating cytokine production and surface markers of recombinant CsRNASET2 (rCsRNASET2) co-cultured DCs, and monitoring levels of IgG isotypes from rCsRNASET2 administered BALB/c mice. RESULTS CsRNASET2 appeared to be a glycoprotein of T2 ribonuclease family harboring conserved CAS motifs and rich in B-cell epitopes. Furthermore, CsRNASET2 was present in CsESPs and was able to modulate cytokine production of DCs. In addition, rCsRNASET2 could significantly suppress the expression of lipopolysaccharide-induced DCs maturation markers. In addition, when subcutaneously administered with rCsRNASET2 there was a marked effect on IgG isotypes in mouse sera. CONCLUSION Collectively, we revealed that CsRNASET2, a T2 ribonuclease present in CsESPs, could modulate DCs maturation and might play an important role in C. sinensis associated immune regulation in the host.
Collapse
|
59
|
Heligmosomoides polygyrus infection reduces severity of type 1 diabetes induced by multiple low-dose streptozotocin in mice via STAT6- and IL-10-independent mechanisms. Exp Parasitol 2013; 135:388-96. [DOI: 10.1016/j.exppara.2013.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/01/2013] [Accepted: 08/09/2013] [Indexed: 12/11/2022]
|
60
|
Wolfs IMJ, Stöger JL, Goossens P, Pöttgens C, Gijbels MJJ, Wijnands E, Vorst EPC, Gorp P, Beckers L, Engel D, Biessen EAL, Kraal G, Die I, Donners MMPC, Winther MPJ. Reprogramming macrophages to an anti‐inflammatory phenotype by helminth antigens reduces murine atherosclerosis. FASEB J 2013; 28:288-99. [DOI: 10.1096/fj.13-235911] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ine M. J. Wolfs
- Department of Molecular GeneticsMaastricht UniversityMaastrichtThe Netherlands
- Department of PathologyMaastricht UniversityMaastrichtThe Netherlands
| | - J. Lauran Stöger
- Department of Molecular GeneticsMaastricht UniversityMaastrichtThe Netherlands
- Department of Medical BiochemistryAcademic Medical Center (AMC)University of AmsterdamAmsterdamThe Netherlands
| | - Pieter Goossens
- Department of Molecular GeneticsMaastricht UniversityMaastrichtThe Netherlands
- Centre d'Immunologie de Marseille‐Luminy (CIML)Aix‐Marseille UniversityMarseilleFrance
| | - Chantal Pöttgens
- Department of Molecular GeneticsMaastricht UniversityMaastrichtThe Netherlands
- Department of PhysiologyCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Marion J. J. Gijbels
- Department of Molecular GeneticsMaastricht UniversityMaastrichtThe Netherlands
- Department of PathologyMaastricht UniversityMaastrichtThe Netherlands
- Department of Medical BiochemistryAcademic Medical Center (AMC)University of AmsterdamAmsterdamThe Netherlands
| | - Erwin Wijnands
- Department of PathologyMaastricht UniversityMaastrichtThe Netherlands
| | - Emiel P. C. Vorst
- Department of Molecular GeneticsMaastricht UniversityMaastrichtThe Netherlands
| | - Patrick Gorp
- Department of Molecular GeneticsMaastricht UniversityMaastrichtThe Netherlands
| | - Linda Beckers
- Department of PathologyMaastricht UniversityMaastrichtThe Netherlands
- Department of Medical BiochemistryAcademic Medical Center (AMC)University of AmsterdamAmsterdamThe Netherlands
| | - David Engel
- Department of PathologyMaastricht UniversityMaastrichtThe Netherlands
| | | | - Georg Kraal
- Department of Molecular Cell Biology and ImmunologyVrije Universiteit (VU) Medical Center AmsterdamAmsterdamThe Netherlands
| | - Irma Die
- Department of Molecular Cell Biology and ImmunologyVrije Universiteit (VU) Medical Center AmsterdamAmsterdamThe Netherlands
| | - Marjo M. P. C. Donners
- Department of Molecular GeneticsMaastricht UniversityMaastrichtThe Netherlands
- Department of PathologyMaastricht UniversityMaastrichtThe Netherlands
| | - Menno P. J. Winther
- Department of Molecular GeneticsMaastricht UniversityMaastrichtThe Netherlands
- Department of Medical BiochemistryAcademic Medical Center (AMC)University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
61
|
Zaccone P, Cooke A. Vaccine against autoimmune disease: can helminths or their products provide a therapy? Curr Opin Immunol 2013; 25:418-23. [PMID: 23465465 DOI: 10.1016/j.coi.2013.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 02/12/2013] [Indexed: 12/25/2022]
Abstract
There is an increasing interest in exploiting the immunomodulatory effects of helminths and their products in treatment of diseases such as allergy, autoimmunity and inflammatory bowel disease. Detailed examination of the ways in which helminth derived products interact with the host immune system and with host physiology has revealed that these may be multifaceted and have almost certainly arisen following co-evolution of helminths and their hosts. Clinical trials have been initiated with encouraging results in the treatment of inflammatory bowel disease and also Multiple Sclerosis. Identification of key pathways that are manipulated by helminths to ameliorate ongoing inflammatory conditions increases the prospect of developing novel therapies for the treatment and possible prevention of a range of debilitating and life threatening conditions.
Collapse
Affiliation(s)
- Paola Zaccone
- Department of Pathology, University of Cambridge, Tennis Court Rd., Cambridge, UK
| | | |
Collapse
|
62
|
Lundy SK, Lukacs NW. Chronic schistosome infection leads to modulation of granuloma formation and systemic immune suppression. Front Immunol 2013; 4:39. [PMID: 23429492 PMCID: PMC3576626 DOI: 10.3389/fimmu.2013.00039] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/31/2013] [Indexed: 11/13/2022] Open
Abstract
Schistosome worms have been infecting humans for millennia, but it is only in the last half century that we have begun to understand the complexities of this inter-relationship. As our sophistication about the inner workings of every aspect of the immune system has increased, it has also become obvious that schistosome infections have broad ranging effects on nearly all of the innate and adaptive immune response mechanisms. Selective pressures on both the worms and their hosts, has no doubt led to co-evolution of protective mechanisms, particularly those that favor granuloma formation around schistosome eggs and immune suppression during chronic infection. The immune modulatory effects that chronic schistosome infection and egg deposition elicit have been intensely studied, not only because of their major implications to public health issues, but also due to the emerging evidence that schistosome infection may protect humans from severe allergies and autoimmunity. Mouse models of schistosome infection have been extremely valuable for studying immune modulation and regulation, and in the discovery of novel aspects of immunity. A progression of immune reactions occurs during granuloma formation ranging from innate inflammation, to activation of each branch of adaptive immune response, and culminating in systemic immune suppression and granuloma fibrosis. Although molecular factors from schistosome eggs have been identified as mediators of immune modulation and suppressive functions of T and B cells, much work is still needed to define the mechanisms of the immune alteration and determine whether therapies for asthma or autoimmunity could be developed from these pathways.
Collapse
Affiliation(s)
- Steven K Lundy
- Graduate Training Program in Immunology, University of Michigan Medical School Ann Arbor, MI, USA ; Department of Internal Medicine-Rheumatology, University of Michigan Medical School Ann Arbor, MI, USA
| | | |
Collapse
|
63
|
McSorley HJ, Hewitson JP, Maizels RM. Immunomodulation by helminth parasites: defining mechanisms and mediators. Int J Parasitol 2013; 43:301-10. [PMID: 23291463 DOI: 10.1016/j.ijpara.2012.11.011] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 12/26/2022]
Abstract
Epidemiological and interventional human studies, as well as experiments in animal models, strongly indicate that helminth parasitic infections can confer protection from immune dysregulatory diseases such as allergy, autoimmunity and colitis. Here, we review the immunological pathways that helminths exploit to downregulate immune responses, both against bystander specificities such as allergens and against antigens from the parasites themselves. In particular, we focus on a highly informative laboratory system, the mouse intestinal nematode, Heligmosomoides polygyrus, as a tractable model of host-parasite interaction at the cellular and molecular levels. Analysis of the molecules released in vitro (as excretory-secretory products) and their cellular targets is identifying individual parasite molecules and gene families implicated in immunomodulation, and which hold potential for future human therapy of immunopathological conditions.
Collapse
Affiliation(s)
- Henry J McSorley
- Institute of Immunology and Infection Research, University of Edinburgh, UK.
| | | | | |
Collapse
|
64
|
Zaccone P, Cooke A. Helminth mediated modulation of Type 1 diabetes (T1D). Int J Parasitol 2013; 43:311-8. [PMID: 23291464 DOI: 10.1016/j.ijpara.2012.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/05/2012] [Accepted: 12/07/2012] [Indexed: 01/11/2023]
Abstract
Type 1 diabetes is increasing dramatically in incidence in the developed world. While there may be several reasons for this, improved sanitation and public health measures have altered our interactions with certain infectious agents such as helminths. There is increasing interest in the use of helminths or their products to alleviate inflammatory or allergic conditions. Using rodent models of diabetes, it has been possible to explore the therapeutic potential of both live infections as well as helminth-derived products on the development of autoimmunity. This review provides an overview of the findings from animal models and additionally explores the potential for translation to the clinic.
Collapse
Affiliation(s)
- Paola Zaccone
- Department of Pathology, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QP, UK
| | | |
Collapse
|
65
|
Abstract
The increasing incidence of type 1 diabetes (T1D) and autoimmune diseases in industrialized countries cannot be exclusively explained by genetic factors. Human epidemiological studies and animal experimental data provide accumulating evidence for the role of environmental factors, such as infections, in the regulation of allergy and autoimmune diseases. The hygiene hypothesis has formally provided a rationale for these observations, suggesting that our co-evolution with pathogens has contributed to the shaping of the present-day human immune system. Therefore, improved sanitation, together with infection control, has removed immunoregulatory mechanisms on which our immune system may depend. Helminths are multicellular organisms that have developed a wide range of strategies to manipulate the host immune system to survive and complete their reproductive cycles successfully. Immunity to helminths involves profound changes in both the innate and adaptive immune compartments, which can have a protective effect in inflammation and autoimmunity. Recently, helminth-derived antigens and molecules have been tested in vitro and in vivo to explore possible applications in the treatment of inflammatory and autoimmune diseases, including T1D. This exciting approach presents numerous challenges that will need to be addressed before it can reach safe clinical application. This review outlines basic insight into the ability of helminths to modulate the onset and progression of T1D, and frames some of the challenges that helminth-derived therapies may face in the context of clinical translation.
Collapse
Affiliation(s)
- Paola Zaccone
- Department of Pathology, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QP, UK
| | | |
Collapse
|
66
|
White RR, Artavanis-Tsakonas K. How helminths use excretory secretory fractions to modulate dendritic cells. Virulence 2012; 3:668-77. [PMID: 23221477 PMCID: PMC3545949 DOI: 10.4161/viru.22832] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
It is well known that helminth parasites have immunomodulatory effects on their hosts. They characteristically cause a skew toward TH2 immunity, stimulate Treg cells while simultaneously inhibiting TH1 and TH17 responses. Additionally, they induce eosinophilia and extensive IgE release. The exact mechanism of how the worms achieve this effect have yet to be fully elucidated; however, parasite-derived secretions and their interaction with antigen presenting cells have been centrally implicated. Herein, we will review the effects of helminth excretory-secretory fractions on dendritic cells and discuss how this interaction is crucial in shaping the host response.
Collapse
Affiliation(s)
- Rhiannon R White
- Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College London, London, UK
| | | |
Collapse
|
67
|
Fairfax K, Nascimento M, Huang SCC, Everts B, Pearce EJ. Th2 responses in schistosomiasis. Semin Immunopathol 2012; 34:863-71. [PMID: 23139101 DOI: 10.1007/s00281-012-0354-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/08/2012] [Indexed: 01/04/2023]
Abstract
Schistosomiasis is caused by infection with parasitic flatworms of the genus Schistosoma. It is characterized by the development of strong CD4(+) T cell and B cell responses that, during primary infection, fail to eliminate the parasites, but in collaboration with cells of the innate immune system allow survival in the face of ongoing tissue damage caused by the lodging of parasite eggs in the liver and the passage of eggs across the intestinal epithelium. Mounting a tightly controlled Th2 response is key to this outcome, and while this type of response is a risk factor for the development of fibrosis, it also underpins the development of resistance to further infection; as such, understanding how Th2 responses are induced and regulated in schistosomiasis remains a critical area of research.
Collapse
Affiliation(s)
- Keke Fairfax
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | |
Collapse
|
68
|
Abstract
Helminth parasites infect almost one-third of the world's population, primarily in tropical regions. However, regions where helminth parasites are endemic record much lower prevalences of allergies and autoimmune diseases, suggesting that parasites may protect against immunopathological syndromes. Most helminth diseases are spectral in nature, with a large proportion of relatively asymptomatic cases and a subset of patients who develop severe pathologies. The maintenance of the asymptomatic state is now recognized as reflecting an immunoregulatory environment, which may be promoted by parasites, and involves multiple levels of host regulatory cells and cytokines; a breakdown of this regulation is observed in pathological disease. Currently, there is much interest in whether helminth-associated immune regulation may ameliorate allergy and autoimmunity, with investigations in both laboratory models and human trials. Understanding and exploiting the interactions between these parasites and the host regulatory network are therefore likely to highlight new strategies to control both infectious and immunological diseases.
Collapse
|
69
|
Hurst RJM, Else KJ. Retinoic acid signalling in gastrointestinal parasite infections: lessons from mouse models. Parasite Immunol 2012; 34:351-9. [PMID: 22443219 PMCID: PMC3485670 DOI: 10.1111/j.1365-3024.2012.01364.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Retinoic acid or vitamin A is important for an extensive range of biological processes, including immunomodulatory functions, however, its role in gastrointestinal parasite infections is not yet clear. Despite this, parasite infected individuals are often supplemented with vitamin A, given the co-localised prevalence of parasitic infections and vitamin deficiencies. Therefore, it is important to understand the impact of this vitamin on the immune responses to gastrointestinal parasites. Here, we review data regarding the role of retinoic acid signalling in mouse models of intestinal nematode infection, with a view to understanding better the practice of giving vitamin A supplements to worm-infected people.
Collapse
Affiliation(s)
- R J M Hurst
- The University of Manchester, Manchester M13 9PT, UK.
| | | |
Collapse
|
70
|
Tundup S, Srivastava L, Harn Jr. DA. Polarization of host immune responses by helminth-expressed glycans. Ann N Y Acad Sci 2012; 1253:E1-E13. [DOI: 10.1111/j.1749-6632.2012.06618.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
71
|
Maizels RM, Hewitson JP, Smith KA. Susceptibility and immunity to helminth parasites. Curr Opin Immunol 2012; 24:459-66. [PMID: 22795966 PMCID: PMC3437973 DOI: 10.1016/j.coi.2012.06.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 05/10/2012] [Accepted: 06/06/2012] [Indexed: 12/31/2022]
Abstract
Parasitic helminth infection remains a global health problem, whilst the ability of worms to manipulate and dampen the host immune system is attracting interest in the fields of allergy and autoimmunity. Much progress has been made in the last two years in determining the cells and cytokines involved in induction of Type 2 immunity, which is generally protective against helminth infection. Innate cells respond to ‘alarmin’ cytokines (IL-25, IL-33, TSLP) by producing IL-4, IL-5 and IL-13, and this sets the stage for a more potent subsequent adaptive Th2 response. CD4+ Th2 cells then drive a suite of type 2 anti-parasite mechanisms, including class-switched antibodies, activated leukocytes and innate defence molecules; the concerted effects of these multiple pathways disable, degrade and dislodge parasites, leading to their destruction or expulsion.
Collapse
Affiliation(s)
- Rick M Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, UK.
| | | | | |
Collapse
|
72
|
|
73
|
Kuijk LM, Klaver EJ, Kooij G, van der Pol SMA, Heijnen P, Bruijns SCM, Kringel H, Pinelli E, Kraal G, de Vries HE, Dijkstra CD, Bouma G, van Die I. Soluble helminth products suppress clinical signs in murine experimental autoimmune encephalomyelitis and differentially modulate human dendritic cell activation. Mol Immunol 2012; 51:210-8. [PMID: 22482518 DOI: 10.1016/j.molimm.2012.03.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/09/2012] [Accepted: 03/06/2012] [Indexed: 12/26/2022]
Abstract
The increased incidence of auto-inflammatory and autoimmune diseases in the developed countries seems to be caused by an imbalance of the immune system due to the lack of proper regulation. Helminth parasites are well known modulators of the immune system and as such are of great interest for the treatment of these disorders. Clinical studies showed that administration of eggs of the pig nematode Trichuris suis to patients with inflammatory bowel disease reduces the disease severity. Here we demonstrate that treatment with soluble products from the nematodes T. suis and Trichinella spiralis induces significant suppression of symptoms in murine experimental autoimmune encephalomyelitis, a validated animal model for multiple sclerosis. These data show that infection with live nematodes is not a prerequisite for suppression of inflammation. To translate these results to the human system, the effects of soluble products of T. suis, T. spiralis and Schistosoma mansoni on the phenotype and function of human dendritic cells (DCs) were compared. Our data show that soluble products of T. suis, S. mansoni and T. spiralis suppress TNF-α and IL-12 secretion by TLR-activated human DCs, and that T. suis and S. mansoni, but not T. spiralis, strongly enhance expression of OX40L. Furthermore, helminth-primed human DCs differentially suppress the development of Th1 and/or Th17 cells. In conclusion, our data demonstrate that soluble helminth products have strong immunomodulatory capacities, but might exert their effects through different mechanisms. The suppressed secretion of pro-inflammatory cytokines together with an upregulation of OX40L expression on human DCs might contribute to achieve this modulation.
Collapse
Affiliation(s)
- Loes M Kuijk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
T cells in helminth infection: the regulators and the regulated. Trends Immunol 2012; 33:181-9. [DOI: 10.1016/j.it.2012.01.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/21/2011] [Accepted: 01/02/2012] [Indexed: 12/21/2022]
|
75
|
Abstract
In type 1 diabetes, insulin-producing beta-cells in the pancreas are destroyed by immune-mediated mechanisms. The manifestation of the disease is preceded by the so-called pre-diabetic period that may last several years and is characterized by the appearance of circulating autoantibodies against beta-cell antigens. The role of the gut as a regulator of type 1 diabetes was suggested in animal studies, in which changes affecting the gut immune system modulated the incidence of diabetes. Dietary interventions, alterations in the intestinal microbiota and exposure to enteric pathogens, regulate the development of autoimmune diabetes in animal models. It has been demonstrated that these modulations affect the gut barrier mechanisms and intestinal immunity. Because the pancreas and the gut belong to the same intestinal immune system, the link between autoimmune diabetes and the gut is not unexpected. The gut hypothesis in the development of type 1 diabetes is also supported by the observations made in human type 1 diabetes. Early diet could modulate the development of beta-cell autoimmunity; weaning to hydrolysed casein formula decreased the risk of beta-cell autoimmunity by age 10 in the infants at genetic risk. Increased gut permeability, intestinal inflammation with impaired regulatory mechanisms and dysregulated oral tolerance have been observed in children with type 1 diabetes. The factors that contribute to these intestinal alterations are not known, but interest is focused on the microbial stimuli and function of innate immunity. It is likely that our microbial environment does not support the healthy maturation of the gut and tolerance in the gut, and this leads to the increasing type 1 diabetes as well as other immune-mediated diseases regulated by intestinal immune system. Thus, the interventions, aiming to prevent or treat type 1 diabetes in humans, should be targeting the gut immune system.
Collapse
Affiliation(s)
- Outi Vaarala
- Department of Vaccination and Immune Protection, National Institute for Health and Welfare, Helsinki, Finland.
| |
Collapse
|
76
|
Modulation of specific and allergy-related immune responses by helminths. J Biomed Biotechnol 2011; 2011:821578. [PMID: 22219659 PMCID: PMC3248237 DOI: 10.1155/2011/821578] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 09/09/2011] [Indexed: 01/10/2023] Open
Abstract
Helminths are master regulators of host immune responses utilising complex mechanisms to dampen host protective Th2-type responses and favour long-term persistence. Such evasion mechanisms ensure mutual survival of both the parasite and the host. In this paper, we present recent findings on the cells that are targeted by helminths and the molecules and mechanisms that are induced during infection. We discuss the impact of these factors on the host response as well as their effect in preventing the development of aberrant allergic inflammation. We also examine recent findings on helminth-derived molecules that can be used as tools to pinpoint the underlying mechanisms of immune regulation or to determine new anti-inflammatory therapeutics.
Collapse
|
77
|
Abstract
Infectious agents have intimately co-evolved with the host immune system, acquiring a portfolio of highly sophisticated mechanisms to modulate immunity. Among the common strategies developed by viruses, bacteria, protozoa, helminths, and fungi is the manipulation of the regulatory T cell network in order to favor pathogen survival and transmission. Treg activity also benefits the host in many circumstances by controlling immunopathogenic reactions to infection. Interestingly, some pathogens are able to directly induce the conversion of naive T cells into suppressive Foxp3-expressing Tregs, while others activate pre-existing natural Tregs, in both cases repressing pathogen-specific effector responses. However, Tregs can also act to promote immunity in certain settings, such as in initial stages of infection when effector cells must access the site of infection, and subsequently in ensuring generation of effector memory. Notably, there is little current information on whether infections selectively drive pathogen-specific Tregs, and if so whether these cells are also reactive to self-antigens. Further analysis of specificity, together with a clearer picture of the relative dynamics of Treg subsets over the course of disease, should lead to rational strategies for immune intervention to optimize immunity and eliminate infection.
Collapse
|