51
|
Springer SD, Erker TD, Schantell M, Johnson HJ, Willett MP, Okelberry HJ, Rempe MP, Wilson TW. Disturbances in primary visual processing as a function of healthy aging. Neuroimage 2023; 271:120020. [PMID: 36914104 PMCID: PMC10123380 DOI: 10.1016/j.neuroimage.2023.120020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023] Open
Abstract
For decades, visual entrainment paradigms have been widely used to investigate basic visual processing in healthy individuals and those with neurological disorders. While healthy aging is known to be associated with alterations in visual processing, whether this extends to visual entrainment responses and the precise cortical regions involved is not fully understood. Such knowledge is imperative given the recent surge in interest surrounding the use of flicker stimulation and entrainment in the context of identifying and treating Alzheimer's disease (AD). In the current study, we examined visual entrainment in eighty healthy aging adults using magnetoencephalography (MEG) and a 15 Hz entrainment paradigm, while controlling for age-related cortical thinning. MEG data were imaged using a time-frequency resolved beamformer and peak voxel time series were extracted to quantify the oscillatory dynamics underlying the processing of the visual flicker stimuli. We found that, as age increased, the mean amplitude of entrainment responses decreased and the latency of these responses increased. However, there was no effect of age on the trial-to-trial consistency in phase (i.e., inter-trial phase locking) nor amplitude (i.e., coefficient of variation) of these visual responses. Importantly, we discovered that the relationship between age and response amplitude was fully mediated by the latency of visual processing. These results indicate that aging is associated with robust changes in the latency and amplitude of visual entrainment responses within regions surrounding the calcarine fissure, which should be considered in studies examining neurological disorders such as AD and other conditions associated with increased age.
Collapse
Affiliation(s)
- Seth D Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tara D Erker
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Engineering, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
52
|
Makani P, Koops EA, Pyott SJ, van Dijk P, Thioux M. Hyperacusis is associated with smaller gray matter volumes in the supplementary motor area. Neuroimage Clin 2023; 38:103425. [PMID: 37137255 PMCID: PMC10176058 DOI: 10.1016/j.nicl.2023.103425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Hyperacusis is a disorder in loudness perception characterized by increased sensitivity to ordinary environmental sounds and associated with otologic conditions, including hearing loss and tinnitus (the phantom perception of sound) as well as neurologic and neuropsychiatric conditions. Hyperacusis is believed to arise centrally in the brain; however, the underlying causes are unknown. To gain insight into differences in brain morphology associated with hyperacusis, we undertook a retrospective case-control study comparing whole-brain gray matter morphology in participants with sensorineural hearing loss and tinnitus who either scored above or below the threshold for hyperacusis based on a standard questionnaire. We found that participants reporting hyperacusis had smaller gray matter volumes and cortical sheet thicknesses in the right supplementary motor area (SMA), independent of anxiety, depression, tinnitus burden, or sex. In fact, the right SMA volumes extracted from an independently defined volume of interest could accurately classify participants. Finally, in a subset of participants where functional data were also available, we found that individuals with hyperacusis showed increased sound-evoked responses in the right SMA compared to individuals without hyperacusis. Given the role of the SMA in initiating motion, these results suggest that in hyperacusis the SMA is involved in a motor response to sounds.
Collapse
Affiliation(s)
- Punitkumar Makani
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Groningen, University Medical Centre Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands; Graduate School of Medical Sciences (Research School of Behavioural and Cognitive Neurosciences), University of Groningen, FA30, P.O. Box 196, 9700 AD Groningen, the Netherlands.
| | - Elouise A Koops
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Groningen, University Medical Centre Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands; Department of Radiology, Massachusetts General Hospital-Harvard Medical School, Boston, USA
| | - Sonja J Pyott
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Groningen, University Medical Centre Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands; Graduate School of Medical Sciences (Research School of Behavioural and Cognitive Neurosciences), University of Groningen, FA30, P.O. Box 196, 9700 AD Groningen, the Netherlands
| | - Pim van Dijk
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Groningen, University Medical Centre Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands; Graduate School of Medical Sciences (Research School of Behavioural and Cognitive Neurosciences), University of Groningen, FA30, P.O. Box 196, 9700 AD Groningen, the Netherlands
| | - Marc Thioux
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Groningen, University Medical Centre Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands; Graduate School of Medical Sciences (Research School of Behavioural and Cognitive Neurosciences), University of Groningen, FA30, P.O. Box 196, 9700 AD Groningen, the Netherlands
| |
Collapse
|
53
|
Sakurai K, Kaneda D, Morimoto S, Uchida Y, Inui S, Kimura Y, Kan H, Kato T, Ito K, Hashizume Y. Voxel-Based and Surface-Based Morphometry Analysis in Patients with Pathologically Confirmed Argyrophilic Grain Disease and Alzheimer’s Disease. J Alzheimers Dis 2023; 93:379-387. [PMID: 37005887 DOI: 10.3233/jad-230068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Background: Due to clinicoradiological similarities, including amnestic cognitive impairment and limbic atrophy, differentiation of argyrophilic grain disease (AGD) from Alzheimer’s disease (AD) is often challenging. Minimally invasive biomarkers, especially magnetic resonance imaging (MRI), are valuable in routine clinical practice. Although it is necessary to explore radiological clues, morphometry analyses using new automated analytical methods, including whole-brain voxel-based morphometry (VBM) and surface-based morphometry (SBM), have not been sufficiently investigated in patients with pathologically confirmed AGD and AD. Objective: This study aimed to determine the volumetric differences in VBM and SBM analyses between patients with pathologically confirmed AGD and AD. Methods: Eight patients with pathologically confirmed AGD with a lower Braak neurofibrillary tangle stage (<III), 11 patients with pathologically confirmed AD without comorbid AGD, and 10 healthy controls (HC) were investigated. Gray matter volumetric changes in VBM and cortical thickness changes in SBM were compared between the two patient groups (i.e., AGD and AD) and the HC group. Results: In contrast to widespread gray matter volume or cortical thickness loss in the bilateral limbic, temporoparietal, and frontal lobes of the AD group, these were limited, especially in the limbic lobes, in the AGD group, compared with that of the HC group. Although bilateral posterior dominant gray matter volume loss was identified in the AD group compared with the AGD group on VBM, there was no significant cluster between these patient groups on SBM. Conclusion: VBM and SBM analyses both showed a different distribution of atrophic changes between AGD and AD.
Collapse
Affiliation(s)
- Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Daita Kaneda
- Choju Medical Institute, Fukushimura Hospital, Aichi, Japan
| | - Satoru Morimoto
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Yuto Uchida
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Shohei Inui
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Kimura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Takashi Kato
- Department of Radiology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Kengo Ito
- Department of Radiology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | | |
Collapse
|
54
|
Tafuri B, Filardi M, Frisullo ME, De Blasi R, Rizzo G, Nigro S, Logroscino G. Behavioral variant frontotemporal dementia in patients with primary psychiatric disorder: A magnetic resonance imaging study. Brain Behav 2023; 13:e2896. [PMID: 36864745 PMCID: PMC10097141 DOI: 10.1002/brb3.2896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND The clinical diagnosis of behavioral variant frontotemporal dementia (bvFTD) in patients with a history of primary psychiatric disorder (PPD) is challenging. PPD shows the typical cognitive impairments observed in patients with bvFTD. Therefore, the correct identification of bvFTD onset in patients with a lifetime history of PPD is pivotal for an optimal management. METHODS Twenty-nine patients with PPD were included in this study. After clinical and neuropsychological evaluations, 16 patients with PPD were clinically classified as bvFTD (PPD-bvFTD+), while in 13 cases clinical symptoms were associated with the typical course of the psychiatric disorder itself (PPD-bvFTD-). Voxel- and surface-based investigations were used to characterize gray matter changes. Volumetric and cortical thickness measures were used to predict the clinical diagnosis at a single-subject level using a support vector machine (SVM) classification framework. Finally, we compared classification performances of magnetic resonance imaging (MRI) data with automatic visual rating scale of frontal and temporal atrophy. RESULTS PPD-bvFTD+ showed a gray matter decrease in thalamus, hippocampus, temporal pole, lingual, occipital, and superior frontal gyri compared to PPD-bvFTD- (p < .05, family-wise error-corrected). SVM classifier showed a discrimination accuracy of 86.2% in differentiating PPD patients with bvFTD from those without bvFTD. CONCLUSIONS Our study highlights the utility of machine learning applied to structural MRI data to support the clinician in the diagnosis of bvFTD in patients with a history of PPD. Gray matter atrophy in temporal, frontal, and occipital brain regions may represent a useful hallmark for a correct identification of dementia in PPD at a single-subject level.
Collapse
Affiliation(s)
- Benedetta Tafuri
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy.,Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Card. G. Panico", Tricase, Italy
| | - Marco Filardi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy.,Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Card. G. Panico", Tricase, Italy
| | - Maria Elisa Frisullo
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Card. G. Panico", Tricase, Italy
| | - Roberto De Blasi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Card. G. Panico", Tricase, Italy.,Department of Radiology, Pia Fondazione Cardinale G. Panico, Tricase, Lecce, Italy
| | - Giovanni Rizzo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Salvatore Nigro
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Card. G. Panico", Tricase, Italy.,Institute of Nanotechnology (NANOTEC), National Research Council, Lecce, Italy
| | - Giancarlo Logroscino
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy.,Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Card. G. Panico", Tricase, Italy
| |
Collapse
|
55
|
Li R, Miao X, Han B, Li J. Cortical thickness of the left parahippocampal cortex links central hearing and cognitive performance in aging. Ann N Y Acad Sci 2023; 1522:117-125. [PMID: 36799333 DOI: 10.1111/nyas.14971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Hearing impairment is considered a leading modifiable risk factor of cognitive decline and dementia. While most evidence has been established on clinical assessment of peripheral hearing loss, understanding of how central hearing in real-world conditions is associated with cognitive aging is limited. This study analyzed the data of 473 unrelated healthy adults aged 36-100 years old from the Lifespan Human Connectome Project in Aging. Central hearing was evaluated using the Words-in-Noise decibel threshold. Cognitive functions were evaluated by the performance on cognitive tests, and cortical thickness was estimated from magnetic resonance imaging (MRI) data. Here, we show that a higher hearing threshold was associated with a lower performance on immediate and delayed episodic memory retrieval, switching aspect of executive function, working memory, reading decoding, and vocabulary comprehension. Cortical thickness in the left parahippocampal cortex (lPHC) was negatively associated with the hearing threshold and acted as a significant partial mediator in the association of central hearing with immediate recall, switching, reading decoding, and vocabulary comprehension. These findings suggest that cortical thickness in the lPHC, an early target of dementia, partially links central hearing and performance in multiple cognitive domains in aging.
Collapse
Affiliation(s)
- Rui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Miao
- Department of Psychology and Special Education Research, National Institute of Education Sciences, Beijing, China
| | - Buxin Han
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
56
|
Cui D, Wang D, Jin J, Liu X, Wang Y, Cao W, Liu Z, Yin T. Age- and sex-related differences in cortical morphology and their relationships with cognitive performance in healthy middle-aged and older adults. Quant Imaging Med Surg 2023; 13:1083-1099. [PMID: 36819243 PMCID: PMC9929420 DOI: 10.21037/qims-22-583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
Background The impacts of age and sex on brain structures related to cognitive function may be important for understanding the role of aging in Alzheimer disease for both sexes. We intended to investigate the age and sex differences of cortical morphology in middle-aged and older adults and their relationships with the decline of cognitive function. Methods In this cross-sectional study, we examined the cortical morphology in 204 healthy middle-aged and older adult participants aged 45 to 89 years using structural magnetic resonance imaging (sMRI) data from the Dallas Lifespan Brain Study data set. Brain cortical thickness, surface complexity, and gyrification index were analyzed through a completely automated surface-based morphometric analysis using the CAT12 toolbox. Furthermore, we explored the correlation between cortical morphology differences and test scores for processing speed and working memory. Results There were no significant interactions of age and sex with cortical thickness, fractal dimension, or gyrification index. Rather, we found that both males and females showed age-related decreases in cortical thickness, fractal dimension, and gyrification index. There were significant sex differences in the fractal dimension in middle-aged participants and the gyrification index in older adult participants. In addition, there were significant positive correlations between the cortical thickness of the right superior frontal gyrus and Wechsler Adult Intelligence Scale (WAIS)-III Letter-Number Sequencing test scores in males (r=0.394; P<0.001; 95% CI for r values 0.216-0.577) and females (r=0.344; P<0.001; 95% CI for r values 0.197-0.491), respectively. Furthermore, a significant relationship between the gyrification index of the right supramarginal gyrus (SupraMG) and WAIS-III Digit Symbol test scores was observed in older adult participants (r=0.375; P<0.001; 95% CI for r values 0.203-0.522). Conclusions The results suggest that, compared with males, females have more extensive differences in cortical morphology. The gyrification index of the right SupraMG can be used as an imaging marker of sexual cognitive differences between males and females in older adults. This study helps to further understand sex differences in the aging of the brain and cognition.
Collapse
Affiliation(s)
- Dong Cui
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China;,School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Dianyu Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Jingna Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Xu Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Yuheng Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Weifang Cao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China;,School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China;,Neuroscience Center, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
57
|
Abagnale C, Di Renzo A, Sebastianelli G, Casillo F, Tinelli E, Giuliani G, Tullo MG, Serrao M, Parisi V, Fiorelli M, Caramia F, Schoenen J, Di Piero V, Coppola G. Whole brain surface-based morphometry and tract-based spatial statistics in migraine with aura patients: difference between pure visual and complex auras. Front Hum Neurosci 2023; 17:1146302. [PMID: 37144161 PMCID: PMC10151576 DOI: 10.3389/fnhum.2023.1146302] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Background The migrainous aura has different clinical phenotypes. While the various clinical differences are well-described, little is known about their neurophysiological underpinnings. To elucidate the latter, we compared white matter fiber bundles and gray matter cortical thickness between healthy controls (HC), patients with pure visual auras (MA) and patients with complex neurological auras (MA+). Methods 3T MRI data were collected between attacks from 20 patients with MA and 15 with MA+, and compared with those from 19 HCs. We analyzed white matter fiber bundles using tract-based spatial statistics (TBSS) of diffusion tensor imaging (DTI) and cortical thickness with surface-based morphometry of structural MRI data. Results Tract-based spatial statistics showed no significant difference in diffusivity maps between the three subject groups. As compared to HCs, both MA and MA+ patients had significant cortical thinning in temporal, frontal, insular, postcentral, primary and associative visual areas. In the MA group, the right high-level visual-information-processing areas, including lingual gyrus, and the Rolandic operculum were thicker than in HCs, while in the MA+ group they were thinner. Discussion These findings show that migraine with aura is associated with cortical thinning in multiple cortical areas and that the clinical heterogeneity of the aura is reflected by opposite thickness changes in high-level visual-information-processing, sensorimotor and language areas.
Collapse
Affiliation(s)
- Chiara Abagnale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | | | - Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Francesco Casillo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Emanuele Tinelli
- Unit of Neuroradiology, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Giada Giuliani
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Maria Giulia Tullo
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | | | - Marco Fiorelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Caramia
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Jean Schoenen
- Headache Research Unit, Department of Neurology, CHU de Liège, Citadelle Hospital, Liège, Belgium
| | - Vittorio Di Piero
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
- *Correspondence: Gianluca Coppola,
| |
Collapse
|
58
|
Khadem-Reza ZK, Zare H. Automatic detection of autism spectrum disorder (ASD) in children using structural magnetic resonance imaging with machine vision system. MIDDLE EAST CURRENT PSYCHIATRY 2022. [DOI: 10.1186/s43045-022-00220-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Autism spectrum disorder (ASD) is a group of developmental disorders of the nervous system whose main manifestations are defects in social interactions, communication, repetitive behaviors, and limited interests. Over the years, the use of magnetic resonance imaging (MRI) to help identify patterns that are common in people with autism has increased for classification purposes. This study propose a method for classifying ASD patients versus controls using structural MRI information. In order to increase the accuracy of this method, the volume and surface features of the structural images are used simultaneously.
Results
The accuracy of diagnosis respectively was 86.29%, 71.15%, 86.53%, and 88.46% with SVM, RF, KNN, and ANN classifiers. The highest accuracy of diagnosis was obtained using ANN.
Conclusions
Since clinical evaluations for the diagnosis of autism are extremely time-consuming and depend on the expertise of a specialist, the importance of intelligent diagnosis of this disorder becomes clear. The aim of this study was to design an intelligent system to diagnose autism spectrum disorder.
Collapse
|
59
|
Brain network architecture constrains age-related cortical thinning. Neuroimage 2022; 264:119721. [PMID: 36341953 DOI: 10.1016/j.neuroimage.2022.119721] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Age-related cortical atrophy, approximated by cortical thickness measurements from magnetic resonance imaging, follows a characteristic pattern over the lifespan. Although its determinants remain unknown, mounting evidence demonstrates correspondence between the connectivity profiles of structural and functional brain networks and cortical atrophy in health and neurological disease. Here, we performed a cross-sectional multimodal neuroimaging analysis of 2633 individuals from a large population-based cohort to characterize the association between age-related differences in cortical thickness and functional as well as structural brain network topology. We identified a widespread pattern of age-related cortical thickness differences including "hotspots" of pronounced age effects in sensorimotor areas. Regional age-related differences were strongly correlated within the structurally defined node neighborhood. The overall pattern of thickness differences was found to be anchored in the functional network hierarchy as encoded by macroscale functional connectivity gradients. Lastly, the identified difference pattern covaried significantly with cognitive and motor performance. Our findings indicate that connectivity profiles of functional and structural brain networks act as organizing principles behind age-related cortical thinning as an imaging surrogate of cortical atrophy.
Collapse
|
60
|
Guizar Rosales E, Baumgartner T, Knoch D. Interindividual differences in intergenerational sustainable behavior are associated with cortical thickness of the dorsomedial and dorsolateral prefrontal cortex. Neuroimage 2022; 264:119664. [PMID: 36202158 DOI: 10.1016/j.neuroimage.2022.119664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/25/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
Intergenerational sustainability requires people of the present generation to make sacrifices today to benefit others of future generations (e.g. mitigating climate change, reducing public debt). Individuals vary greatly in their intergenerational sustainability, and the cognitive and neural sources of these interindividual differences are not yet well understood. We here combined neuroscientific and behavioral methods by assessing interindividual differences in cortical thickness and by using a common-pool resource paradigm with intergenerational contingencies. This enabled us to look for objective, stable, and trait-like neural markers of interindividual differences in consequential intergenerational behavior. We found that individuals behaving sustainably (vs. unsustainably) were marked by greater cortical thickness of the dorsomedial and dorsolateral prefrontal cortex. Given that these brain areas are involved in perspective-taking and self-control and supported by mediation analyses, we speculate that greater cortical thickness of these brain areas better enable individuals to take the perspective of future generations and to resist temptations to maximize personal benefits that incur costs for future generations. By meeting recent calls for the contribution of neuroscience to sustainability research, it is our hope that the present study advances the transdisciplinary understanding of interindividual differences in intergenerational sustainability.
Collapse
Affiliation(s)
- Emmanuel Guizar Rosales
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Thomas Baumgartner
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| | - Daria Knoch
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| |
Collapse
|
61
|
Khadem-Reza ZK, Zare H. Evaluation of brain structure abnormalities in children with autism spectrum disorder (ASD) using structural magnetic resonance imaging. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Autism spectrum disorder (ASD) is a group of developmental disorders of the nervous system. Since the core cause of many of the symptoms of autism spectrum disorder is due to changes in the structure of the brain, the importance of examining the structural abnormalities of the brain in these disorder becomes apparent. The aim of this study is evaluation of brain structure abnormalities in children with autism spectrum disorder (ASD) using structural magnetic resonance imaging (sMRI). sMRI images of 26 autistic and 26 Healthy control subjects in the range of 5–10 years are selected from the ABIDE database. For a better assessment of structural abnormalities, the surface and volume features are extracted together from this images. Then, the extracted features from both groups were compared with the sample t test and the features with significant differences between the two groups were identified.
Results
The results of volume-based features indicate an increase in total brain volume and white matter and a change in white and gray matter volume in brain regions of Hammers atlas in the autism group. In addition, the results of surface-based features indicate an increase in mean and standard deviation of cerebral cortex thickness and changes in cerebral cortex thickness, sulcus depth, surface complexity and gyrification index in the brain regions of the Desikan–Killany cortical atlas.
Conclusions
Identifying structurally abnormal areas of the brain and examining their relationship to the clinical features of Autism Spectrum Disorder can pave the way for the correct and early detection of this disorder using structural magnetic resonance imaging. It is also possible to design treatment for autistic people based on the abnormal areas of the brain, and to see the effectiveness of the treatment using imaging.
Collapse
|
62
|
Hupfeld KE, McGregor HR, Hass CJ, Pasternak O, Seidler RD. Sensory system-specific associations between brain structure and balance. Neurobiol Aging 2022; 119:102-116. [PMID: 36030560 PMCID: PMC9728121 DOI: 10.1016/j.neurobiolaging.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/26/2022] [Accepted: 07/28/2022] [Indexed: 11/15/2022]
Abstract
Nearly 75% of older adults in the US report balance problems. Although it is known that aging results in widespread brain atrophy, less is known about how brain structure relates to balance in aging. We collected T1- and diffusion-weighted MRI scans and measured postural sway of 36 young (18-34 years) and 22 older (66-84 years) adults during eyes open, eyes closed, eyes open-foam, and eyes closed-foam conditions. We calculated summary measures indicating visual, proprioceptive, and vestibular contributions to balance. Across both age groups, thinner cortex in multisensory integration regions was associated with greater reliance on visual inputs for balance. Greater gyrification within sensorimotor and parietal cortices was associated with greater reliance on proprioceptive inputs. Poorer vestibular function was correlated with thinner vestibular cortex, greater gyrification within sensorimotor, parietal, and frontal cortices, and lower free water-corrected axial diffusivity across the corona radiata and corpus callosum. These results expand scientific understanding of how individual differences in brain structure relate to balance and have implications for developing brain stimulation interventions to improve balance.
Collapse
Affiliation(s)
- K E Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - H R McGregor
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - C J Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - O Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; University of Florida Norman Fixel Institute for Neurological Diseases, Gainesville, FL, USA.
| |
Collapse
|
63
|
Rempe MP, Lew BJ, Embury CM, Christopher-Hayes NJ, Schantell M, Wilson TW. Spontaneous sensorimotor beta power and cortical thickness uniquely predict motor function in healthy aging. Neuroimage 2022; 263:119651. [PMID: 36206940 PMCID: PMC10071137 DOI: 10.1016/j.neuroimage.2022.119651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Spontaneous beta activity in the primary motor cortices has been shown to increase in amplitude with advancing age, and that such increases are tightly coupled to stronger motor-related beta oscillations during movement planning. However, the relationship between these age-related changes in spontaneous beta in the motor cortices, local cortical thickness, and overall motor function remains unclear. METHODS We collected resting-state magnetoencephalography (MEG), high-resolution structural MRI, and motor function scores using a neuropsychological battery from 126 healthy adults (56 female; age range = 22-72 years). MEG data were source-imaged and a whole-brain vertex-wise regression model was used to assess age-related differences in spontaneous beta power across the cortex. Cortical thickness was computed from the structural MRI data and local beta power and cortical thickness values were extracted from the sensorimotor cortices. To determine the unique contribution of age, spontaneous beta power, and cortical thickness to the prediction of motor function, a hierarchical regression approach was used. RESULTS There was an increase in spontaneous beta power with age across the cortex, with the strongest increase being centered on the sensorimotor cortices. Sensorimotor cortical thickness was not related to spontaneous beta power, above and beyond age. Interestingly, both cortical thickness and spontaneous beta power in sensorimotor regions each uniquely contributed to the prediction of motor function when controlling for age. DISCUSSION This multimodal study showed that cortical thickness and spontaneous beta activity in the sensorimotor cortices have dissociable contributions to motor function across the adult lifespan. These findings highlight the complexity of interactions between structure and function and the importance of understanding these interactions in order to advance our understanding of healthy aging and disease.
Collapse
Affiliation(s)
- Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Brandon J Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Psychology, University of Nebraska - Omaha (UNO), Omaha, NE, USA
| | - Nicholas J Christopher-Hayes
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Mind and Brain, University of California - Davis, Davis, CA, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
64
|
Schnellbächer GJ, Rajkumar R, Veselinović T, Ramkiran S, Hagen J, Shah NJ, Neuner I. Structural alterations of the insula in depression patients - A 7-Tesla-MRI study. Neuroimage Clin 2022; 36:103249. [PMID: 36451355 PMCID: PMC9668670 DOI: 10.1016/j.nicl.2022.103249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/26/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION The insular cortex is part of a network of highly connected cerebral "rich club" - regions and has been implicated in the pathophysiology of various psychiatric and neurological disorders, of which major depressive disease is one of the most prevalent. "Rich club" vulnerability can be a contributing factor in disease development. High-resolution structural subfield analysis of insular volume in combination with cortical thickness measurements and psychological testing might elucidate the way in which the insula is changed in depression. MATERIAL AND METHODS High-resolution structural images of the brain were acquired using a 7T-MRI scanner. The mean grey matter volume and cortical thickness within the insular subfields were analysed using voxel-based morphometry (VBM) and surface analysis techniques respectively. Insular subfields were defined according to the Brainnetome Atlas for VBM - and the Destrieux-Atlas for cortical thickness - analysis. Thirty-three patients with confirmed major depressive disease, as well as thirty-one healthy controls matched for age and gender, were measured. The severity of depression in MDD patients was measured via a BDI-II score and objective clinical assessment (AMDP). Intergroup statistical analysis was performed using ANCOVA. An intragroup multivariate regression analysis of patient psychological test results was calculated. Corrections for multiple comparisons was performed using FDR. RESULTS Significant differences between groups were observed in the left granular dorsal insula according to VBM-analysis. AMDP-scores positively correlated with cortical thickness in the right superior segment of the circular insular sulcus. CONCLUSIONS The combination of differences in grey matter volume between healthy controls and patients with a positive correlation of cortical thickness with disease severity underscores the insula's role in the pathogeneses of MDD. The connectivity hub insular cortex seems vulnerable to disruption in context of affective disease.
Collapse
Affiliation(s)
- Gereon J. Schnellbächer
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Ravichandran Rajkumar
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany,Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany,JARA-BRAIN, 52074 Aachen, Germany
| | - Tanja Veselinović
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany,Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany
| | - Shukti Ramkiran
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany,Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany
| | - Jana Hagen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany,JARA-BRAIN, 52074 Aachen, Germany,Department of Neurology, RWTH Aachen University, 52074 Aachen, Germany,Institute of Neuroscience and Medicine 11, INM-11, Forschungszentrum Jülich, Germany
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany,Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany,JARA-BRAIN, 52074 Aachen, Germany,Corresponding author.
| |
Collapse
|
65
|
Li Z, Li C, Liang Y, Wang K, Wang L, Zhang X, Wu Q. Anomalous cerebral morphology of pregnant women with cleft fetuses. Front Hum Neurosci 2022; 16:959710. [PMID: 36158614 PMCID: PMC9491019 DOI: 10.3389/fnhum.2022.959710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivePregnancy leads to long-lasting changes in brain structure for healthy women; however, little is known regarding alterations in the cortical features of pregnant women with malformed fetuses. Isolated clefts of the lip and/or palate (ICL/P) are the most common congenital anomaly in the craniofacial region, which is highly gene-associated. We speculated that pregnant women carrying fetuses with ICL/P may have associated risk genes and specific brain changes during pregnancy.MethodsIn this study, we investigated T1-weighted brain magnetic resonance imaging data from 48 pregnant women: 24 women carrying fetuses with ICL/P (ICL/P group) and 24 women carrying normal fetuses (normal controls), then explored intergroup differences in gray matter volume (GMV), cortical thickness (CT) and cortical complexity (gyrification).ResultsCompared with controls, the ICL/P group had decreased total intracranial volume (TIV) than normal controls; besides, they exhibited increased GMV in the left cuneus, decreased GMV in the right superior temporal gyrus; increased CT in the left precuneus and left superior parietal gyrus, decreased CT involving parsopercularis, fusiform, middle temporal in the left hemisphere and supramarginal, precentral gyrus (PreCG) in the right hemisphere; increased gyrification in the left insula and PreCG, the left middle temporal, and the right supratemporal gyrus.ConclusionPregnant women with ICL/P fetuses had brain morphology changes involving language, auditory, vision, and sensory cortex, which may be their special brain changes compared to normal pregnant women. This study may provide clues for the early detection of fetuses with ICL/P, and be vital for preconception and prenatal counseling with non-invasive methods.
Collapse
Affiliation(s)
- Zhen Li
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chunlin Li
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Yuting Liang
- Department of Radiology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Keyang Wang
- Department of Radiology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Li Wang
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xu Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
- *Correspondence: Xu Zhang,
| | - Qingqing Wu
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- Qingqing Wu,
| |
Collapse
|
66
|
Chechko N, Dukart J, Tchaikovski S, Enzensberger C, Neuner I, Stickel S. The expectant brain-pregnancy leads to changes in brain morphology in the early postpartum period. Cereb Cortex 2022; 32:4025-4038. [PMID: 34942007 PMCID: PMC9476604 DOI: 10.1093/cercor/bhab463] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/12/2021] [Accepted: 11/15/2021] [Indexed: 11/15/2022] Open
Abstract
There is growing evidence that pregnancy may have a significant impact on the maternal brain, causing changes in its structure. To investigate the patterns of these changes, we compared nulliparous women (n = 40) with a group of primiparous women (n = 40) and multiparous mothers (n = 37) within 1-4 days postpartum, using voxel-based and surface-based morphometry (SBM). Compared with the nulliparous women, the young mothers showed decreases in gray matter volume in the bilateral hippocampus/amygdala, the orbitofrontal/subgenual prefrontal area, the right superior temporal gyrus and insula, and the cerebellum. These pregnancy-related changes in brain structure did not predict the quality of mother-infant attachment at either 3 or 12 weeks postpartum nor were they more pronounced among the multiparous women. SBM analyses showed significant cortical thinning especially in the frontal and parietal cortices, with the parietal cortical thinning likely potentiated by multiple pregnancies. We conclude that, compared with the brain of nulliparous women, the maternal brain shows widespread morphological changes shortly after childbirth. Also, the experience of pregnancy alone may not be the underlying cause of the adaptations for mothering. As regards the exact biological function of the changes in brain morphology, longitudinal research will be needed to draw any definitive conclusions.
Collapse
Affiliation(s)
- Natalia Chechko
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen 52074, Germany
- Institute of Neuroscience and Medicine, JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich 52428, Germany
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Jülich 52428, Germany
| | - Jürgen Dukart
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Jülich 52428, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Svetlana Tchaikovski
- Department of Gynecology and Obstetrics, Medical Faculty, RWTH Aachen, Aachen 52074, Germany
| | - Christian Enzensberger
- Department of Gynecology and Obstetrics, Medical Faculty, RWTH Aachen, Aachen 52074, Germany
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen 52074, Germany
- Institute of Neuroscience and Medicine, JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich 52428, Germany
| | - Susanne Stickel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen 52074, Germany
- Institute of Neuroscience and Medicine, JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich 52428, Germany
| |
Collapse
|
67
|
De Luca A, Kuijf H, Exalto L, Thiebaut de Schotten M, Biessels GJ. Multimodal tract-based MRI metrics outperform whole brain markers in determining cognitive impact of small vessel disease-related brain injury. Brain Struct Funct 2022; 227:2553-2567. [PMID: 35994115 PMCID: PMC9418106 DOI: 10.1007/s00429-022-02546-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/27/2022] [Indexed: 01/04/2023]
Abstract
In cerebral small vessel disease (cSVD), whole brain MRI markers of cSVD-related brain injury explain limited variance to support individualized prediction. Here, we investigate whether considering abnormalities in brain tracts by integrating multimodal metrics from diffusion MRI (dMRI) and structural MRI (sMRI), can better capture cognitive performance in cSVD patients than established approaches based on whole brain markers. We selected 102 patients (73.7 ± 10.2 years old, 59 males) with MRI-visible SVD lesions and both sMRI and dMRI. Conventional linear models using demographics and established whole brain markers were used as benchmark of predicting individual cognitive scores. Multi-modal metrics of 73 major brain tracts were derived from dMRI and sMRI, and used together with established markers as input of a feed-forward artificial neural network (ANN) to predict individual cognitive scores. A feature selection strategy was implemented to reduce the risk of overfitting. Prediction was performed with leave-one-out cross-validation and evaluated with the R2 of the correlation between measured and predicted cognitive scores. Linear models predicted memory and processing speed with R2 = 0.26 and R2 = 0.38, respectively. With ANN, feature selection resulted in 13 tract-specific metrics and 5 whole brain markers for predicting processing speed, and 28 tract-specific metrics and 4 whole brain markers for predicting memory. Leave-one-out ANN prediction with the selected features achieved R2 = 0.49 and R2 = 0.40 for processing speed and memory, respectively. Our results show proof-of-concept that combining tract-specific multimodal MRI metrics can improve the prediction of cognitive performance in cSVD by leveraging tract-specific multi-modal metrics.
Collapse
Affiliation(s)
- Alberto De Luca
- VCI Group, Neurology Department, UMC Utrecht Brain Center, UMC Utrecht, Utrecht, The Netherlands.
- Image Sciences Institute, Division Imaging and Oncology, UMC Utrecht, Utrecht, The Netherlands.
| | - Hugo Kuijf
- Image Sciences Institute, Division Imaging and Oncology, UMC Utrecht, Utrecht, The Netherlands
| | - Lieza Exalto
- VCI Group, Neurology Department, UMC Utrecht Brain Center, UMC Utrecht, Utrecht, The Netherlands
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Lab, Sorbonne University, Paris, France
- Institut des Maladies Neurodégénératives, Neurofunctional Imaging Group, University of Bordeaux, Bordeaux, France
| | - Geert-Jan Biessels
- VCI Group, Neurology Department, UMC Utrecht Brain Center, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
68
|
Qin Y, Cui J, Ge X, Tian Y, Han H, Fan Z, Liu L, Luo Y, Yu H. Hierarchical multi-class Alzheimer’s disease diagnostic framework using imaging and clinical features. Front Aging Neurosci 2022; 14:935055. [PMID: 36034132 PMCID: PMC9399682 DOI: 10.3389/fnagi.2022.935055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the clinical continuum of Alzheimer’s disease (AD), the accuracy of early diagnostic remains unsatisfactory and warrants further research. The objectives of this study were: (1) to develop an effective hierarchical multi-class framework for clinical populations, namely, normal cognition (NC), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and AD, and (2) to explore the geometric properties of cognition-related anatomical structures in the cerebral cortex. A total of 1,670 participants were enrolled in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, comprising 985 participants (314 NC, 208 EMCI, 258 LMCI, and 205 AD) in the model development set and 685 participants (417 NC, 110 EMCI, 83 LMCI, and 75 AD) after 2017 in the temporal validation set. Four cortical geometric properties for 148 anatomical structures were extracted, namely, cortical thickness (CTh), fractal dimension (FD), gyrification index (GI), and sulcus depth (SD). By integrating these imaging features with Mini-Mental State Examination (MMSE) scores at four-time points after the initial visit, we identified an optimal subset of 40 imaging features using the temporally constrained group sparse learning method. The combination of selected imaging features and clinical variables improved the multi-class performance using the AdaBoost algorithm, with overall accuracy rates of 0.877 in the temporal validation set. Clinical Dementia Rating (CDR) was the primary clinical variable associated with AD-related populations. The most discriminative imaging features included the bilateral CTh of the dorsal part of the posterior cingulate gyrus, parahippocampal gyrus (PHG), parahippocampal part of the medial occipito-temporal gyrus, and angular gyrus, the GI of the left inferior segment of the insula circular sulcus, and the CTh and SD of the left superior temporal sulcus (STS). Our hierarchical multi-class framework underscores the utility of combining cognitive variables with imaging features and the reliability of surface-based morphometry, facilitating more accurate early diagnosis of AD in clinical practice.
Collapse
Affiliation(s)
- Yao Qin
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jing Cui
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Ge
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yuling Tian
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongjuan Han
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Zhao Fan
- Center of Translational Medicine, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Long Liu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yanhong Luo
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Hongmei Yu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Taiyuan, China
- *Correspondence: Hongmei Yu,
| |
Collapse
|
69
|
Serra L, Giancaterino G, Giulietti G, Petrosini L, Di Domenico C, Marra C, Caltagirone C, Bassi A, Cercignani M, Bozzali M. Cognitive Reserve Modulates Brain Structure and Cortical Architecture in the Alzheimer's Disease. J Alzheimers Dis 2022; 89:811-824. [PMID: 35964192 DOI: 10.3233/jad-220377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cognitive reserve (CR) explains the individual resilience to neurodegeneration. OBJECTIVE The present study investigated the effect of CR in modulating brain cortical architecture. METHODS 278 individuals [110 Alzheimer's disease (AD), 104 amnestic mild cognitive impairment (aMCI) due to AD, 64 healthy subjects (HS)] underwent a neuropsychological evaluation and 3T-MRI. Cortical thickness (CTh) and fractal dimension (FD) were assessed. Years of formal education were used as an index of CR by which participants were divided into high and low CR (HCR and LCR). Within-group differences in cortical architecture were assessed as a function of CR. Associations between cognitive scores and cortical measures were also evaluated. RESULTS aMCI-HCR compared to aMCI-LCR patients showed significant decrease of CTh in the right temporal and in the left prefrontal lobe. Moreover, they showed increased FD in the right temporal and in the left temporo-parietal lobes. Patients with AD-HCR showed reduced CTh in several brain areas and reduced FD in the left temporal cortices when compared with AD-LCR subjects. HS-HCR showed a significant increase of CTh in prefrontal areas bilaterally, and in the right parieto-occipital cortices. Finally, aMCI-HCR showed significant positive associations between brain measures and memory and executive performance. CONCLUSION CR modulates the cortical architecture at pre-dementia stage only. Indeed, only patients with aMCI showed both atrophy (likely due to neurodegeneration) alongside richer brain folding (likely due to reserve mechanisms) in temporo-parietal areas. This opposite trend was not observed in AD and HS. Our data confirm the existence of a limited time-window for CR modulation at the aMCI stage.
Collapse
Affiliation(s)
- Laura Serra
- Neuroimaging Laboratory, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | | | | | - Laura Petrosini
- Laboratory of Experimental and Behavioural Neurophysiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | | | - Camillo Marra
- Institute of Neurology, Catholic University, Rome, Italy
| | - Carlo Caltagirone
- Department of Clinicaland Behavioural Neurology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Andrea Bassi
- Department of Clinicaland Behavioural Neurology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Mara Cercignani
- Cardiff University Brain Imaging Centre, School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
| | - Marco Bozzali
- Brighton & Sussex Medical School, University of Sussex -Brighton, United Kingdom.,Rita Levi Montalcini' Department of Neuroscience University of Torino, Turin, Italy
| |
Collapse
|
70
|
Ankeeta A, Kumaran SS, Saxena R, Dwivedi SN, Jagannathan NR, Narang V. Auditory perception of ambiguous and non-ambiguous sound in early and late blind children: A functional connectivity study. BRAIN AND LANGUAGE 2022; 231:105148. [PMID: 35738069 DOI: 10.1016/j.bandl.2022.105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Auditory perception and associated cognition involve visual and auditory cortical areas for inference of meaningful soundscape. OBJECTIVE To investigate auditory perception of ambiguous and non-ambiguous stimulation in auditory and visual cortical networks for categorical discrimination. METHODOLOGY Functional mapping was carried out in twenty early (EB), twenty late blind (LB) and fifteen healthy children, during auditory ambiguous and non-ambiguous stimulation task in a 3 T MR scanner to estimate hemodynamic signal alteration and its effect on functional connectivity. The degree of amplitude low-frequency fluctuation (ALFF), correlation analysis and multiple comparison was carried out to map the impact of duration of education and onset of blindness (EB and LB). RESULTS AND DISCUSSION Increased functional connectivity (FC) and cross-modal reorganization was observed in auditory, visual and language networks in EB children. FC was increased in contralateral hemisphere in both the blind children (EB and LB) groups and was positively correlated with duration of education performance. Cognitive assessment scores correlated (p < 0.01) with cluster coefficient of FC and BOLD response. CONCLUSION FC alterations depend on onset age and audio-haptic training in children associated with increased auditory language and memory perception.
Collapse
Affiliation(s)
- A Ankeeta
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - S Senthil Kumaran
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| | - Rohit Saxena
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sada Nand Dwivedi
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - N R Jagannathan
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Vaishna Narang
- School of Language, Literature and Culture Studies - I, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
71
|
Associations of gestational age with gyrification and neurocognition in healthy adults. Eur Arch Psychiatry Clin Neurosci 2022; 273:467-479. [PMID: 35904633 PMCID: PMC10070217 DOI: 10.1007/s00406-022-01454-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
Epidemiological studies have shown that gestational age and birth weight are linked to cognitive performance in adults. On a neurobiological level, this effect is hypothesized to be related to cortical gyrification, which is determined primarily during fetal development. The relationships between gestational age, gyrification and specific cognitive abilities in adults are still poorly understood. In 542 healthy participants, gyrification indices were calculated from structural magnetic resonance imaging T1 data at 3 T using CAT12. After applying a battery of neuropsychological tests, neuropsychological factors were extracted with a factor analysis. We conducted regressions to test associations between gyrification and gestational age as well as birth weight. Moderation analyses explored the relationships between gestational age, gyrification and neuropsychological factors. Gestational age is significantly positively associated with cortical folding in the left supramarginal, bilaterally in the superior frontal and the lingual cortex. We extracted two neuropsychological factors that describe language abilities and working memory/attention. The association between gyrification in the left superior frontal gyrus and working memory/attention was moderated by gestational age. Further, the association between gyrification in the left supramarginal cortex and both, working memory/attention as well as language, were moderated by gestational age. Gyrification is associated with gestational age and related to specific neuropsychological outcomes in healthy adulthood. Implications from these findings for the cortical neurodevelopment of cognitive domains and mental health are discussed.
Collapse
|
72
|
Helmet Technology, Head Impact Exposure, and Cortical Thinning Following a Season of High School Football. Ann Biomed Eng 2022; 50:1608-1619. [PMID: 35867315 DOI: 10.1007/s10439-022-03023-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/13/2022] [Indexed: 11/01/2022]
Abstract
The purpose of this study was to compare the effects of wearing older, lower-ranked football helmets (LRank) to wearing newer, higher-ranked football helmets (HRank) on pre- to post-season changes in cortical thickness in response to repetitive head impacts and assess whether changes in cortical thickness are associated with head impact exposure for either helmet type. 105 male high-school athletes (NHRank = 52, NLRank = 53) wore accelerometers affixed behind the left mastoid during all practices and games for one regular season of American football to monitor head impact exposure. Pre- and post-season magnetic resonance imaging (MRI) were completed to assess longitudinal changes in cortical thickness. Significant reductions in cortical thickness (i.e., cortical thinning) were observed pre- to post-season for each group, but these longitudinal alterations were not significantly different between the LRank and HRank groups. Further, significant group-by-head impact exposure interactions were observed when predicting changes in cortical thickness. Specifically, a greater frequency of high magnitude head impacts during the football season resulted in greater cortical thinning for the LRank group, but not for the HRank group. These data provide preliminary in vivo evidence that HRank helmets may provide a buffer between the specific effect of high magnitude head impacts on regional thinning by dissipating forces more evenly throughout the cortex. However, future research with larger sample sizes, increased longitudinal measures and additional helmet technologies is warranted to both expand upon and further validate the present study findings.
Collapse
|
73
|
Zhou J, Chen W, Wu Q, Chen L, Chen HH, Liu H, Xu XQ, Wu FY, Hu H. Reduced cortical complexity in patients with thyroid-associated ophthalmopathy. Brain Imaging Behav 2022; 16:2133-2140. [PMID: 35821157 DOI: 10.1007/s11682-022-00683-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
Psychical and functional disturbances of thyroid-associated ophthalmopathy (TAO) patients are drawing increasingly attention, despite the characterized ophthalmic symptoms. We aimed to investigate the alterations of structural complexity using fractal dimension (FD) analysis in patients with TAO. Thirty-nine TAO patients and 25 healthy controls underwent high-resolution 3.0 T structural brain magnetic resonance imaging (MRI). FD values of brain regions were calculated by Computational Anatomy Toolbox (CAT12) and compared between groups. The associations between clinical variables and FD values were further estimated. We found that TAO patients exhibited significantly decreased FD values in right caudal anterior cingulate cortex, right lingual gyrus, right pars orbitalis and right cuneus cortex (FDR corrected p < 0.05). FD values of right cuneus cortex were positively correlated with visual acuity, and FD values of right caudal anterior cingulate cortex were also positively correlated with cognitive performance. Meanwhile, FD values of right lingual gyrus were found to be negatively correlated with emotional function. Our study indicated disturbed cortical complexity in brain regions corresponding to known functional deficits of vision, emotion and cognition in TAO. FD might be a potential marker for reflecting the underlying neurobiological basis of TAO.
Collapse
Affiliation(s)
- Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China
| | - Wen Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China
| | - Qian Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China
| | - Lu Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China
| | - Huan-Huan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hu Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China.
| | - Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China.
| |
Collapse
|
74
|
Hoopes A, Iglesias JE, Fischl B, Greve D, Dalca AV. TopoFit: Rapid Reconstruction of Topologically-Correct Cortical Surfaces. PROCEEDINGS OF MACHINE LEARNING RESEARCH 2022; 172:508-520. [PMID: 37220495 PMCID: PMC10201930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Mesh-based reconstruction of the cerebral cortex is a fundamental component in brain image analysis. Classical, iterative pipelines for cortical modeling are robust but often time-consuming, mostly due to expensive procedures that involve topology correction and spherical mapping. Recent attempts to address reconstruction with machine learning methods have accelerated some components in these pipelines, but these methods still require slow processing steps to enforce topological constraints that comply with known anatomical structure. In this work, we introduce a novel learning-based strategy, TopoFit, which rapidly fits a topologically-correct surface to the white-matter tissue boundary. We design a joint network, employing image and graph convolutions and an efficient symmetric distance loss, to learn to predict accurate deformations that map a template mesh to subject-specific anatomy. This technique encompasses the work of current mesh correction, fine-tuning, and inflation processes and, as a result, offers a 150× faster solution to cortical surface reconstruction compared to traditional approaches. We demonstrate that TopoFit is 1.8× more accurate than the current state-of-the-art deep-learning strategy, and it is robust to common failure modes, such as white-matter tissue hypointensities.
Collapse
Affiliation(s)
- Andrew Hoopes
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
| | - Juan Eugenio Iglesias
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
- Department of Radiology, Harvard Medical School
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology
- Centre for Medical Image Computing, University College London
| | - Bruce Fischl
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
- Department of Radiology, Harvard Medical School
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology
- Harvard-MIT Division of Health, Sciences, and Technology
| | - Douglas Greve
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
- Department of Radiology, Harvard Medical School
| | - Adrian V Dalca
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
- Department of Radiology, Harvard Medical School
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology
| |
Collapse
|
75
|
Zhang M, Hong X, Yang F, Fan H, Fan F, Song J, Wang Z, Tan Y, Tan S, Elliot Hong L. Structural brain imaging abnormalities correlate with positive symptom in schizophrenia. Neurosci Lett 2022; 782:136683. [PMID: 35595192 DOI: 10.1016/j.neulet.2022.136683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/04/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
Accumulating evidence indicates neuroanatomical mechanisms underlying positive symptoms in schizophrenia; however, the exact structural determinants of positive symptoms remain unclear. This study aimed to investigate associations between positive symptoms and structural brain changes, including alterations in grey matter (GM) volume and cortical thickness, in patients with first-episode schizophrenia (FES). This study included 44 patients with FES and 48 healthy controls (HCs). Clinical symptoms of patients were evaluated and individual-level GM volume and cortical thickness were assessed. Patients with FES showed reduced GM volume in the right superior temporal gyrus (STG) and increased cortical thickness in the left inferior segment of the circular sulcus of the insula (S_circular_insula_inf) compared with HCs. Increased thickness of the left S_circular_insula_inf correlated positively with positive symptoms in patients with FES. Exploratory correlation analysis found that increased thickness of the left S_circular_insula_inf correlated positively with conceptual disorganization and excitement symptoms, and the right STG GM volume correlated negatively with hallucinations. This study suggests that GM abnormalities in the STG and altered cortical thickness of the S_circular_insula_inf, which were detected at the early stage of schizophrenia, may underlie positive symptoms in patients with FES.
Collapse
Affiliation(s)
- Meng Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China
| | - Xiang Hong
- Chongqing Three Gorges Central Hospital, Chongqing 404000, China
| | - Fude Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China
| | - Hongzhen Fan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China
| | - Fengmei Fan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China
| | - Jiaqi Song
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China
| | - Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China.
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21288, USA
| |
Collapse
|
76
|
Yamaguchi R, Matsudaira I, Takeuchi H, Imanishi T, Kimura R, Tomita H, Kawashima R, Taki Y. RELN rs7341475 associates with brain structure in japanese healthy females. Neuroscience 2022; 494:38-50. [DOI: 10.1016/j.neuroscience.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/06/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
|
77
|
Wu Y, Wang T, Ding Q, Li H, Wu Y, Li D, Sun B, Pan Y. Cortical and Subcortical Structural Abnormalities in Patients With Idiopathic Cervical and Generalized Dystonia. FRONTIERS IN NEUROIMAGING 2022; 1:807850. [PMID: 37555168 PMCID: PMC10406292 DOI: 10.3389/fnimg.2022.807850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/03/2022] [Indexed: 08/10/2023]
Abstract
OBJECTIVES In this study, we sought to investigate structural imaging alterations of patients with idiopathic dystonia at the cortical and subcortical levels. The common and specific changes in two subtypes of dystonia, cervical dystonia (CD) and generalized dystonia (GD), were intended to be explored. Additionally, we sought to identify the morphometric measurements which might be related to patients' clinical characteristics, thus providing more clues of specific brain regions involved in the mechanism of idiopathic dystonia. METHODS 3D T1-weighted MRI scans were acquired from 56 patients with idiopathic dystonia and 30 healthy controls (HC). Patients were classified as CD or GD, according to the distinct symptom distributions. Cortical thickness (CT) of 30 CD and 26 GD were estimated and compared to HCs using Computational Anatomy Toolbox (CAT12), while volumes of subcortical structures and their shape alterations (29 CD, 25 GD, and 27 HCs) were analyzed via FSL software. Further, we applied correlation analyses between the above imaging measurements with significant differences and patients' clinical characteristics. RESULTS The results of comparisons between the two patient groups and HCs were highly consistent, demonstrating increased CT of bilateral postcentral, superiorparietal, superiorfrontal/rostralmiddlefrontal, occipital gyrus, etc., and decreased CT of bilateral cingulate, insula, entorhinal, and fusiform gyrus (PFWE < 0.005 at the cluster level). In CD, trends of negative correlations were found between disease severity and CT alterations mostly located in pre/postcentral, rostralmiddlefrontal, superiorparietal, and supramarginal regions. Besides, volumes of bilateral putamen, caudate, and thalamus were significantly reduced in both patient groups, while pallidum volume reduction was also presented in GD compared to HCs. Caudate volume reduction had a trend of correlation to increasing disease severity in GD. Last, shape analysis directly demonstrated regional surface alterations in bilateral thalamus and caudate, where the atrophy located in the head of caudate had a trend of correlation to earlier ages of onset in GD. CONCLUSIONS Our study demonstrates wide-spread morphometric changes of CT, subcortical volumes, and shapes in idiopathic dystonia. CD and GD presented similar patterns of morphometric abnormalities, indicating shared underlying mechanisms in two different disease forms. Especially, the clinical associations of CT of multiple brain regions with disease severity, and altered volume/shape of caudate with disease severity/age of onset separately in CD and GD might serve as potential biomarkers for further disease exploration.
Collapse
Affiliation(s)
- Yunhao Wu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Ding
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Hongxia Li
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
78
|
Hupfeld KE, Geraghty JM, McGregor HR, Hass CJ, Pasternak O, Seidler RD. Differential Relationships Between Brain Structure and Dual Task Walking in Young and Older Adults. Front Aging Neurosci 2022; 14:809281. [PMID: 35360214 PMCID: PMC8963788 DOI: 10.3389/fnagi.2022.809281] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Almost 25% of all older adults experience difficulty walking. Mobility difficulties for older adults are more pronounced when they perform a simultaneous cognitive task while walking (i.e., dual task walking). Although it is known that aging results in widespread brain atrophy, few studies have integrated across more than one neuroimaging modality to comprehensively examine the structural neural correlates that may underlie dual task walking in older age. We collected spatiotemporal gait data during single and dual task walking for 37 young (18-34 years) and 23 older adults (66-86 years). We also collected T 1-weighted and diffusion-weighted MRI scans to determine how brain structure differs in older age and relates to dual task walking. We addressed two aims: (1) to characterize age differences in brain structure across a range of metrics including volumetric, surface, and white matter microstructure; and (2) to test for age group differences in the relationship between brain structure and the dual task cost (DTcost) of gait speed and variability. Key findings included widespread brain atrophy for the older adults, with the most pronounced age differences in brain regions related to sensorimotor processing. We also found multiple associations between regional brain atrophy and greater DTcost of gait speed and variability for the older adults. The older adults showed a relationship of both thinner temporal cortex and shallower sulcal depth in the frontal, sensorimotor, and parietal cortices with greater DTcost of gait. Additionally, the older adults showed a relationship of ventricular volume and superior longitudinal fasciculus free-water corrected axial and radial diffusivity with greater DTcost of gait. These relationships were not present for the young adults. Stepwise multiple regression found sulcal depth in the left precentral gyrus, axial diffusivity in the superior longitudinal fasciculus, and sex to best predict DTcost of gait speed, and cortical thickness in the superior temporal gyrus to best predict DTcost of gait variability for older adults. These results contribute to scientific understanding of how individual variations in brain structure are associated with mobility function in aging. This has implications for uncovering mechanisms of brain aging and for identifying target regions for mobility interventions for aging populations.
Collapse
Affiliation(s)
- Kathleen E. Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Justin M. Geraghty
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Heather R. McGregor
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - C. J. Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Rachael D. Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- University of Florida Norman Fixel Institute for Neurological Diseases, Gainesville, FL, United States
| |
Collapse
|
79
|
White matter volume loss drives cortical reshaping after thalamic infarcts. Neuroimage Clin 2022; 33:102953. [PMID: 35139478 PMCID: PMC8844789 DOI: 10.1016/j.nicl.2022.102953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/10/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022]
Abstract
White matter volume loss after unilateral thalamic infarcts shows the trajectories of sensory and ocular motor input from the brainstem to the thalamus and their thalamocortical connections. The extensive volume loss drives reshaping of the cortex more than grey matter atrophy. Associated ocular motor and vestibular symptoms are compensated over time due to their redundant and intermingled connectivity and an early integration with other sensory modalities. Associated ocular motor and vestibular symptoms are compensated over time due to their redundant and intermingled connectivity and an early integration with other sensory modalities.
Objective The integration of somatosensory, ocular motor and vestibular signals is necessary for self-location in space and goal-directed action. We aimed to detect remote changes in the cerebral cortex after thalamic infarcts to reveal the thalamo-cortical connections necessary for multisensory processing and ocular motor control. Methods Thirteen patients with unilateral ischemic thalamic infarcts presenting with vestibular, somatosensory, and ocular motor symptoms were examined longitudinally in the acute phase and after six months. Voxel- and surface-based morphometry were used to detect changes in vestibular and multisensory cortical areas and known hubs of central ocular motor processing. The results were compared with functional connectivity data in 50 healthy volunteers. Results Patients with paramedian infarcts showed impaired saccades and vestibular perception, i.e., tilts of the subjective visual vertical (SVV). The most common complaint in these patients was double vision or vertigo / dizziness. Posterolateral thalamic infarcts led to tilts of the SVV and somatosensory deficits without vertigo. Tilts of the SVV were higher in paramedian compared to posterolateral infarcts (median 11.2° vs 3.8°). Vestibular and ocular motor symptoms recovered within six months. Somatosensory deficits persisted. Structural longitudinal imaging showed significant volume reduction in subcortical structures connected to the infarcted thalamic nuclei (vestibular nuclei region, dentate nucleus region, trigeminal root entry zone, medial lemniscus, superior colliculi). Volume loss was evident in connections to the frontal, parietal and cingulate lobes. Changes were larger in the ipsilesional hemisphere but were also detected in homotopical regions contralesionally. The white matter volume reduction led to deformation of the cortical projection zones of the infarcted nuclei. Conclusions White matter volume loss after thalamic infarcts reflects sensory input from the brainstem as well the cortical projections of the main affected nuclei for sensory and ocular motor processing. Changes in the cortical geometry seem not to reflect gray matter atrophy but rather reshaping of the cortical surface due to the underlying white matter atrophy.
Collapse
|
80
|
Differences between multimodal brain-age and chronological-age are linked to telomere shortening. Neurobiol Aging 2022; 115:60-69. [DOI: 10.1016/j.neurobiolaging.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/19/2022]
|
81
|
Krupenin PM, Perepelov VA, Perepelova EM, Bordovsky SP, Preobrazhenskaya IS, Sokolova AA, Napalkov DA, Voskresenskaya ON. Verifying small vessel disease and mild cognitive impairment with a computational мagnetic resonance imaging analysis. CONSILIUM MEDICUM 2022. [DOI: 10.26442/20751753.2022.2.201353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aim. To illustrate capabilities of the computational brain мagnetic resonance imaging (MRI) analyses on a small vessel disease (SVD) sample.
Materials and methods. Thirty-one patients underwent brain MRI in standard sequences. We used Lesion Segmentation Tool to assess white matter hyperintensities (WMH) volume and Computational Anatomy Toolbox to calculate cortical thickness. Both software plug-ins work within the Statistical Parametric Mapping 12 software for MATLAB. We also performed cognitive testing with the Montreal Cognitive Assessment test and tests to detect hippocampal and executive domain dysfunction.
Results. Sixteen patients had mild vascular cognitive impairment. The Median Fazekas scale score was 2 and 2 points. The median intracranial volume fraction occupied by the WMH was 0.07%. It correlated with the executive domain performance but not with cortical thickness. Cortical thickness within several clusters of the prefrontal complex and temporal lobe correlated with performance in cognitive tests. Among the computed MRI markers of the SVD, the occipital lobe cortical thickness had an area under the curve of 70%, and among the cognitive tests, the cued recall measure had an area under the curve of 73.8% to detect mild cognitive impairment.
Conclusion. The abovementioned metrics is a valuable tool to objectively estimate white and grey matter state in patients with small vessel disease. Performing those analyses helped to assess SVD properties in the sample further and register new correlations between MRI and cognitive markers.
Collapse
|
82
|
Conrad J, Habs M, Ruehl RM, Boegle R, Ertl M, Kirsch V, Eren O, Becker-Bense S, Stephan T, Wollenweber F, Duering M, Dieterich M, Zu Eulenburg P. Reorganization of sensory networks after subcortical vestibular infarcts - A longitudinal symptom-related VBM study. Eur J Neurol 2022; 29:1514-1523. [PMID: 35098611 DOI: 10.1111/ene.15263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/16/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND We aimed to delineate common principles of reorganization after infarcts of the subcortical vestibular circuitry related to the clinical symptomatology. Our hypothesis was that the recovery of specific symptoms is associated with changes in distinct regions within the core vestibular, somatosensory and visual cortical and subcortical networks. METHODS We used voxel- and surface-based morphometry to investigate structural reorganization of subcortical and cortical brain areas in 42 patients with a unilateral, subcortical infarct with vestibular and ocular motor deficits in the acute phase. The patients received structural neuroimaging and clinical monitoring twice (acute phase and after 6 months) to detect within-subject changes over time. RESULTS In patients with vestibular signs such as tilts of the subjective visual vertical (SVV) and ocular torsion in the acute phase, significant volumetric increases in the superficial white matter around the parieto-(retro-)insular vestibular cortex (PIVC) were found at follow-up. In patients with SVV tilts, spontaneous nystagmus and rotatory vertigo in the acute phase gray matter volume decreases were located in the cerebellum and the visual cortex bilaterally at follow-up. Patients with saccade pathology demonstrated volumetric decreases in cerebellar, thalamic and cortical centers for ocular motor control. CONCLUSIONS The findings support the role of the PIVC as the key hub for vestibular processing and reorganization. The volumetric decreases represent the reciprocal interaction of the vestibular, visual and ocular motor systems during self-location and egomotion detection. A modulation in vestibular and ocular motor as well as visual networks was induced independent of the vestibular lesion site.
Collapse
Affiliation(s)
- Julian Conrad
- Department of Neurology, University Hospital, LMU Munich, Germany.,German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, LMU Munich, Germany
| | - Maximilian Habs
- Department of Neurology, University Hospital, LMU Munich, Germany.,German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, LMU Munich, Germany
| | - Ria Maxine Ruehl
- Department of Neurology, University Hospital, LMU Munich, Germany.,German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, LMU Munich, Germany
| | - Rainer Boegle
- Department of Neurology, University Hospital, LMU Munich, Germany.,Graduate School of Systemic Neurosciences - GSN-LMU, LMU Munich, Germany
| | - Matthias Ertl
- Department of Psychology, University of Bern, Switzerland
| | - Valerie Kirsch
- Department of Neurology, University Hospital, LMU Munich, Germany.,German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, LMU Munich, Germany.,Graduate School of Systemic Neurosciences - GSN-LMU, LMU Munich, Germany
| | - Ozan Eren
- Department of Neurology, University Hospital, LMU Munich, Germany
| | - Sandra Becker-Bense
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, LMU Munich, Germany
| | - Thomas Stephan
- Department of Neurology, University Hospital, LMU Munich, Germany
| | - Frank Wollenweber
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany.,Department of Neurology, Helios Dr. Horst Schmidt Kliniken, Wiesbaden, Germany
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany.,Medical Image Analysis Center (MIAC) and qbig, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Marianne Dieterich
- Department of Neurology, University Hospital, LMU Munich, Germany.,German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, LMU Munich, Germany.,Graduate School of Systemic Neurosciences - GSN-LMU, LMU Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peter Zu Eulenburg
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, LMU Munich, Germany.,Graduate School of Systemic Neurosciences - GSN-LMU, LMU Munich, Germany.,Institute for Neuroradiology LMU Munich, Germany
| |
Collapse
|
83
|
Domain L, Guillery M, Linz N, König A, Batail JM, David R, Corouge I, Bannier E, Ferré JC, Dondaine T, Drapier D, Robert GH. Multimodal MRI cerebral correlates of verbal fluency switching and its impairment in women with depression. Neuroimage Clin 2021; 33:102910. [PMID: 34942588 PMCID: PMC8713114 DOI: 10.1016/j.nicl.2021.102910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The search of biomarkers in the field of depression requires easy implementable tests that are biologically rooted. Qualitative analysis of verbal fluency tests (VFT) are good candidates, but its cerebral correlates are unknown. METHODS We collected qualitative semantic and phonemic VFT scores along with grey and white matter anatomical MRI of depressed (n = 26) and healthy controls (HC, n = 25) women. Qualitative VFT variables are the "clustering score" (i.e. the ability to produce words within subcategories) and the "switching score" (i.e. the ability to switch between clusters). The clustering and switching scores were automatically calculated using a data-driven approach. Brain measures were cortical thickness (CT) and fractional anisotropy (FA). We tested for associations between CT, FA and qualitative VFT variables within each group. RESULTS Patients had reduced switching VFT scores compared to HC. Thicker cortex was associated with better switching score in semantic VFT bilaterally in the frontal (superior, rostral middle and inferior gyri), parietal (inferior parietal lobule including the supramarginal gyri), temporal (transverse and fusiform gyri) and occipital (lingual gyri) lobes in the depressed group. Positive association between FA and the switching score in semantic VFT was retrieved in depressed patients within the corpus callosum, right inferior fronto-occipital fasciculus, right superior longitudinal fasciculus extending to the anterior thalamic radiation (all p < 0.05, corrected). CONCLUSION Together, these results suggest that automatic qualitative VFT scores are associated with brain anatomy and reinforce its potential use as a surrogate for depression cerebral bases.
Collapse
Affiliation(s)
- L Domain
- Universitary Department of Psychiatry, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - M Guillery
- Universitary Department of Psychiatry, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - N Linz
- ki:elements, Saarbrücken, Germany
| | - A König
- Stars Team, Institut National de Recherche en Informatique et en Automatique (INRIA), Sophia Antipolis, France; CoBTeK (Cognition-Behaviour-Technology) Lab, FRIS-University Côte d'Azur, Nice, France
| | - J M Batail
- Universitary Department of Psychiatry, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - R David
- Old-age Psychiatry DEPARTMENT, Geriatry Division, University of Nice, France
| | - I Corouge
- U1228 Empenn, UMR 6074, IRISA, University of Rennes 1, France
| | - E Bannier
- U1228 Empenn, UMR 6074, IRISA, University of Rennes 1, France
| | - J C Ferré
- U1228 Empenn, UMR 6074, IRISA, University of Rennes 1, France
| | - T Dondaine
- Univ. Lille, Inserm, CHU Lille, LilNCog, Lille Neuroscience & Cognition, F-59000 Lille, France
| | - D Drapier
- Universitary Department of Psychiatry, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - G H Robert
- Universitary Department of Psychiatry, Centre Hospitalier Guillaume Régnier, Rennes, France; U1228 Empenn, UMR 6074, IRISA, University of Rennes 1, France
| |
Collapse
|
84
|
Ferro DA, Kuijf HJ, Hilal S, van Veluw SJ, van Veldhuizen D, Venketasubramanian N, Tan BY, Biessels GJ, Chen C. Association Between Cerebral Cortical Microinfarcts and Perilesional Cortical Atrophy on 3T MRI. Neurology 2021; 98:e612-e622. [PMID: 34862322 DOI: 10.1212/wnl.0000000000013140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 11/16/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Cerebral cortical microinfarcts (CMIs) are a novel MRI-marker of cerebrovascular disease (CeVD) that predicts accelerated cognitive decline. Presence of CMIs is known to be associated with global cortical atrophy, although the mechanism linking the two is unclear. Our primary objective was to examine the relation between CMIs and cortical atrophy and establish possible perilesional atrophy surrounding CMIs. Our secondary objective was to examine the role of cortical atrophy in CMI-associated cognitive impairment. METHODS Patients were recruited from two Singapore memory clinics between December 2010 and September 2013 and included if they received the diagnosis no objective cognitive impairment, cognitive impairment (with or without a history of stroke) or Alzheimer's or vascular dementia. Cortical thickness, chronic cortical microinfarcts and MRI-markers of CeVD were assessed on 3T MRI. Patients underwent cognitive testing. Cortical thickness was compared globally between patients with and without CMIs, regionally within individual patients with CMIs comparing brain regions with CMIs to the corresponding contralateral region without CMIs and locally within individuals patients in a 50 mm radius of CMIs. Global cortical thickness was analyzed as mediator in the relation between CMI and cognitive performance. RESULTS Of the 238 patients (mean age 72.5 SD 9.1 years) enrolled, 75 had ≥1 CMIs. Patient with CMIs had a 2.1% lower global cortical thickness (B=-.049 mm, 95% CI [.091; -.007] p=.022) compared to patients without CMIs, after correction for age, sex, education and intracranial volume. In patients with CMIs, cortical thickness in brain regions with CMIs was 2.2 % lower than in contralateral regions without CMIs (B=-.048 mm [-.071; -.026] p<.001). In a 20 mm radius area surrounding the CMI-core, cortical thickness was lower than in the area 20-50 mm from the CMI-core (Mean difference -.06 mm 95% CI [-.10; -.02] p=.002). Global cortical thickness was a significant mediator in the relationship between CMI presence and cognitive performance as measure with the Mini-Mental State Examination (B=-.12 [-.22; -.01] p=.025). DISCUSSION We found cortical atrophy surrounding CMIs, suggesting a perilesional effect in a cortical area many times larger than the CMI-core. Our findings support the notion that CMIs affect brain structure beyond the actual lesion site.
Collapse
Affiliation(s)
- Doeschka A Ferro
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hugo J Kuijf
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Saima Hilal
- Memory Aging and Cognition Centre, Department of Pharmacology, National University of Singapore, Singapore
| | - Susanne J van Veluw
- Department of Neurology, J.P.K. Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Christopher Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, National University of Singapore, Singapore
| |
Collapse
|
85
|
Liu S, Wang C, Yang Y, Cai H, Zhang M, Si L, Zhang S, Xu Y, Zhu J, Yu Y. Brain structure and perfusion in relation to serum renal function indexes in healthy young adults. Brain Imaging Behav 2021; 16:1014-1025. [PMID: 34709557 DOI: 10.1007/s11682-021-00565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2021] [Indexed: 11/30/2022]
Abstract
Prior neuroimaging studies of the relationship between the kidney and the brain have been limited to clinical populations and have largely relied on a single modality. We sought to examine the kidney-brain associations in healthy subjects using a combined analysis of multi-modal imaging data. Structural, diffusion, and perfusion magnetic resonance imaging (MRI) scans were performed to measure cortical thickness, white matter integrity, and cerebral blood flow in 157 healthy young adults. Peripheral venous blood samples were collected to measure serum renal function indexes. Correlation analyses were performed to investigate the relations between brain MRI measures and renal function indexes. Results showed that higher serum uric acid level was associated with increased cortical thickness in the transverse temporal gyrus. We also found that decreased serum creatinine level was linked to lower white matter integrity in the sagittal stratum, anterior corona radiata, superior corona radiata, and external capsule. Furthermore, we observed that increased serum uric acid level was related to hyperperfusion in the opercular and triangular parts of inferior frontal gyrus and supramarginal gyrus, and hypoperfusion in the calcarine sulcus, cuneus and lingual gyrus. More importantly, mediation analysis revealed that the relationship between serum uric acid and working memory performance was mediated by perfusion in the supramarginal gyrus and lingual gyrus. These findings not only may extend current knowledge regarding the relationship between the kidney and the brain, but also may inform real-world clinical practice by identification of potential brain regions vulnerable to renal dysfunction.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Chunli Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ying Yang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Huanhuan Cai
- Medical Imaging Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Min Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Li Si
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
| |
Collapse
|
86
|
Zareba MR, Fafrowicz M, Marek T, Beldzik E, Oginska H, Domagalik A. Late chronotype is linked to greater cortical thickness in the left fusiform and entorhinal gyri. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2021.1990501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Michal Rafal Zareba
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Brain Imaging Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Ewa Beldzik
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Halszka Oginska
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Aleksandra Domagalik
- Brain Imaging Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
87
|
Zhe X, Chen L, Zhang D, Tang M, Gao J, Ai K, Liu W, Lei X, Zhang X. Cortical Areas Associated With Multisensory Integration Showing Altered Morphology and Functional Connectivity in Relation to Reduced Life Quality in Vestibular Migraine. Front Hum Neurosci 2021; 15:717130. [PMID: 34483869 PMCID: PMC8415788 DOI: 10.3389/fnhum.2021.717130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/26/2021] [Indexed: 01/21/2023] Open
Abstract
Background: Increasing evidence suggests that the temporal and parietal lobes are associated with multisensory integration and vestibular migraine. However, temporal and parietal lobe structural and functional connectivity (FC) changes related to vestibular migraine need to be further investigated. Methods: Twenty-five patients with vestibular migraine (VM) and 27 age- and sex- matched healthy controls participated in this study. Participants completed standardized questionnaires assessing migraine and vertigo-related clinical features. Cerebral cortex characteristics [i.e., thickness (CT), fractal dimension (FD), sulcus depth (SD), and the gyrification index (GI)] were evaluated using an automated Computational Anatomy Toolbox (CAT12). Regions with significant differences were used in a seed-based comparison of resting-state FC conducted with DPABI. The relationship between changes in cortical characteristics or FC and clinical features was also analyzed in the patients with VM. Results: Relative to controls, patients with VM showed significantly thinner CT in the bilateral inferior temporal gyrus, left middle temporal gyrus, and the right superior parietal lobule. A shallower SD was observed in the right superior and inferior parietal lobule. FD and GI did not differ significantly between the two groups. A negative correlation was found between CT in the right inferior temporal gyrus, as well as the left middle temporal gyrus, and the Dizziness Handicap Inventory (DHI) score in VM patients. Furthermore, patients with VM exhibited weaker FC between the left inferior/middle temporal gyrus and the left medial superior frontal gyrus, supplementary motor area. Conclusion: Our data revealed cortical structural and resting-state FC abnormalities associated with multisensory integration, contributing to a lower quality of life. These observations suggest a role for multisensory integration in patients with VM pathophysiology. Future research should focus on using a task-based fMRI to measure multisensory integration.
Collapse
Affiliation(s)
- Xia Zhe
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Li Chen
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jie Gao
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Kai Ai
- Department of Clinical Science, Philips Healthcare, Xi'an, China
| | - Weijun Liu
- Consumables and Reagents Department, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoyan Lei
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
88
|
Cruz-Sanabria F, Reyes PA, Triviño-Martínez C, García-García M, Carmassi C, Pardo R, Matallana DL. Exploring Signatures of Neurodegeneration in Early-Onset Older-Age Bipolar Disorder and Behavioral Variant Frontotemporal Dementia. Front Neurol 2021; 12:713388. [PMID: 34539558 PMCID: PMC8446277 DOI: 10.3389/fneur.2021.713388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Older-age bipolar disorder (OABD) may involve neurocognitive decline and behavioral disturbances that could share features with the behavioral variant of frontotemporal dementia (bvFTD), making the differential diagnosis difficult in cases of suspected dementia. Objective: To compare the neuropsychological profile, brain morphometry, and structural connectivity patterns between patients diagnosed with bvFTD, patients classified as OABD with an early onset of the disease (EO-OABD), and healthy controls (HC). Methods: bvFTD patients (n = 25, age: 66 ± 7, female: 64%, disease duration: 6 ± 4 years), EO-OABD patients (n = 17, age: 65 ± 9, female: 71%, disease duration: 38 ± 8 years), and HC (n = 28, age: 62 ± 7, female: 64%) were evaluated through neuropsychological tests concerning attention, memory, executive function, praxis, and language. Brain morphometry was analyzed through surface-based morphometry (SBM), while structural brain connectivity was assessed through diffusion tensor imaging (DTI). Results: Both bvFTD and EO-OABD patients showed lower performance in neuropsychological tests of attention, verbal fluency, working memory, verbal memory, and praxis than HC. Comparisons between EO-OABD and bvFTD showed differences limited to cognitive flexibility delayed recall and intrusion errors in the memory test. SBM analysis demonstrated that several frontal, temporal, and parietal regions were altered in both bvFTD and EO-OABD compared to HC. In contrast, comparisons between bvFTD and EO-OABD evidenced differences exclusively in the right temporal pole and the left entorhinal cortex. DTI analysis showed alterations in association and projection fibers in both EO-OABD and bvFTD patients compared to HC. Commissural fibers were found to be particularly affected in EO-OABD. The middle cerebellar peduncle and the pontine crossing tract were exclusively altered in bvFTD. There were no significant differences in DTI analysis between EO-OABD and bvFTD. Discussion: EO-OABD and bvFTD may share an overlap in cognitive, brain morphometry, and structural connectivity profiles that could reflect common underlying mechanisms, even though the etiology of each disease can be different and multifactorial.
Collapse
Affiliation(s)
- Francy Cruz-Sanabria
- Department of Translational Research, New Surgical, and Medical Technologies, University of Pisa, Pisa, Italy
- Neurosciences Research Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Pablo Alexander Reyes
- Ph.D. Program in Neuroscience, Department of Psychiatry, Pontificia Universidad Javeriana, Bogotá, Colombia
- Radiology Department, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Cristian Triviño-Martínez
- Psychiatry Department, School of Medicine, Aging Institute, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Milena García-García
- Ph.D. Program in Neuroscience, Department of Psychiatry, Pontificia Universidad Javeriana, Bogotá, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rodrigo Pardo
- Neurosciences Research Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diana L. Matallana
- Ph.D. Program in Neuroscience, Department of Psychiatry, Pontificia Universidad Javeriana, Bogotá, Colombia
- Psychiatry Department, School of Medicine, Aging Institute, Pontificia Universidad Javeriana, Bogotá, Colombia
- Mental Health Department, Hospital Universitario Fundación Santa Fe, Bogotá, Colombia
- Memory and Cognition Clinic, Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
| |
Collapse
|
89
|
Structural and white matter changes associated with duration of Braille education in early and late blind children. Vis Neurosci 2021; 38:E011. [PMID: 34425936 DOI: 10.1017/s0952523821000080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In early (EB) and late blind (LB) children, vision deprivation produces cross-modal plasticity in the visual cortex. The progression of structural- and tract-based spatial statistics changes in the visual cortex in EB and LB, as well as their impact on global cognition, have yet to be investigated. The purpose of this study was to determine the cortical thickness (CT), gyrification index (GI), and white matter (WM) integrity in EB and LB children, as well as their association to the duration of blindness and education. Structural and diffusion tensor imaging data were acquired in a 3T magnetic resonance imaging in EB and LB children (n = 40 each) and 30 sighted controls (SCs) and processed using CAT12 toolbox and FSL software. Two sample t-test was used for group analyses with P < 0.05 (false discovery rate-corrected). Increased CT in visual, sensory-motor, and auditory areas, and GI in bilateral visual cortex was observed in EB children. In LB children, the right visual cortex, anterior-cingulate, sensorimotor, and auditory areas showed increased GI. Structural- and tract-based spatial statistics changes were observed in anterior visual pathway, thalamo-cortical, and corticospinal tracts, and were correlated with education onset and global cognition in EB children. Reduced impairment in WM, increased CT and GI and its correlation with global cognitive functions in visually impaired children suggests cross-modal plasticity due to adaptive compensatory mechanism (as compared to SCs). Reduced CT and increased FA in thalamo-cortical areas in EB suggest synaptic pruning and alteration in WM integrity. In the visual cortical pathway, higher education and the development of blindness modify the morphology of brain areas and influence the probabilistic tractography in EB rather than LB.
Collapse
|
90
|
Trevarrow MP, Lew BJ, Hoffman RM, Taylor BK, Wilson TW, Kurz MJ. Altered Somatosensory Cortical Activity Is Associated with Cortical Thickness in Adults with Cerebral Palsy: Multimodal Evidence from MEG/sMRI. Cereb Cortex 2021; 32:1286-1294. [PMID: 34416763 DOI: 10.1093/cercor/bhab293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
Somatosensory cortical activity is altered in individuals with cerebral palsy (CP). However, previous studies have focused on the lower extremities in children with CP and have given less attention to structural changes that may contribute to these alterations. We used a multimodal neuroimaging approach to investigate the relationship between somatosensory cortical activity and cortical thickness in 17 adults with CP (age = 32.8 ± 9.3 years) and 18 healthy adult controls (age = 30.7 ± 9.8 years). Participants performed a median nerve paired-pulse stimulation paradigm while undergoing magnetoencephalography (MEG) to investigate somatosensory cortical activity and sensory gating. Participants also underwent magnetic resonance imaging to evaluate cortical thickness within the area of the somatosensory cortex that generated the MEG response. We found that the somatosensory responses were attenuated in the adults with CP (P = 0.004). The adults with CP also hypergated the second stimulation (P = 0.030) and had decreased cortical thickness in the somatosensory cortex (P = 0.015). Finally, the strength of the somatosensory response was significantly correlated with the cortical thickness (P = 0.023). These findings demonstrate that the aberrant somatosensory cortical activity in adults with CP extends to the upper extremities and appears to be related to cortical thickness.
Collapse
Affiliation(s)
- Michael P Trevarrow
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Brandon J Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Rashelle M Hoffman
- Department of Physical Therapy, Creighton University, Omaha, NE 68178, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Max J Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| |
Collapse
|
91
|
Kinno R, Muragaki Y, Maruyama T, Tamura M, Tanaka K, Ono K, Sakai KL. Differential Effects of a Left Frontal Glioma on the Cortical Thickness and Complexity of Both Hemispheres. Cereb Cortex Commun 2021; 1:tgaa027. [PMID: 34296101 PMCID: PMC8152868 DOI: 10.1093/texcom/tgaa027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022] Open
Abstract
Glioma is a type of brain tumor that infiltrates and compresses the brain as it grows. Focal gliomas affect functional connectivity both in the local region of the lesion and the global network of the brain. Any anatomical changes associated with a glioma should thus be clarified. We examined the cortical structures of 15 patients with a glioma in the left lateral frontal cortex and compared them with those of 15 healthy controls by surface-based morphometry. Two regional parameters were measured with 3D-MRI: the cortical thickness (CT) and cortical fractal dimension (FD). The FD serves as an index of the topological complexity of a local cortical surface. Our comparative analyses of these parameters revealed that the left frontal gliomas had global effects on the cortical structures of both hemispheres. The structural changes in the right hemisphere were mainly characterized by a decrease in CT and mild concomitant decrease in FD, whereas those in the peripheral regions of the glioma (left hemisphere) were mainly characterized by a decrease in FD with relative preservation of CT. These differences were found irrespective of tumor volume, location, or grade. These results elucidate the structural effects of gliomas, which extend to the distant contralateral regions.
Collapse
Affiliation(s)
- Ryuta Kinno
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Takashi Maruyama
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Manabu Tamura
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Kyohei Tanaka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Kenjiro Ono
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Kuniyoshi L Sakai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| |
Collapse
|
92
|
Lew BJ, Schantell MD, O’Neill J, Morsey B, Wang T, Ideker T, Swindells S, Fox HS, Wilson TW. Reductions in Gray Matter Linked to Epigenetic HIV-Associated Accelerated Aging. Cereb Cortex 2021; 31:3752-3763. [PMID: 33822880 PMCID: PMC8258439 DOI: 10.1093/cercor/bhab045] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/12/2023] Open
Abstract
A growing literature suggests a relationship between HIV-infection and a molecular profile of age acceleration. However, despite the widely known high prevalence of HIV-related brain atrophy and HIV-associated neurocognitive disorder (HAND), epigenetic age acceleration has not been linked to HIV-related changes in structural MRI. We applied morphological MRI methods to study the brain structure of 110 virally suppressed participants with HIV infection and 122 uninfected controls age 22-72. All participants were assessed for cognitive impairment, and blood samples were collected from a subset of 86 participants with HIV and 83 controls to estimate epigenetic age. We examined the group-level interactive effects of HIV and chronological age and then used individual estimations of epigenetic age to understand the relationship between age acceleration and brain structure. Finally, we studied the effects of HAND. HIV-infection was related to gray matter reductions, independent of age. However, using epigenetic age as a biomarker for age acceleration, individual HIV-related age acceleration was associated with reductions in total gray matter. HAND was associated with decreases in thalamic and hippocampal gray matter. In conclusion, despite viral suppression, accentuated gray matter loss is evident with HIV-infection, and greater biological age acceleration specifically relates to such gray matter loss.
Collapse
Affiliation(s)
- Brandon J Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-8440, USA
| | - Mikki D Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Jennifer O’Neill
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198-8440, USA
| | - Brenda Morsey
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-8440, USA
| | - Tina Wang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Susan Swindells
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198-8440, USA
| | - Howard S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-8440, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-8440, USA
| |
Collapse
|
93
|
Chen W, Li S, Ma Y, Lv S, Wu F, Du J, Wu H, Wang S, Zhao Q. A simple nomogram prediction model to identify relatively young patients with mild cognitive impairment who may progress to Alzheimer's disease. J Clin Neurosci 2021; 91:62-68. [PMID: 34373060 DOI: 10.1016/j.jocn.2021.06.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 05/16/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022]
Abstract
AIM Construct a clinical predictive model based on easily accessible clinical features and imaging data to identify patients 65 years of age and younger with mild cognitive impairment(MCI) who may progress to Alzheimer's disease(AD). METHODS From the ADNI database, patients with MCI who were less than or equal to 65 years of age and who had been followed for 6-60 months were selected.We collected demographic data, neuropsychological test scale scores, and structural magnetic images of these patients. Clinical characteristics were then screened, and VBM and SBM analyses were performed using structural nuclear magnetic images to obtain imaging histology characteristics. Finally, predictive models were constructed combining the clinical and imaging histology characteristics. RESULTS The constructed nomogram has a cross-validated AUC of 0.872 in the training set and 0.867 in the verification set, and the calibration curve fits well.We also provide an online model-based forecasting tool. CONCLUSION The model has good performance and uses convenience,it should be able to provide assistance in clinical work to screen relatively young MCI patients who may progress to AD.
Collapse
Affiliation(s)
- Wenhong Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Songtao Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yangyang Ma
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuyue Lv
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fan Wu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jianshi Du
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Honglin Wu
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuai Wang
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qing Zhao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
94
|
Casagrande CC, Lew BJ, Taylor BK, Schantell M, O'Neill J, May PE, Swindells S, Wilson TW. Impact of HIV-infection on human somatosensory processing, spontaneous cortical activity, and cortical thickness: A multimodal neuroimaging approach. Hum Brain Mapp 2021; 42:2851-2861. [PMID: 33738895 PMCID: PMC8127147 DOI: 10.1002/hbm.25408] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/22/2022] Open
Abstract
HIV-infection has been associated with widespread alterations in brain structure and function, although few studies have examined whether such aberrations are co-localized and the degree to which clinical and cognitive metrics are related. We examine this question in the somatosensory system using high-resolution structural MRI (sMRI) and magnetoencephalographic (MEG) imaging of neural oscillatory activity. Forty-four participants with HIV (PWH) and 55 demographically-matched uninfected controls completed a paired-pulse somatosensory stimulation paradigm during MEG and underwent 3T sMRI. MEG data were transformed into the time-frequency domain; significant sensor level responses were imaged using a beamformer. Virtual sensor time series were derived from the peak responses. These data were used to compute response amplitude, sensory gating metrics, and spontaneous cortical activity power. The T1-weighted sMRI data were processed using morphological methods to derive cortical thickness values across the brain. From these, the cortical thickness of the tissue coinciding with the peak response was estimated. Our findings indicated both PWH and control exhibit somatosensory gating, and that spontaneous cortical activity was significantly stronger in PWH within the left postcentral gyrus. Interestingly, within the same tissue, PWH also had significantly reduced cortical thickness relative to controls. Follow-up analyses indicated that the reduction in cortical thickness was significantly correlated with CD4 nadir and mediated the relationship between HIV and spontaneous cortical activity within the left postcentral gyrus. These data indicate that PWH have abnormally strong spontaneous cortical activity in the left postcentral gyrus and such elevated activity is driven by locally reduced cortical gray matter thickness.
Collapse
Affiliation(s)
- Chloe C. Casagrande
- Boys Town National Research HospitalInstitute for Human NeuroscienceBoys TownNebraskaUSA
| | - Brandon J. Lew
- Boys Town National Research HospitalInstitute for Human NeuroscienceBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Brittany K. Taylor
- Boys Town National Research HospitalInstitute for Human NeuroscienceBoys TownNebraskaUSA
| | - Mikki Schantell
- Boys Town National Research HospitalInstitute for Human NeuroscienceBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Jennifer O'Neill
- Department of Internal Medicine, Division of Infectious DiseasesUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Pamela E. May
- Department of Neurological SciencesUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Susan Swindells
- Department of Internal Medicine, Division of Infectious DiseasesUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Tony W. Wilson
- Boys Town National Research HospitalInstitute for Human NeuroscienceBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| |
Collapse
|
95
|
Vatheuer CC, Dzionsko I, Maier S, Näher T, van Zutphen L, Sprenger A, Jacob GA, Arntz A, Domes G. Looking at the bigger picture: Cortical volume, thickness and surface area characteristics in borderline personality disorder with and without posttraumatic stress disorder. Psychiatry Res Neuroimaging 2021; 311:111283. [PMID: 33812313 DOI: 10.1016/j.pscychresns.2021.111283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/05/2021] [Accepted: 03/19/2021] [Indexed: 11/21/2022]
Abstract
Borderline personality disorder (BPD) is a severe psychiatric disorder accompanied by multiple comorbidities. Neuroimaging studies have identified structural abnormalities in BPD with most findings pointing to gray matter volume reductions in the fronto-limbic network, although results remain inconsistent. Similar alterations were found in posttraumatic stress disorder (PTSD), a common comorbidity of BPD. Only a small number of studies have investigated structural differences in BPD patients regarding comorbid PTSD specifically and studies conducting additional surface analyses are scarce. We investigated structural differences in women with BPD with and without PTSD and non-patient controls. Automated voxel-based and region-based volumetric analyses were applied. Additionally, four surface-based measures were analyzed: cortical thickness, gyrification index, fractal dimension, and sulcus depth. Analyses did not identify cortical volume alterations in the fronto-limbic network. Instead, hypergyrification was detected in the right superior parietal cortex in BPD patients compared to non-patient controls. No distinction was revealed between BPD patients with and without PTSD. These findings underline the importance of a holistic investigation examining volumetric and surface measures as these might enhance the understanding of structural alterations in BPD.
Collapse
Affiliation(s)
- C Carolyn Vatheuer
- Department of Biological and Clinical Psychology, University of Trier, Johanniterufer 15, 54290 Trier, Germany
| | - Inga Dzionsko
- Department of Biological and Clinical Psychology, University of Trier, Johanniterufer 15, 54290 Trier, Germany
| | - Simon Maier
- Department of Psychiatry and Psychotherapy, Section for Experimental Neuropsychiatry, Medical Center, University of Freiburg, Freiburg, Germany
| | - Tim Näher
- Department of Biological and Clinical Psychology, University of Trier, Johanniterufer 15, 54290 Trier, Germany
| | - Linda van Zutphen
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Gitta A Jacob
- Department of Clinical Psychology and Psychotherapy, University of Freiburg, Freiburg, Germany
| | - Arnoud Arntz
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Gregor Domes
- Department of Biological and Clinical Psychology, University of Trier, Johanniterufer 15, 54290 Trier, Germany; Institute of Psychobiology, University of Trier, Trier, Germany.
| |
Collapse
|
96
|
Abstract
This study aimed to investigate the cortical complexity and gyrification patterns in Parkinson's disease (PD) using local fractional dimension (LFD) and local gyrification index (LGI), respectively. In a cross-sectional study, LFD and LGI in 60 PD patients without dementia and 56 healthy controls (HC) were investigated using brain structural MRI data. LFD and LGI were estimated using the Computational Anatomy Toolbox (CAT12) and statistically analyzed between groups on a vertex level using statistical parametric mapping 12 (SPM12). Additionally, correlations between structural changes and clinical indices were further examined. PD patients showed widespread LFD reductions mainly in the left pre- and postcentral cortex, the left superior frontal cortex, the left caudal middle frontal cortex, the bilaterally superior parietal cortex and the right superior temporal cortex compared to HC. For LGI, there was no significant difference between PD and HC. In PD patients group, a significant negative correlation was found between LFD of the left postcentral cortex and duration of illness (DOI). Our results of widespread LFD reductions, but not LGI, indicate that LFD may provide a more sensitive diagnostic biomarker and encode specific information of PD. The significant negative correlation between LFD of the left postcentral cortex and DOI suggests that LFD may be a biomarker to monitor disease progression in PD.
Collapse
|
97
|
Velázquez J, Mateos J, Pasaye EH, Barrios FA, Marquez-Flores JA. Cortical Thickness Estimation: A Comparison of FreeSurfer and Three Voxel-Based Methods in a Test-Retest Analysis and a Clinical Application. Brain Topogr 2021; 34:430-441. [PMID: 34008053 DOI: 10.1007/s10548-021-00852-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/10/2021] [Indexed: 11/28/2022]
Abstract
The cortical thickness has been used as a biomarker to assess different cerebral conditions and to detect alterations in the cortical mantle. In this work, we compare methods from the FreeSurfer software, the Computational Anatomy Toolbox (CAT12), a Laplacian approach and a new method here proposed, based on the Euclidean Distance Transform (EDT), and its corresponding computational phantom designed to validate the calculation algorithm. At region of interest (ROI) level, within- and inter-method comparisons were carried out with a test-retest analysis, in a subset comprising 21 healthy subjects taken from the Multi-Modal MRI Reproducibility Resource (MMRR) dataset. From the Minimal Interval Resonance Imaging in Alzheimer's Disease (MIRIAD) data, classification methods were compared in their performance to detect cortical thickness differences between 23 healthy controls (HC) and 45 subjects with Alzheimer's disease (AD). The validation of the proposed EDT-based method showed a more accurate and precise distance measurement as voxel resolution increased. For the within-method comparisons, mean test-retest measures (percentages differences/intraclass correlation/Pearson correlation) were similar for FreeSurfer (1.80%/0.90/0.95), CAT12 (1.91%/0.83/0.91), Laplacian (1.27%/0.89/0.95) and EDT (2.20%/0.88/0.94). Inter-method correlations showed moderate to strong values (R > 0.77) and, in the AD comparison study, all methods were able to detect cortical alterations between groups. Surface- and voxel-based methods have advantages and drawbacks regarding computational demands and measurement precision, while thickness definition was mainly associated to the cortical thickness absolute differences among methods. However, for each method, measurements were reliable, followed similar trends along the cortex and allowed detection of cortical atrophies between HC and patients with AD.
Collapse
Affiliation(s)
- Juan Velázquez
- Universidad Nacional Autónoma de México, Instituto de Ciencias Aplicadas Y Tecnología, Circuito Exterior S/N, Ciudad Universitaria, 04510, Coyoacán, Mexico City, México
| | - Julieta Mateos
- Graduate Program in Computer Science and Engineering, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Coyoacán, Ciudad de México, México
| | - Erick H Pasaye
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Boulevar Juriquilla 3001, 76230, Querétaro, Querétaro, México
| | - Fernando A Barrios
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Boulevar Juriquilla 3001, 76230, Querétaro, Querétaro, México.
| | - Jorge A Marquez-Flores
- Universidad Nacional Autónoma de México, Instituto de Ciencias Aplicadas Y Tecnología, Circuito Exterior S/N, Ciudad Universitaria, 04510, Coyoacán, Mexico City, México.
| |
Collapse
|
98
|
Brawer J, Amir O. Mapping the "Funny Bone": Neuroanatomical Correlates of Humor Creativity in Professional Comedians. Soc Cogn Affect Neurosci 2021; 16:915-925. [PMID: 33908608 PMCID: PMC8421700 DOI: 10.1093/scan/nsab049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022] Open
Abstract
What are the neuroanatomical correlates of expertise in a specific creative domain? Professional comedians, amateurs and controls underwent a T1 MRI anatomical scan. Measures of cortical surface area (gyrification and sulcal depth) and thickness were extracted for each participant. Compared to controls, professional comedians had a greater cortical surface area in the left inferior temporal gyrus, angular gyrus, precuneus and right medial prefrontal cortex. These regions have been previously implicated in abstract, divergent thinking and the default-mode network. The high degree of overlap between the regions of greater surface area in professional comedians with the regions showing greater activation in the same group during comedy improvisation in our previous work (particularly the temporal regions and angular gyrus) suggests that these regions may be specifically involved in humor creativity.
Collapse
Affiliation(s)
- Jacob Brawer
- Neuroscience, Pomona College, Claremont, California, USA
| | - Ori Amir
- Psychological Science, Pomona College, Claremont, California, USA
| |
Collapse
|
99
|
Structural brain differences associated with extensive massively-multiplayer video gaming. Brain Imaging Behav 2021; 15:364-374. [PMID: 32128717 DOI: 10.1007/s11682-020-00263-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Video gaming can be associated with inter-individual differences in brain morphology. Much of this literature has focused on non-professional/occasional gamers who barely play, on the one extreme; or Internet Gaming Disorder (IGD) cases who typically play more than 5 h/day, on the other extreme. We sought to extend this literature and focus on extensive gamers, who play about 3 h/day, which is typically more than non-professional gamers, but less than IGD cases. Findings regarding this sector of gamers can inform research on risk factors or markers for IGD development, even before addiction symptoms emerge. We predicted that extensive gamers have smaller prefrontal regions that presumably reflect weaker inhibition abilities, and larger visuomotor regions that presumably reflect stronger motor skills in response to visual stimuli. We tested these assertions with a between-subject brain morphology comparison of 26 extensive League of Legends (LOL) and matched 26 non-gamers, using voxel based morphometry, deformation based morphometry, and cortical thickness and sulcus depth analyses. Findings largely supported our predictions by pointing to morphological alterations in extensive gamers in the bilateral ventromedial prefrontal cortex and left dorsolateral prefrontal cortex, as well is in the left superior parietal lobule. These findings suggest that extensive gamers, at least of Massive-Multiplayer battle arena games, present brain alterations that are consistent with presumed loss of control (as mediated by the prefrontal cortex), but also improved attention and visoumotor skills (as mediated by superior parietal lobule). Implications for research and practice are discussed.
Collapse
|
100
|
Yuan T, Ying J, Li C, Jin L, Kang J, Shi Y, Gui S, Liu C, Wang R, Zuo Z, Zhang Y. In Vivo Characterization of Cortical and White Matter Microstructural Pathology in Growth Hormone-Secreting Pituitary Adenoma. Front Oncol 2021; 11:641359. [PMID: 33912457 PMCID: PMC8072046 DOI: 10.3389/fonc.2021.641359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background The growth hormone (GH) and insulin-like-growth factor 1 (IGF-1) axis has long been recognized for its critical role in brain growth, development. This study was designed to investigate microstructural pathology in the cortex and white matter in growth hormone-secreting pituitary adenoma, which characterized by excessive secretion of GH and IGF-1. Methods 29 patients with growth hormone-secreting pituitary adenoma (acromegaly) and 31 patients with non-functional pituitary adenoma as controls were recruited and assessed using neuropsychological test, surface-based morphometry, T1/T2-weighted myelin-sensitive magnetic resonance imaging, neurite orientation dispersion and density imaging, and diffusion tensor imaging. Results Compared to controls, we found 1) acromegaly had significantly increased cortical thickness throughout the bilateral cortex (pFDR < 0.05). 2) T1/T2-weighted ratio in the cortex were decreased in the bilateral occipital cortex and pre/postcentral central gyri but increased in the bilateral fusiform, insular, and superior temporal gyri in acromegaly (pFDR < 0.05). 3) T1/T2-weighted ratio were decreased in most bundles, and only a few areas showed increases in acromegaly (pFDR < 0.05). 4) Neurite density index (NDI) was significantly lower throughout the cortex and bundles in acromegaly (pTFCE < 0.05). 5) lower fractional anisotropy (FA) and higher mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) in extensive bundles in acromegaly (pTFCE < 0.05). 6) microstructural pathology in the cortex and white matter were associated with neuropsychological dysfunction in acromegaly. Conclusions Our findings suggested that long-term persistent and excess serum GH/IGF-1 levels alter the microstructure in the cortex and white matter in acromegaly, which may be responsible for neuropsychological dysfunction.
Collapse
Affiliation(s)
- Taoyang Yuan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jianyou Ying
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lu Jin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jie Kang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanyu Shi
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunhui Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rui Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders Brain Tumour Center, China National Clinical Research Center for Neurological Diseases, Key Laboratory of Central Nervous System Injury Research, Beijing, China
| |
Collapse
|