51
|
Zhang LK, Chai F, Li HY, Xiao G, Guo L. Identification of host proteins involved in Japanese encephalitis virus infection by quantitative proteomics analysis. J Proteome Res 2013; 12:2666-78. [PMID: 23647205 DOI: 10.1021/pr400011k] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Japanese encephalitis virus (JEV) enters host cells via receptor-mediated endocytosis and replicates in the cytoplasm of infected cells. To study virus-host cell interactions, we performed a SILAC-based quantitative proteomics study of JEV-infected HeLa cells using a subcellular fractionation strategy. We identified 158 host proteins as differentially regulated by JEV (defined as exhibiting a greater than 1.5-fold change in protein abundance upon JEV infection). The mass spectrometry quantitation data for selected proteins were validated by Western blot and immunofluorescence confocal microscopy. Bioinformatics analyses were used to generate JEV-regulated host response networks consisting of regulated proteins, which included 35 proteins that were newly added based on the results of this study. The JEV infection-induced host response was found to be coordinated primarily through the immune response process, the ubiquitin-proteasome system (UPS), the intracellular membrane system, and lipid metabolism-related proteins. Protein functional studies of selected host proteins using RNA interference-based techniques were carried out in HeLa cells infected with an attenuated or a highly virulent strain of JEV. We demonstrated that the knockdown of interferon-induced transmembrane protein 3 (IFITM3), Ran-binding protein 2 (RANBP2), sterile alpha motif domain-containing protein 9 (SAMD9) and vesicle-associated membrane protein 8 (VAMP8) significantly increased JEV replication. The results presented here not only promote a better understanding of the host response to JEV infection but also highlight multiple potential targets for the development of antiviral agents.
Collapse
Affiliation(s)
- Lei-Ke Zhang
- State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | | | | | | | | |
Collapse
|
52
|
Subhanova I, Muchova L, Lenicek M, Vreman HJ, Luksan O, Kubickova K, Kreidlova M, Zima T, Vitek L, Urbanek P. Expression of Biliverdin Reductase A in peripheral blood leukocytes is associated with treatment response in HCV-infected patients. PLoS One 2013; 8:e57555. [PMID: 23536765 PMCID: PMC3594226 DOI: 10.1371/journal.pone.0057555] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 01/26/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS Hepatitis C virus (HCV) infection is associated with systemic oxidative stress. Since the heme catabolic pathway plays an important role in antioxidant protection, we attempted to assess the gene expression of key enzymes of heme catabolism, heme oxygenase 1 (HMOX1), heme oxygenase 2 (HMOX2), and biliverdin reductase A (BLVRA) in the liver and peripheral blood leukocytes (PBL) of patients chronically infected with HCV. METHODS Gene expressions (HMOX1, HMOX2, BLVRA) and HCV RNA were analyzed in PBL of HCV treatment naïve patients (n = 58) and controls (n = 55), with a subset of HCV patients having data on hepatic gene expression (n = 35). Based upon the therapeutic outcome, HCV patients were classified as either responders (n = 38) or treatment-failure patients (n = 20). Blood samples in HCV patients were collected at day 0, and week 12, 24, 36, and 48 after the initiation of standard antiviral therapy. RESULTS Compared to the controls, substantially increased BLVRA expression was detected in PBL (p<0.001) of therapeutically naïve HCV patients. mRNA levels of BLVRA in PBL closely correlated with those in liver tissue (r2 = 0.347,p = 0.03). A marked difference in BLVRA expression in PBL between the sustained responders and patients with treatment failure was detected at week 0 and during the follow-up (p<0.001). Multivariate analysis revealed that BLVRA basal expression in PBL was an independent predictor for sustained virological response (OR 15; 95% CI 1.05-214.2; P = 0.046). HMOX1/2 expression did not have any effect on the treatment outcome. CONCLUSION Our results suggest that patients with chronic HCV infection significantly upregulate BLVRA expression in PBL. The lack of BLVRA overexpression is associated with non-responsiveness to standard antiviral therapy; whereas, HMOX1/2 does not seem to have any predictive potential.
Collapse
Affiliation(s)
- Iva Subhanova
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Scagnolari C, Antonelli G. Antiviral activity of the interferon α family: biological and pharmacological aspects of the treatment of chronic hepatitis C. Expert Opin Biol Ther 2013; 13:693-711. [PMID: 23350850 DOI: 10.1517/14712598.2013.764409] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Type I interferons (IFNs) comprise a group of at least 13 structurally related subtypes of IFN-α with similar, but not identical, biological activities. Each subtype displays a unique activity profile; only IFN-α2a and IFN-α2b subtypes together with natural IFN-α preparations are currently used in the clinical practice, so that the remaining IFN-α subtypes are a still unexploited reservoir of opportunity also in the new era of direct-acting antiviral agents for the treatment of hepatitis C virus (HCV). AREAS COVERED This paper reviews recent progress in the study of the biology of IFN family, the antiviral action mechanism and the strategies employed by HCV to evade IFN action. Currently available IFN preparations for the treatment of chronic hepatitis C infection are described and what is currently known on the pharmacokinetics, pharmacodynamics and immunogenicity of IFN-α preparations used in clinical practice are summarized. EXPERT OPINION The characterization of multifunctional nature of IFN system together with recent advances in the identification of HCV IFN evasion strategies and the variety of host factors influencing IFN treatment response should be considered to improve HCV and other infectious diseases treatment in the future.
Collapse
Affiliation(s)
- Carolina Scagnolari
- Sapienza University, Department of Molecular Medicine, Laboratory of Virology, Viale di Porta Tiburtina n. 28, 00185 Rome, Italy
| | | |
Collapse
|
54
|
Diamond MS, Farzan M. The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat Rev Immunol 2012; 13:46-57. [PMID: 23237964 PMCID: PMC3773942 DOI: 10.1038/nri3344] [Citation(s) in RCA: 653] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
IFN-induced protein with tetratricopeptide repeats (IFIT) proteins — which are induced after type I interferon (IFN)- or IFN-regulatory factor 3 (IRF3)-dependent signalling — contribute to antiviral defence against some viruses by binding to components of the eukaryotic initiation factor 3 (eIF3) translation initiation complex and inhibiting protein translation. Mutant flaviviruses, poxviruses and coronaviruses lacking 2′-O methyltransferase enzymes are attenuated in wild-type primary cells and mice but pathogenic in the absence of IFIT1 expression. Thus, IFIT proteins restrict viruses lacking 2′-O methylation of the 5′ RNA cap. IFIT proteins form a multiprotein complex to bind viral RNA displaying a 5′-ppp motif. By sequestering viral RNA containing 5′-ppp, IFIT proteins function as both a pathogen sensor and an effector molecule. IFN-induced transmembrane protein (IFITM) proteins constitute a family of small IFN-inducible proteins. Unlike IFIT proteins, IFITM proteins have two transmembrane domains and block the replication of enveloped viruses, including influenza A virus, dengue virus, Ebola virus and SARS coronavirus, at a step before these viruses enter the cytosol. IFITM proteins seem to be specialized in their activity. IFITM3 makes the primary contribution to the control of influenza A virus in mice and probably humans, whereas other human and mouse IFITM proteins more efficiently restrict infection by Ebola virus and SARS coronavirus. The mechanisms by which IFITM proteins prevent the entry of enveloped viruses remain unclear, but they probably involve alterations in the properties or the trafficking of intracellular compartments where these viruses traverse cellular membranes.
Recent interest in identifying interferon-stimulated genes that have activity against a wide range of viruses has advanced our understanding of the IFIT and IFITM families and shown the many mechanisms by which host factors can restrict viral replication. Over the past few years, several groups have identified new genes that are transcriptionally induced downstream of type I interferon (IFN) signalling and that inhibit infection by individual or multiple families of viruses. Among these IFN-stimulated genes with antiviral activity are two genetically and functionally distinct families — the IFN-induced protein with tetratricopeptide repeats (IFIT) family and the IFN-induced transmembrane protein (IFITM) family. This Review focuses on recent advances in identifying the unique mechanisms of action of IFIT and IFITM proteins, which explain their broad-spectrum activity against the replication, spread and pathogenesis of a range of human viruses.
Collapse
Affiliation(s)
- Michael S Diamond
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA.
| | | |
Collapse
|
55
|
Abstract
Many viruses trigger the type I interferon (IFN) system, leading to the transcription of hundreds of interferon-stimulated genes (ISGs). The products of these ISGs exert numerous antiviral effector functions, many of which are still not fully described. Recent efforts have been aimed at identifying which ISGs are antiviral and further characterizing their mechanisms of action. IFN effectors vary widely in their magnitude of inhibitory activity and display combinatorial antiviral properties. Collectively, ISGs can target almost any step in a virus life cycle. Some of the most potent antiviral effectors reinforce the system by further inducing IFN or ISGs. Other genes enhance or facilitate viral replication, suggesting that some viruses may have evolved to co-opt IFN effectors for a survival advantage.
Collapse
Affiliation(s)
- John W Schoggins
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, United States.
| | | |
Collapse
|
56
|
Mehta HV, Jones PH, Weiss JP, Okeoma CM. IFN-α and lipopolysaccharide upregulate APOBEC3 mRNA through different signaling pathways. THE JOURNAL OF IMMUNOLOGY 2012; 189:4088-103. [PMID: 22972924 DOI: 10.4049/jimmunol.1200777] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
APOBEC3 (A3) proteins are virus-restriction factors that provide intrinsic immunity against infections by viruses like HIV-1 and mouse mammary tumor virus. A3 proteins are inducible by inflammatory stimuli, such as LPS and IFN-α, via mechanisms that are not fully defined. Using genetic and pharmacological studies on C57BL/6 mice and cells, we show that IFN-α and LPS induce A3 via different pathways, independently of each other. IFN-α positively regulates mouse APOBEC3 (mA3) mRNA expression through IFN-αR/PKC/STAT1 and negatively regulates mA3 mRNA expression via IFN-αR/MAPKs-signaling pathways. Interestingly, LPS shows some variation in its regulatory behavior. Although LPS-mediated positive regulation of mA3 mRNA occurs through TLR4/TRIF/IRF3/PKC, it negatively modulates mA3 mRNA via TLR4/MyD88/MAPK-signaling pathways. Additional studies on human peripheral blood mononuclear cells reveal that PKC differentially regulates IFN-α and LPS induction of human A3A, A3F, and A3G mRNA expression. In summary, we identified important signaling targets downstream of IFN-αR and TLR4 that mediate A3 mRNA induction by both LPS and IFN-α. Our results provide new insights into the signaling targets that could be manipulated to enhance the intracellular store of A3 and potentially enhance A3 antiviral function in the host.
Collapse
Affiliation(s)
- Harshini V Mehta
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
57
|
Makowska Z, Heim MH. Interferon signaling in the liver during hepatitis C virus infection. Cytokine 2012; 59:460-6. [DOI: 10.1016/j.cyto.2012.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 06/04/2012] [Indexed: 12/11/2022]
|
58
|
Naggie S, Osinusi A, Katsounas A, Lempicki R, Herrmann E, Thompson AJ, Clark PJ, Patel K, Muir AJ, McHutchison JG, Schlaak JF, Trippler M, Shivakumar B, Masur H, Polis MA, Kottilil S. Dysregulation of innate immunity in hepatitis C virus genotype 1 IL28B-unfavorable genotype patients: impaired viral kinetics and therapeutic response. Hepatology 2012; 56:444-54. [PMID: 22331604 PMCID: PMC3361636 DOI: 10.1002/hep.25647] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 01/28/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED Recent studies have shown that a single-nucleotide polymorphism upstream of the interleukin-28B (IL28B) gene plays a major role in predicting therapeutic response in hepatitis C virus (HCV)-infected patients treated with pegylated interferon (PEG-IFN)/ribavirin. We sought to investigate the mechanism of the IL28B polymorphism, specifically as it relates to early HCV viral kinetics, IFN pharmacokinetics, IFN pharmacodynamics, and gene expression profiles. Two prospective cohorts (human immunodeficiency virus [HIV]/HCV-coinfected and HCV-monoinfected) completing treatment with IFN/ribavirin were enrolled. Patients were genotyped at the polymorphic site rs12979860. In the HIV/HCV cohort, frequent serum sampling was completed for HCV RNA and IFN levels. DNA microarray of peripheral blood mononuclear cells and individual expression of IFN-stimulated genes (ISGs) were quantified on IFN therapy. The IL28B-favorable (CC) genotype was associated with improved therapeutic response compared with unfavorable (CT or TT) genotypes. Patients with a favorable genotype had greater first- and second-phase viral kinetics (P = 0.004 and P = 0.036, respectively), IFN maximum antiviral efficiency (P = 0.007) and infected cell death loss (P = 0.009) compared with unfavorable genotypes. Functional annotation analysis of DNA microarray data was consistent with depressed innate immune function, particularly of natural killer cells, from patients with unfavorable genotypes (P <0.004). Induction of innate immunity genes was also lower in unfavorable genotypes. ISG expression at baseline and induction with IFN was independent of IL28B genotype. CONCLUSION Carriers of the IL28B-favorable genotype were more likely to have superior innate immune response to IFN therapy compared with unfavorable genotypes, suggesting that the unfavorable genotype has aberrant baseline induction of innate immune response pathways resulting in impaired virologic response. IL28B genotype is associated with more rapid viral kinetics and improved treatment response outcomes independent of ISG expression.
Collapse
Affiliation(s)
| | - Anu Osinusi
- LIR, NIAID, NIH, MD USA
- SAIC-Frederick Inc, Frederick, MD, USA
| | | | | | - Eva Herrmann
- IBMM, Johann Wolfgang Goethe University Frankfurt, CA, USA
| | | | - Paul J Clark
- Duke Clinical Research Institute, Durham, NC, USA
| | - Keyur Patel
- Duke Clinical Research Institute, Durham, NC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Ryan JD, Altamura S, Devitt E, Mullins S, Lawless MW, Muckenthaler MU, Crowe J. Pegylated interferon-α induced hypoferremia is associated with the immediate response to treatment in hepatitis C. Hepatology 2012; 56:492-500. [PMID: 22334511 DOI: 10.1002/hep.25666] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 02/09/2012] [Indexed: 12/27/2022]
Abstract
UNLABELLED Pegylated interferon-α (PEG-IFN-α) forms an integral part of the current treatment for hepatitis C virus (HCV) infection. PEG-IFN-α suppresses HCV production by augmenting the innate antiviral immune response. Recent studies have reported the induction of hepcidin, the iron regulatory hormone, by IFN-α in vitro. As hepcidin plays an important role in innate immunity, we hypothesized that this finding may be of clinical relevance to HCV and investigated the changes in iron homeostasis during the first 24 hours of treatment. Blood samples were obtained from HCV patients immediately prior to and 6, 12, and 24 hours following the first dose of PEG-IFN-α/ribavirin (RBV). Samples were analyzed for hepcidin, cytokine, iron levels, and HCV viral load, and hepcidin messenger RNA (mRNA) expression was quantified in peripheral blood mononuclear cells. Hepcidin induction by IFN-α was further analyzed in cell culture. In HCV patients a single dose of PEG-IFN-α/RBV resulted in a significant increase in serum hepcidin, peaking at 12 hours, coinciding with a 50% reduction in serum iron and transferrin saturation over the 24-hour period. Patients with a ≥ 2 log decline in HCV viral load over the first 24 hours had significantly lower SI and TS levels at 12 and 24 hours. Moreover, 24-hour SI levels were an independent predictor of the immediate HCV viral decline, an indicator of ultimate treatment outcome. In cell culture, a direct induction of hepcidin by IFN-α was seen, controlled by the STAT3 transcription factor. CONCLUSION Hepcidin induction occurs following the initiation of PEG-IFN-α treatment for HCV, and is mediated by way of STAT3 signaling. The subsequent hypoferremia was greatest in those with the most significant decline in viral load, identifying systemic iron withdrawal as a marker of immediate interferon-α efficacy in HCV patients.
Collapse
Affiliation(s)
- John D Ryan
- Centre for Liver Disease, Mater Misericordiae University Hospital, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
60
|
|
61
|
Systems Biology Analyses to Define Host Responses to HCV Infection and Therapy. Curr Top Microbiol Immunol 2012; 363:143-67. [DOI: 10.1007/82_2012_251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
62
|
Bruni R, Marcantonio C, Tritarelli E, Tataseo P, Stellacci E, Costantino A, Villano U, Battistini A, Ciccaglione AR. An integrated approach identifies IFN-regulated microRNAs and targeted mRNAs modulated by different HCV replicon clones. BMC Genomics 2011; 12:485. [PMID: 21970718 PMCID: PMC3224138 DOI: 10.1186/1471-2164-12-485] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 10/04/2011] [Indexed: 02/07/2023] Open
Abstract
Background Infections with hepatitis C virus (HCV) progress to chronic phase in 80% of patients. To date, the effect produced by HCV on the expression of microRNAs (miRs) involved in the interferon-β (IFN-β) antiviral pathway has not been explored in details. Thus, we compared the expression profile of 24 selected miRs in IFN-β-treated Huh-7 cells and in three different clones of Huh-7 cells carrying a self-replicating HCV RNA which express all viral proteins (HCV replicon system). Methods The expression profile of 24 selected miRs in IFN-β-treated Huh-7 cells and in HCV replicon 21-5 clone with respect to Huh-7 parental cells was analysed by real-time PCR. To exclude clone specific variations, the level of 16 out of 24 miRs, found to be modulated in 21-5 clone, was evaluated in two other HCV replicon clones, 22-6 and 21-7. Prediction of target genes of 3 miRs, confirmed in all HCV clones, was performed by means of miRGator program. The gene dataset obtained from microarray analysis of HCV clones was farther used to validate target prediction. Results The expression profile revealed that 16 out of 24 miRs were modulated in HCV replicon clone 21-5. Analysis in HCV replicon clones 22-6 and 21-7 indicated that 3 out of 16 miRs, (miR-128a, miR-196a and miR-142-3p) were modulated in a concerted fashion in all three HCV clones. Microarray analysis revealed that 37 out of 1981 genes, predicted targets of the 3 miRs, showed an inverse expression relationship with the corresponding miR in HCV clones, as expected for true targets. Classification of the 37 genes by Panther System indicated that the dataset contains genes involved in biological processes that sustain HCV replication and/or in pathways potentially implicated in the control of antiviral response by HCV infection. Conclusions The present findings reveal that 3 IFN-β-regulated miRs and 37 genes, which are likely their functional targets, were commonly modulated by HCV in three replicon clones. The future use of miR inhibitors or mimics and/or siRNAs might be useful for the development of diagnostic and therapeutic strategies aimed at the recovering of protective innate responses in HCV infections.
Collapse
Affiliation(s)
- Roberto Bruni
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Tsuge M, Fujimoto Y, Hiraga N, Zhang Y, Ohnishi M, Kohno T, Abe H, Miki D, Imamura M, Takahashi S, Ochi H, Hayes CN, Miya F, Tsunoda T, Chayama K. Hepatitis C virus infection suppresses the interferon response in the liver of the human hepatocyte chimeric mouse. PLoS One 2011; 6:e23856. [PMID: 21886832 PMCID: PMC3160317 DOI: 10.1371/journal.pone.0023856] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 07/28/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Recent studies indicate that hepatitis C virus (HCV) can modulate the expression of various genes including those involved in interferon signaling, and up-regulation of interferon-stimulated genes by HCV was reported to be strongly associated with treatment outcome. To expand our understanding of the molecular mechanism underlying treatment resistance, we analyzed the direct effects of interferon and/or HCV infection under immunodeficient conditions using cDNA microarray analysis of human hepatocyte chimeric mice. METHODS Human serum containing HCV genotype 1b was injected into human hepatocyte chimeric mice. IFN-α was administered 8 weeks after inoculation, and 6 hours later human hepatocytes in the mouse livers were collected for microarray analysis. RESULTS HCV infection induced a more than 3-fold change in the expression of 181 genes, especially genes related to Organismal Injury and Abnormalities, such as fibrosis or injury of the liver (P = 5.90E-16∼3.66E-03). IFN administration induced more than 3-fold up-regulation in the expression of 152 genes. Marked induction was observed in the anti-fibrotic chemokines such as CXCL9, suggesting that IFN treatment might lead not only to HCV eradication but also prevention and repair of liver fibrosis. HCV infection appeared to suppress interferon signaling via significant reduction in interferon-induced gene expression in several genes of the IFN signaling pathway, including Mx1, STAT1, and several members of the CXCL and IFI families (P = 6.0E-12). Genes associated with Antimicrobial Response and Inflammatory Response were also significantly repressed (P = 5.22×10(-10)∼1.95×10(-2)). CONCLUSIONS These results provide molecular insights into possible mechanisms used by HCV to evade innate immune responses, as well as novel therapeutic targets and a potential new indication for interferon therapy.
Collapse
Affiliation(s)
- Masataka Tsuge
- Division of Frontier Medical Science, Department of Medicine and Molecular Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Yoshifumi Fujimoto
- Division of Frontier Medical Science, Department of Medicine and Molecular Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Third Department of Internal Medicine, Hiroshima General Hospital, Hatsukaichi, Japan
| | - Nobuhiko Hiraga
- Division of Frontier Medical Science, Department of Medicine and Molecular Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Yizhou Zhang
- Division of Frontier Medical Science, Department of Medicine and Molecular Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Mayu Ohnishi
- Division of Frontier Medical Science, Department of Medicine and Molecular Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Tomohiko Kohno
- Division of Frontier Medical Science, Department of Medicine and Molecular Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Hiromi Abe
- Division of Frontier Medical Science, Department of Medicine and Molecular Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Daiki Miki
- Division of Frontier Medical Science, Department of Medicine and Molecular Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
- Laboratory for Liver Diseases, SNP Research Center, The Institute of Physical and Chemical Research (RIKEN), Hiroshima, Japan
| | - Michio Imamura
- Division of Frontier Medical Science, Department of Medicine and Molecular Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Shoichi Takahashi
- Division of Frontier Medical Science, Department of Medicine and Molecular Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Hidenori Ochi
- Division of Frontier Medical Science, Department of Medicine and Molecular Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
- Laboratory for Liver Diseases, SNP Research Center, The Institute of Physical and Chemical Research (RIKEN), Hiroshima, Japan
| | - C. Nelson Hayes
- Division of Frontier Medical Science, Department of Medicine and Molecular Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Fuyuki Miya
- Laboratory for Medical Informatics, SNP Research Center, The Institute of Physical and Chemical Research (RIKEN), Yokohama, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Informatics, SNP Research Center, The Institute of Physical and Chemical Research (RIKEN), Yokohama, Japan
| | - Kazuaki Chayama
- Division of Frontier Medical Science, Department of Medicine and Molecular Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
- Laboratory for Liver Diseases, SNP Research Center, The Institute of Physical and Chemical Research (RIKEN), Hiroshima, Japan
- * E-mail:
| |
Collapse
|
64
|
Acute hepatitis A virus infection is associated with a limited type I interferon response and persistence of intrahepatic viral RNA. Proc Natl Acad Sci U S A 2011; 108:11223-8. [PMID: 21690403 DOI: 10.1073/pnas.1101939108] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis A virus (HAV) is an hepatotropic human picornavirus that is associated only with acute infection. Its pathogenesis is not well understood because there are few studies in animal models using modern methodologies. We characterized HAV infections in three chimpanzees, quantifying viral RNA by quantitative RT-PCR and examining critical aspects of the innate immune response including intrahepatic IFN-stimulated gene expression. We compared these infection profiles with similar studies of chimpanzees infected with hepatitis C virus (HCV), an hepatotropic flavivirus that frequently causes persistent infection. Surprisingly, HAV-infected animals exhibited very limited induction of type I IFN-stimulated genes in the liver compared with chimpanzees with acute resolving HCV infection, despite similar levels of viremia and 100-fold greater quantities of viral RNA in the liver. Minimal IFN-stimulated gene 15 and IFIT1 responses peaked 1-2 wk after HAV challenge and then subsided despite continuing high hepatic viral RNA. An acute inflammatory response at 3-4 wk correlated with the appearance of virus-specific antibodies and apoptosis and proliferation of hepatocytes. Despite this, HAV RNA persisted in the liver for months, remaining present long after clearance from serum and feces and revealing dramatic differences in the kinetics of clearance in the three compartments. Viral RNA was detected in the liver for significantly longer (35 to >48 wk) than HCV RNA in animals with acute resolving HCV infection (10-20 wk). Collectively, these findings indicate that HAV is far stealthier than HCV early in the course of acute resolving infection. HAV infections represent a distinctly different paradigm in virus-host interactions within the liver.
Collapse
|
65
|
Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 2011; 472:481-5. [PMID: 21478870 PMCID: PMC3409588 DOI: 10.1038/nature09907] [Citation(s) in RCA: 1931] [Impact Index Per Article: 137.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 02/03/2011] [Indexed: 12/12/2022]
Abstract
The type I interferon response protects cells against invading viral pathogens. The cellular factors that mediate this defence are the products of interferon-stimulated genes (ISGs). Although hundreds of ISGs have been identified since their discovery more than 25 years ago, only a few have been characterized with respect to antiviral activity. For most ISG products, little is known about their antiviral potential, their target specificity and their mechanisms of action. Using an overexpression screening approach, here we show that different viruses are targeted by unique sets of ISGs. We find that each viral species is susceptible to multiple antiviral genes, which together encompass a range of inhibitory activities. To conduct the screen, more than 380 human ISGs were tested for their ability to inhibit the replication of several important human and animal viruses, including hepatitis C virus, yellow fever virus, West Nile virus, chikungunya virus, Venezuelan equine encephalitis virus and human immunodeficiency virus type-1. Broadly acting effectors included IRF1, C6orf150 (also known as MB21D1), HPSE, RIG-I (also known as DDX58), MDA5 (also known as IFIH1) and IFITM3, whereas more targeted antiviral specificity was observed with DDX60, IFI44L, IFI6, IFITM2, MAP3K14, MOV10, NAMPT (also known as PBEF1), OASL, RTP4, TREX1 and UNC84B (also known as SUN2). Combined expression of pairs of ISGs showed additive antiviral effects similar to those of moderate type I interferon doses. Mechanistic studies uncovered a common theme of translational inhibition for numerous effectors. Several ISGs, including ADAR, FAM46C, LY6E and MCOLN2, enhanced the replication of certain viruses, highlighting another layer of complexity in the highly pleiotropic type I interferon system.
Collapse
Affiliation(s)
- John W Schoggins
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Le Vee M, Jouan E, Moreau A, Fardel O. Regulation of drug transporter mRNA expression by interferon-γ in primary human hepatocytes. Fundam Clin Pharmacol 2011; 25:99-103. [PMID: 20199580 DOI: 10.1111/j.1472-8206.2010.00822.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interferon (IFN)-γ is known to downregulate expression of drug detoxifying proteins such as cytochromes P-450 (CYPs) in human hepatocytes. The present study was designed to determine whether IFN-γ may also impair expression of influx and efflux drug transporters, which constitute important determinants of the liver detoxification pathway. Exposure of primary human hepatocytes to 10 ng/mL IFN-γ was found to downregulate mRNA levels of sinusoidal influx transporters such as sodium-taurocholate cotransporting polypeptide, organic anion transporting polypeptide (OATP) 2B1, OATP1B1, and OATP1B3. IFN-γ concomitantly reduced mRNA expression of drug efflux pumps such as multidrug resistance gene 1, multidrug resistance protein (MRP) 2, MRP3, breast cancer resistance protein and bile salt export pump. Such IFN-γ-mediated repression of major hepatic drug transporters may contribute to impaired liver clearance of drugs administrated to patients suffering from inflammation or viral infections associated with increased secretion of IFN-γ.
Collapse
Affiliation(s)
- Marc Le Vee
- EA 4427 Signalisation et Réponse aux Agents Infectieux et Chimiques, Institut de Recherches en Santé Environnement Travail, Université de Rennes 1, Rennes, France
| | | | | | | |
Collapse
|
67
|
Dill MT, Duong FHT, Vogt JE, Bibert S, Bochud PY, Terracciano L, Papassotiropoulos A, Roth V, Heim MH. Interferon-induced gene expression is a stronger predictor of treatment response than IL28B genotype in patients with hepatitis C. Gastroenterology 2011; 140:1021-31. [PMID: 21111740 DOI: 10.1053/j.gastro.2010.11.039] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/12/2010] [Accepted: 11/10/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The host immune response during the chronic phase of hepatitis C virus infection varies among individuals; some patients have a no interferon (IFN) response in the liver, whereas others have full activation of IFN-stimulated genes (ISGs). Preactivation of this endogenous IFN system is associated with nonresponse to pegylated IFN-α (pegIFN-α) and ribavirin. Genome-wide association studies have associated allelic variants near the IL28B (IFNλ3) gene with treatment response. We investigated whether IL28B genotype determines the constitutive expression of ISGs in the liver and compared the abilities of ISG levels and IL28B genotype to predict treatment outcome. METHODS We genotyped 109 patients with chronic hepatitis C for IL28B allelic variants and quantified the hepatic expression of ISGs and of IL28B. Decision tree ensembles, in the form of a random forest classifier, were used to calculate the relative predictive power of these different variables in a multivariate analysis. RESULTS The minor IL28B allele was significantly associated with increased expression of ISG. However, stratification of the patients according to treatment response revealed increased ISG expression in nonresponders, irrespective of IL28B genotype. Multivariate analysis of ISG expression, IL28B genotype, and several other factors associated with response to therapy identified ISG expression as the best predictor of treatment response. CONCLUSIONS IL28B genotype and hepatic expression of ISGs are independent predictors of response to treatment with pegIFN-α and ribavirin in patients with chronic hepatitis C. The most accurate prediction of response was obtained with a 4-gene classifier comprising IFI27, ISG15, RSAD2, and HTATIP2.
Collapse
Affiliation(s)
- Michael T Dill
- Department of Biomedicine, Hepatology Laboratory, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Zhou Z, Wang N, Woodson SE, Dong Q, Wang J, Liang Y, Rijnbrand R, Wei L, Nichols JE, Guo JT, Holbrook MR, Lemon SM, Li K. Antiviral activities of ISG20 in positive-strand RNA virus infections. Virology 2011; 409:175-88. [PMID: 21036379 PMCID: PMC3018280 DOI: 10.1016/j.virol.2010.10.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/05/2010] [Accepted: 10/06/2010] [Indexed: 01/19/2023]
Abstract
ISG20 is an interferon-inducible 3'-5' exonuclease that inhibits replication of several human and animal RNA viruses. However, the specificities of ISG20's antiviral action remain poorly defined. Here we determine the impact of ectopic expression of ISG20 on replication of several positive-strand RNA viruses from distinct viral families. ISG20 inhibited infections by cell culture-derived hepatitis C virus (HCV) and a pestivirus, bovine viral diarrhea virus and a picornavirus, hepatitis A virus. Moreover, ISG20 demonstrated cell-type specific antiviral activity against yellow fever virus, a classical flavivirus. Overexpression of ISG20, however, did not inhibit propagation of severe acute respiratory syndrome coronavirus, a highly-pathogenic human coronavirus in Huh7.5 cells. The antiviral effects of ISG20 were all dependent on its exonuclease activity. The closely related cellular exonucleases, ISG20L1 and ISG20L2, did not inhibit HCV replication. Together, these data may help better understand the antiviral specificity and action of ISG20.
Collapse
Affiliation(s)
- Zhi Zhou
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Infectious Diseases, the Second Teaching Hospital, Chongqing Medical University, Chongqing, China
| | - Nan Wang
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sara E. Woodson
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Qingming Dong
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jie Wang
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yuqiong Liang
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Rene Rijnbrand
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Lai Wei
- Peking University Hepatology Institute, Peking University People's Hospital, Beijing, China
| | - Joan E. Nichols
- Department of Internal Medicine, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Ju-Tao Guo
- Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, PA, USA
| | - Michael R. Holbrook
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Stanley M. Lemon
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Internal Medicine, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Kui Li
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
69
|
Bailey J. An assessment of the use of chimpanzees in hepatitis C research past, present and future: 1. Validity of the chimpanzee model. Altern Lab Anim 2011; 38:387-418. [PMID: 21105756 DOI: 10.1177/026119291003800501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The USA is the only significant user of chimpanzees in biomedical research in the world, since many countries have banned or limited the practice due to substantial ethical, economic and scientific concerns. Advocates of chimpanzee use cite hepatitis C research as a major reason for its necessity and continuation, in spite of supporting evidence that is scant and often anecdotal. This paper examines the scientific and ethical issues surrounding chimpanzee hepatitis C research, and concludes that claims of the necessity of chimpanzees in historical and future hepatitis C research are exaggerated and unjustifiable, respectively. The chimpanzee model has several major scientific, ethical, economic and practical caveats. It has made a relatively negligible contribution to knowledge of, and tangible progress against, the hepatitis C virus compared to non-chimpanzee research, and must be considered scientifically redundant, given the array of alternative methods of inquiry now available. The continuation of chimpanzee use in hepatitis C research adversely affects scientific progress, as well as chimpanzees and humans in need of treatment. Unfounded claims of its necessity should not discourage changes in public policy regarding the use of chimpanzees in US laboratories.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society, Boston, MA 02108-5100, USA.
| |
Collapse
|
70
|
He XS, Nanda S, Ji X, Calderon-Rodriguez GM, Greenberg HB, Liang TJ. Differential transcriptional responses to interferon-alpha and interferon-gamma in primary human hepatocytes. J Interferon Cytokine Res 2010; 30:311-20. [PMID: 20038212 DOI: 10.1089/jir.2009.0082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Interferon (IFN) plays a central role in the innate and adaptive antiviral immune responses. While IFN-alpha is currently approved for treating chronic hepatitis B and hepatitis C, in limited studies, IFN-gamma has not been shown to be effective for chronic hepatitis B or C. To identify the potential mechanism underlying the differential antiviral effects of IFN-alpha and IFN-gamma, we used cDNA microarray to profile the global transcriptional response to IFN-alpha and IFN-gamma in primary human hepatocytes, the target cell population of hepatitis viruses. Our results reveal distinct patterns of gene expression induced by these 2 cytokines. Overall, IFN-alpha induces more genes than IFN-gamma at the transcriptional level. Distinct sets of genes were induced by IFN-alpha and IFN-gamma with limited overlaps. IFN-alpha induces gene transcription at an early time point (6 h) but not at a later time point (18 h), while the effects of IFN-gamma are more prominent at 18 h than at 6 h, suggesting a delayed transcriptional response to IFN-gamma in the hepatocytes. These findings indicate differential actions of IFN-alpha and IFN-gamma in the context of therapeutic intervention for chronic viral infections in the liver.
Collapse
Affiliation(s)
- Xiao-Song He
- Department of Medicine, Stanford University School of Medicine , Stanford, California, USA
| | | | | | | | | | | |
Collapse
|
71
|
Horner SM, Gale M. Intracellular innate immune cascades and interferon defenses that control hepatitis C virus. J Interferon Cytokine Res 2010; 29:489-98. [PMID: 19708811 DOI: 10.1089/jir.2009.0063] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus (HCV) is a global public health problem that mediates a persistent infection in nearly 200 million people. HCV is efficient in establishing chronicity due in part to the inefficiency of the host immune system in controlling and counteracting HCV-mediated evasion strategies. HCV persistence is linked to the ability of the virus to suppress the RIG-I pathway and interferon production from infected hepatocytes, thus evading innate immune defenses within the infected cell. This review describes the virus and host processes that regulate the RIG-I pathway during HCV infection. An understanding of these HCV-host interactions could lead to more effective therapies for HCV designed to reactivate the host immune response following HCV infection.
Collapse
Affiliation(s)
- Stacy M Horner
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | |
Collapse
|
72
|
Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S, Ørum H. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010; 327:198-201. [PMID: 19965718 PMCID: PMC3436126 DOI: 10.1126/science.1178178] [Citation(s) in RCA: 1288] [Impact Index Per Article: 85.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The liver-expressed microRNA-122 (miR-122) is essential for hepatitis C virus (HCV) RNA accumulation in cultured liver cells, but its potential as a target for antiviral intervention has not been assessed. We found that treatment of chronically infected chimpanzees with a locked nucleic acid (LNA)-modified oligonucleotide (SPC3649) complementary to miR-122 leads to long-lasting suppression of HCV viremia, with no evidence of viral resistance or side effects in the treated animals. Furthermore, transcriptome and histological analyses of liver biopsies demonstrated derepression of target mRNAs with miR-122 seed sites, down-regulation of interferon-regulated genes, and improvement of HCV-induced liver pathology. The prolonged virological response to SPC3649 treatment without HCV rebound holds promise of a new antiviral therapy with a high barrier to resistance.
Collapse
Affiliation(s)
- Robert E. Lanford
- Southwest Foundation for Biomedical Research, Department of Virology and Immunology and Southwest National Primate Research Center, San Antonio, TX, 78227 USA
| | | | - Andreas Petri
- Santaris Pharma, Kogle Allé 6, DK-2970, Hørsholm, Denmark
| | - Robert Persson
- Santaris Pharma, Kogle Allé 6, DK-2970, Hørsholm, Denmark
| | - Morten Lindow
- Santaris Pharma, Kogle Allé 6, DK-2970, Hørsholm, Denmark
| | - Martin E. Munk
- Santaris Pharma, Kogle Allé 6, DK-2970, Hørsholm, Denmark
| | - Sakari Kauppinen
- Santaris Pharma, Kogle Allé 6, DK-2970, Hørsholm, Denmark
- Copenhagen Institute of Technology, Aalborg University, Lautrupvang 15, DK-2750 Ballerup, Denmark
| | - Henrik Ørum
- Santaris Pharma, Kogle Allé 6, DK-2970, Hørsholm, Denmark
| |
Collapse
|
73
|
Heim MH. HCV innate immune responses. Viruses 2009; 1:1073-88. [PMID: 21994583 PMCID: PMC3185522 DOI: 10.3390/v1031073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 11/25/2009] [Accepted: 11/26/2009] [Indexed: 01/07/2023] Open
Abstract
Hepatitis C virus (HCV) establishes a persistent infection in more than 70% of infected individuals. This striking ability to evade the powerful innate immune system results from viral interference occurring at several levels of the interferon (IFN) system. There is strong evidence from cell culture experiments that HCV can inhibit the induction of IFNβ by cleaving important proteins in the virus sensory pathways of cells such as MAVS and TRIF. There is also evidence that HCV interferes with IFNα signaling through the Jak-STAT pathway, and that HCV proteins target IFN effector systems such as protein kinase R (PKR). These in vitro findings will have to be confirmed in clinical trials investigating the molecular mechanisms of HCV interference with the innate immune system in liver samples.
Collapse
Affiliation(s)
- Markus H. Heim
- Clinic for Gastroenterology and Hepatology, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
- Department of Biomedicine, University Basel, ZLF, Hebelstrasse 20, CH-4031 Basel, Switzerland; E-Mail: ; Tel.: +41 61 265 25 25; Fax: +41-61-265 52 53
| |
Collapse
|
74
|
Boonstra A, van der Laan LJW, Vanwolleghem T, Janssen HLA. Experimental models for hepatitis C viral infection. Hepatology 2009; 50:1646-55. [PMID: 19670425 DOI: 10.1002/hep.23138] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease. The majority of infected individuals develop a persistent infection, which is associated with a high risk of liver cirrhosis and hepatocellular carcinoma. Since its discovery 20 years ago, progress in our understanding of this virus has been suboptimal due to the lack of good model systems. However, in the past decade this has greatly accelerated with the development of various in vitro cell culture systems and in vivo small-animal models. These systems have made a major impact on the field of HCV research, and have provided important breakthroughs in our understanding of HCV infection and replication. Importantly, the in vitro cell culture systems and the small-animal models have allowed preclinical testing of numerous novel antiviral compounds for the treatment of chronic HCV infection. In this article, we give an overview of current models, discuss their limitations, and provide future perspectives for research directed at the prevention and cure of hepatitis C.
Collapse
Affiliation(s)
- Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | | | | |
Collapse
|
75
|
Huang C, Chen H, Cassidy W, Howell CD. Peripheral blood gene expression profile associated with sustained virologic response after peginterferon plus ribavirin therapy for chronic hepatitis-C genotype 1. J Natl Med Assoc 2009; 100:1425-33. [PMID: 19110910 DOI: 10.1016/s0027-9684(15)31542-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We investigated the relationship between global gene expression in peripheral blood mononuclear cells (PBMCs) during the first 4 weeks of peginterferon alfa and ribavirin therapy and long-term eradication of hepatitis-C genotype 1 infections in 23 patients. A sustained virologic response (SVR), defined as an undetected serum HCV ribonucleic acid (RNA) at week 72, was the virologic response endpoint. PBMC RNA was prepared at week 0 and week 4 from 23 patients (17 black and 6 white Americans), and hybridized to Affymetrix GeneChip HG-U133 plus 2.0 arrays. Compared to week 0, 269 genes were differentially expressed at week 4 of treatment, including many genes regulated by alpha interferons and associated with host immunity (p<0.0001), cell signal transduction (p<0.001) and cellular protein metabolism (p<0.001). Expression of these 269 genes at week 0 and week 4 did not differ significantly between patients with and without a SVR. In contrast, SVR was associated with differential expression of 98 genes at week 4 (false discovery rate <0.01). Many of the genes have been implicated in control of HCV lifecycle and thus may play important roles in HCV clearance during peginterferon and ribavirin therapy.
Collapse
Affiliation(s)
- Chao Huang
- Department of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
76
|
Chavez D, Guerra B, Lanford RE. Antiviral activity and host gene induction by tamarin and marmoset interferon-alpha and interferon-gamma in the GBV-B primary hepatocyte culture model. Virology 2009; 390:186-96. [PMID: 19501869 PMCID: PMC2753388 DOI: 10.1016/j.virol.2009.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/18/2009] [Accepted: 05/09/2009] [Indexed: 01/29/2023]
Abstract
GBV-B induces hepatitis in tamarins and marmosets and is a surrogate model for HCV infections. Here, we cloned and characterized the antiviral activity of tamarin and marmoset interferon (IFN)alpha and IFN gamma. Potent antiviral activity was observed for tamarin and marmoset IFN alpha in primary hepatocyte cultures infected with GBV-B. The antiviral activity was greater in cultures exposed to IFN alpha prior to GBV-B infection, suggesting that either GBV-B was capable of inhibition of the antiviral activity of exogenous IFN alpha or that the preexisting endogenous IFN response to the virus reduced efficacy to exogenous IFN alpha. IFN gamma also exhibited antiviral activity in GBV-B infected hepatocytes. The transcriptional response to IFN alpha in marmoset hepatocytes was characterized using human genome microarrays. Since the GBV-B hepatocyte culture model possesses a functional innate immune response, it will provide opportunities to explore the nature of the antiviral response to a virus closely related to HCV.
Collapse
Affiliation(s)
- Deborah Chavez
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research and Southwest National Primate Research Center, 7620 NW Loop 410, San Antonio, TX 78227, USA
| | | | | |
Collapse
|
77
|
Meier V, Ramadori G. Hepatitis C virus virology and new treatment targets. Expert Rev Anti Infect Ther 2009; 7:329-50. [PMID: 19344246 DOI: 10.1586/eri.09.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hepatitis C virus (HCV) infection is the leading cause of chronic liver disease. An estimated 130 million people worldwide are persistently infected with HCV. Almost half of patients who have chronic HCV infection cannot be cured with the standard treatment consisting of pegylated IFN-alpha and ribavirin. For those patients who do not respond to this standard antiviral therapy, there is currently no approved treatment option available. Recent progress in structure determination of HCV proteins and development of a subgenomic replicon system enables the development of a specifically targeted antiviral therapy for hepatitis C. Many HCV-specific compounds are now under investigation in preclinical and clinical trials.
Collapse
Affiliation(s)
- Volker Meier
- Universitätsmedizin Göttingen, Abteilung für Gastroenterologie und Endokrinologie, Göttingen, Germany
| | | |
Collapse
|
78
|
Walters KA, Katze MG. Using high-throughput genomics to study hepatitis C: what determines the outcome of infection? Antiviral Res 2009; 81:198-208. [PMID: 19135090 PMCID: PMC2683667 DOI: 10.1016/j.antiviral.2008.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 12/04/2008] [Accepted: 12/09/2008] [Indexed: 12/20/2022]
Abstract
High-throughput genomic methods are now being used to study a wide variety of viral diseases, in an effort to understand how host responses to infection can lead either to efficient elimination of the pathogen or the development of severe disease. This article reviews how gene expression studies are addressing important clinical issues related to hepatitis C virus infection, in which some 15-25% of infected individuals are able to clear the virus without treatment, while the remainder progress to chronic liver disease that can lead to cirrhosis and death. Similar methods are also being used in an effort to identify the mechanisms underlying the failure of some hepatitis C patients to respond to interferon-alpha/ribavirin therapy. By providing a detailed picture of virus-host interactions, high-throughput genomics could potentially lead to the identification of novel cellular targets for the treatment of hepatitis C.
Collapse
Affiliation(s)
- Kathie-Anne Walters
- Department of Microbiology, University of Washington, 960 Repubublican St., Seattle, WA 98109, USA.
| | | |
Collapse
|
79
|
Carpentier A, Conti F, Carrière M, Aoudjehane L, Miroux C, Moralès O, Calmus Y, Groux H, Auriault C, Pancré V, Delhem N, Podevin P. Analysis of gene transcription in sera during chronic hepatitis C infection. J Med Virol 2009; 81:473-80. [PMID: 19152403 DOI: 10.1002/jmv.21398] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alternative, non-invasive techniques are necessary to monitor the progression of liver disease during chronic hepatitis C. Firstly, because serum is the most accessible material for studies using qPCR in microplates, gene transcription was compared in 219 selected genes involved in the pathogenesis of hepatitis C virus (HCV) infection between sera, PBMCs and liver samples collected simultaneously from five patients infected chronically. Secondly, using sera, gene profiles were compared between HCV-infected patients (n = 10) and healthy controls (n = 10). In addition, the influence of alcohol intake was examined in patients infected with HCV genotype-1. Firstly, amplifiable mRNAs were obtained in all samples. After amplification, significant correlations were observed between: liver versus serum; liver versus PBMCs; and serum versus PBMCs (r(2) = 0.37, r(2) = 0.54, r(2) = 0.49, respectively). A comparison of gene transcription by gene involved in T- and B-cell markers, adhesion molecules, apoptosis, liver matrix turnover and inflammation, revealed comparable, significant correlations between serum and liver, (r(2) = 0.30, r(2) = 0.60, r(2) = 0.51, r(2) = 0.51, r(2) = 0.26, and r(2) = 0.61 respectively). Secondly, a quantitative analysis of gene expression in sera between genotype-1b-infected patients and healthy controls revealed that 41 genes involved closely in T-cell activation and apoptosis were over-expressed significantly in patients infected with HCV. In these patients, alcohol consumption was associated with an increased expression of six genes involved in the inflammatory response, together with a decrease of genes associated with dendritic cell function. It is concluded that in patients infected with HCV, serum can be used to evaluate expression of liver genes. Further prospective studies are clearly needed to validate the initial results and to define the relevant genes.
Collapse
|
80
|
Samarajiwa SA, Forster S, Auchettl K, Hertzog PJ. INTERFEROME: the database of interferon regulated genes. Nucleic Acids Res 2009; 37:D852-7. [PMID: 18996892 PMCID: PMC2686605 DOI: 10.1093/nar/gkn732] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/30/2008] [Accepted: 10/01/2008] [Indexed: 01/05/2023] Open
Abstract
INTERFEROME is an open access database of types I, II and III Interferon regulated genes (http://www.interferome.org) collected from analysing expression data sets of cells treated with IFNs. This database of interferon regulated genes integrates information from high-throughput experiments with annotation, ontology, orthologue sequences from 37 species, tissue expression patterns and gene regulatory information to enable a detailed investigation of the molecular mechanisms underlying IFN biology. INTERFEROME fulfils a need in infection, immunity, development and cancer research by providing computational tools to assist in identifying interferon signatures in gene lists generated by high-throughput expression technologies, and their potential molecular and biological consequences.
Collapse
Affiliation(s)
- Shamith A. Samarajiwa
- Center for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, and CRC for chronic inflammatory disease, North Melbourne, Victoria, Australia
| | - Sam Forster
- Center for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, and CRC for chronic inflammatory disease, North Melbourne, Victoria, Australia
| | - Katie Auchettl
- Center for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, and CRC for chronic inflammatory disease, North Melbourne, Victoria, Australia
| | - Paul J. Hertzog
- Center for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, and CRC for chronic inflammatory disease, North Melbourne, Victoria, Australia
| |
Collapse
|
81
|
Activation of pattern recognition receptor-mediated innate immunity inhibits the replication of hepatitis B virus in human hepatocyte-derived cells. J Virol 2008; 83:847-58. [PMID: 18971270 DOI: 10.1128/jvi.02008-08] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recognition of virus infections by pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation associated gene 5 (MDA5), activates signaling pathways, leading to the induction of inflammatory cytokines that limit viral replication. To determine the effects of PRR-mediated innate immune response on hepatitis B virus (HBV) replication, a 1.3mer HBV genome was cotransfected into HepG2 or Huh7 cells with plasmid expressing TLR adaptors, myeloid differentiation primary response gene 88 (MyD88), and TIR-domain-containing adaptor-inducing beta interferon (TRIF), or RIG-I/MDA5 adaptor, interferon promoter stimulator 1 (IPS-1). The results showed that expressing each of the three adaptors dramatically reduced the levels of HBV mRNA and DNA in both HepG2 and Huh7 cells. However, HBV replication was not significantly affected by treatment of HBV genome-transfected cells with culture media harvested from cells transfected with each of the three adaptors, indicating that the adaptor-induced antiviral response was predominantly mediated by intracellular factors rather than by secreted cytokines. Analyses of involved signaling pathways revealed that activation of NF-kappaB is required for all three adaptors to elicit antiviral response in both HepG2 and Huh7 cells. However, activation of interferon regulatory factor 3 is only essential for induction of antiviral response by IPS-1 in Huh7 cells, but not in HepG2 cells. Furthermore, our results suggest that besides NF-kappaB, additional signaling pathway(s) are required for TRIF to induce a maximum antiviral response against HBV. Knowing the molecular mechanisms by which PRR-mediated innate defense responses control HBV infections could potentially lead to the development of novel therapeutics that evoke the host cellular innate antiviral response to control HBV infections.
Collapse
|
82
|
Meier V, Mihm S, Ramadori G. Interferon-alpha therapy does not modulate hepatic expression of classical type I interferon inducible genes. J Med Virol 2008; 80:1912-8. [PMID: 18814253 DOI: 10.1002/jmv.21310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease. Treatment with interferon-alpha(2) (IFN-alpha(2)) can induce viral clearance and marked biochemical and histological improvement. IFN-alpha(2) treatment has been shown to stimulate the expression of type I IFN regulated genes in peripheral blood mononuclear cells (PBMCs) of hepatitis C patients; however, whether it affects hepatic expression remains unknown. This study thus aimed at comparing hepatic gene expression with particular emphasis on type I IFN inducible genes in patients with chronic hepatitis C before and during an IFN-alpha(2) monotherapy. Responsiveness to IFN-alpha(2) therapy was monitored by determining serum and hepatic viral load. Differential gene expression analysis was performed by two different techniques, namely suppression subtractive hybridization (SSH) and differential display (DD). Expression of two prototype type I IFN regulated genes was quantified in further PBMC and liver samples. Among different genes found to be up-regulated during an effective, that is, virus clearing, IFN-alpha treatment, only a single one was identified which can be accounted to type I IFN responsive genes. Parallel quantitative real time PCR analyses demonstrated significant induction of the type I IFN regulated genes MxA and PKR in PBMC, but not in the liver. Taken together, while IFN-alpha treatment leads to the induction of type I IFN regulated genes in PBMC, such an induction appears not to occur in the liver of hepatitis C patients. The mechanism by which IFN-alpha treatment causes viral clearance might be independent of hepatic activation of type I IFN regulated genes.
Collapse
Affiliation(s)
- Volker Meier
- Division of Gastroenterology and Endocrinology, Department of Internal Medicine, Georg-August-University Goettingen, Goettingen, Germany
| | | | | |
Collapse
|
83
|
Bellecave P, Moradpour D. A fresh look at interferon-alpha signaling and treatment outcomes in chronic hepatitis C. Hepatology 2008; 48:1330-3. [PMID: 18821612 DOI: 10.1002/hep.22571] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. The current standard therapy for chronic hepatitis C (CHC) consists of a combination of pegylated IFN alpha (pegIFNalpha) and ribavirin. It achieves a sustained viral clearance in only 50-60% of patients. To learn more about molecular mechanisms underlying treatment failure, we investigated IFN-induced signaling in paired liver biopsies collected from CHC patients before and after administration of pegIFNalpha. In patients with a rapid virological response to treatment, pegIFNalpha induced a strong up-regulation of IFN-stimulated genes (ISGs). As shown previously, nonresponders had high expression levels of ISGs before therapy. Analysis of posttreatment biopsies of these patients revealed that pegIFNalpha did not induce expression of ISGs above the pretreatment levels. In accordance with ISG expression data, phosphorylation, DNA binding, and nuclear localization of STAT1 indicated that the IFN signaling pathway in nonresponsive patients is preactivated and refractory to further stimulation. Some features characteristic of nonresponders were more accentuated in patients infected with HCV genotypes 1 and 4 compared with genotypes 2 and 3, providing a possible explanation for the poor response of the former group to therapy. Taken together with previous findings, our data support the concept that activation of the endogenous IFN system in CHC not only is ineffective in clearing the infection but also may impede the response to therapy, most likely by inducing a refractory state of the IFN signaling pathway.
Collapse
Affiliation(s)
- Pantxika Bellecave
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
84
|
Cheng PN, Wei YL, Chang TT, Chen JS, Young KC. Therapy with interferon-alpha and ribavirin for chronic hepatitis C virus infection upregulates membrane HLA-ABC, CD86, and CD28 on peripheral blood mononuclear cells. J Med Virol 2008; 80:989-96. [PMID: 18428145 DOI: 10.1002/jmv.21192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multiple interferon-stimulated genes (ISGs) involving T-cell activation are upregulated during initial interferon-alpha-based therapy for chronic hepatitis C virus (HCV) infection. However, the long-term impact on therapeutic outcome in patients remains unknown. In this study, the effects of anti-HCV therapy on the surface expression of HLA-ABC, CD86, and CD28 were longitudinally assessed. These proteins are integral membrane receptors of antigen presentation and triggering of costimulatory signals for activating CD8+ T cells. Peripheral blood mononuclear cells were collected at baseline and post-treatment for 1 day, and 2, 4, 12, and 24 weeks, respectively. This treatment led to a time-related elevation of membrane levels of HLA-ABC and CD86 on B-cells and monocytes in patients with a sustained response (n = 23), but not in those without (n = 8). Meanwhile, upregulation of CD28 on CD4+ and CD8+ T cells was comparable in both groups of sustained responders and non-responders. Steady increases in the B cells' surface and intracellular HLA-ABC were observed, thus, the surface-to-intracellular ratios did not alter over the period of treatment. Furthermore, multivariate analysis shows that increased HLA-ABC on monocytes by week 12 correlates significantly with sustained response (P = 0.033). In conclusion, differential modulation of T-cell activation ISGs, such as HLA-ABC and CD86 might correlate with the outcome of interferon-alpha-based therapy in chronic hepatitis C patients.
Collapse
Affiliation(s)
- Pin-Nan Cheng
- Department of Internal Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
85
|
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. The current standard therapy for chronic hepatitis C (CHC) consists of a combination of pegylated IFN alpha (pegIFNalpha) and ribavirin. It achieves a sustained viral clearance in only 50-60% of patients. To learn more about molecular mechanisms underlying treatment failure, we investigated IFN-induced signaling in paired liver biopsies collected from CHC patients before and after administration of pegIFNalpha. In patients with a rapid virological response to treatment, pegIFNalpha induced a strong up-regulation of IFN-stimulated genes (ISGs). As shown previously, nonresponders had high expression levels of ISGs before therapy. Analysis of posttreatment biopsies of these patients revealed that pegIFNalpha did not induce expression of ISGs above the pretreatment levels. In accordance with ISG expression data, phosphorylation, DNA binding, and nuclear localization of STAT1 indicated that the IFN signaling pathway in nonresponsive patients is preactivated and refractory to further stimulation. Some features characteristic of nonresponders were more accentuated in patients infected with HCV genotypes 1 and 4 compared with genotypes 2 and 3, providing a possible explanation for the poor response of the former group to therapy. Taken together with previous findings, our data support the concept that activation of the endogenous IFN system in CHC not only is ineffective in clearing the infection but also may impede the response to therapy, most likely by inducing a refractory state of the IFN signaling pathway.
Collapse
|
86
|
Asahina Y, Izumi N, Hirayama I, Tanaka T, Sato M, Yasui Y, Komatsu N, Umeda N, Hosokawa T, Ueda K, Tsuchiya K, Nakanishi H, Itakura J, Kurosaki M, Enomoto N, Tasaka M, Sakamoto N, Miyake S. Potential relevance of cytoplasmic viral sensors and related regulators involving innate immunity in antiviral response. Gastroenterology 2008; 134:1396-405. [PMID: 18471516 DOI: 10.1053/j.gastro.2008.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 01/31/2008] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Clinical significance of molecules involving innate immunity in treatment response remains unclear. The aim is to elucidate the mechanisms underlying resistance to antiviral therapy and predictive usefulness of gene quantification in chronic hepatitis C (CH-C). METHODS We conducted a human study in 74 CH-C patients treated with pegylated interferon alpha-2b and ribavirin and 5 nonviral control patients. Expression of viral sensors, adaptor molecule, related ubiquitin E3-ligase, and modulators were quantified. RESULTS Hepatic RIG-I, MDA5, LGP2, ISG15, and USP18 in CH-C patients were up-regulated at 2- to 8-fold compared with nonhepatitis C virus patients with a relatively constitutive Cardif. Hepatic RIG-I, MDA5, and LGP2 were significantly up-regulated in nonvirologic responders (NVR) compared with transient (TR) or sustained virologic responders (SVR). Cardif and RNF125 were negatively correlated with RIG-I and significantly suppressed in NVR. Differences among clinical responses in RIG-I/Cardif and RIG-I/RNF125 ratios were conspicuous (NVR/TR/SVR = 1.3:0.6:0.4 and 2.3:1.3:0.8, respectively). Like viral sensors, ISG15 and USP18 were significantly up-regulated in NVR (4-fold and 2.3-fold, respectively). Multivariate and receiver operator characteristic analyses revealed higher RIG-I/Cardif ratio, ISG15, and USP18 predicted NVR. Lower Cardif in NVR was confirmed by its protein level in Western blot. Also, transcriptional responses in peripheral blood mononuclear cells to the therapy were rapid and strong except for Cardif in not only a positive (RIG-I, ISG15, and USP18) but also in a negative regulatory manner (RNF125). CONCLUSIONS NVR may have adopted a different equilibrium in their innate immune response. High RIG-I/Cardif and RIG-I/RNF125 ratios and ISG15 and USP18 are useful in identifying NVR.
Collapse
Affiliation(s)
- Yasuhiro Asahina
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Chung RT, Gale M, Polyak SJ, Lemon SM, Liang TJ, Hoofnagle JH. Mechanisms of action of interferon and ribavirin in chronic hepatitis C: Summary of a workshop. Hepatology 2008; 47:306-20. [PMID: 18161743 PMCID: PMC2799164 DOI: 10.1002/hep.22070] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Raymond T Chung
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
88
|
Identification of three interferon-inducible cellular enzymes that inhibit the replication of hepatitis C virus. J Virol 2007; 82:1665-78. [PMID: 18077728 DOI: 10.1128/jvi.02113-07] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a common cause of chronic hepatitis and is currently treated with alpha interferon (IFN-alpha)-based therapies. However, the underlying mechanism of IFN-alpha therapy remains to be elucidated. To identify the cellular proteins that mediate the antiviral effects of IFN-alpha, we created a HEK293-based cell culture system to inducibly express individual interferon-stimulated genes (ISGs) and determined their antiviral effects against HCV. By screening 29 ISGs that are induced in Huh7 cells by IFN-alpha and/or up-regulated in HCV-infected livers, we discovered that viperin, ISG20, and double-stranded RNA-dependent protein kinase (PKR) noncytolytically inhibited the replication of HCV replicons. Mechanistically, inhibition of HCV replication by ISG20 and PKR depends on their 3'-5' exonuclease and protein kinase activities, respectively. Moreover, our work, for the first time, provides strong evidence suggesting that viperin is a putative radical S-adenosyl-l-methionine (SAM) enzyme. In addition to demonstrating that the antiviral activity of viperin depends on its radical SAM domain, which contains conserved motifs to coordinate [4Fe-4S] cluster and cofactor SAM and is essential for its enzymatic activity, mutagenesis studies also revealed that viperin requires an aromatic amino acid residue at its C terminus for proper antiviral function. Furthermore, although the N-terminal 70 amino acid residues of viperin are not absolutely required, deletion of this region significantly compromises its antiviral activity against HCV. Our findings suggest that viperin represents a novel antiviral pathway that works together with other antiviral proteins, such as ISG20 and PKR, to mediate the IFN response against HCV infection.
Collapse
|
89
|
Kong XF, Zhang XX, Gong QM, Gao J, Zhang SY, Wang L, Xu J, Han Y, Jin GD, Jiang JH, Zhang DH, Lu ZM. MxA induction may predict sustained virologic responses of chronic hepatitis B patients with IFN-alpha treatment. J Interferon Cytokine Res 2007; 27:809-18. [PMID: 17892402 DOI: 10.1089/jir.2006.0163] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The objective of this study was to find potential biomarkers for predicting sustained virologic responses to interferon-alpha (IFN-alpha) treatment in chronic hepatitis B (CHB) patients. A total of 101 CHB patients were treated with pegylated IFN-alpha2a for 48 weeks and followed up for 24 weeks, including 34 IFN responders (IFN-Rs) and 67 IFN nonresponders (IFN-NRs). After peripheral blood mononuclear cells (PBMCs) and Epstein-Barr virus-transferred B (EBV-B) cell lines were treated with different concentrations of IFN-alpha in vitro, activated IFN-stimulated gene factor3 (ISGF3) and IFN-gamma-activation factor (GAF) were measured by EMSA, and MxA, OAS1, and PKR mRNA were measured by real-time PCR. Polymorphisms in the MxA promoter were genotyped to find the possible association. IFN-alpha-activated ISGF3 and GAF levels were similar between IFN-NRs and IFN-Rs. However, MxA mRNA induction in IFN-Rs was higher than that in IFN-NRs, and such discrepancy increased when highly concentrated IFN was used to stimulate. The OAS1 and PKR mRNA induction have a similar pattern between IFN-Rs and IFN-NRs. In addition, frequency of the MxA-88G/T genotype was significantly different between IFN-Rs and IFN-NRs, and this polymorphism was also functional because MxA mRNA induction in patients with GG genotype was lower than those with GT genotype. Regression analysis showed that MxA mRNA induction after 10,000 IU/mL IFN stimulation could serve as an independent factor for predicting IFN-alpha, with an area under curve (AUC) of 0.838, a positive predictive value of 68% for IFN-Rs, and a negative predictive value of 89% for IFN-NRs. MxA mRNA induced by IFN-alpha might predict sustained virologic responses to IFN-alpha treatment in CHB patients.
Collapse
Affiliation(s)
- Xiao-Fei Kong
- Department of Infectious Disease, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Feld JJ, Nanda S, Huang Y, Chen W, Cam M, Pusek SN, Schweigler LM, Theodore D, Zacks SL, Liang TJ, Fried MW. Hepatic gene expression during treatment with peginterferon and ribavirin: Identifying molecular pathways for treatment response. Hepatology 2007; 46:1548-63. [PMID: 17929300 PMCID: PMC2808168 DOI: 10.1002/hep.21853] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED The reasons for hepatitis C treatment failure remain unknown but may be related to different host responses to therapy. In this study, we compared hepatic gene expression in patients prior to and during peginterferon and ribavirin therapy. In the on-treatment group, patients received either ribavirin for 72 hours prior to peginterferon alpha-2a injection or peginterferon alpha-2a for 24 hours, prior to biopsy. The patients were grouped into rapid responders (RRs) with a greater than 2-log drop and slow responders (SRs) with a less than 2-log drop in hepatitis C virus RNA by week 4. Pretreatment biopsy specimens were obtained from a matched control group. The pretreatment patients were grouped as RRs or SRs on the basis of the subsequent treatment response. Gene expression profiling was performed with Affymetrix microarray technology. Known interferon-stimulated genes (ISGs) were induced in treated patients. In the pretreatment group, future SRs had higher pretreatment ISG expression than RRs. On treatment, RRs and SRs had similar absolute ISG expression, but when it was corrected for the baseline expression with the pretreatment group, RRs showed a greater fold change in ISGs, whereas SRs showed a greater change in interferon (IFN)-inhibitory pathways. The patients pretreated with ribavirin had heightened induction of IFN-related genes and down-regulation of genes involved in IFN inhibition and hepatic stellate cell activation. CONCLUSION These data suggest that ISG inducibility is important for the treatment response and that ribavirin may improve outcomes by enhancing hepatic gene responses to peginterferon. Collectively, these mechanisms may provide a molecular basis for the improved efficacy of combination therapy.
Collapse
Affiliation(s)
- Jordan J. Feld
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Santosh Nanda
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Ying Huang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Weiping Chen
- Microarray Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Maggie Cam
- Microarray Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | | | | | | | | | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
91
|
Chevaliez S, Pawlotsky JM. Interferon-based therapy of hepatitis C. Adv Drug Deliv Rev 2007; 59:1222-41. [PMID: 17869375 DOI: 10.1016/j.addr.2007.07.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 07/23/2007] [Indexed: 02/06/2023]
Abstract
In 2007, the world celebrated the 50th anniversary of the discovery of interferon (IFN). The first clinical trial of recombinant IFN-alpha in patients with chronic hepatitis C was published in 1986. This article reviews the classification of IFNs, IFN production during viral infections, IFN signaling pathways and the mechanisms of their antiviral and immunomodulatory properties. Hepatitis C virus infection treatment is currently based on the combination of pegylated IFN-alpha and ribavirin. The pegylated IFN-alpha molecules are described, as well as the putative mechanisms of action of ribavirin. Current treatment guidelines are discussed and new results suggesting that the treatment schedule should be tailored to the early virological response during therapy are presented. Finally, insights into new hepatitis C drug developments are given.
Collapse
Affiliation(s)
- Stéphane Chevaliez
- French National Reference Center for Viral Hepatitis B, C and delta, Department of Virology, Hôpital Henri Mondor, Université Paris 12, Créteil, France
| | | |
Collapse
|
92
|
Lanford RE, Guerra B, Bigger CB, Lee H, Chavez D, Brasky KM. Lack of response to exogenous interferon-alpha in the liver of chimpanzees chronically infected with hepatitis C virus. Hepatology 2007; 46:999-1008. [PMID: 17668868 PMCID: PMC2386986 DOI: 10.1002/hep.21776] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
UNLABELLED The mechanism of the interferon-alpha (IFNalpha)-induced antiviral response is not completely understood. We recently examined the transcriptional response to IFNalpha in uninfected chimpanzees. The transcriptional response to IFNalpha in the liver and peripheral blood mononuclear cells (PBMCs) was rapidly induced but was also rapidly down-regulated, with most interferon-alpha-stimulated genes (ISGs) returning to the baseline within 24 hours. We have extended these observations to include chimpanzees chronically infected with hepatitis C virus (HCV). Remarkably, using total genome microarray analysis, we observed almost no induction of ISG transcripts in the livers of chronically infected animals following IFNalpha dosing, whereas the response in PBMCs was similar to that in uninfected animals. In agreement with this finding, no decrease in the viral load occurred with up to 12 weeks of pegylated IFNalpha therapy. The block in the response to exogenous IFNalpha appeared to be HCV-specific because the response in a hepatitis B virus-infected animal was similar to that of uninfected animals. The lack of a response to exogenous IFNalpha may be due to an already maximally induced ISG response because chronically HCV-infected chimpanzees already have a highly up-regulated hepatic ISG response. Alternatively, negative regulation may block the response to exogenous IFNalpha, yet it does not prevent the continued response to endogenous ISG stimuli. The IFNalpha response in chronically HCV-infected chimpanzees may be mechanistically similar to the null response in the human population. CONCLUSION In chimpanzees infected with HCV, the highly elevated hepatic ISG expression may prevent the further induction of ISGs and antiviral efficacy following an IFNalpha treatment.
Collapse
Affiliation(s)
- Robert E. Lanford
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, 7620 NW Loop 410, San Antonio, TX 78227
- Southwest National Primate Research Center, 7620 NW Loop 410, San Antonio, TX 78227
| | - Bernadette Guerra
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, 7620 NW Loop 410, San Antonio, TX 78227
| | | | - Helen Lee
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, 7620 NW Loop 410, San Antonio, TX 78227
| | - Deborah Chavez
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, 7620 NW Loop 410, San Antonio, TX 78227
| | - Kathleen M. Brasky
- Southwest National Primate Research Center, 7620 NW Loop 410, San Antonio, TX 78227
| |
Collapse
|
93
|
Zeremski M, Markatou M, Brown QB, Dorante G, Cunningham-Rundles S, Talal AH. Interferon gamma-inducible protein 10: a predictive marker of successful treatment response in hepatitis C virus/HIV-coinfected patients. J Acquir Immune Defic Syndr 2007; 45:262-8. [PMID: 17414926 DOI: 10.1097/qai.0b013e3180559219] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Elevated pretreatment interferon (IFN) gamma-inducible protein 10 (IP-10/CXCL10) levels are a marker of treatment nonresponse in hepatitis C virus (HCV)-monoinfected patients. We undertook this study to determine if IP-10 is a marker of treatment outcome in HCV/HIV-coinfected patients. METHODS Nineteen HCV/HIV-coinfected patients were treated with weight-based pegylated (PEG) IFNalpha-2b (1.5 microg/kg) once weekly plus weight-based ribavirin (1000 or 1200 mg) daily for up to 48 weeks. Plasma IP-10, monokine induced by IFNgamma/CXCL9 (Mig), and IFN-inducible T-cell alpha-chemoattractant/CXCL11 (I-TAC) levels were measured by enzyme-linked immunosorbent assay on samples obtained frequently during the first 3 PEG-IFN doses and throughout treatment. RESULTS Median pretreatment plasma IP-10 (interquartile range [IQR]) levels were significantly lower in virological responders (n=6) at 217 (IQR: 181-301) pg/mL compared with nonresponders (n=13) at 900 (IQR: 628-2048) pg/mL (P=0.002), whereas pretreatment Mig and I-TAC levels did not differ significantly. Plasma IP-10 levels of 400 pg/mL before treatment and on days 7 and 14 could be used to identify likely coinfected PEG-IFN/ribavirin nonresponders. PEG-IFN-induced elevations in IP-10 were greater in virological responders than in nonresponders (approximately 10-fold vs. approximately 4-fold) after the first PEG-IFN dose. CONCLUSIONS IP-10 may be a biomarker of HCV treatment outcome in difficult-to-treat HCV/HIV-coinfected patients.
Collapse
Affiliation(s)
- Marija Zeremski
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
94
|
Huang Y, Feld JJ, Sapp RK, Nanda S, Lin JH, Blatt LM, Fried MW, Murthy K, Liang TJ. Defective hepatic response to interferon and activation of suppressor of cytokine signaling 3 in chronic hepatitis C. Gastroenterology 2007; 132:733-44. [PMID: 17258724 PMCID: PMC1853257 DOI: 10.1053/j.gastro.2006.11.045] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 11/08/2006] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Approximately half of hepatitis C virus (HCV)-infected patients do not respond to current interferon (IFN)-alpha combination therapy. To understand IFN-alpha resistance in vivo, we examined the dynamic responses to both type I and type II IFNs, human IFN (hIFN)-alpha, -gamma, and consensus IFN, in the chimpanzee model. METHODS Naive and HCV-infected chimpanzees were treated with 3 forms of hIFNs in vivo. Quantitative real-time polymerase chain reaction was performed to evaluate the expression of IFN-stimulated genes (ISGs) in both peripheral blood mononuclear cells and liver to compare the responses to hIFN between naive and infected chimpanzees. The hepatic expression of IFN signaling components and inhibitory regulators including suppressor of cytokine signaling 3 (SOCS3) were assessed. SOCS3 expression was also evaluated in the liver of HCV-infected patients undergoing IFN treatment. RESULTS The in vivo responses to all 3 hIFNs were much lower in the HCV-infected chimpanzees than those in the naive chimpanzees. This defect was particularly evident in the liver because induction of hepatic ISGs was barely detectable in the infected animals. Following IFN administration, the expression of SOCS3 was significantly up-regulated, possibly through induction of interleukin-6, in the liver of HCV-infected chimpanzees. HCV-infected humans also showed a differential pattern of hepatic SOCS3 expression in response to IFN that is associated with treatment response. CONCLUSIONS Our data indicate a predominantly defective hepatic response to IFN in HCV-infected chimpanzees, which is probably mediated through the activation of SOCS3 and may explain the nonresponse of many HCV patients to IFN-based therapy.
Collapse
Affiliation(s)
- Ying Huang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Taylor MW, Tsukahara T, Brodsky L, Schaley J, Sanda C, Stephens MJ, McClintick JN, Edenberg HJ, Li L, Tavis JE, Howell C, Belle SH. Changes in gene expression during pegylated interferon and ribavirin therapy of chronic hepatitis C virus distinguish responders from nonresponders to antiviral therapy. J Virol 2007; 81:3391-401. [PMID: 17267482 PMCID: PMC1866036 DOI: 10.1128/jvi.02640-06] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Treating chronic hepatitis C virus (HCV) infection using pegylated alpha interferon and ribavirin leads to sustained clearance of virus and clinical improvement in approximately 50% of patients. Response rates are lower among patients with genotype 1 than with genotypes 2 and 3 and among African-American (AA) patients compared to Caucasian (CA) patients. Using DNA microarrays, gene expression was assessed for a group of 33 African-American and 36 Caucasian American patients with chronic HCV genotype 1 infection during the first 28 days of treatment. Results were examined with respect to treatment responses and to race. Patients showed a response to treatment at the gene expression level in RNA isolated from peripheral blood mononuclear cells irrespective of degree of decrease in HCV RNA levels. However, gene expression responses were relatively blunted in patients with poor viral response (<1.5 log(10)-IU/ml decrease at 28 days) compared to those in patients with a marked (>3.5 log(10)-IU/ml decrease) or intermediate (1.5 to 3.5 log(10)-IU/ml decrease) response. The number of genes that were up- or down-regulated by pegylated interferon and ribavirin treatment was fewer in patients with a poor response than in those with an intermediate or marked viral response. However AA patients had a stronger interferon response than CA patients in general. The induced levels of known interferon-stimulated genes such as the 2'5'-oligoadenylate synthetase, MX1, IRF-7, and toll-like receptor TLR-7 genes was lower in poor-response patients than in marked- or intermediate-response patients. Thus, the relative lack of viral response to interferon therapy of hepatitis C virus infection is associated with blunted interferon cell signaling. No specific regulatory gene could be identified as responsible for this global blunting or the racial differences.
Collapse
Affiliation(s)
- Milton W Taylor
- Department of Biology, Indiana University, Bloomington, IN 47401, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
The hepatitis C virus (HCV) is a remarkably successful pathogen, establishing persistent infection in more than two-thirds of those who contract it. Its success is related to its abilities to blunt innate antiviral pathways and to evade adaptive immune responses. These two themes may be related. We propose that HCV takes advantage of the impaired innate response to delay the organization of an effective adaptive immune attack. The tolerogenic liver environment may provide cover, prolonging this delay. HCV's error-prone replication strategy permits rapid evolution under immune pressure. Persistent high levels of viral antigens may contribute to immune exhaustion. Finally, the virus may benefit from the efficient enlistment of memory T and B cells in the pursuit of a moving target.
Collapse
Affiliation(s)
- Lynn B Dustin
- The Rockefeller University, Center for the Study of Hepatitis C, New York, NY 10021, USA.
| | | |
Collapse
|
97
|
Lanford RE, Guerra B, Lee H. Hepatitis C virus genotype 1b chimeric replicon containing genotype 3 NS5A domain. Virology 2006; 355:192-202. [PMID: 16919701 DOI: 10.1016/j.virol.2006.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 06/26/2006] [Accepted: 07/12/2006] [Indexed: 01/21/2023]
Abstract
Infections with hepatitis C virus (HCV) genotype 3 exhibit differences in clinical phenotype including an increase in response to interferon therapy and development of steatosis. To initiate studies on genotype 3, we created a chimeric genotype 1b replicon containing a genotype 3a NS5A domain. The chimera was capable of efficient colony formation after the selection of a novel dominant adaptive mutation. Thus, domains from highly different strains can interact to form a functional replicase. A new genotype 1a replicon was constructed as well. Genotype specific influence on interferon sensitivity was examined using genotype 1a, 1b and chimeric 1b-3a replicons. The genotype 3a NS5A domain did not increase the sensitivity of the chimeric replicon to IFNalpha. The results suggest that NS5A is not sufficient to convey the increased IFNalpha response by genotype 3 or the replicon model is not capable of mimicking the events involved in increased sustained viral response.
Collapse
Affiliation(s)
- Robert E Lanford
- Department of Virology and Immunology, Southwest National Primate Research Center, Southwest Foundation for Biomedical Research, 7620 NW Loop 410, San Antonio, TX 78227, USA.
| | | | | |
Collapse
|