51
|
Candeias MM. The can and can’t dos of p53 RNA. Biochimie 2011; 93:1962-5. [DOI: 10.1016/j.biochi.2011.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/07/2011] [Indexed: 11/16/2022]
|
52
|
Wedeken L, Singh P, Klempnauer KH. Tumor suppressor protein Pdcd4 inhibits translation of p53 mRNA. J Biol Chem 2011; 286:42855-62. [PMID: 22033922 DOI: 10.1074/jbc.m111.269456] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The tumor suppressor protein Pdcd4 is thought to suppress translation of mRNAs containing structured 5'-UTRs by interacting with translation initiation factor eIF4A and inhibiting its helicase activity. However, natural target mRNAs regulated by Pdcd4 so far are mostly unknown. Here, we identified p53 mRNA as a translational target of Pdcd4. We found that Pdcd4 is associated with p53 mRNA and suppresses its translation. The inhibitory effect of Pdcd4 on the translation of p53 mRNA depends on the ability of Pdcd4 to interact with eIF4A and is mediated by the 5'-UTR of p53 mRNA, which is able to form a stable stem-loop structure. We show that treatment of cells with DNA-damaging agents decreases the expression of Pdcd4. This suggests that translational suppression by Pdcd4 plays a role in maintaining a low level of p53 in unstressed cells and that this suppression is abrogated due to low levels of Pdcd4 after DNA damage. Overall, our work demonstrates for the first time that Pdcd4 is directly involved in translational suppression of a natural mRNA with a 5'-structured UTR and provides novel insight into the translational control of p53 expression.
Collapse
Affiliation(s)
- Lena Wedeken
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, D-48149 Münster, Germany
| | | | | |
Collapse
|
53
|
Błaszczyk L, Ciesiołka J. Secondary structure and the role in translation initiation of the 5'-terminal region of p53 mRNA. Biochemistry 2011; 50:7080-92. [PMID: 21770379 DOI: 10.1021/bi200659b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The p53 protein is one of the major factors involved in cell cycle control, DNA repair, and induction of apoptosis. We determined the secondary structure of the 5'-terminal region of p53 mRNA that includes two major translation initiation codons AUG1 and AUG2, responsible for the synthesis of p53 and its N-truncated isoform ΔN-p53. It turned out that a part of the coding sequence was involved in the folding of the 5' untranslated region for p53. The most characteristic structural elements in the 5'-terminal region of p53 mRNA were two hairpin motifs. In one of them, the initiation codon AUG1 was embedded while the other hairpin has been earlier shown to bind the Mdm2 protein. Alternative mechanisms of p53 mRNA translation initiation were investigated in vitro using model mRNA templates. The results confirmed that initiation from AUG1 was mostly cap-dependent. The process was stimulated by a cap structure and strongly inhibited by a stable hairpin at the template 5' end. Upon inhibition, the remaining protein fraction was synthesized in a cap-independent process, which was strongly stimulated by the addition of a cap analogue. The translation initiation from AUG2 showed a largely cap-independent character. The 5' cap structure actually decreased initiation from this site which argues against a leaky scanning mechanism but might suggest the presence of an IRES. Moreover, blocking cap-dependent translation from AUG1 by the stable hairpin did not change the level of initiation from AUG2. Upon addition of the cap analogue, translation from this site was even increased.
Collapse
Affiliation(s)
- Leszek Błaszczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | | |
Collapse
|
54
|
Cooperative role of the RNA-binding proteins Hzf and HuR in p53 activation. Mol Cell Biol 2011; 31:1997-2009. [PMID: 21402775 DOI: 10.1128/mcb.01424-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The RNA-binding protein Hzf (hematopoietic zinc finger) plays important roles in mRNA translation in cerebellar Purkinje cells and adipocytes. We along with others have reported that the expression of the Hzf gene is transcriptionally regulated by the p53 tumor suppressor protein. We show here that Hzf regulates p53 expression in cooperation with HuR. Hzf and HuR independently interact with the 3' untranslated region (UTR) of p53 mRNA, which facilitates the cytoplasmic localization of p53 mRNA in the presence of the ARF tumor suppressor protein. In the absence of Hzf and HuR, p53 induction by p19(ARF) is significantly attenuated, and the cells consequently acquire resistance to p19(ARF). Thus, these findings demonstrate that in addition to Mdm2 inhibition, p19(ARF) increases the concentration of p53 through posttranscriptional control of p53 mRNA and suggest critical roles for the RNA-binding proteins Hzf and HuR in p53 induction.
Collapse
|
55
|
Abstract
The intricacies of p53 regulation just got more complex. While much is known about the transcriptional regulation of p53 target genes, Chen and Kastan (pp. 2146-2156) uncovered a new mechanism regarding the making of the p53 protein itself. In the October 1, 2010, issue of Genes & Development, they introduced us to a novel mechanism of p53 translational control, by which a 5'-3' cap-independent, poly(A)-independent, RNA-RNA interaction enhances p53 translation by binding the ribosomal protein RPL26 following DNA damage. Oligonucleotides designed against this 5'-3' untranslated region (UTR) duplex disrupted the binding of RPL26 to p53 mRNA and reduced p53 synthesis and, therefore, function. This study reveals an alternate mechanism of translational control to regulate p53 levels.
Collapse
Affiliation(s)
- Tamara Terzian
- Department of Dermatology/Stem Cell Biology, University of Colorado at Denver, Aurora, Colorado 80045, USA
| | | |
Collapse
|
56
|
Shlien A, Baskin B, Achatz MIW, Stavropoulos DJ, Nichols KE, Hudgins L, Morel CF, Adam MP, Zhukova N, Rotin L, Novokmet A, Druker H, Shago M, Ray PN, Hainaut P, Malkin D. A common molecular mechanism underlies two phenotypically distinct 17p13.1 microdeletion syndromes. Am J Hum Genet 2010; 87:631-42. [PMID: 21056402 DOI: 10.1016/j.ajhg.2010.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/24/2010] [Accepted: 10/12/2010] [Indexed: 12/16/2022] Open
Abstract
DNA copy-number variations (CNVs) underlie many neuropsychiatric conditions, but they have been less studied in cancer. We report the association of a 17p13.1 CNV, childhood-onset developmental delay (DD), and cancer. Through a screen of over 4000 patients with diverse diagnoses, we identified eight probands harboring microdeletions at TP53 (17p13.1). We used a purpose-built high-resolution array with 93.75% breakpoint accuracy to fine map these microdeletions. Four patients were found to have a common phenotype including DD, hypotonia, and hand and foot abnormalities, constituting a unique syndrome. Notably, these patients were not affected with cancer. Moreover, none of the TP53-deletion patients affected with cancer (n = 4) had neurocognitive impairments. DD patients have larger deletions, which encompass but do not disrupt TP53, whereas cancer-affected patients harbor CNVs with at least one breakpoint within TP53. Most 17p13.1 deletions arise by Alu-mediated nonallelic homologous recombination. Furthermore, we identify a critical genomic region associated with DD and containing six underexpressed genes. We conclude that, although they overlap, 17p13.1 CNVs are associated with distinct phenotypes depending on the position of the breakpoint with respect to TP53. Further, detailed characterization of breakpoints revealed a common formation signature. Future studies should consider whether other loci in the genome also give rise to phenotypically distinct disorders by means of a common mechanism, resulting in a similar formation signature.
Collapse
|
57
|
Lynch CJ, Shah ZH, Allison SJ, Ahmed SU, Ford J, Warnock LJ, Li H, Serrano M, Milner J. SIRT1 undergoes alternative splicing in a novel auto-regulatory loop with p53. PLoS One 2010; 5:e13502. [PMID: 20975832 PMCID: PMC2958826 DOI: 10.1371/journal.pone.0013502] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 07/25/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The NAD-dependent deacetylase SIRT1 is a nutrient-sensitive coordinator of stress-tolerance, multiple homeostatic processes and healthspan, while p53 is a stress-responsive transcription factor and our paramount tumour suppressor. Thus, SIRT1-mediated inhibition of p53 has been identified as a key node in the common biology of cancer, metabolism, development and ageing. However, precisely how SIRT1 integrates such diverse processes remains to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS Here we report that SIRT1 is alternatively spliced in mammals, generating a novel SIRT1 isoform: SIRT1-ΔExon8. We show that SIRT1-ΔExon8 is expressed widely throughout normal human and mouse tissues, suggesting evolutionary conservation and critical function. Further studies demonstrate that the SIRT1-ΔExon8 isoform retains minimal deacetylase activity and exhibits distinct stress sensitivity, RNA/protein stability, and protein-protein interactions compared to classical SIRT1-Full-Length (SIRT1-FL). We also identify an auto-regulatory loop whereby SIRT1-ΔExon8 can regulate p53, while in reciprocal p53 can influence SIRT1 splice variation. CONCLUSIONS/SIGNIFICANCE We characterize the first alternative isoform of SIRT1 and demonstrate its evolutionary conservation in mammalian tissues. The results also reveal a new level of inter-dependency between p53 and SIRT1, two master regulators of multiple phenomena. Thus, previously-attributed SIRT1 functions may in fact be distributed between SIRT1 isoforms, with important implications for SIRT1 functional studies and the current search for SIRT1-activating therapeutics to combat age-related decline.
Collapse
Affiliation(s)
- Cian J. Lynch
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
- * E-mail: (CJL); (JM)
| | - Zahid H. Shah
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Simon J. Allison
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Shafiq U. Ahmed
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Jack Ford
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Lorna J. Warnock
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Han Li
- Tumour Suppression Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Manuel Serrano
- Tumour Suppression Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jo Milner
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
- * E-mail: (CJL); (JM)
| |
Collapse
|
58
|
p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proc Natl Acad Sci U S A 2010; 107:18511-6. [PMID: 20937856 DOI: 10.1073/pnas.1006124107] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The p53 tumor suppressor is mutated in a high percentage of human tumors. However, many other tumors retain wild-type (wt) p53 expression, raising the intriguing possibility that they actually benefit from it. Recent studies imply a role for p53 in regulation of autophagy, a catabolic pathway by which eukaryotic cells degrade and recycle macromolecules and organelles, particularly under conditions of nutrient deprivation. Here, we show that, in many cell types, p53 confers increased survival in the face of chronic starvation. We implicate regulation of autophagy in this effect. In HCT116 human colorectal cancer cells exposed to prolonged nutrient deprivation, the endogenous wt p53 posttranscriptionally down-regulates LC3, a pivotal component of the autophagic machinery. This enables reduced, yet sustainable autophagic flux. Loss of p53 impairs autophagic flux and causes excessive LC3 accumulation upon starvation, culminating in apoptosis. Thus, p53 increases cell fitness by maintaining better autophagic homeostasis, adjusting the rate of autophagy to changing circumstances. We propose that some cancer cells retain wt p53 to benefit from the resultant increased fitness under limited nutrient supply.
Collapse
|
59
|
Chen J, Kastan MB. 5'-3'-UTR interactions regulate p53 mRNA translation and provide a target for modulating p53 induction after DNA damage. Genes Dev 2010; 24:2146-56. [PMID: 20837656 PMCID: PMC2947767 DOI: 10.1101/gad.1968910] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 08/12/2010] [Indexed: 12/24/2022]
Abstract
Optimal induction of p53 protein after DNA damage requires RPL26-mediated increases in p53 mRNA translation. We report here the existence of a dsRNA region containing complementary sequences of the 5'- and 3'-untranslated regions (UTRs) of human p53 mRNA that is critical for its translational regulation by RPL26. Mutating as few as 3 bases in either of the two complementary UTR sequences abrogates the ability of RPL26 to bind to p53 mRNA and stimulate p53 translation, while compensatory mutations restore this binding and regulation. Short, single-strand oligonucleotides that target this 5'-3'-UTR base-pairing region blunt the binding of RPL26 to p53 mRNA in cells and reduce p53 induction and p53-mediated cell death after several different types of DNA damage and cellular stress. The ability to reduce stress induction of p53 with oligonucleotides or other small molecules has numerous potential therapeutic uses.
Collapse
Affiliation(s)
- Jing Chen
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Michael B. Kastan
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
60
|
Zhao X, Liu M, Wu N, Ding L, Liu H, Lin X. Recovery of recombinant zebrafish p53 protein from inclusion bodies and its binding activity to p53 mRNA in vitro. Protein Expr Purif 2010; 72:262-6. [DOI: 10.1016/j.pep.2010.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/21/2010] [Accepted: 03/29/2010] [Indexed: 11/16/2022]
|
61
|
Montanaro L, Calienni M, Bertoni S, Rocchi L, Sansone P, Storci G, Santini D, Ceccarelli C, Taffurelli M, Carnicelli D, Brigotti M, Bonafè M, Treré D, Derenzini M. Novel dyskerin-mediated mechanism of p53 inactivation through defective mRNA translation. Cancer Res 2010; 70:4767-77. [PMID: 20501855 DOI: 10.1158/0008-5472.can-09-4024] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In up to 60% of human cancers, p53 gene mutations are responsible for direct inactivation of the tumor suppressor function of p53. Alternative mechanisms of p53 inactivation described thus far mainly affect its posttranslational regulation. In X-linked dyskeratosis congenita, a multisystemic syndrome characterized by increased cancer susceptibility, mutations of the DKC1 gene encoding dyskerin cause a selective defect in the translation of a subgroup of internal ribosome entry site (IRES)-containing cellular mRNAs. In this study, we show that impairment of dyskerin function can cause p53 inactivation due to a defect in p53 mRNA translation. siRNA-mediated reduction of dyskerin levels caused a decrease of p53 mRNA translation, protein levels, and functional activity, both in human breast cancer cells and in primary mammary epithelial progenitor cells. These effects seemed to be independent of the known role of dyskerin in telomerase function, and they were associated with a specific impairment of translation initiation mediated by IRES elements present in p53 mRNA. In a series of human primary breast cancers retaining wild-type p53, we found that low levels of dyskerin expression were associated with reduced expression of p53-positive target genes. Our findings suggest that a dyskerin-mediated mechanism of p53 inactivation may occur in a subset of human tumors.
Collapse
Affiliation(s)
- Lorenzo Montanaro
- Dipartimento di Patologia Sperimentale, Università di Bologna, via San Giacomo 14, 40126 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Kobayashi T, Ishida J, Musashi M, Ota S, Yoshida T, Shimizu Y, Chuma M, Kawakami H, Asaka M, Tanaka J, Imamura M, Kobayashi M, Itoh H, Edamatsu H, Sutherland LC, Brachmann RK. p53 transactivation is involved in the antiproliferative activity of the putative tumor suppressor RBM5. Int J Cancer 2010; 128:304-18. [PMID: 20309933 DOI: 10.1002/ijc.25345] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 03/09/2010] [Indexed: 12/12/2022]
Abstract
RBM5 (RNA-binding motif protein 5) is a nuclear RNA binding protein containing 2 RNA recognition motifs. The RBM5 gene is located at the tumor suppressor locus 3p21.3. Deletion of this locus is the most frequent genetic alteration in lung cancer, but is also found in other human cancers. RBM5 is known to induce apoptosis and cell cycle arrest but the molecular mechanisms of RBM5 function are poorly understood. Here, we show that RBM5 is important for the activity of the tumor suppressor protein p53. Overexpression of RBM5 enhanced p53-mediated inhibition of cell growth and colony formation. Expression of RBM5 augmented p53 transcriptional activity in reporter gene assays and resulted in increased mRNA and protein levels for endogenous p53 target genes. In contrast, shRNA-mediated knockdown of endogenous RBM5 led to decreased p53 transcriptional activity and reduced levels of mRNA and protein for endogenous p53 target genes. RBM5 affected protein, but not mRNA, levels of endogenous p53 after DNA damage suggest that RBM5 contributes to p53 activity through post-transcriptional mechanisms. Our results show that RBM5 contributes to p53 transcriptional activity after DNA damage and that growth suppression and apoptosis mediated by RBM5 are linked to activity of the tumor suppressor protein p53.
Collapse
|
63
|
Vilborg A, Wilhelm MT, Wiman KG. Regulation of tumor suppressor p53 at the RNA level. J Mol Med (Berl) 2010; 88:645-52. [PMID: 20306257 DOI: 10.1007/s00109-010-0609-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 01/07/2023]
Abstract
p53 is a key tumor suppressor that triggers cell cycle arrest, senescence, or apoptosis in response to cellular stress. Frequent p53 mutation in human tumors allows survival, sustained growth, and tumor progression. p53 is expressed at low levels under normal conditions, due to rapid protein turnover. Stress signaling induces p53 protein stabilization through phosphorylation and other post-translational modifications. However, recent studies have demonstrated critical regulation of p53 at the mRNA level, mediated via both the 5'UTR and the 3'UTR and affecting both the stability and the translation efficiency of the p53 mRNA. Both proteins and microRNAs have been implicated in such regulation. The p53 target gene Wig-1 encodes a zinc finger protein that binds to double-stranded RNA and enhances p53 mRNA stability by binding to the 3'UTR in a positive feedback loop. Here, we shall summarize current knowledge about regulation of the p53 mRNA and discuss possible implications for cancer therapy.
Collapse
Affiliation(s)
- Anna Vilborg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
64
|
Hollstein M, Hainaut P. Massively regulated genes: the example of TP53. J Pathol 2010; 220:164-73. [PMID: 19918835 DOI: 10.1002/path.2637] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Intensive study of the TP53 gene over the last three decades has revealed a highly complex network of factors that regulate its performance. The gene has several promoters, alternative splicing occurs and there are alternative translation initiation sites. Up to 10 p53 isoforms have been identified. At the post-translational level, p53 activity depends on its quantity in the cell and on qualitative changes in its structure, intracellular localization, DNA-binding activity and interactions with other proteins. Both accumulation and activation are regulated by an intricate pattern of post-translational modifications, including phosphorylation, acetylation, ubiquitination, sumoylation, neddylation, methylation and glycosylation. The Mdm2 protein, a negative regulator of p53, is the most important determinant of p53 abundance and subcellular localization. Enzymes that post-translationally modify p53 by phosphorylation, methylation and acetylation fine-tune p53 binding to recognition sequences in DNA and p53 interactions with transcription cofactors at promoters of target genes, thereby exerting a discriminatory role in p53 function. This multitude of parameters determining expression, modification, accumulation and localization of p53 proteins may explain how a single gene can display an extensive repertoire of activities. Presumably this is needed, because the p53 protein can have such profound consequences for a cell.
Collapse
|
65
|
Abstract
The p53 tumour suppressor is modified through mutation or changes in expression in most cancers, leading to the altered regulation of hundreds of genes that are directly influenced by this sequence-specific transcription factor. Central to the p53 master regulatory network are the target response element (RE) sequences. The extent of p53 transactivation and transcriptional repression is influenced by many factors, including p53 levels, cofactors and the specific RE sequences, all of which contribute to the role that p53 has in the aetiology of cancer. This Review describes the identification and functionality of REs and highlights the inclusion of non-canonical REs that expand the universe of genes and regulation mechanisms in the p53 tumour suppressor network.
Collapse
Affiliation(s)
- Daniel Menendez
- Laboratory of Molecular Genetics, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
66
|
Lee KH, Lee NJ, Hyun S, Park YK, Yang EG, Lee JK, Jeong S, Yu J. Histone H3 N-terminal peptide binds directly to its own mRNA: a possible mode of feedback inhibition to control translation. Chembiochem 2009; 10:1313-6. [PMID: 19405068 DOI: 10.1002/cbic.200900154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Give me some feedback: In vitro selection of aptamers against the H3 peptide provided specific hairpin RNAs that possess high homology with histone H3 mRNA. The identified H3 hairpin RNA binds specifically to the H3 peptide with micromolar affinity and dose-dependently inhibits in vitro translation of the H3 protein. Consequently, the hairpin RNA and H3 peptide are one of the rare cis- and trans-elements on coding regions found among housekeeping proteins in higher eukaryotes.
Collapse
Affiliation(s)
- Kyung Hyun Lee
- Department of Chemistry and Biology Education, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Sharma DR, Sunkaria A, Bal A, Bhutia YD, Vijayaraghavan R, Flora SJS, Gill KD. Neurobehavioral impairments, generation of oxidative stress and release of pro-apoptotic factors after chronic exposure to sulphur mustard in mouse brain. Toxicol Appl Pharmacol 2009; 240:208-18. [PMID: 19560481 DOI: 10.1016/j.taap.2009.06.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 11/17/2022]
Abstract
Recent global events have focused attention on the potential threat of international and domestic chemical terrorism, as well as the possibility of chemical warfare proliferation. Sulphur mustard (SM) is one of the potent chemical warfare agents (CWA), which initiates a cascade of events that converge on the redox mechanisms common to brain injury. The present study was designed to examine the effects of chronic SM exposure on neurobehavioral impairments, mitochondrial oxidative stress in male Swiss Albino mice and its role in inducing apoptotic neuronal cell death. The animals were divided into four groups (control, low, medium and high dose) of 5 animals each. Exposure to SM was given percutaneously daily for 12 weeks. The results demonstrated impairment in neurobehavioral indices viz. rota rod, passive avoidance and water maze tests in a dose dependent manner. There was a significant increase in lipid peroxidation and protein carbonyl content whereas, decrease in the activity of manganese superoxide dismutase (MnSOD), glutathione reductase and glutathione peroxidase suggesting impaired antioxidant defense system. Immunoblotting of cytochrome c, Bcl-2, Bax and activation of caspase-3 suggest induction of apoptosis in a dose dependent manner. Finally, increased p53 expression suggests that it may target the mitochondrial pathway for inducing apoptosis in response to DNA damage signals. In conclusion, chronic SM exposure may have the potential to generate oxidative stress which may trigger the release of cytochrome c as well as caspase-3 activation in neurons leading to cell death by apoptosis in a dose dependent manner which may in the end be responsible for the disruption of cognitive functions in mice.
Collapse
Affiliation(s)
- Deep Raj Sharma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | | | | | | | | | | | | |
Collapse
|
68
|
Grover R, Candeias MM, Fåhraeus R, Das S. p53 and little brother p53/47: linking IRES activities with protein functions. Oncogene 2009; 28:2766-72. [DOI: 10.1038/onc.2009.138] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
69
|
Tong X, Pelling JC. Enhancement of p53 expression in keratinocytes by the bioflavonoid apigenin is associated with RNA-binding protein HuR. Mol Carcinog 2009; 48:118-29. [PMID: 18680106 DOI: 10.1002/mc.20460] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have reported previously that apigenin, a naturally occurring nonmutagenic flavonoid, increased wild-type p53 protein expression in the mouse keratinocyte 308 cell line by a mechanism involving p53 protein stabilization. Here we further demonstrated that the increase in p53 protein level induced by apigenin treatment of 308 keratinoyctes was not the result of enhanced transcription, mRNA stabilization or cytoplasmic export of p53 mRNA. Instead, biosynthetic labeling showed that apigenin increased nascent p53 protein synthesis by enhancing p53 translation. The AU-rich element (ARE) within the 3'-untranslated region (UTR) of p53 mRNA was found to be responsible for apigenin's ability to increase p53 translation, as demonstrated in studies wherein the 3'-UTR of p53 mRNA containing the ARE was fused downstream of a luciferase reporter gene. Furthermore, apigenin treatment increased the level of association of the RNA binding protein HuR with endogenous p53 mRNA. Apigenin treatment also augmented HuR translocation into the cytoplasm. Overexpression of HuR enhanced apigenin-induced p53 protein expression in 308 keratinocytes, whereas siRNA-mediated HuR reduction suppressed apigenin-induced p53 protein expression and de novo translation of p53. Moreover, apigenin treatment of cells induced p16 protein expression, which in turn was correlated with cytoplasmic localization of HuR induced by apigenin. Overall, these findings indicate that, in addition to modulating p53 protein stability, one of the mechanisms by which apigenin induces p53 protein expression is enhancement of translation through the RNA binding protein HuR.
Collapse
Affiliation(s)
- Xin Tong
- Department of Pathology and the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
70
|
Imbeault M, Ouellet M, Tremblay MJ. Microarray study reveals that HIV-1 induces rapid type-I interferon-dependent p53 mRNA up-regulation in human primary CD4+ T cells. Retrovirology 2009; 6:5. [PMID: 19146679 PMCID: PMC2637825 DOI: 10.1186/1742-4690-6-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 01/15/2009] [Indexed: 11/10/2022] Open
Abstract
Background Infection with HIV-1 has been shown to alter expression of a large array of host cell genes. However, previous studies aimed at investigating the putative HIV-1-induced modulation of host gene expression have been mostly performed in established human cell lines. To better approximate natural conditions, we monitored gene expression changes in a cell population highly enriched in human primary CD4+ T lymphocytes exposed to HIV-1 using commercial oligonucleotide microarrays from Affymetrix. Results We report here that HIV-1 influences expression of genes related to many important biological processes such as DNA repair, cellular cycle, RNA metabolism and apoptosis. Notably, expression of the p53 tumor suppressor and genes involved in p53 homeostasis such as GADD34 were up-regulated by HIV-1 at the mRNA level. This observation is distinct from the previously reported p53 phosphorylation and stabilization at the protein level, which precedes HIV-1-induced apoptosis. We present evidence that the HIV-1-mediated increase in p53 gene expression is associated with virus-mediated induction of type-I interferon (i.e. IFN-α and IFN-β). Conclusion These observations have important implications for our understanding of HIV-1 pathogenesis, particularly in respect to the virus-induced depletion of CD4+ T cells.
Collapse
Affiliation(s)
- Michaël Imbeault
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, and Faculté de Médecine, Université Laval, Québec, Canada.
| | | | | |
Collapse
|
71
|
Schmid G, Kramer MP, Maurer M, Wandl S, Wesierska-Gadek J. Cellular and organismal ageing: Role of the p53 tumor suppressor protein in the induction of transient and terminal senescence. J Cell Biochem 2008; 101:1355-69. [PMID: 17471501 DOI: 10.1002/jcb.21383] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, an impact of the p53 tumor suppressor protein in the processes of cellular and organismal ageing became evident. First hints were found in model organisms like Saccharomyces cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster where a clear connection between ageing phenotypes and pathways that are regulated by p53, were found. Interestingly, pathways that are central to the ageing process are usually also involved in energy metabolism and are highly conserved throughout evolution. This also supports the long known empiric finding that caloric restriction has a positive impact on the life span of a wide variety of organisms. Within the last years, on the molecular level, an involvement of the insulin-like growth factor and of the histone deacetylase SRIT1 could be shown. Insight on the impact of p53 on ageing at the organismal level came from mice expressing aberrant forms of the p53 protein. Obviously, the balance of the full length p53 protein and of the shorter p44/DeltaNp53 isomer bear a strong impact on ageing. The shorter isoform regulates full length p53 and in cases where there is too much of the longer isoform, this leads to elevated apoptosis resulting in decreased tumor incidence but also in premature ageing due to exhaustion of the renewal potential. Therefore, modulating the expression of the truncated p53 isoform accordingly, might lead to increased health-span and elevated life-span.
Collapse
Affiliation(s)
- Gerald Schmid
- Cell Cycle Regulation Group, Department of Medicine I, Division: Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
72
|
Abstract
The p53 tumor suppressor protein is typically considered to be a sequence-specific DNA-binding transcription factor. However, reports over the last 15 years have described RNA binding by p53 in a variety of contexts, suggesting the possibility of new p53 functions. It is clear that p53-RNA interactions are mediated by a nucleic acid-binding domain of p53 independent of the sequence-specific core domain responsible for DNA recognition. Reports disagree on several aspects of the putative RNA interaction, including sequence specificity and biological relevance. Here we review the history and recent advances in the study of p53-RNA interactions. We argue that p53-RNA interactions are sequence nonspecific and depend on incomplete post-translational modification of the p53 C-terminal domain when the protein is expressed in heterologous systems. It is unknown what fraction of p53 protein exists in a state competent for RNA binding in vivo. Thus, potential physiological roles of p53-RNA interactions remain mysterious.
Collapse
Affiliation(s)
- Kasandra J-L Riley
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
73
|
Graber TE, Holcik M. Cap-independent regulation of gene expression in apoptosis. MOLECULAR BIOSYSTEMS 2007; 3:825-34. [PMID: 18000559 DOI: 10.1039/b708867a] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Expression of the proteome is tightly regulated at the level of protein synthesis. Translational control is a critical homeostatic mechanism that allows the cell to rapidly change its phenotype in the face of an intra- and extra-cellular environment in constant flux. It is becoming increasingly clear that when it comes to protein translation during cell stress, all mRNAs are not treated equally. The translation of the majority of mRNAs is compromised during cell stresses that induce programmed cell death such as hypoxia, or DNA damage. However, cellular messages harbouring Internal Ribosome Entry Site elements (IRES) within their 5' untranslated regions are insensitive to stress-induced repression of global translation. Instead, these IRES-containing mRNAs use a poorly understood alternative mechanism of translation that allows continued expression of proteins that are required for the cell to recover from a transient stress or to proceed down the path toward apoptotic death. This review will highlight recent literature that suggests why global translation rates are impaired during stress and apoptosis and how these conditions mediate a switch in the mechanism by which pertinent proteins are synthesized. In addition, recent advances towards our understanding of the physiological role and mechanism of IRES-mediated translation in the context of cell stress-induced apoptosis and human disease will be examined.
Collapse
Affiliation(s)
- Tyson E Graber
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Room 3116, 401 Smyth Road, Ottawa, Ontario, Canada K1H 8L1
| | | |
Collapse
|
74
|
Ju J, Schmitz JC, Song B, Kudo K, Chu E. Regulation of p53 expression in response to 5-fluorouracil in human cancer RKO cells. Clin Cancer Res 2007; 13:4245-51. [PMID: 17634554 DOI: 10.1158/1078-0432.ccr-06-2890] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE The purpose of the study is to investigate the regulation of p53 expression in response to 5-fluorouracil (5-FU) in human colon cancer cells. EXPERIMENTAL DESIGN Human colon cancer RKO cells were used as our model system. The levels of p53 expression and p53 protein stability in response to 5-FU and doxorubicin were investigated. In addition, the acetylation and phosphorylation status of p53 after 5-FU and doxorubicin treatment was analyzed by Western immunoblot analysis. RESULTS Treatment of human colon cancer RKO cells with 10 micromol/L 5-FU resulted in significantly increased levels of p53 protein with maximal induction observed at 24 h. The level of acetylated p53 after 5-FU exposure remained unchanged, whereas the phosphorylated form of p53 was expressed only after 24 h drug treatment. Northern blot analysis revealed no change in p53 mRNA levels after 5-FU treatment. No differences were observed in the half-life of p53 protein in control and 5-FU-treated cells, suggesting that the increase in p53 was the direct result of newly synthesized protein. In contrast, the maximal induction of p53, in response to doxorubicin, occurred at an earlier time point (4 h) when compared with cells treated with 5-FU (24 h). No corresponding change in p53 mRNA was observed. Levels of both the acetylated and phosphorylated forms of p53 were markedly increased upon doxorubicin exposure when compared with treatment with 5-FU, resulting in a significantly prolonged half-life of p53 (120 versus 20 min). CONCLUSION These results, taken together, suggest that the regulatory mechanisms controlling p53 expression, in response to a cellular stress, are complex and are dependent upon the specific genotoxic agent. With regard to 5-FU, we show that translational regulation is an important process for controlling p53 expression. Studies are under way to define the specific mechanism(s) that control 5-FU-mediated translational regulation of p53.
Collapse
Affiliation(s)
- Jingfang Ju
- Cancer Genomics Laboratory, Mitchell Cancer Institute-USA, Mobile, Alabama 36688, USA.
| | | | | | | | | |
Collapse
|
75
|
Riley KJL, James Maher L. Analysis of p53-RNA interactions in cultured human cells. Biochem Biophys Res Commun 2007; 363:381-7. [PMID: 17869221 PMCID: PMC2211410 DOI: 10.1016/j.bbrc.2007.08.181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 08/29/2007] [Indexed: 11/28/2022]
Abstract
Tumor suppressor p53 is a well-characterized transcription factor that binds DNA. More enigmatic are the RNA-binding properties of p53 and their physiological relevance. We used three sensitive co-immunoprecipitation methods in an attempt to detect RNAs that tightly associate with p53 in cultured human cells. Although recombinant p53 protein binds RNA in a sequence-nonspecific mode, we do not detect specific in vivo RNA binding by p53. These results suggest that RNA binding is prevented by post-translational p53 modifications. A ribonucleoprotein (not p53) is purified by multiple IgG monoclonal antibodies (including anti-p53 antibodies) from both p53 +/+ and p53 null cells. Caution is therefore required in interpreting RNA co-immunoprecipitation experiments. Though not formally excluded, these results do not support models in which p53 binds specific RNA partners in vivo.
Collapse
Affiliation(s)
- Kasandra J-L Riley
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
76
|
Batta K, Kundu TK. Activation of p53 function by human transcriptional coactivator PC4: role of protein-protein interaction, DNA bending, and posttranslational modifications. Mol Cell Biol 2007; 27:7603-14. [PMID: 17785449 PMCID: PMC2169069 DOI: 10.1128/mcb.01064-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tumor suppressor p53 controls cell cycle checkpoints and apoptosis via the transactivation of several genes that are involved in these processes. The functions of p53 are regulated by a wide variety of proteins, which interact with it either directly or indirectly. The multifunctional human transcriptional coactivator PC4 interacts with p53 in vivo and in vitro and regulates its function. Here we report the molecular mechanisms of the PC4-mediated activation of p53 function. PC4 interacts with the DNA binding and C-terminal domains of p53 through its DNA binding domain, which is essential for the stimulation of p53 DNA binding. Remarkably, ligation-mediated circularization assays reveal that PC4 induces significant bending in the DNA double helix. Deletion mutants defective in DNA bending are found to be impaired in activating p53-mediated DNA binding and apoptosis. Furthermore, acetylation of PC4 enhances, while phosphorylation abolishes, its ability to bend DNA, activate p53 DNA binding, and, thereby, regulate p53 functions. In conclusion, PC4 activates p53 recruitment to p53-responsive promoters (Bax and p21) in vivo through its interaction with p53 and by providing bent substrate for p53 recruitment. These results elucidate the general molecular mechanisms of activation of p53 function, mediated by its coactivators.
Collapse
Affiliation(s)
- Kiran Batta
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, P.O. Bangalore-560064, India
| | | |
Collapse
|
77
|
Bakhanashvili M, Gedelovich R, Grinberg S, Rahav G. Exonucleolytic degradation of RNA by p53 protein in cytoplasm. J Mol Med (Berl) 2007; 86:75-88. [PMID: 17701148 DOI: 10.1007/s00109-007-0247-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 07/04/2007] [Accepted: 07/09/2007] [Indexed: 12/28/2022]
Abstract
p53 in cytoplasm displays an intrinsic 3'-->5' exonuclease activity. To understand the significance of p53 exonuclease activity in cytoplasm, cytoplasmic extracts of various cell lines were examined for exonuclease activity with different single-stranded RNA (ssRNA) substrates. Using an in vitro RNA degradation assay, we observed in cytoplasmic extracts of LCC2 cells, expressing high levels of endogenous wtp53, an efficient 3'-->5' exonuclease activity with RNA substrates, removing the 3'-terminal nucleotides. Interestingly, RNA containing AU-rich sequences (ARE) is the permissive substrate for exonucleolytic degradation. Evidence that exonuclease function with RNA detected in cytoplasmic extracts is attributed to the p53 is supported by several facts: (1) this activity closely parallels with status and levels of endogenous cytoplasmic p53; (2) the endogenous exonuclease exerts identical RNA substrate specificity and excision profile characteristic for purified baculovirus-or bacterially-expressed wtp53s; (3) the exonuclease activity with ARE RNA is competed out by the presence of ss or double-stranded DNA substrate utilized by p53 protein in cytoplasm; (4) immunoprecipitation by specific anti-p53 antibodies markedly reduced the exonuclease activity with both RNA and DNA substrates; and (5) transfection of the wtp53, but not exonuclease-deficient mutant p53-R175H, into p53-null H1299 or HCT116 cells induced high levels of exonuclease activity with ARE RNA substrate in cytoplasm with characteristic excision profile. The efficient ARE RNA degradation correlates with the efficient binding of p53 to ARE RNA in cytoplasm. The possible role of p53 exonuclease activity in ARE-mRNA destabilization in cytoplasm, which may be important for expression of proteins that control cell growth and/or apoptosis is discussed.
Collapse
|
78
|
Olsson A, Manzl C, Strasser A, Villunger A. How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ 2007; 14:1561-75. [PMID: 17627286 DOI: 10.1038/sj.cdd.4402196] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A number of elegant studies exploring the consequences of expression of various mutant forms of p53 in mice have been published over the last years. The results and conclusions drawn from these studies often contradict results previously obtained in biochemical assays and cell biology studies, questioning their relevance for p53 function in vivo. Owing to the multitude of post-translational modifications imposed on p53, however, the in vivo validation of their relevance for proper protein function and tumour suppression is constantly lagging behind new biochemical discoveries. Nevertheless, mouse genetics presents again its enormous power. Despite being relatively slow and tedious, it has become indispensable for researchers to sort out the wheat from the chaff in an endless sea of publications on p53.
Collapse
Affiliation(s)
- A Olsson
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | |
Collapse
|
79
|
Hailfinger S, Jaworski M, Marx-Stoelting P, Wanke I, Schwarz M. Regulation of P53 stability in p53 mutated human and mouse hepatoma cells. Int J Cancer 2007; 120:1459-64. [PMID: 17205518 DOI: 10.1002/ijc.22519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The tumor suppressor p53 is frequently mutated in cancer. We have investigated the regulation of P53 in p53 wild type mouse hepatoma cells (line 55.1c), in p53 heterozygeously mutated cells (56.1b) and in p53 defective cells (lines 56.1d, 70.4 and HUH7) under various experimental settings. The basal levels of P53 were low in 55.1c cells, but nuclear accumulation occurred upon UV-irradiation. Similarly, UV-exposure induced stabilization of P53 in the heterozygeously p53 mutated 56.1b hepatoma cells. By contrast, the 3 hepatoma lines, which lack transcriptionally active P53, demonstrated high basal nuclear concentrations of P53 protein and, unexpectedly, showed loss of P53 upon UV-irradiation. Expression of p53 mRNA was also decreased in p53 defective cells after 24 hr post UV-irradiation, which may be linked to induction of apoptosis of the irradiated cells under these conditions. Other stressors like H2O2 also mediated a decrease in P53 concentration in p53 defective cells. This effect occurred at very low concentrations and was already detectable 1-2 hr after exposure of cells. There were no signs of apoptosis of H2O2-exposed cells at this time point and no significant changes in p53 mRNA or MDM2 level. These unexpected findings indicate a new aspect related to regulation of P53 stability in cells with a defect in the tumor suppressor protein.
Collapse
Affiliation(s)
- Stephan Hailfinger
- Department of Toxicology, Institute of Pharmacology and Toxicology, University of Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|
80
|
Halaby MJ, Yang DQ. p53 translational control: a new facet of p53 regulation and its implication for tumorigenesis and cancer therapeutics. Gene 2007; 395:1-7. [PMID: 17395405 DOI: 10.1016/j.gene.2007.01.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 01/26/2007] [Accepted: 01/26/2007] [Indexed: 01/09/2023]
Abstract
While posttranslational regulation of p53 levels by its interaction with the ubiquitin ligase MDM2 is widely accepted, it has recently become clear that regulation of p53 translation also contributes to p53 induction following DNA damage. However, the mechanisms underlying the translational control of p53 are still poorly understood. In this review, we will focus on the translational regulation of p53 through the 5'- and 3'-untranslated regions of its mRNA. We will also discuss in detail the recent discovery of the p53 internal ribosome entry site (IRES), its role in p53 translation in response to DNA damage, and how it might lead to a better understanding of the process of oncogenesis and provide new avenues for cancer therapeutics.
Collapse
Affiliation(s)
- Marie-Jo Halaby
- Sanford School of Medicine, The University of South Dakota, Division of Basic Biomedical Sciences, 414 East Clark Street, Lee Medicine Building, Vermillion, South Dakota 57069, USA
| | | |
Collapse
|
81
|
Abstract
The tumor suppressor protein p53 is mutated in over half of human cancers. Despite 25 years of study, the complex regulation of this protein remains unclear. After serendipitously detecting RNA binding by p53 in the yeast three-hybrid system (Y3H), we are exploring the specificity and function of this interaction. Electrophoretic mobility shift assays show that full-length p53 binds equally to RNAs that are strongly distinguished in the Y3H. RNA binding blocks sequence-specific DNA binding by p53. The C-terminus of p53 is necessary and sufficient for strong RNA interaction in vitro. Mouse and human C-terminal p53 peptides have different affinities for RNA, and an acetylated human p53 C-terminal peptide does not bind RNA. Circular dichroism spectroscopy of p53 peptides shows that RNA binding does not induce a structural change in the p53 C-terminal peptide, and C-terminal peptides do not detectably affect the structure of RNA. These results demonstrate that p53 binds RNA with little sequence specificity, RNA binding has the potential to regulate DNA binding, and RNA-p53 interactions can be regulated by acetylation of the p53 C-terminus.
Collapse
Affiliation(s)
- Kasandra J-L Riley
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
82
|
Xi Y, Formentini A, Chien M, Weir DB, Russo JJ, Ju J, Kornmann M, Ju J. Prognostic Values of microRNAs in Colorectal Cancer. Biomark Insights 2007; 2:113-121. [PMID: 18079988 PMCID: PMC2134920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The functions of non-coding microRNAs (miRNAs) in tumorigenesis are just beginning to emerge. Previous studies from our laboratory have identified a number of miRNAs that were deregulated in colon cancer cell lines due to the deletion of the p53 tumor suppressor gene. In this study, the in vivo significance of some of these miRNAs was further evaluated using colorectal clinical samples. Ten miRNAs (hsa-let-7b, hsa-let-7g, hsa-miR-15b, hsa-miR-181b, hsa-miR-191, hsa-miR-200c, hsa-miR-26a, hsa-miR-27a, hsa-miR-30a-5p and hsa-miR-30c) were evaluated for their potential prognostic value in colorectal cancer patients. Forty eight snap frozen clinical colorectal samples (24 colorectal cancer and 24 paired normal patient samples) with detailed clinical follow-up information were selected. The expression levels of 10 miRNAs were quantified via qRT-PCR analysis. The statistical significance of these markers for disease prognosis was evaluated using a two tailed paired Wilcoxon test. A Kaplan-Meier survival curve was generated followed by performing a Logrank test. Among the ten miRNAs, hsa-miR-15b (p = 0.0278), hsa-miR-181b (p = 0.0002), hsa-miR-191 (p = 0.0264) and hsa-miR-200c (p = 0.0017) were significantly over-expressed in tumors compared to normal colorectal samples. Kaplan-Meier survival analysis indicated that hsa-miR-200c was significantly associated with patient survival (p = 0.0122). The patients (n = 15) with higher hsa-miR-200c expression had a shorter survival time (median survival = 26 months) compared to patients (n = 9) with lower expression (median survival = 38 months). Sequencing analysis revealed that hsa-miR-181b (p = 0.0098) and hsa-miR-200c (p = 0.0322) expression were strongly associated with the mutation status of the p53 tumor suppressor gene. Some of these miRNAs may function as oncogenes due to their over-expression in tumors. hsa-miR-200c may be a potential novel prognostic factor in colorectal cancer.
Collapse
Affiliation(s)
- Yaguang Xi
- The Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688
| | - Andrea Formentini
- Department of Visceral and Transplantation Surgery, University of Ulm, Steinhoevelstrasse 9, 89075 Ulm, Germany
| | - Minchen Chien
- Columbia Genome Center, Columbia University, New York, NY, 10032
| | - David B. Weir
- Columbia Genome Center, Columbia University, New York, NY, 10032
| | - James J. Russo
- Columbia Genome Center, Columbia University, New York, NY, 10032
| | - Jingyue Ju
- Columbia Genome Center, Columbia University, New York, NY, 10032
| | - Marko Kornmann
- Department of Visceral and Transplantation Surgery, University of Ulm, Steinhoevelstrasse 9, 89075 Ulm, Germany
| | - Jingfang Ju
- The Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688,Correspondence: Jingfang Ju, Ph.D., Cancer Genomics Laboratory, Mitchell Cancer Institute, University of South Alabama Mobile, AL 36688. Tel: (251) 460-7393; Fax: (251) 460-6994;
| |
Collapse
|
83
|
Boggs K, Reisman D. C/EBPbeta participates in regulating transcription of the p53 gene in response to mitogen stimulation. J Biol Chem 2007; 282:7982-90. [PMID: 17244625 DOI: 10.1074/jbc.m611675200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The tightly regulated expression of p53 contributes to genomic stability, and transcription of the p53 gene is induced prior to cells entering S phase, possibly as a mechanism to ensure a rapid p53 response in the event of DNA damage. We have previously described the cloning of an additional 1000 bp of upstream p53 sequences that we have demonstrated play a role in the regulated expression of p53. As described in an earlier report, we preliminarily identified that a member of the CAAT/enhancer-binding protein (C/EPB) family of transcription factors may play a role in regulating p53. Here we have demonstrated that a particular C/EBPbeta isoform, C/EBPbeta-2, efficiently binds to the p53 promoter and induces its expression in a fashion that reflects the pattern of p53 expression seen as cells are induced to enter S phase and is absent from cells that are defective in proper p53 regulation. We conclude from these findings that C/EBPbeta-2 plays a central role in the regulating of p53 transcription during the transition into S phase.
Collapse
Affiliation(s)
- Kristy Boggs
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| | | |
Collapse
|
84
|
Alsbeih G, Torres M, Al-Harbi N, Al-Buhairi M. Evidence that Individual Variations in TP53 and CDKN1A Protein Responsiveness are Related to Inherent Radiation Sensitivity. Radiat Res 2007; 167:58-65. [PMID: 17214516 DOI: 10.1667/rr0669.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 07/14/2006] [Indexed: 11/03/2022]
Abstract
We tested the hypothesis that individual variations in the induction of the TP53 tumor suppressor protein by radiation are related to inherent radiosensitivity. Thirty-two fibroblast cell strains were examined. Radiosensitivity was measured by a clonogenic survival assay. The induction of TP53 and its transcriptionally activated CDKN1A (p21) protein were studied by Western blotting 3 h after a single dose of 5 Gy. The relative cell culture age, as determined by the colony size distribution, was studied as a confounding factor. Survival curves showed wide range of radiosensitivity. The surviving fraction at 2 Gy (SF2) ranged between 0.02 and 0.49 (mean = 0.29, SD = 0.13). TP53 induction ranged between 1.28 and 2.34 (mean = 1.80, SD = 0.31). CDKN1A showed a wider induction (1.09-4.05, mean = 2.33, SD = 0.78). Positive correlations were observed between SF2 and TP53 induction (R(2) = 0.62, P < 0.001) and CDKN1A (R(2) = 0.64, P < 0.001). No correlation with the colony size distribution was observed. In conclusion, these results suggest that the individual variations in radiosensitivity and in the level of induction of TP53 (and consequently CDKN1A) are congruent, irrespective of the genetic background of these nontransformed fibroblasts. It is postulated that underlying mechanisms culminating in a stronger TP53 induction lead to higher survival, presumably due to more efficient repair of radiation-induced damage.
Collapse
Affiliation(s)
- G Alsbeih
- Radiation Biology Laboratory, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia.
| | | | | | | |
Collapse
|
85
|
Crott JW, Liu Z, Choi SW, Mason JB. Folate depletion in human lymphocytes up-regulates p53 expression despite marked induction of strand breaks in exons 5-8 of the gene. Mutat Res 2006; 626:171-9. [PMID: 17098465 DOI: 10.1016/j.mrgentox.2006.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/28/2006] [Accepted: 10/03/2006] [Indexed: 10/23/2022]
Abstract
Low dietary folate intake is associated with an elevated risk for carcinogenesis. One putative mechanism by which folate depletion promotes carcinogenesis is by inducing gene-specific strand breakage and impaired expression of affected genes. Primary human lymphocytes were cultured in media containing 15, 30 or 120 nM folic acid. p53 strand breaks, gene and protein expression, and p21 transcript were determined. Cells grown in 15 nM folate developed significant levels of p53 strand breaks, reflected by reductions in amplifiable DNA from p53 exons 5-8 (approximately 40% loss, P<0.0001) and exons 7-8 (approximately 26% loss, P<0.0001) compared to 30 and 120 nM. Nevertheless, steady-state p53 transcript was elevated two-fold in 15 and 30 compared to 120 nM (P<0.001). p53 protein abundance increased with decreasing media folate, as did p21 transcript. The cytokinesis-block micronucleus assay demonstrated a three-fold increase in chromosomal damage at the two lower folate concentrations (P<0.01). In primary human lymphocytes, folate depletion induces a marked increase in p53 exons 5-8 breaks, but does not reduce steady-state levels of p53 mRNA, protein, or impair downstream signaling. The induction of p53 strand breaks by folate depletion does not impair p53 expression or action within all human cell lines.
Collapse
Affiliation(s)
- Jimmy W Crott
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, United States.
| | | | | | | |
Collapse
|
86
|
Candeias MM, Powell DJ, Roubalova E, Apcher S, Bourougaa K, Vojtesek B, Bruzzoni-Giovanelli H, Fåhraeus R. Expression of p53 and p53/47 are controlled by alternative mechanisms of messenger RNA translation initiation. Oncogene 2006; 25:6936-47. [PMID: 16983332 DOI: 10.1038/sj.onc.1209996] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
P53 controls the growth and survival of cells by acting in response to a multitude of cellular stresses. It is, however, not yet fully understood how different p53 activation pathways result in either cell cycle arrest or apoptosis. We and others have described an N-terminally truncated p53 protein (p53/47) originating from a second translation initiation site in the p53 messenger RNA (mRNA), which can interact with p53 and impose altered stability and transactivation properties to p53 complexes. Here we show that cap-dependent and cap-independent mechanisms of initiation govern the translation of the p53 mRNA. Changes in synthesis of full-length p53 or p53/47 are regulated through distinct cell stress-induced pathways acting through separate regions of the p53 mRNA. We also show that some cytotoxic drugs require the presence of full-length p53 to induce apoptosis, whereas for others p53/47 is sufficient. This indicates that by harbouring alternative translation initiation sites, the p53 mRNA gives rise to different levels of the p53 isoforms which help to orchestrate the cell biological outcome of p53 activation in response to different types of cell stress. This sheds new light into the way p53 can integrate and differentiate a large multiplicity of changes in the cellular environment.
Collapse
Affiliation(s)
- M M Candeias
- Inserm U716, Institut de Génétique Moléculaire, Hôpital St Louis, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Cai Q, Dmitrieva NI, Ferraris JD, Michea LF, Salvador JM, Hollander MC, Fornace AJ, Fenton RA, Burg MB. Effects of expression of p53 and Gadd45 on osmotic tolerance of renal inner medullary cells. Am J Physiol Renal Physiol 2006; 291:F341-9. [PMID: 16597604 DOI: 10.1152/ajprenal.00518.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The response of renal inner medullary (IM) collecting duct cells (mIMCD3) to high NaCl involves increased expression of Gadd45 and p53, both of which have important effects on growth and survival of the cells. However, mIMCD3 cells, being immortalized by SV40, proliferate rapidly, which is known to sensitize cells to high NaCl, whereas IM cells in situ proliferate very slowly and survive much higher levels of NaCl. In the present studies, we have examined the importance of Gadd45 and p53 for survival of normal IM cells in their usual high-NaCl environment by using more slowly proliferating second-passage mouse inner medullary epithelial (p2mIME) cells and comparing cells from wild-type and gene knockout mice. Acutely elevating NaCl (and/or urea) reduces Gadd45a, but increases Gadd45b and Gadd45g mRNA, depending on the mix of NaCl and urea and the rate of increase of osmolality. Nevertheless, p2mIME cells from Gadd45b−/−, Gadd45g−/−, and Gadd45bg−/− mice survive elevation of NaCl (or urea) essentially the same as do wild-type cells. p53−/− Cells do not tolerate as high a concentration of NaCl (or urea) as p53+/+ cells, but urinary concentrating ability of p53−/− mice is normal, as is the histology of inner medullas from p53−/− and Gadd45abg−/− mice. Thus although Gadd45 and p53 may play roles in osmotically stressed mIMCD3 cells, we do not find that their expression makes an important difference, either for Gadd45 in slower proliferating p2mIME cells or for Gadd45 or p53 in normal inner medullary epithelial cells in situ.
Collapse
Affiliation(s)
- Qi Cai
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1603, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Yang DQ, Halaby MJ, Zhang Y. The identification of an internal ribosomal entry site in the 5'-untranslated region of p53 mRNA provides a novel mechanism for the regulation of its translation following DNA damage. Oncogene 2006; 25:4613-9. [PMID: 16607284 DOI: 10.1038/sj.onc.1209483] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The tumor suppressor p53 plays a crucial role in maintaining the genetic integrity of the cell and in suppressing cell transformation. Its cellular levels are usually low and rise substantially in response to DNA damage. Although research on p53 induction following DNA damage has mainly focused on the post-translational modification of p53 by Mdm2, it is known that protein translation also contributes to p53 induction. However, the mechanisms underlying translational regulation of the p53 protein in response to DNA damage are still poorly understood. We show that p53 synthesis increases dramatically in MCF-7 cells treated with etoposide. Interestingly, this increase is accompanied by an increase in the association of the translation initiation factor eIF-4E with its binding protein 4E-BP1, an inhibitor of cap-dependent protein translation. We further identified an internal ribosomal entry site (IRES) located in the 5'-untranslated region of the p53 transcript, that is capable of driving the cap-independent translation of a downstream cistron encoding Firefly luciferase in a dicistronic expression vector. Moreover, we found that the activity of the IRES element increases in response to etoposide-induced DNA damage in MCF-7 cells. These findings provide a novel mechanism for the regulation of p53 translation in response to DNA damage.
Collapse
Affiliation(s)
- D-Q Yang
- Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion, SD 57069, USA.
| | | | | |
Collapse
|
89
|
Riley KJL, Cassiday LA, Kumar A, Maher LJ. Recognition of RNA by the p53 tumor suppressor protein in the yeast three-hybrid system. RNA (NEW YORK, N.Y.) 2006; 12:620-30. [PMID: 16581806 PMCID: PMC1421098 DOI: 10.1261/rna.2286706] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The p53 tumor suppressor protein is a homotetrameric transcription factor whose gene is mutated in nearly half of all human cancers. In an unrelated screen of RNA/protein interactions using the yeast three-hybrid system, we inadvertently detected p53 interactions with several different RNAs. A literature review revealed previous reports of both sequence-specific and -non-specific interactions between p53 and RNA. Using yeast three-hybrid selections to identify preferred RNA partners for p53, we failed to identify primary RNA sequences or obvious secondary structures required for p53 binding. The cationic p53 C-terminus was shown to be required for RNA binding in yeast. We show that while p53 strongly discriminates between certain RNAs in the yeast three-hybrid assay, the same RNAs are bound equally by p53 in vitro. We further show that the p53 RNA-binding preferences in yeast are mirrored almost exactly by a recombinant tetrameric form of the HIV-1 nucleocapsid (NC) protein thought to be a sequence-nonspecific RNA-binding protein. However, the possibility of specific RNA binding by p53 could not be ruled out because p53 and HIV-1 NC displayed certain differences in RNA-binding preference. We conclude that (1) p53 binds RNA in vivo, (2) RNA binding by p53 is largely sequence-nonspecific in the yeast nucleus, (3) some structure-specific RNA binding by p53 cannot be ruled out, and (4) caution is required when interpreting results of RNA screens in the yeast three-hybrid system because sequence-dependent differences in RNA folding and display can masquerade as sequence-dependent differences in protein recognition.
Collapse
Affiliation(s)
- Kasandra J-L Riley
- Department of Biochemistry and Molecular Biology, Guggenheim 16, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
90
|
Schumacher B, Gartner A. Translational regulation of p53 as a potential tumor therapy target. Future Oncol 2006; 2:145-53. [PMID: 16556081 DOI: 10.2217/14796694.2.1.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The tumor suppressor p53 is a central player in apoptosis induction in response to oncogenic stimuli and DNA damage. As activation of p53 has been suggested as a prime strategy for future tumor therapy, inhibition of negative regulators of p53 activity would be a similarly desirable strategy. The small worm Caenorhabditis elegans is a model organism in which many conserved biological pathways, including the core apoptotic machinery, were elucidated. The discovery of a worm p53 homolog cep-1/p53 (which stands for C. elegans p53) that specifically induces apoptosis upon DNA damage through a pathway that is conserved from worm to man opened the way for the use of C. elegans genetics to uncover regulatory mechanisms – and hence novel therapeutic targets – of p53-mediated apoptosis. The authors have recently reported a novel mechanism of C. elegans cep-1/p53 regulation through germ line defective-1-mediated translational repression. This review discusses the potential of the worm system to screen for apoptosis-inducing cancer drugs and to identify novel p53 regulators whose human counterparts might become potential tumor therapy targets.
Collapse
Affiliation(s)
- Björn Schumacher
- Department of Genetics, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands.
| | | |
Collapse
|
91
|
Ray PS, Grover R, Das S. Two internal ribosome entry sites mediate the translation of p53 isoforms. EMBO Rep 2006; 7:404-10. [PMID: 16440000 PMCID: PMC1456917 DOI: 10.1038/sj.embor.7400623] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 12/02/2005] [Accepted: 12/05/2005] [Indexed: 11/08/2022] Open
Abstract
The p53 tumour suppressor protein has a crucial role in cell-cycle arrest and apoptosis. Previous reports show that the p53 messenger RNA is translated to produce an amino-terminal-deleted isoform (DeltaN-p53) from an internal initiation codon, which acts as a dominant-negative inhibitor of full-length p53. Here, we show that two internal ribosome entry sites (IRESs) mediate the translation of both full-length and DeltaN-p53 isoforms. The IRES directing the translation of full-length p53 is in the 5'-untranslated region of the mRNA, whereas the IRES mediating the translation of DeltaN-p53 extends into the protein-coding region. The two IRESs show distinct cell-cycle phase-dependent activity, with the IRES for full-length p53 being active at the G2-M transition and the IRES for DeltaN-p53 showing highest activity at the G1-S transition. These results indicate a novel translational control of p53 gene expression and activity.
Collapse
Affiliation(s)
- Partho Sarothi Ray
- Department of Microbiology and Cell Biology, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore-560012, India
| | - Richa Grover
- Department of Microbiology and Cell Biology, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore-560012, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore-560012, India
- Tel: +91 80 2293 2886; Fax: +91 80 2360 2697; E-mail:
| |
Collapse
|
92
|
Takagi M, Absalon MJ, McLure KG, Kastan MB. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 2005; 123:49-63. [PMID: 16213212 DOI: 10.1016/j.cell.2005.07.034] [Citation(s) in RCA: 509] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 05/31/2005] [Accepted: 07/26/2005] [Indexed: 12/31/2022]
Abstract
Increases in p53 protein levels after DNA damage have largely been attributed to an increase in the half-life of p53 protein. Here we demonstrate that increased translation of p53 mRNA is also a critical step in the induction of p53 protein in irradiated cells. Ribosomal protein L26 (RPL26) and nucleolin were found to bind to the 5' untranslated region (UTR) of p53 mRNA and to control p53 translation and induction after DNA damage. RPL26 preferentially binds to the 5'UTR after DNA damage, and its overexpression enhances association of p53 mRNA with heavier polysomes, increases the rate of p53 translation, induces G1 cell-cycle arrest, and augments irradiation-induced apoptosis. Opposite effects were seen when RPL26 expression was inhibited. In contrast, nucleolin overexpression suppresses p53 translation and induction after DNA damage, whereas nucleolin downregulation promotes p53 expression. These findings demonstrate the importance of increased translation of p53 in DNA-damage responses and suggest critical roles for RPL26 and nucleolin in affecting p53 induction.
Collapse
Affiliation(s)
- Masatoshi Takagi
- Department of Hematology-Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
93
|
Shetty S, Ganachari M, Liu MC, Azghani A, Muniyappa H, Idell S. Regulation of urokinase receptor expression by phosphoglycerate kinase is independent of its catalytic activity. Am J Physiol Lung Cell Mol Physiol 2005; 289:L591-8. [PMID: 15951330 DOI: 10.1152/ajplung.00319.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Posttranscriptional regulation of urokinase-type plasminogen activator receptor (uPAR) mRNA involves the interaction of a uPAR mRNA coding region sequence with phosphoglycerate kinase (PGK), a 50-kDa uPAR mRNA binding protein. PGK catalyzes a reversible transfer of a phosphoryl group from 1,3-biphosphoglycerate to ADP in the glycolytic pathway. Our previous studies showed that overexpression of PGK in uPAR-overproducing H157 lung carcinoma cells results in decreased cytoplasmic uPAR mRNA and cell surface uPAR protein expression through destabilization of the mRNA. In order to determine the role of PGK enzymatic activity on uPAR mRNA stability we mutated PGK by changing amino acid P204H and amino acid D219A. The mutant proteins were expressed in Epicurian coli BL21 cells, and the purified proteins were analyzed for PGK activity. We found that mutation of amino acid P204H and D219A reduced PGK activity by 99 and 83%, respectively. By gel mobility shift and Northwestern assay, we found that the mutant proteins were able to bind to uPAR mRNA as effectively as wild-type PGK. Overexpression of mutant, inactive PGK in H157 cells reduced cell surface uPAR protein as well as uPAR mRNA expression. Run-on transcription analysis indicated that overexpression of mutant PGKs fails to alter the rate of synthesis of uPAR mRNA, whereas transcription chase experiments demonstrated that both mutants and wild-type PGK reduce the stability of the uPAR mRNA transcripts to a similar extent. Overexpression of mutant PGK also inhibited the rate of DNA synthesis and the invasion-migration ratio. These results demonstrate that uPAR mRNA binding activity as well as PGK-mediated regulation of uPAR mRNA are independent of PGK enzymatic activity.
Collapse
Affiliation(s)
- Sreerama Shetty
- Department of Medicine, University of Texas Health Center, Tyler, TX 75708, USA.
| | | | | | | | | | | |
Collapse
|
94
|
Boggs K, Reisman D. Increased p53 transcription prior to DNA synthesis is regulated through a novel regulatory element within the p53 promoter. Oncogene 2005; 25:555-65. [PMID: 16158047 DOI: 10.1038/sj.onc.1209076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
p53 mRNA levels are tightly regulated during the cell cycle with its transcription being induced prior to DNA synthesis. However, the mechanism controlling this regulation is not well defined. Through characterizing an additional 1000 bp of upstream DNA sequences of the murine p53 gene, we identified new positive and negative regulatory elements. Furthermore, we found a trans-acting factor(s) that binds within a positive cis-acting element (-972/-953) in a manner indicative of regulation during the cell cycle. When Swiss3T3 cells are arrested by serum depletion p53 mRNA levels decrease and binding of this regulatory factor(s) to the promoter is reduced. Upon serum stimulation, the regulatory factor(s) binds the promoter and p53 mRNA levels increase prior to the cells entering S phase. When the factors are experimentally sequestered from the promoter or when the regulatory element is deleted from the promoter, p53 promoter activity is reduced. There is no further reduction in p53 promoter activity upon serum depletion and the kinetics of induction upon serum stimulation is delayed by approximately 5 h. These findings indicate that a factor(s) binding within the -972/-953 regulatory element on the p53 promoter is important for the proper regulation of p53 mRNA expression in response to mitogen stimulation. Our initial findings indicate that a member of the C/EBP family of transcription factors may play a role in this regulation.
Collapse
Affiliation(s)
- K Boggs
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, USA
| | | |
Collapse
|
95
|
Gwosdz C, Scheckenbach K, Lieven O, Reifenberger J, Knopf A, Bier H, Balz V. Comprehensive analysis of the p53 status in mucosal and cutaneous melanomas. Int J Cancer 2005; 118:577-82. [PMID: 16094622 DOI: 10.1002/ijc.21366] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The abrogation of the function of the "gatekeeper of the genome", p53, is the most prevalent molecular alteration in solid human tumors. Regarding melanomas the involvement of p53 alterations is discussed controversially to date. In order to evaluate the status of p53 in detail, primary tumors and metastases of 63 sporadic cutaneous (CM) and mucosal (MuM) melanomas were examined by immunohistochemistry and sequence analysis of the entire coding region of the p53 transcript, i.e., exons 2 to 11. In addition, loss of heterozygosity (LOH) and loss of allele-specific transcription (LOT) were determined. Accumulation of the p53 protein occurred in most of the CM and MuM specimens (71% and 58%, respectively). In contrast, protein stabilizing p53 mutations were observed in 14% of the CM and no mutation was found in MuM specimens. Two of the aberrations located outside the core domain. LOH was detected in 22% CM and 58% MuM, and LOT in 25% of the CM specimens. The genotype distribution at the polymorphic p53 codon 72 in melanoma patients differed significantly from control subjects. The calculation of odds ratios (OR) and 95% confidence intervals (CI) indicated an increased risk for developing cutaneous melanomas in individuals carrying the Pro-coding allele. Altogether, aberrant p53 expression appears to be a common event in both CM and MuM.
Collapse
Affiliation(s)
- Christian Gwosdz
- Department of Otorhinolaryngology/Head and Neck Surgery, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
96
|
Loeken MR. Current perspectives on the causes of neural tube defects resulting from diabetic pregnancy. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2005; 135C:77-87. [PMID: 15800853 DOI: 10.1002/ajmg.c.30056] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Maternal diabetes increases the risk for neural tube, and other, structural defects. The mother may have either type 1 or type 2 diabetes, but the diabetes must be existing at the earliest stages of pregnancy, during which organogenesis occurs. Abnormally high glucose levels in maternal blood, which leads to increased glucose transport to the embryo, is responsible for the teratogenic effects of maternal diabetes. Consequently, expression of genes that control essential developmental processes is disturbed. In this review, some of the biochemical pathways by which excess glucose metabolism disturbs neural tube formation are discussed. Research from the author's laboratory has shown that expression of Pax3, a gene required for neural tube closure, is significantly reduced by maternal diabetes, and this is associated with significantly increased neural tube defects (NTD). Pax3 encodes a transcription factor that has recently been shown to inhibit p53-dependent apoptosis. Evidence in support of this model, in which excess glucose metabolism inhibits expression of Pax3, thereby derepressing p53-dependent apoptosis of neuroepithelium and leading to NTD will be discussed.
Collapse
Affiliation(s)
- Mary R Loeken
- Section on Developmental and Stem Cell Biology at Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
97
|
Freedman DA, Folkman J. CDK2 translational down-regulation during endothelial senescence. Exp Cell Res 2005; 307:118-30. [PMID: 15922732 DOI: 10.1016/j.yexcr.2005.03.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 03/22/2005] [Accepted: 03/23/2005] [Indexed: 10/25/2022]
Abstract
Here we report for the first time that loss of CDK2 activity, by translational inhibition and through CDK2 inhibition by p21(Cip1/Waf1), may be responsible for endothelial senescence. We show that expression of dominant-negative p53 extends human umbilical vein endothelial cell (HUVEC) lifespan past senescence. HUVEC expressing telomerase can completely bypass senescence and become immortal (i-HUVEC). Surprisingly, early passage i-HUVEC, like senescent HUVEC, express high levels of the CDK inhibitors p16(INK4a) and p21(Cip1/Waf1). Expression of p16(INK4a) can persist for over 280 population doublings, while p21(Cip1/Waf1) expression was eventually lost in five of six i-HUVEC lines. Senescent HUVEC contain undetectable CDK2 activity, which results from a dramatic reduction of CDK2 protein levels and inhibition of remaining CDK2 by p21(Cip1/Waf1). The decreased CDK2 levels in senescent HUVEC are not due to decreased transcription or protein stability; rather, CDK2 translation declines during senescence. Bypass of endothelial senescence by telomerase entails the restoration of CDK2 translation and activity. These results suggest that p16(INK4a) does not play a role in endothelial senescence. Rather, CDK2 translational down-regulation may be a key regulatory event in replicative senescence of endothelial cells. Understanding the mechanisms regulating endothelial senescence will be critical in determining the role of endothelial senescence in tumor growth.
Collapse
Affiliation(s)
- Deborah A Freedman
- Vascular Biology Program, Department of Surgery, Children's Hospital, 1 Blackfan Circle, Harvard University Medical School, Karp Family Research Laboratories, Floor 12, Boston, MA 02115, USA
| | | |
Collapse
|
98
|
Schumacher B, Hanazawa M, Lee MH, Nayak S, Volkmann K, Hofmann ER, Hofmann R, Hengartner M, Schedl T, Gartner A. Translational repression of C. elegans p53 by GLD-1 regulates DNA damage-induced apoptosis. Cell 2005; 120:357-68. [PMID: 15707894 DOI: 10.1016/j.cell.2004.12.009] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2004] [Revised: 10/27/2004] [Accepted: 12/08/2004] [Indexed: 10/25/2022]
Abstract
p53 is a tumor suppressor gene whose regulation is crucial to maintaining genome stability and for the apoptotic elimination of abnormal, potentially cancer-predisposing cells. C. elegans contains a primordial p53 gene, cep-1, that acts as a transcription factor necessary for DNA damage-induced apoptosis. In a genetic screen for negative regulators of CEP-1, we identified a mutation in GLD-1, a translational repressor implicated in multiple C. elegans germ cell fate decisions and related to mammalian Quaking proteins. CEP-1-dependent transcription of proapoptotic genes is upregulated in the gld-1(op236) mutant and an elevation of p53-mediated germ cell apoptosis in response to DNA damage is observed. Further, we demonstrate that GLD-1 mediates its repressive effect by directly binding to the 3'UTR of cep-1/p53 mRNA and repressing its translation. This study reveals that the regulation of cep-1/p53 translation influences DNA damage-induced apoptosis and demonstrates the physiological importance of this mechanism.
Collapse
Affiliation(s)
- Björn Schumacher
- Department of Cell Biology, Max-Planck-Institute for Biochemistry, Am Klopferspitz 18a, D 82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Scrable H, Sasaki T, Maier B. DeltaNp53 or p44: priming the p53 pump. Int J Biochem Cell Biol 2005; 37:913-9. [PMID: 15743665 DOI: 10.1016/j.biocel.2004.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 10/15/2004] [Accepted: 11/04/2004] [Indexed: 11/20/2022]
Abstract
The human protein DeltaNp53 and its murine counterpart p44 are isoforms of the tumor suppressor p53 lacking the transactivation domain present in the first 39 (40 in mouse) amino acids of the full-length protein. This makes them similar in structure to the DeltaN isoforms of the other members of the p53 superfamily of transcription factors, p63 and p73. The principle way both the human and the murine proteins are generated is by alternative translation of the p53 mRNA utilizing a start site in exon 4. Choice of start site depends on an interaction between p53 and its cognate RNA. When the balance between DeltaNp53 (p44) and full-length p53 is altered, the function of p53 as a transcription factor is disturbed. One consequence of over-expressing p44 in mice is an acceleration of the aging process and altered expression of genes in the IGF-1 signaling cascade [Maier, B., Gluba, W., Bernier, B., Turner, T., Mohammad, K., Guise, T., et al. (2004). Modulation of mammalian lifespan by the short isoform of p53. Genes & Development, 18, 306-319]. This links p53 to the single most important growth factor pathway known to regulate lifespan in lower organisms.
Collapse
Affiliation(s)
- Heidi Scrable
- Department of Neuroscience, University of Virginia, Room 6116, MR-4, Lane Road Extended, Charlottesville, VA 22908-1392, USA.
| | | | | |
Collapse
|
100
|
Nirmalan N, Sims PFG, Hyde JE. Translational up-regulation of antifolate drug targets in the human malaria parasite Plasmodium falciparum upon challenge with inhibitors. Mol Biochem Parasitol 2004; 136:63-70. [PMID: 15138068 DOI: 10.1016/j.molbiopara.2004.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Revised: 02/11/2004] [Accepted: 02/29/2004] [Indexed: 11/30/2022]
Abstract
The thymidylate cycle in Plasmodium falciparum is essential for cell growth and replication, and dihydrofolate reductase (DHFR), a key enzyme in this cycle, is the target of important antimalarial drugs such as pyrimethamine and cycloguanil. Following previous work, where we found no evidence of upregulation of the dhfr-ts gene upon challenge with pyrimethamine, we investigated the expression at the protein level of the bifunctional gene product, which also carries thymidylate synthase (TS) activity. Challenge of parasite cultures with fluoro-substituted bases that are specific TS inhibitors at levels close to the IC(50) resulted in five to seven-fold increases in enzyme level, as monitored by both DHFR and TS activities, while pyrimethamine and another DHFR-binding inhibitor, WR99210, induced smaller but still significant increases of approximately three-fold. However, when parasites were challenged with tetracycline, an antimalarial not directed at the folate pathway, although an increase was consistently seen above untreated controls, this was at a level of approximately 1.8-fold. These increases reflect enhanced synthesis of the DHFR-TS enzyme, rather than liberation of a latent activity, as they were completely abolished if cultures were pre-incubated with cycloheximide to block de novo protein synthesis. Moreover, none of the above antimalarial drugs was found to significantly alter absolute levels of the dhfr-ts mRNA under the conditions of challenge used. We conclude that, in common with mammalian systems, where a similar phenomenon has been reported, malaria parasites are able to significantly relieve translational constraint when faced with antifolate drug challenge. The data indicate that there is a specific component in addition to a low-level non-specific increment, and that binding to the TS domain of the DHFR-TS protein appears to be better able to relieve this constraint than binding to the DHFR domain.
Collapse
Affiliation(s)
- Niroshini Nirmalan
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), P.O. Box 88, Manchester M60 1QD, UK
| | | | | |
Collapse
|