51
|
Lee H, Lee YJ, Choi H, Seok JW, Yoon BK, Kim D, Han JY, Lee Y, Kim HJ, Kim JW. SCARA5 plays a critical role in the commitment of mesenchymal stem cells to adipogenesis. Sci Rep 2017; 7:14833. [PMID: 29093466 PMCID: PMC5665884 DOI: 10.1038/s41598-017-12512-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stem cells have the capacity to give rise to multiple cell types, such as adipocytes, osteoblasts, chondrocytes, and myocytes. However, the molecular events responsible for the lineage specification and differentiation of mesenchymal stem cells remain unclear. Using gene expression profile studies, we determined that Scavenger receptor class A, member 5 (SCARA5) is a novel mediator of adipocyte commitment. SCARA5 was expressed at a higher level in committed A33 preadipocyte cells compared to C3H10T1/2 pluripotent stem cells. Gain- and loss-of-function studies likewise revealed that SCARA5 acts as a mediator of adipocyte commitment and differentiation in both A33 and C3H10T1/2 cells. RNAi-mediated knockdown of SCARA5 in A33 cells markedly inhibited the adipogenic potential, whereas overexpression of SCARA5 enhanced adipocyte differentiation in C3H10T1/2 cells. We also demonstrated that the focal adhesion kinase (FAK) and ERK signaling pathways is associated with the SCARA5-mediated response, thereby modulating adipocyte lineage commitment and adipocyte differentiation. Additionally, glucocorticoids induced the expression of SCARA5 in differentiating adipocytes through glucocorticoids response elements (GRE) in the SCARA5 promoter. Taken together, our study demonstrates that SCARA5 is a positive regulator in adipocyte lineage commitment and early adipogenesis in mesenchymal stem cells.
Collapse
Affiliation(s)
- Hyemin Lee
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, 120-752, Korea.,Department of Integrated OMICS for Biomedical Sciences, Graduate School, Yonsei University, Seoul, 120-749, Korea
| | - Yoo Jeong Lee
- Division of Metabolic Disease, Center for Biomedical Sciences, National Institutes of Health, Cheongju-si, Chungbuk, 28159, Korea
| | - Hyeonjin Choi
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, 120-752, Korea
| | - Jo Woon Seok
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, 120-752, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 120-752, Korea
| | - Bo Kyung Yoon
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, 120-752, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 120-752, Korea
| | - Daeun Kim
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, 120-752, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 120-752, Korea
| | - Ji Yoon Han
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, 120-752, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 120-752, Korea
| | - Yoseob Lee
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, 120-752, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 120-752, Korea
| | - Hyo Jung Kim
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, 120-752, Korea.
| | - Jae-Woo Kim
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, 120-752, Korea. .,Department of Integrated OMICS for Biomedical Sciences, Graduate School, Yonsei University, Seoul, 120-749, Korea. .,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 120-752, Korea.
| |
Collapse
|
52
|
Dejaeger M, Böhm AM, Dirckx N, Devriese J, Nefyodova E, Cardoen R, St-Arnaud R, Tournoy J, Luyten FP, Maes C. Integrin-Linked Kinase Regulates Bone Formation by Controlling Cytoskeletal Organization and Modulating BMP and Wnt Signaling in Osteoprogenitors. J Bone Miner Res 2017; 32:2087-2102. [PMID: 28574598 DOI: 10.1002/jbmr.3190] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 05/28/2017] [Accepted: 05/31/2017] [Indexed: 12/19/2022]
Abstract
Cell-matrix interactions constitute a fundamental aspect of skeletal cell biology and play essential roles in bone homeostasis. These interactions are primarily mediated by transmembrane integrin receptors, which mediate cell adhesion and transduce signals from the extracellular matrix to intracellular responses via various downstream effectors, including integrin-linked kinase (ILK). ILK functions as adaptor protein at focal adhesion sites, linking integrins to the actin cytoskeleton, and has been reported to act as a kinase phosphorylating signaling molecules such as GSK-3β and Akt. Thereby, ILK plays important roles in cellular attachment, motility, proliferation and survival. To assess the in vivo role of ILK signaling in osteoprogenitors and the osteoblast lineage cells descending thereof, we generated conditional knockout mice using the Osx-Cre:GFP driver strain. Mice lacking functional ILK in osterix-expressing cells and their derivatives showed no apparent developmental or growth phenotype, but by 5 weeks of age they displayed a significantly reduced trabecular bone mass, which persisted into adulthood in male mice. Histomorphometry and serum analysis indicated no alterations in osteoclast formation and activity, but provided evidence that osteoblast function was impaired, resulting in reduced bone mineralization and increased accumulation of unmineralized osteoid. In vitro analyses further substantiated that absence of ILK in osteogenic cells was associated with compromised collagen matrix production and mineralization. Mechanistically, we found evidence for both impaired cytoskeletal functioning and reduced signal transduction in osteoblasts lacking ILK. Indeed, loss of ILK in primary osteogenic cells impaired F-actin organization, cellular adhesion, spreading, and migration, indicative of defective coupling of cell-matrix interactions to the cytoskeleton. In addition, BMP/Smad and Wnt/β-catenin signaling was reduced in the absence of ILK. Taken together, these data demonstrate the importance of integrin-mediated cell-matrix interactions and ILK signaling in osteoprogenitors in the control of osteoblast functioning during juvenile bone mass acquisition and adult bone remodeling and homeostasis. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Marian Dejaeger
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Anna-Marei Böhm
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Naomi Dirckx
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Joke Devriese
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Elena Nefyodova
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Ruben Cardoen
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - René St-Arnaud
- Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Jos Tournoy
- Geriatric Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Frank P Luyten
- Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
53
|
He Y, Sun X, Wang L, Mishina Y, Guan JL, Liu F. Male germline recombination of a conditional allele by the widely used Dermo1-cre (Twist2-cre) transgene. Genesis 2017; 55. [PMID: 28722198 DOI: 10.1002/dvg.23048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Abstract
Conditional gene knockout using the Cre/loxP system is instrumental in advancing our understanding of the function of genes in a wide range of disciplines. It is becoming increasingly apparent in the literature that recombination mediated by some Cre transgenes can occur in unexpected tissues. Dermo1-Cre (Twist2-Cre) has been widely used to target skeletal lineage cells as well as other mesoderm-derived cells. Here we report that Dermo1-Cre exhibits spontaneous male germline recombination activity leading to a Cre-mediated recombination of a floxed Ptk2 (Protein tyrosine kinase 2, also known as Fak [Focal adhesion kinase]) allele but not a floxed Rb1cc1 (RB1 inducible coiled-coil 1, also known as Fip200 [FAK-family Interacting Protein of 200 kDa]) allele at high frequency. This ectopic germline activity of Dermo1-Cre occurred in all or none manner in a given litter. We demonstrated that the occurrence of germline recombination activity of Dermo1-Cre transgene can be avoided by using female mice as parental Dermo1-Cre carriers.
Collapse
Affiliation(s)
- Yun He
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109.,Dental Department, College of Medicine, Chengdu University, Chengdu, Sichuan, China
| | - Xiumei Sun
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109.,Department of Orthodontics, Jilin University School and Hospital of Stomatology, Changchun, Jilin, 130021, China
| | - Li Wang
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109
| | - Yuji Mishina
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
| | - Fei Liu
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109
| |
Collapse
|
54
|
Tsao YT, Shih YY, Liu YA, Liu YS, Lee OK. Knockdown of SLC41A1 magnesium transporter promotes mineralization and attenuates magnesium inhibition during osteogenesis of mesenchymal stromal cells. Stem Cell Res Ther 2017; 8:39. [PMID: 28222767 PMCID: PMC5320718 DOI: 10.1186/s13287-017-0497-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/09/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Magnesium is essential for numerous physiological functions. Magnesium exists mostly in bone and the amount is dynamically regulated by skeletal remodeling. Accelerating bone mass loss occurs when magnesium intake is insufficient; whereas high magnesium could lead to mineralization defects. However, the underlying magnesium regulatory mechanisms remain elusive. In the present study, we investigated the effects of high extracellular magnesium concentration on osteogenic differentiation of mesenchymal stromal/stem cells (MSCs) and the role of magnesium transporter SLC41A1 in the mineralization process. METHODS Murine MSCs derived from the bone marrow of BALB/c mouse or commercially purchased human MSCs were treated with osteogenic induction medium containing 5.8 mM magnesium chloride and the osteogenic differentiation efficiency was compared with that of MSCs in normal differentiation medium containing 0.8 mM magnesium chloride by cell morphology, gene expression profile of osteogenic markers, and Alizarin Red staining. Slc41a1 gene knockdown in MSCs was performed by siRNA transfection using Lipofectamine RNAiMAX, and the differentiation efficiency of siRNA-treated MSCs was also assessed. RESULTS High concentration of extracellular magnesium ion inhibited mineralization during osteogenic differentiation of MSCs. Early osteogenic marker genes including osterix, alkaline phosphatase, and type I collagen were significantly downregulated in MSCs under high concentration of magnesium, whereas late marker genes such as osteopontin, osteocalcin, and bone morphogenetic protein 2 were upregulated with statistical significance compared with those in normal differentiation medium containing 0.8 mM magnesium. siRNA treatment targeting SLC41A1 magnesium transporter, a member of the solute carrier family with a predominant Mg2+ efflux system, accelerated the mineralization process and ameliorated the inhibition of mineralization caused by high concentration of magnesium. High concentration of magnesium significantly upregulated Dkk1 gene expression and the upregulation was attenuated after the Slc41a1 gene was knocked down. Immunofluorescent staining showed that Slc41a1 gene knockdown promoted the translocation of phosphorylated β-catenin into nuclei. In addition, secreted MGP protein was elevated after Slc41a1 was knocked down. CONCLUSIONS High concentration of extracellular magnesium modulates gene expression of MSCs during osteogenic differentiation and inhibits the mineralization process. Additionally, we identified magnesium transporter SLC41A1 that regulates the interaction of magnesium and MSCs during osteogenic differentiation. Wnt signaling is suggested to be involved in SLC41A1-mediated regulation. Tissue-specific SLC41A1 could be a potential treatment for bone mass loss; in addition, caution should be taken regarding the role of magnesium in osteoporosis and the design of magnesium alloys for implantation.
Collapse
Affiliation(s)
- Yu-Tzu Tsao
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11221 Taiwan
- Division of Nephrology, Department of Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, 33004 Taiwan
| | - Ya-Yi Shih
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Yu-An Liu
- Stem Cell Research Center, National Yang-Ming University, Rm. 825, Chih-Teh Building, No.322, Sec.2, Shih-Pai Rd, Taipei, 11221 Taiwan
| | - Yi-Shiuan Liu
- Stem Cell Research Center, National Yang-Ming University, Rm. 825, Chih-Teh Building, No.322, Sec.2, Shih-Pai Rd, Taipei, 11221 Taiwan
| | - Oscar K. Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11221 Taiwan
- Stem Cell Research Center, National Yang-Ming University, Rm. 825, Chih-Teh Building, No.322, Sec.2, Shih-Pai Rd, Taipei, 11221 Taiwan
- Taipei City Hospital, 145 Zhengzhou Road, Taipei, 10341 Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217 Taiwan
| |
Collapse
|
55
|
Rajshankar D, Wang Y, McCulloch CA. Osteogenesis requires FAK-dependent collagen synthesis by fibroblasts and osteoblasts. FASEB J 2016; 31:937-953. [PMID: 27881487 DOI: 10.1096/fj.201600645r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/14/2016] [Indexed: 11/11/2022]
Abstract
Focal adhesion kinase (FAK) is critical in adhesion-dependent signaling, but its role in osteogenesis in vivo is ill defined. We deleted Fak in fibroblasts and osteoblasts in Floxed-Fak mice bred with those expressing Cre-recombinase driven by 3.6-kb α1(I)-collagen promoter. Compared with wild-type (WT), conditional FAK-knockout (CFKO) mice were shorter (2-fold; P < 0.0001) and had crooked, shorter tails (50%; P < 0.0001). Microcomputed tomography analysis showed reduced bone volume (4-fold in tails; P < 0.0001; 2-fold in mandibles; P < 0.0001), whereas bone surface area/bone volume increased (3-fold in tails; P < 0.0001; 2.5-fold in mandibles; P < 0.001). Collagen density and fiber alignment in periodontal ligament were reduced by 4-fold (P < 0.0001) and 30% (P < 0.05), respectively, in CFKO mice. In cultured CFKO osteoblasts, mineralization at d 7 and mineralizing colony-forming units at d 21 were 30% (P < 0.0001) and >3-fold less than WT, respectively. Disruptions of FAK function in osteoblasts by conditional knockout, siRNA-knockdown, or FAK inhibitor reduced mRNA and protein expression of Runx2 (>30%), Osterix (>25%), and collagen-1 (2-fold). Collagen synthesis was abrogated in WT osteoblasts with Runx2 knockdown and in Fak-null fibroblasts transfected with an FAK kinase domain mutant or a kinase-impaired mutant (Y397F). These data indicate that FAK regulates osteogenesis through transcription factors that regulate collagen synthesis.-Rajshankar, D., Wang, Y., McCulloch, C. A. Osteogenesis requires FAK-dependent collagen synthesis by fibroblasts and osteoblasts.
Collapse
Affiliation(s)
- Dhaarmini Rajshankar
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Christopher A McCulloch
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|