51
|
Marin M. Calcium Signaling in Xenopus oocyte. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1073-94. [DOI: 10.1007/978-94-007-2888-2_49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
52
|
Martín-Romero FJ, López-Guerrero AM, Álvarez IS, Pozo-Guisado E. Role of Store-Operated Calcium Entry During Meiotic Progression and Fertilization of Mammalian Oocytes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:291-328. [DOI: 10.1016/b978-0-12-394306-4.00014-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
53
|
Endoplasmic reticulum remodeling tunes IP₃-dependent Ca²+ release sensitivity. PLoS One 2011; 6:e27928. [PMID: 22140486 PMCID: PMC3227640 DOI: 10.1371/journal.pone.0027928] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 10/27/2011] [Indexed: 11/19/2022] Open
Abstract
The activation of vertebrate development at fertilization relies on IP3-dependent Ca2+ release, a pathway that is sensitized during oocyte maturation. This sensitization has been shown to correlate with the remodeling of the endoplasmic reticulum into large ER patches, however the mechanisms involved are not clear. Here we show that IP3 receptors within ER patches have a higher sensitivity to IP3 than those in the neighboring reticular ER. The lateral diffusion rate of IP3 receptors in both ER domains is similar, and ER patches dynamically fuse with reticular ER, arguing that IP3 receptors exchange freely between the two ER compartments. These results suggest that increasing the density of IP3 receptors through ER remodeling is sufficient to sensitize IP3-dependent Ca2+ release. Mathematical modeling supports this concept of ‘geometric sensitization’ of IP3 receptors as a population, and argues that it depends on enhanced Ca2+-dependent cooperativity at sub-threshold IP3 concentrations. This represents a novel mechanism of tuning the sensitivity of IP3 receptors through ER remodeling during meiosis.
Collapse
|
54
|
Abdoon ASS, Kandil OM, Zeng SM, Cui M. Mitochondrial distribution, ATP-GSH contents, calcium [Ca2+] oscillation during in vitro maturation of dromedary camel oocytes. Theriogenology 2011; 76:1207-14. [PMID: 21820723 DOI: 10.1016/j.theriogenology.2011.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 05/17/2011] [Accepted: 05/19/2011] [Indexed: 11/15/2022]
Abstract
Dromedary camel oocytes have the ability to spontaneous parthenogenetic activation and development in vivo and in vitro. The present study was conducted to investigate changes in mitochondrial distribution, adenosine triphosphate (ATP), and glutathione (GSH) contents and [Ca(2+)] oscillation during in vitro maturation and spontaneous parthenogentic activation of dromedary camel oocytes. Dromedary camel cumulus-oocyte complexes (COCs) were matured in TCM199 medium supplemented with 10% FCS + 10 μg/mL FSH + 10 IU hCG + 10 IU eCG + 10 ng/mL EGF and 50 μg/mL gentamycine. Maturation was performed at 38.5 °C under 5% CO(2) in humidified air for 40 h. After maturation and removal of cumulus cells, oocytes were classified into: immature cultured (Group 1); metaphase II (M II, Group 2); and spontaneously parthenogenetically activated (with 2 polar bodies, Group 3); cleaved embryos (Group 4); and immature oocytes served as a control (Group 5). Cytoplasmic mitochondrial distribution, ATP-GSH contents, calcium [Ca(2+)] oscillation were determined. Results indicated that M II and spontaneously parthenogenetically activated oocytes represent 37.53% and 32.67% of the cultured oocytes, respectively, and 3.3% cleaved and developed to 2-16-cell stage embryos. Mitochondrial distribution, ATP-GSH contents and [Ca(2+)] oscillation were significantly (P < 0.01) differ between immature and matured dromedary camel oocytes. Mitochondrial distribution showed clustering form in matured oocytes without polar body. High polarized mitochondrial distribution (HPM) was detected in M II and spontaneously parthenogenetically activated oocytes, and the intensity of MitoTracker Red was higher in spontaneously parthenogenetically activated than M II. ATP-GSH contents and the duration of [Ca(2+)] oscillation were significantly (P < 0.01) higher in spontaneously parthenogenetically activated than M II oocytes or that matured without polar body. In conclusion, the higher incidence of spontaneously parthenogenetically activated in vitro matured dromedary camel oocytes could be attributed to the high polarized mitochondrial distribution associated with significantly higher ATP-GSH contents and duration of [Ca(2+)] oscillation.
Collapse
Affiliation(s)
- Ahmed Sabry S Abdoon
- Department of Animal Reproduction and Artificial Insemination, Veterinary Research Division, National Research Centre, Cairo, Egypt.
| | | | | | | |
Collapse
|
55
|
Solovey G, Fraiman D, Dawson SP. Mean field strategies induce unrealistic non-linearities in calcium puffs. Front Physiol 2011; 2:46. [PMID: 21869877 PMCID: PMC3150724 DOI: 10.3389/fphys.2011.00046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/21/2011] [Indexed: 12/19/2022] Open
Abstract
Mean field models are often useful approximations to biological systems, but sometimes, they can yield misleading results. In this work, we compare mean field approaches with stochastic models of intracellular calcium release. In particular, we concentrate on calcium signals generated by the concerted opening of several clustered channels (calcium puffs). To this end we simulate calcium puffs numerically and then try to reproduce features of the resulting calcium distribution using mean field models were all the channels open and close simultaneously. We show that an unrealistic non-linear relationship between the current and the number of open channels is needed to reproduce the simulated puffs. Furthermore, a single channel current which is five times smaller than the one of the stochastic simulations is also needed. Our study sheds light on the importance of the stochastic kinetics of the calcium release channel activity to estimate the release fluxes.
Collapse
Affiliation(s)
- Guillermo Solovey
- Laboratory of Mathematical Physics, The Rockefeller University New York, NY, USA
| | | | | |
Collapse
|
56
|
Actin, more than just a housekeeping protein at the scene of fertilization. SCIENCE CHINA-LIFE SCIENCES 2011; 54:733-43. [DOI: 10.1007/s11427-011-4202-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
|
57
|
Baran I, Ganea C, Ungureanu R, Tofolean IT. Signal mass and Ca2+ kinetics in local calcium events: a modeling study. J Mol Model 2011; 18:721-36. [DOI: 10.1007/s00894-011-1104-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
|
58
|
|
59
|
Yu F, Sun L, Machaca K. Constitutive recycling of the store-operated Ca2+ channel Orai1 and its internalization during meiosis. ACTA ACUST UNITED AC 2010; 191:523-35. [PMID: 21041445 PMCID: PMC3003315 DOI: 10.1083/jcb.201006022] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The egg's competency to activate at fertilization and transition to embryogenesis is dependent on its ability to generate a fertilization-specific Ca(2+) transient. To endow the egg with this capacity, Ca(2+) signals remodel during oocyte maturation, including inactivation of the primary Ca(2+) influx pathway store-operated Ca(2+) entry (SOCE). SOCE inactivation is coupled to internalization of the SOCE channel, Orai1. In this study, we show that Orai1 internalizes during meiosis through a caveolin (Cav)- and dynamin-dependent endocytic pathway. Cav binds to Orai1, and we map a Cav consensus-binding site in the Orai1 N terminus, which is required for Orai1 internalization. Furthermore, at rest, Orai1 actively recycles between an endosomal compartment and the cell membrane through a Rho-dependent endocytic pathway. A significant percentage of total Orai1 is intracellular at steady state. Store depletion completely shifts endosomal Orai1 to the cell membrane. These results define vesicular trafficking mechanisms in the oocyte that control Orai1 subcellular localization at steady state, during meiosis, and after store depletion.
Collapse
Affiliation(s)
- Fang Yu
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | | | | |
Collapse
|
60
|
Machaca K. Ca(2+) signaling, genes and the cell cycle. Cell Calcium 2010; 48:243-50. [PMID: 21084120 DOI: 10.1016/j.ceca.2010.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/06/2010] [Accepted: 10/06/2010] [Indexed: 11/30/2022]
Abstract
Changes in the concentration and spatial distribution of Ca(2+) ions in the cytoplasm constitute a ubiquitous intracellular signaling module in cellular physiology. With the advent of Ca(2+) dyes that allow direct visualization of Ca(2+) transients, combined with powerful experimental tools such as electrophysiological recordings, intracellular Ca(2+) transients have been implicated in practically every aspect of cellular physiology, including cellular proliferation. Ca(2+) signals are associated with different phases of the cell cycle and interfering with Ca(2+) signaling or downstream pathways often disrupts progression of the cell cycle. Although there exists a dependence between Ca(2+) signals and the cell cycle the mechanisms involved are not well defined and given the cross-talk between Ca(2+) and other signaling modules, it is difficult to assess the exact role of Ca(2+) signals in cell cycle progression. Two exceptions however, include fertilization and T-cell activation, where well-defined roles for Ca(2+) signals in mediating progression through specific stages of the cell cycle have been clearly established. In the case of T-cell activation Ca(2+) regulates entry into the cell cycle through the induction of gene transcription.
Collapse
Affiliation(s)
- Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), PO Box 24144, Education City - Qatar Foundation, Doha, Qatar.
| |
Collapse
|
61
|
Du Q, Jovanović S, Sukhodub A, Barratt E, Drew E, Whalley KM, Kay V, McLaughlin M, Telfer EE, Barratt CL, Jovanović A. Human oocytes express ATP-sensitive K(+) channels. Hum Reprod 2010; 25:2774-2782. [PMID: 20847183 PMCID: PMC2955558 DOI: 10.1093/humrep/deq245] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND ATP-sensitive K(+) (K(ATP)) channels link intracellular metabolism with membrane excitability and play crucial roles in cellular physiology and protection. The K(ATP) channel protein complex is composed of pore forming, Kir6.x (Kir6.1 or Kir6.2) and regulatory, SURx (SUR2A, SUR2B or SUR1), subunits that associate in different combinations. The objective of this study was to determine whether mammalian oocytes (human, bovine, porcine) express K(ATP) channels. METHODS Supernumerary human oocytes at different stages of maturation were obtained from patients undergoing assisted conception treatments. Bovine and porcine oocytes in the germinal vesicle (GV) stage were obtained by aspirating antral follicles from abattoir-derived ovaries. The presence of mRNA for K(ATP) channel subunits was determined using real-time RT-PCR with primers specific for Kir6.2, Kir6.1, SUR1, SUR2A and SUR2B. To assess whether functional K(ATP) channels are present in human oocytes, traditional and perforated patch whole cell electrophysiology and immunoprecipitation/western blotting were used. RESULTS Real-time PCR revealed that mRNA for Kir6.1, Kir6.2, SUR2A and SUR2B, but not SUR1, were present in human oocytes of different stages. Only SUR2B and Kir6.2 mRNAs were detected in GV stage bovine and porcine oocytes. Immunoprecipitation with SUR2 antibody and western blotting with Kir6.1 antibody identified bands corresponding to these subunits in human oocytes. In human oocytes, 2,4-dinitrophenol (400 µM), a metabolic inhibitor known to decrease intracellular ATP and activate K(ATP) channels, increased whole cell K(+) current. On the other hand, K(+) current induced by low intracellular ATP was inhibited by extracellular glibenclamide (30 µM), an oral antidiabetic known to block the opening of K(ATP) channels. CONCLUSIONS In conclusion, mammalian oocytes express K(ATP) channels. This opens a new avenue of research into the complex relationship between metabolism and membrane excitability in oocytes under different conditions, including conception.
Collapse
Affiliation(s)
- Qingyou Du
- Division of Medical Sciences/MACHS, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Sofija Jovanović
- Division of Medical Sciences/MACHS, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Andriy Sukhodub
- Division of Medical Sciences/MACHS, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Evelyn Barratt
- Assisted Conception Unit, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Ellen Drew
- Assisted Conception Unit, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Katherine M. Whalley
- Assisted Conception Unit, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Vanessa Kay
- Assisted Conception Unit, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Marie McLaughlin
- Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| | - Evelyn E. Telfer
- Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| | - Christopher L.R. Barratt
- Division of Medical Sciences/MACHS, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Aleksandar Jovanović
- Division of Medical Sciences/MACHS, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
62
|
Arredouani A, Yu F, Sun L, Machaca K. Regulation of store-operated Ca2+ entry during the cell cycle. J Cell Sci 2010; 123:2155-2162. [PMID: 20554894 PMCID: PMC2886739 DOI: 10.1242/jcs.069690] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytoplasmic Ca(2+) signals are central to numerous cell physiological processes, including cellular proliferation. Historically, much of the research effort in this area has focused on the role of Ca(2+) signals in cell-cycle progression. It is becoming clear, however, that the relationship between Ca(2+) signaling and the cell cycle is a 'two-way street'. Specifically, Ca(2+)-signaling pathways are remodeled during M phase, leading to altered Ca(2+) dynamics. Such remodeling probably better serves the large variety of functions that cells must perform during cell division compared with during interphase. This is clearly the case during oocyte meiosis, because remodeling of Ca(2+) signals partially defines the competence of the egg to activate at fertilization. Store-operated Ca(2+) entry (SOCE) is a ubiquitous Ca(2+)-signaling pathway that is regulated during M phase. In this Commentary, we discuss the latest advances in our understanding of how SOCE is regulated during cell division.
Collapse
Affiliation(s)
- Abdelilah Arredouani
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Fang Yu
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Lu Sun
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, PO Box 24144, Doha, Qatar
| |
Collapse
|
63
|
Aarabi M, Qin Z, Xu W, Mewburn J, Oko R. Sperm-borne protein, PAWP, initiates zygotic development in Xenopus laevis by eliciting intracellular calcium release. Mol Reprod Dev 2010; 77:249-56. [PMID: 20017143 DOI: 10.1002/mrd.21140] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously reported postacrosomal sheath WW domain binding protein (PAWP) as a candidate sperm borne, oocyte-activating factor. PAWP enters the oocyte during fertilization and induces oocyte activation events including meiotic resumption, pronuclear formation, and egg cleavage. However, in order to provide proof that PAWP is a primary initiator of zygotic development it is imperative to show that PAWP initiates intracellular calcium signaling, which is considered essential for oocyte activation. Utilizing Xenopus laevis as our model, we injected recombinant PAWP or Xenopus sperm into metaphase II-arrested oocytes and observed a significant rise in intracellular calcium levels over controls. Concurring intensities and durations of PAWP and sperm-induced calcium waves, detected by infrared two-photon laser-scanning fluorescence microscopy, were prevented by coinjection of a competitive PPGY-containing peptide derived from PAWP but not by the point-mutated form of this peptide. This study also correlates PAWP and sperm-induced calcium release with meiotic resumption in Xenopus. The similar mode of oocyte activation, and the ability of the competitive peptide in blocking both sperm- and PAWP-induced calcium release, provide evidence for the first time that sperm-anchored PAWP is a primary initiator of zygotic development.
Collapse
Affiliation(s)
- Mahmoud Aarabi
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
64
|
Orai1 internalization and STIM1 clustering inhibition modulate SOCE inactivation during meiosis. Proc Natl Acad Sci U S A 2009; 106:17401-6. [PMID: 19805124 DOI: 10.1073/pnas.0904651106] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Store-operated Ca(2+) entry (SOCE) is a ubiquitous Ca(2+) influx pathway activated in response to depletion of intracellular Ca(2+) stores. SOCE is a primary modulator of intracellular Ca(2+) dynamics, which specify cellular responses. Interestingly, SOCE inactivates during M phase but the mechanisms involved remain unclear. SOCE is mediated by clustering of the ER Ca(2+) sensor STIM1 in response to Ca(2+) store depletion, leading to gating of the plasma membrane SOCE channel Orai1. Here we show that SOCE inactivation in meiosis is the result of internalization of Orai1 into an intracellular vesicular compartment and to the inability of STIM1 to cluster in response to store depletion. At rest, Orai1 continuously recycles between the cell membrane and an endosomal compartment. We further show that STIM1-STIM1 interactions are inhibited during meiosis, which appears to mediate the inability of STIM1 to form puncta following store depletion. In contrast, STIM1-Orai1 interactions remain functional during meiosis. Combined, the removal of Orai1 from the cell membrane and STIM1 clustering inhibition effectively uncouple store depletion from SOCE activation in meiosis. Although STIM1 is phosphorylated during meiosis, phosphomimetic and alanine substitution mutations do not modulate STIM1 clustering, arguing that phosphorylation does not mediate STIM1 clustering inhibition during meiosis.
Collapse
|
65
|
Acetylcholine rescues two-cell block through activation of IP3 receptors and Ca2+/calmodulin-dependent kinase II in an ICR mouse strain. Pflugers Arch 2009; 458:1125-36. [PMID: 19484474 DOI: 10.1007/s00424-009-0686-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 05/10/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
Abstract
Acetylcholine (ACh) causes early activation events in mouse oocytes, but little is known about its precise role in the early embryonic development of mice. We aimed to determine whether and how ACh is capable of rescuing two-cell block in an in vitro culture system. ACh evoked different transient Ca(2+) patterns showing a higher Ca(2+) peak in the two-cell stage embryos (two-cells) than observed in mature oocytes. In early two-cells subjected to an in vitro two-cell block, xestospongin C (Xes-C), an IP3 receptor antagonist, significantly decreased the level of the ACh-induced Ca(2+) increase. The reduction in the ACh-induced Ca(2+) increase by Xes-C in late two-cells was lower than that in early two-cells. Furthermore, KN62 and KN93, both CaMKII inhibitors, were found to reduce the magnitude of the ACh-induced Ca(2+) increase in early two-cells. The addition of ACh to the culture medium showed an ability to rescue in vitro two-cell block. However, the addition of ACh together with both Xes-C and CaMKII inhibitors or with either inhibitor separately had no effect on the rescue of two-cell block. Long-term exposure of late two-cells to ACh decreased morula and early blastocyst development and ACh had a differential effect on early and late two-cells. These results indicate that ACh likely rescues the in vitro two-cell block through activation of IP3R- and/or CaMKII-dependent signal transduction pathways.
Collapse
|
66
|
Sun L, Haun S, Jones RC, Edmondson RD, Machaca K. Kinase-dependent regulation of inositol 1,4,5-trisphosphate-dependent Ca2+ release during oocyte maturation. J Biol Chem 2009; 284:20184-96. [PMID: 19473987 DOI: 10.1074/jbc.m109.004515] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fertilization induces a species-specific Ca(2+) transient with specialized spatial and temporal dynamics, which are essential to temporally encode egg activation events such as the block to polyspermy and resumption of meiosis. Eggs acquire the competence to produce the fertilization-specific Ca(2+) transient during oocyte maturation, which encompasses dramatic potentiation of inositol 1,4,5-trisphosphate (IP(3))-dependent Ca(2+) release. Here we show that increased IP(3) receptor (IP(3)R) sensitivity is initiated at the germinal vesicle breakdown stage of maturation, which correlates with maturation promoting factor (MPF) activation. Extensive phosphopeptide mapping of the IP(3)R resulted in approximately 70% coverage and identified three residues, Thr-931, Thr-1136, and Ser-114, which are specifically phosphorylated during maturation. Phospho-specific antibody analyses show that Thr-1136 phosphorylation requires MPF activation. Activation of either MPF or the mitogen-activated protein kinase cascade independently, functionally sensitizes IP(3)-dependent Ca(2+) release. Collectively, these data argue that the kinase cascades driving meiotic maturation potentiates IP(3)-dependent Ca(2+) release, possibly trough direct phosphorylation of the IP(3)R.
Collapse
Affiliation(s)
- Lu Sun
- Department of Physiology and Biophysics, University of Arkansas for Medical Science, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
67
|
Koh S, Lee K, Wang C, Cabot RA, Machaty Z. STIM1 regulates store-operated Ca2+ entry in oocytes. Dev Biol 2009; 330:368-76. [PMID: 19362545 DOI: 10.1016/j.ydbio.2009.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 03/16/2009] [Accepted: 04/03/2009] [Indexed: 01/23/2023]
Abstract
The single transmembrane-spanning Ca(2+)-binding protein, STIM1, has been proposed to function as a Ca(2+) sensor that links the endoplasmic reticulum to the activation of store-operated Ca(2+) channels. In this study, the presence, subcellular localization and function of STIM1 in store-operated Ca(2+) entry in oocytes was investigated using the pig as a model. Cloning and sequence analysis revealed the presence of porcine STIM1 with a coding sequence of 2058 bp. In oocytes with full cytoplasmic Ca(2+) stores, STIM1 was localized predominantly in the inner cytoplasm as indicated by immunocytochemistry or overexpression of human STIM1 conjugated to the yellow fluorescent protein. Depletion of the Ca(2+) stores was associated with redistribution of STIM1 along the plasma membrane. Increasing STIM1 expression resulted in enhanced Ca(2+) influx after store depletion and subsequent Ca(2+) add-back; the influx was inhibited when the oocytes were pretreated with lanthanum, a specific inhibitor of store-operated Ca(2+) channels. When STIM1 expression was suppressed using siRNAs, there was no change in cytosolic free Ca(2+) levels in the store-depleted oocytes after Ca(2+) add-back. The findings suggest that in oocytes, STIM1 serves as a sensor of Ca(2+) store content that after store depletion moves to the plasma membrane to stimulate store-operated Ca(2+) entry.
Collapse
Affiliation(s)
- Sehwon Koh
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | | | |
Collapse
|
68
|
Ferreira E, Vireque A, Adona P, Meirelles F, Ferriani R, Navarro P. Cytoplasmic maturation of bovine oocytes: Structural and biochemical modifications and acquisition of developmental competence. Theriogenology 2009; 71:836-48. [DOI: 10.1016/j.theriogenology.2008.10.023] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 10/14/2008] [Accepted: 10/19/2008] [Indexed: 11/28/2022]
|
69
|
Feugier A, Frelon S, Gourmelon P, Claraz M. Alteration of mouse oocyte quality after a subchronic exposure to depleted Uranium. Reprod Toxicol 2008; 26:273-7. [DOI: 10.1016/j.reprotox.2008.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/12/2008] [Accepted: 09/24/2008] [Indexed: 01/04/2023]
|
70
|
El-Jouni W, Haun S, Machaca K. Internalization of plasma membrane Ca2+-ATPase during Xenopus oocyte maturation. Dev Biol 2008; 324:99-107. [PMID: 18823969 DOI: 10.1016/j.ydbio.2008.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/14/2008] [Accepted: 09/08/2008] [Indexed: 11/30/2022]
Abstract
A transient increase in intracellular Ca(2+) is the universal signal for egg activation at fertilization. Eggs acquire the ability to mount the specialized fertilization-specific Ca(2+) signal during oocyte maturation. The first Ca(2+) transient following sperm entry in vertebrate eggs has a slow rising phase followed by a sustained plateau. The molecular determinants of the sustained plateau are poorly understood. We have recently shown that a critical determinant of Ca(2+) signaling differentiation during oocyte maturation is internalization of the plasma membrane calcium ATPase (PMCA). PMCA internalization is representative of endocytosis of several integral membrane proteins during oocyte maturation, a requisite process for early embryogenesis. Here we investigate the mechanisms regulating PMCA internalization. To track PMCA trafficking in live cells we cloned a full-length cDNA of Xenopus PMCA1, and show that GFP-tagged PMCA traffics in a similar fashion to endogenous PMCA. Functional data show that MPF activation during oocyte maturation is required for full PMCA internalization. Pharmacological and co-localization studies argue that PMCA is internalized through a lipid raft endocytic pathway. Deletion analysis reveal a requirement for the N-terminal cytoplasmic domain for efficient internalization. Together these studies define the mechanistic requirements for PMCA internalization during oocyte maturation.
Collapse
Affiliation(s)
- Wassim El-Jouni
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | |
Collapse
|