51
|
Zhou Y, Xu S, Xia H, Gao Z, Huang R, Tang E, Jiang X. Long noncoding RNA FEZF1-AS1 in human cancers. Clin Chim Acta 2019; 497:20-26. [PMID: 31276636 DOI: 10.1016/j.cca.2019.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play key roles in various human tumors. Ectopic expression of the lncRNA FEZ finger zinc 1 antisense 1 (FEZF1-AS1) have been reported in different cancers, including colorectal cancer, gastric neoplasia, hepatocellular carcinoma and so on. Summarizing all literature correlated with FEZF1-AS1, it is obvious that FEZF1-AS1 is mainly involved in tumorigenesis and progression through competing endogenous RNA (ceRNA) which sponges tumor-suppressive microRNA (miRNA) and recruiting mechanism. Moreover, the aberrant expression of FEZF1-AS1 is related to clinical features of patients with cancers, and regulates cellular proliferation, anti-apoptosis, invasion and metastasis through diverse underlying mechanisms. The role of FEZF1-AS1 in carcinogenesis and progression suggests that it may be a potential diagnostic biomarker or a novel therapeutic target for cancers.
Collapse
Affiliation(s)
- Yuanshi Zhou
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin 150086, China
| | - Shuwan Xu
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin 150086, China
| | - Haoming Xia
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin 150086, China
| | - Zewei Gao
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin 150086, China
| | - Rongju Huang
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin 150086, China
| | - Enyu Tang
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin 150086, China
| | - Xingming Jiang
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin 150086, China.
| |
Collapse
|
52
|
FEZF1-AS1: a novel vital oncogenic lncRNA in multiple human malignancies. Biosci Rep 2019; 39:BSR20191202. [PMID: 31175144 PMCID: PMC6591563 DOI: 10.1042/bsr20191202] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (LncRNAs) refer to the RNA with a length of >200 nucleotides, which lack or have no open reading coding frame and have higher tissue and organ specificity compared with the protein coding genes. A surging number of studies have shown that lncRNA is involved in numerous essential regulatory processes, such as X chromosome silencing, genomic imprinting, chromatin modification, transcriptional activation, transcriptional interference and nuclear transport, which are closely related to the occurrence and development of human malignancies. FEZ family Zinc Finger 1-Antisense RNA 1 (FEZF1-AS1) of FEZ family is a recently discovered lncRNA. FEZF1-AS1 is highly expressed in pancreatic cancer, colorectal cancer, lung adenocarcinoma and other human malignancies, and is associated with poor prognosis. As an oncogene, it plays crucial role in the proliferation, migration, invasion and Warburg effect of various tumor cells. In addition, FEZF1-AS1 is also involved in the regulation of multiple signal pathways such as epithelial–mesenchymal transition (EMT), signal transducer and activator of transcription 3 (STAT3) and Wnt/ β-catenin. In this paper, the recent research progress of FEZF1-AS1 in tumorigenesis and development is reviewed systematically.
Collapse
|
53
|
Zhang Y, Yang QX, Peng TT, Wang LJ, Xiao GL, Tang SB. Prognostic value of lncRNA FEZF1 antisense RNA 1 over-expression in oncologic outcomes of patients with solid tumors. Medicine (Baltimore) 2019; 98:e15982. [PMID: 31192939 PMCID: PMC6587645 DOI: 10.1097/md.0000000000015982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND FEZ family zinc finger 1 antisense RNA 1 (FEZF1-AS1), as a novel lncRNA, was reported to be up-regulated in various cancers and involved in tumor progression. This study systematically assessed the prognostic value of FEZF1-AS1 in solid tumors. METHODS Web of Science, PubMed, EMBASE, Chinese National Knowledge Infrastructure, and Wanfang databases were searched for eligible studies that evaluated the prognostic role of FEZF1-AS1 expression in cancer patients. Pooled hazard ratios (HRs) and combined odds ratios (ORs) with their 95% confidence intervals (CIs) were calculated. The meta-analysis was conducted using Stata/SE 14.1. RESULTS Fifteen original studies involving 1378 patients were enrolled. Pooled results showed that increased expression of FEZF1-AS1 significantly correlated with shorter overall survival (OS) in cancer patients (HR 2.04, 95% CI 1.60-2.47), and also shorter disease-free survival (DFS) (HR 2.08, 95% CI 1.27-2.89). Additionally, the combined ORs indicated that increased FEZF1-AS1 expression was significantly associated with lymph node metastasis (OR 3.35, 95% CI 1.98-5.67), distant metastasis (OR 3.10, 95% CI 1.86-5.15), poor tumor differentiation (OR 2.90, 95% CI 1.45-5.80), high depth of tumor invasion (OR 2.72, 95% CI 1.36-5.43), and advanced clinical stage (OR 2.76, 95% CI 1.75-4.35). Expression analysis using the Gene Expression Profiling Interactive Analysis database indicated that the expression of FEZF1-AS1 was higher in tumor tissues than that in the corresponding normal tissues. The results of survival analysis revealed that increased FEZF1-AS1 expression was correlated with poor OS and DFS in cancer patients. CONCLUSIONS LncRNA FEZF1-AS1 may serve as a valuable prognostic biomarker for clinical outcomes in various solid tumors.
Collapse
Affiliation(s)
- Yi Zhang
- Department of General Surgery, the First People's Hospital of Neijiang, Neijiang, Sichuan Province
| | - Qiu-Xi Yang
- Department of Nursing, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province
| | - Ting-Ting Peng
- Department of Nursing, the First People's Hospital of Neijiang, Neijiang, Sichuan Province
| | - Li-Juan Wang
- Department of Nephrology, Shangrao People's Hospital, Shangrao, Jiangxi Province
| | - Guo-Liang Xiao
- Department of General Surgery, the First People's Hospital of Neijiang, Neijiang, Sichuan Province
| | - Shu-Bin Tang
- Department of Oncology, the First People's Hospital of Neijiang, Neijiang, Sichuan Province, P.R. China
| |
Collapse
|
54
|
FEZF1-AS1 functions as an oncogenic lncRNA in retinoblastoma. Biosci Rep 2019; 39:BSR20190754. [PMID: 31076545 PMCID: PMC6542757 DOI: 10.1042/bsr20190754] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/28/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNA (lncRNA) FEZF1 antisense RNA 1 (FEZF1-AS1) has been shown to be up-regulated in tumor tissues and cells, and exerts oncogenic effects on various types of malignancies. However, the expression and function of FEZF1-AS1 was still fully unclear in retinoblastoma. The purpose of our study was to investigate the expression and clinical value of FEZF1-AS1 in retinoblastoma patients, and explore the effect of FEZF1-AS1 on retinoblastoma cell proliferation, migration and invasion. In our results, levels of FEZF1-AS1 expression were elevated in retinoblastoma tissue specimens and cell lines compared with adjacent normal retina tissue specimens and human retinal pigment epithelial cell line, respectively. The correlation analysis indicated that high FEZF1-AS1 expression was significantly correlated with present choroidal invasion and optic nerve invasion. Survival analysis suggested that retinoblastoma patients in high FEZF1-AS1 expression group had obviously short disease-free survival (DFS) compared with retinoblastoma patients in low FEZF1-AS1 expression group, and high FEZF1-AS1 expression was an independent unfavorable prognostic factor for DFS in retinoblastoma patients. Loss-of-function study indicated silencing FEZF1-AS1 expression inhibited retinoblastoma cell proliferation, invasion and migration. In conclusion, FEZF1-AS1 functions as an oncogenic lncRNA in retinoblastoma.
Collapse
|
55
|
Zhang Y, Xiao X, Zhou W, Hu J, Zhou D. LIN28A-stabilized FBXL19-AS1 promotes breast cancer migration, invasion and EMT by regulating WDR66. In Vitro Cell Dev Biol Anim 2019; 55:426-435. [DOI: 10.1007/s11626-019-00361-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
|
56
|
Yang L, Ye Y, Chu J, Jia J, Qu Y, Sun T, Yin H, Ming L, Wan J, He F. Long noncoding RNA FEZF1-AS1 promotes the motility of esophageal squamous cell carcinoma through Wnt/β-catenin pathway. Cancer Manag Res 2019; 11:4425-4435. [PMID: 31191005 PMCID: PMC6525003 DOI: 10.2147/cmar.s196004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/17/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Long noncoding RNAs (lncRNAs), a class of noncoding RNA nucleotides >200 bp, has been demonstrated to play vital role in the development of cancer. FEZ family zinc finger 1 antisense RNA 1 (FEZF1-AS1) has been reported as an lncRNA which acts as a tumor-promoting effect in some cancers. However, the role of it in esophageal squamous cell carcinoma (ESCC) and its potential regulatory mechanism was unclear now. Methods: qRT-PCR was used to detect the levels of FEZF1-AS1 and mRNA CTNNB1 (β-catenin) in ESCC tissues and cells. Cell transfection experiments were used to knock down or overexpress the level of FEZF1-AS1 in EC1 and EC9706 cell lines. WST-1 assays, cell cycle assays, scratch wound assays, migration, and invasion assays were used to evaluate the function of FEZF1-AS1 in ESCC progression. Results: FEZF1-AS1 was remarkably upregulated in ESCC tissues and cell lines. Silencing of FEZF1-AS1 significantly inhibited the migration and invasion of ESCC cells, while overexpression of FEZF1-AS1 notably accelerated ESCC migration and invasion. Meanwhile, the levels of FEZF1-AS1 had no effect on ESCC cell proliferation and cell cycle. We also found that β-catenin was upregulated in ESCC tissues, and the level of it was positively correlated with the expression of FEZF1-AS1. Silencing of FEZF1-AS1 could decrease the mRNA and protein level of β-catenin, while overexpression FEZF1-AS1 could lead to the contrary. Conclusion: Our results suggested that the expression of lncRNA FEZF1-AS1 played an important role in ESCC progression, especially the motility of the tumor. FEZF1-AS1 may provide us with a new sight for ESCC treatment.
Collapse
Affiliation(s)
- Lijun Yang
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Yafei Ye
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Jie Chu
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Jinlin Jia
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Yunhui Qu
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Ting Sun
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Huiqing Yin
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Liang Ming
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Junhu Wan
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Fucheng He
- Department of Medical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| |
Collapse
|
57
|
Qiu G, Ma D, Li F, Sun D, Zeng Z. lnc-PKD2-2-3, identified by long non-coding RNA expression profiling, is associated with pejorative tumor features and poor prognosis, enhances cancer stemness and may serve as cancer stem-cell marker in cholangiocarcinoma. Int J Oncol 2019; 55:45-58. [PMID: 31059014 PMCID: PMC6561618 DOI: 10.3892/ijo.2019.4798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to explore the long non-coding RNA (lncRNA) expression profiles and correlation of lnc-PKD2-2-3 with tumor features and prognosis, and to investigate its effect on regulating cancer-cell stemness and its potential as a cancer stem cell (CSC) marker in cholangiocarcinoma (CCA). lncRNA expression profiles were determined in 3 pairs of CCA tumors and adjacent tissues by microarray analysis, and lnc-PKD2-2-3 expression was then validated in 60 paired samples by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Expression of common CSC markers [(CD44, CD133 and octamer-binding transcription factor 4 (OCT4)], CD44+CD133+ cell proportions, sphere formation efficiency and drug resistance to 5-fluorouracil (5-FU) were measured following ectopic overexpression of lnc-PKD2-2-3 or silencing via small hairpin RNA lentivirus transfection into the TFK-1 and Huh-28 CCA cell lines. Finally, lnc-PKD2-2-3 expression was measured in CCA stem-like cells and normal CCA cells. The results from the microarray analysis identified a total of 4,223 upregulated and 4,596 downregulated lncRNAs between CCA tumor tissue and paired adjacent tissue, which were enriched in regulating cancer-associated pathways. RT-qPCR validation revealed that lnc-PKD2-2-3 was upregulated in CCA and associated with a higher Eastern Cooperative Oncology Group performance score, poor differentiation, advanced TNM stage, increased carcinoembryonic antigen and poor overall survival in CCA patients. In vitro, lnc-PKD2-2-3 increased CD44, CD133 and OCT4 expression as well as the CD44+CD133+ cell proportion, raised the sphere formation efficiency and enhanced drug resistance to 5-FU in TFK-1 and Huh-28 cells. In addition, lnc-PKD2-2-3 was positively correlated with CSC markers in CCA tumor tissues and was markedly upregulated in CCA stem-like cells compared with that in normal CCA cells. In conclusion, lnc-PKD2-2-3, selected by lncRNA expression profiling, was associated with pejorative tumor features and poor prognosis, enhanced cancer stemness and may serve as a CSC marker in CCA.
Collapse
Affiliation(s)
- Gongcai Qiu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Donglai Ma
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Fujun Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Dongsheng Sun
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhaolin Zeng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
58
|
Berral-Gonzalez A, Riffo-Campos AL, Ayala G. OMICfpp: a fuzzy approach for paired RNA-Seq counts. BMC Genomics 2019; 20:259. [PMID: 30940089 PMCID: PMC6444640 DOI: 10.1186/s12864-019-5496-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/29/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND RNA sequencing is a widely used technology for differential expression analysis. However, the RNA-Seq do not provide accurate absolute measurements and the results can be different for each pipeline used. The major problem in statistical analysis of RNA-Seq and in the omics data in general, is the small sample size with respect to the large number of variables. In addition, experimental design must be taken into account and few tools consider it. RESULTS We propose OMICfpp, a method for the statistical analysis of RNA-Seq paired design data. First, we obtain a p-value for each case-control pair using a binomial test. These p-values are aggregated using an ordered weighted average (OWA) with a given orness previously chosen. The aggregated p-value from the original data is compared with the aggregated p-value obtained using the same method applied to random pairs. These new pairs are generated using between-pairs and complete randomization distributions. This randomization p-value is used as a raw p-value to test the differential expression of each gene. The OMICfpp method is evaluated using public data sets of 68 sample pairs from patients with colorectal cancer. We validate our results through bibliographic search of the reported genes and using simulated data set. Furthermore, we compared our results with those obtained by the methods edgeR and DESeq2 for paired samples. Finally, we propose new target genes to validate these as gene expression signatures in colorectal cancer. OMICfpp is available at http://www.uv.es/ayala/software/OMICfpp_0.2.tar.gz . CONCLUSIONS Our study shows that OMICfpp is an accurate method for differential expression analysis in RNA-Seq data with paired design. In addition, we propose the use of randomized p-values pattern graphic as a powerful and robust method to select the target genes for experimental validation.
Collapse
Affiliation(s)
- Alberto Berral-Gonzalez
- Grupo de Investigación Bioinformática y Genómica Funcional. Laboratorio 19. Centro de Investigación del Cáncer (CiC-IBMCC, Universidad de Salamanca-CSIC, Campus Universitario Miguel de Unamuno s/n, Salamanca, 37007 Spain
| | - Angela L. Riffo-Campos
- Universidad de La Frontera. Centro De Excelencia de Modelación y Computación Científica, C/ Montevideo 740, Temuco, Chile
| | - Guillermo Ayala
- Universidad de Valencia. Departamento de Estadística e Investigación Operativa, Avda. Vicent Andrés Estellés, 1, Burjasot, 46100 Spain
| |
Collapse
|
59
|
Xiong Y, Gu Y, Wang F, Li L, Zhu M, Wang N, Mi H, Qiu X. LINC01857 as an oncogene regulates CREB1 activation by interacting with CREBBP in breast cancer. J Cell Physiol 2019; 234:14031-14039. [PMID: 30628071 DOI: 10.1002/jcp.28090] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/07/2018] [Indexed: 12/29/2022]
Abstract
Breast cancer is a one of the most malignant threats among women worldwide. However, the mechanism underlying breast cancer development remains unclear. Long noncoding RNAs (lncRNAs) have been reported to participate in breast cancer. Whether lncRNA LINC01857 is involved in breast cancer requires investigation. In this study, we found that LINC01857 was highly expressed in breast cancer tissues and cells (p < 0.05). High LINC01857 expression predicted poor prognosis in breast cancer patients. Functionally, LINC01857 silencing impaired proliferation and enhanced apoptosis of breast cancer cells ( p < 0.05). Decreased LINC01857 inhibited breast cancer cells migration and invasion ability ( p < 0.05). In terms of mechanism, LINC01857 promoted H3K27Ac deposition on CREB1 promoter and initiated its transcription by recruiting CREBBP. Overexpression of CREB1 reversed the biological behavior of breast cancer cells induced by LINC01857 silencing ( p < 0.05). Taken together, our findings demonstrated that LINC01857 promoted breast cancer development by promoting H3K27Ac and CREB1 transcription via enhancing CREBBP enrichment in the CREB1 promoter region.
Collapse
Affiliation(s)
- Youyi Xiong
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingzhi Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hailong Mi
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinguang Qiu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
60
|
Sridharan S, Howard CM, Tilley AMC, Subramaniyan B, Tiwari AK, Ruch RJ, Raman D. Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance. Front Oncol 2019. [PMID: 31681564 DOI: 10.3389/fonc.2019.01003.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Breast cancer stem cells (BCSCs) play a vital role in tumor progression and metastasis. They are heterogeneous and inherently radio- and chemoresistant. They have the ability to self-renew and differentiate into non-BCSCs. These determinants of BCSCs including the plasticity between the mesenchymal and epithelial phenotypes often leads to minimal residual disease (MRD), tumor relapse, and therapy failure. By studying the resistance mechanisms in BCSCs, a combinatorial therapy can be formulated to co-target BCSCs and bulk tumor cells. This review addresses breast cancer stemness and molecular underpinnings of how the cancer stemness can lead to pharmacological resistance. This might occur through rewiring of signaling pathways and modulated expression of various targets that support survival and self-renewal, clonogenicity, and multi-lineage differentiation into heterogeneous bulk tumor cells following chemotherapy. We explore emerging novel and alternative molecular targets against BC stemness and chemoresistance involving survival, drug efflux, metabolism, proliferation, cell migration, invasion, and metastasis. Strategic targeting of such vulnerabilities in BCSCs may overcome the chemoresistance and increase the longevity of the metastatic breast cancer patients.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Cory M Howard
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Augustus M C Tilley
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | | | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
| | - Randall J Ruch
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
61
|
Lu G, Li Y, Ma Y, Lu J, Chen Y, Jiang Q, Qin Q, Zhao L, Huang Q, Luo Z, Huang S, Wei Z. Long noncoding RNA LINC00511 contributes to breast cancer tumourigenesis and stemness by inducing the miR-185-3p/E2F1/Nanog axis. J Exp Clin Cancer Res 2018; 37:289. [PMID: 30482236 PMCID: PMC6260744 DOI: 10.1186/s13046-018-0945-6] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Emerging evidence have illustrated the vital role of long noncoding RNAs (lncRNAs) long intergenic non-protein coding RNA 00511 (LINC00511) on the human cancer progression and tumorigenesis. However, the role of LINC00511 in breast cancer tumourigenesis is still unknown. This research puts emphasis on the function of LINC00511 on the breast cancer tumourigenesis and stemness, and investigates the in-depth mechanism. METHODS The lncRNA and RNA expression were measured using RT-PCR. Protein levels were measured using western blotting analysis. CCK-8, colony formation assays and transwell assay were performed to evaluate the cell proliferation ability and invasion. Sphere-formation assay was also performed for the stemness. Bioinformatic analysis, chromatin immunoprecipitation (ChIP) and luciferase reporter assays were carried to confirm the molecular binding. RESULTS LINC00511 was measured to be highly expressed in the breast cancer specimens and the high-expression was correlated with the poor prognosis. Functionally, the gain and loss-of-functional experiments revealed that LINC00511 promoted the proliferation, sphere-formation ability, stem factors (Oct4, Nanog, SOX2) expression and tumor growth in breast cancer cells. Mechanically, LINC00511 functioned as competing endogenous RNA (ceRNA) for miR-185-3p to positively recover E2F1 protein. Furthermore, transcription factor E2F1 bind with the promoter region of Nanog gene to promote it transcription. CONCLUSION In conclusion, our data concludes that LINC00511/miR-185-3p/E2F1/Nanog axis facilitates the breast cancer stemness and tumorigenesis, providing a vital insight for them.
Collapse
Affiliation(s)
- Guanming Lu
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Yueyong Li
- The First Affiliated Hospital of Jinan university, Huangpu Road, No. 613, Guangzhou, 510630 Guangdong China
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Yanfei Ma
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Jinlan Lu
- Department of Dental, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Yongcheng Chen
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Qiulan Jiang
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Qiang Qin
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Lifeng Zhao
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Qianfang Huang
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Zhizhai Luo
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Shiqing Huang
- The First Affiliated Hospital of Jinan university, Huangpu Road, No. 613, Guangzhou, 510630 Guangdong China
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
- Department of Tumor, Youjiang Medical College Affiliated Hospital, Zhongshan Second Road, No. 18, Baise, 533000 Guangxi China
| | - Zhongheng Wei
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| |
Collapse
|
62
|
Wang F, Zu Y, Huang W, Chen H, Xie H, Yang Y. LncRNA CALML3-AS1 promotes tumorigenesis of bladder cancer via regulating ZBTB2 by suppression of microRNA-4316. Biochem Biophys Res Commun 2018; 504:171-176. [DOI: 10.1016/j.bbrc.2018.08.150] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/25/2018] [Indexed: 01/01/2023]
|
63
|
Bai Y, Zhou X, Huang L, Wan Y, Li X, Wang Y. Long noncoding RNA EZR-AS1 promotes tumor growth and metastasis by modulating Wnt/β-catenin pathway in breast cancer. Exp Ther Med 2018; 16:2235-2242. [PMID: 30186463 PMCID: PMC6122301 DOI: 10.3892/etm.2018.6461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/25/2018] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has demonstrated that long noncoding RNAs (lncRNAs) serve important roles in tumor development and progression. However, whether lncRNA EZR-AS1 is associated with breast cancer (BC) progression remains unclear. In the present study, reverse transcription-quantitative polymerase chain reaction analysis demonstrated that the expression of EZR-AS1 was significantly upregulated in BC tissues and cell lines. Furthermore, Kaplan-Meier curve analysis revealed that increased EZR-AS1 expression in patients with BC contributes to poor prognosis. Cell counting kit-8 and fluorescence-activated cell sorting experiments indicated that EZR-AS1 knockdown significantly suppressed the proliferation and cell cycle progression of breast cancer cells, while reducing cellular apoptosis. Furthermore, Transwell assays suggested that EZR-AS1 knockdown reduced the migration and invasion ability of BC cells compared with control cells. In the present study, it was observed that EZR-AS1 interacts with β-catenin to prevent degradation. EZR-AS1 knockdown resulted in β-catenin downregulation and inactivation of the Wnt/β-catenin pathway. Rescue assays revealed that β-catenin overexpression reversed the effects of EZR-AS1 knockdown on BC cell proliferation, apoptosis, migration and invasion. In conclusion, the results of the present study demonstrate that EZR-AS1 serves as an oncogene in BC via activating the Wnt/β-catenin pathway. This suggests that EZR-AS1 may be a therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Yu Bai
- Department of Radiation Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Hospital, Chongqing 400030, P.R. China
| | - Xian Zhou
- Department of Radiation Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Hospital, Chongqing 400030, P.R. China
| | - Luo Huang
- Department of Radiation Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Hospital, Chongqing 400030, P.R. China
| | - Yue Wan
- Department of Radiation Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Hospital, Chongqing 400030, P.R. China
| | - Xiaoyu Li
- Department of Radiation Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Hospital, Chongqing 400030, P.R. China
| | - Ying Wang
- Department of Radiation Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Hospital, Chongqing 400030, P.R. China
| |
Collapse
|