51
|
Schaffer J, Fogelman N, Seo D, Sinha R. Chronic pain, chronic stress and substance use: overlapping mechanisms and implications. FRONTIERS IN PAIN RESEARCH 2023; 4:1145934. [PMID: 37415830 PMCID: PMC10320206 DOI: 10.3389/fpain.2023.1145934] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Chronic pain is among the most common reasons adults in the U.S. seek medical care. Despite chronic pain's substantial impact on individuals' physical, emotional, and financial wellness, the biologic underpinnings of chronic pain remain incompletely understood. Such deleterious impact on an individuals' wellness is also manifested in the substantial co-occurrence of chronic stress with chronic pain. However, whether chronic stress and adversity and related alcohol and substance misuse increases risk of developing chronic pain, and, if so, what the overlapping psychobiological processes are, is not well understood. Individuals suffering with chronic pain find alleviation through prescription opioids as well as non-prescribed cannabis, alcohol, and other drugs to control pain, and use of these substances have grown significantly. Substance misuse also increases experience of chronic stress. Thus, given the evidence showing a strong correlation between chronic stress and chronic pain, we aim to review and identify overlapping factors and processes. We first explore the predisposing factors and psychologic features common to both conditions. This is followed by examining the overlapping neural circuitry of pain and stress in order to trace a common pathophysiologic processes for the development of chronic pain and its link to substance use. Based on the previous literature and our own findings, we propose a critical role for ventromedial prefrontal cortex dysfunction, an overlapping brain area associated with the regulation of both pain and stress that is also affected by substance use, as key in the risk of developing chronic pain. Finally, we identify the need for future research in exploring the role of medial prefrontal circuits in chronic pain pathology. Critically, in order to alleviate the enormous burden of chronic pain without exacerbating the co-occurring substance misuse crisis, we emphasize the need to find better approaches to treat and prevent chronic pain.
Collapse
Affiliation(s)
| | | | | | - R. Sinha
- Department of Psychiatry and the Yale Stress Center, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
52
|
Quijas MM, Queme LF, Weyler AA, Butterfield A, Joshi DP, Mitxelena-Balerdi I, Jankowski MP. Sex specific role of RNA-binding protein, AUF1, on prolonged hypersensitivity after repetitive ischemia with reperfusion injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544080. [PMID: 37333316 PMCID: PMC10274888 DOI: 10.1101/2023.06.08.544080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Repetitive ischemia with reperfusion (I/R) injury is a common cause of myalgia. I/R injuries occur in many conditions that differentially affect males and females including complex regional pain syndrome and fibromyalgia. Our preclinical studies have indicated that primary afferent sensitization and behavioral hypersensitivity due to I/R may be due to sex specific gene expression in the DRGs and distinct upregulation of growth factors and cytokines in the affected muscles. In order to determine how these unique gene expression programs may be established in a sex dependent manner in a model that more closely mimics clinical scenarios, we utilized a newly developed prolonged ischemic myalgia model in mice whereby animals experience repeated I/R injuries to the forelimb and compared behavioral results to unbiased and targeted screening strategies in male and female DRGs. Several distinct proteins were found to be differentially expressed in male and female DRGs, including AU-rich element RNA binding protein (AUF1), which is known to regulate gene expression. Nerve specific siRNA-mediated knockdown of AUF1 inhibited prolonged hypersensitivity in females only, while overexpression of AUF1 in male DRG neurons increased some pain-like responses. Further, AUF1 knockdown was able to specifically inhibit repeated I/R induced gene expression in females but not males. Data suggests that RNA binding proteins like AUF1 may underlie the sex specific effects on DRG gene expression that modulate behavioral hypersensitivity after repeated I/R injury. This study may aid in finding distinct receptor differences related to the evolution of acute to chronic ischemic muscle pain development between sexes.
Collapse
Affiliation(s)
- Meranda M. Quijas
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Luis F. Queme
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Alex A. Weyler
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Ally Butterfield
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Diya P. Joshi
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Irati Mitxelena-Balerdi
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Michael P. Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Pediatric Pain Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
53
|
Matesanz-García L, Billerot C, Fundaun J, Schmid AB. Effect of Type and Dose of Exercise on Neuropathic Pain After Experimental Sciatic Nerve Injury: A Preclinical Systematic Review and Meta-Analysis. THE JOURNAL OF PAIN 2023; 24:921-938. [PMID: 36690283 DOI: 10.1016/j.jpain.2023.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/30/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
This preclinical systematic review aimed to determine the effectiveness of different types and doses of exercise on pain behavior and biomarkers in preclinical models of focal neuropathic pain. We searched MEDLINE, EMBASE, Web of Science, PubMed, SCOPUS, CINAHL, and Cochrane library from inception to November 2022 for preclinical studies evaluating the effect of exercise compared to control interventions on neuropathic pain behavior after experimental sciatic nerve injury. If possible, data were meta-analyzed using random effect models with inverse-variance weighting. Thirty-seven studies were included and 26 meta-analyzed. Risk of bias (SYRCLE tool) remained unclear in most studies and reporting quality (CAMARADES) was variable. Exercise reduced mechanical (standardized mean differences [SMD] .53 (95% CI .31, .74), P = .0001, I2 = 0%, n = 364), heat (.32 (.07, .57), P = .01, I2 = 0%, n = 266) and cold hypersensitivity (.51 (.03, 1.0), P = .04, I2 = 0%, n = 90) compared to control interventions. No relationship was apparent between exercise duration or intensity and antinociception. Exercise modulated biomarkers related to different systems (eg, immune system, neurotrophins). Whereas firm conclusions are prevented by the use of male animals only, variable reporting quality and unclear risk of bias in many studies, our results suggest that aerobic exercise is a promising tool in the management of focal neuropathic pain. PERSPECTIVE: This systematic review and meta-analysis demonstrates that aerobic exercise reduces neuropathic pain-related behavior in preclinical models of sciatic nerve injury. This effect is accompanied by changes in biomarkers associated with inflammation and neurotrophins among others. These results could help to develop exercise interventions for patients with neuropathic pain.
Collapse
Affiliation(s)
- Luis Matesanz-García
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Escuela Internacional de Doctorado, Universidad Rey Juan Carlos, Alcorcón, Spain; Department of Physiotherapy, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Clément Billerot
- Faculty of Biology, Euro-Mediterranean Master in Neurosciences and Biotechnology, Université de Bordeaux, Bordeaux, France
| | - Joel Fundaun
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Annina B Schmid
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
54
|
Rodríguez-Palma EJ, Velazquez-Lagunas I, Salinas-Abarca AB, Vidal-Cantú GC, Escoto-Rosales MJ, Castañeda-Corral G, Fernández-Guasti A, Granados-Soto V. Spinal alarmin HMGB1 and the activation of TLR4 lead to chronic stress-induced nociceptive hypersensitivity in rodents. Eur J Pharmacol 2023:175804. [PMID: 37244377 DOI: 10.1016/j.ejphar.2023.175804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Chronic stress affects millions of people around the world, and it can trigger different behavioral disorders like nociceptive hypersensitivity and anxiety, among others. However, the mechanisms underlaying these chronic stress-induced behavioral disorders have not been yet elucidated. This study was designed to understand the role of high-mobility group box-1 (HMGB1) and toll-like receptor 4 (TLR4) in chronic stress-induced nociceptive hypersensitivity. Chronic restraint stress induced bilateral tactile allodynia, anxiety-like behaviors, phosphorylation of ERK and p38MAPK and activation of spinal microglia. Moreover, chronic stress enhanced HMGB1 and TLR4 protein expression at the dorsal root ganglion, but not at the spinal cord. Intrathecal injection of HMGB1 or TLR4 antagonists reduced tactile allodynia and anxiety-like behaviors induced by chronic stress. Additionally, deletion of TLR4 diminished the establishment of chronic stress-induced tactile allodynia in male and female mice. Lastly, the antiallodynic effect of HMGB1 and TLR4 antagonists were similar in stressed male and female rats and mice. Our results suggest that chronic restraint stress induces nociceptive hypersensitivity, anxiety-like behaviors, and up-regulation of spinal HMGB1 and TLR4 expression. Blockade of HMGB1 and TLR4 reverses chronic restraint stress-induced nociceptive hypersensitivity and anxiety-like behaviors and restores altered HMGB1 and TLR4 expression. The antiallodynic effects of HMGB1 and TLR4 blockers in this model are sex independent. TLR4 could be a potential pharmacological target for the treatment of the nociceptive hypersensitivity associated with widespread chronic pain.
Collapse
Affiliation(s)
- Erick J Rodríguez-Palma
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Isabel Velazquez-Lagunas
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Ana Belen Salinas-Abarca
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Guadalupe C Vidal-Cantú
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - María J Escoto-Rosales
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | | | | | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico.
| |
Collapse
|
55
|
Chen Y, Liu Z, Gong Y. Neuron-immunity communication: mechanism of neuroprotective effects in EGCG. Crit Rev Food Sci Nutr 2023; 64:9333-9352. [PMID: 37216484 DOI: 10.1080/10408398.2023.2212069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Epigallocatechin gallate (EGCG), a naturally occurring active ingredient unique to tea, has been shown to have neuroprotective potential. There is growing evidence of its potential advantages in the prevention and treatment of neuroinflammation, neurodegenerative diseases, and neurological damage. Neuroimmune communication is an important physiological mechanism in neurological diseases, including immune cell activation and response, cytokine delivery. EGCG shows great neuroprotective potential by modulating signals related to autoimmune response and improving communication between the nervous system and the immune system, effectively reducing the inflammatory state and neurological function. During neuroimmune communication, EGCG promotes the secretion of neurotrophic factors into the repair of damaged neurons, improves intestinal microenvironmental homeostasis, and ameliorates pathological phenotypes through molecular and cellular mechanisms related to the brain-gut axis. Here, we discuss the molecular and cellular mechanisms of inflammatory signaling exchange involving neuroimmune communication. We further emphasize that the neuroprotective role of EGCG is dependent on the modulatory role between immunity and neurology in neurologically related diseases.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| |
Collapse
|
56
|
Rodríguez-Palma EJ, De la Luz-Cuellar YE, Islas-Espinoza AM, Félix-Leyva AE, Shiers SI, García G, Torres-Lopez JE, Delgado-Lezama R, Murbartián J, Price TJ, Granados-Soto V. Activation of α 6 -containing GABA A receptors induces antinociception under physiological and pathological conditions. Pain 2023; 164:948-966. [PMID: 36001074 PMCID: PMC9950299 DOI: 10.1097/j.pain.0000000000002763] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The loss of GABAergic inhibition is a mechanism that underlies neuropathic pain. Therefore, rescuing the GABAergic inhibitory tone through the activation of GABA A receptors is a strategy to reduce neuropathic pain. This study was designed to elucidate the function of the spinal α 6 -containing GABA A receptor in physiological conditions and neuropathic pain in female and male rats. Results show that α 6 -containing GABA A receptor blockade or transient α 6 -containing GABA A receptor knockdown induces evoked hypersensitivity and spontaneous pain in naive female rats. The α 6 subunit is expressed in IB4 + and CGRP + primary afferent neurons in the rat spinal dorsal horn and dorsal root ganglia but not astrocytes. Nerve injury reduces α 6 subunit protein expression in the central terminals of the primary afferent neurons and dorsal root ganglia, whereas intrathecal administration of positive allosteric modulators of the α 6 -containing GABA A receptor reduces tactile allodynia and spontaneous nociceptive behaviors in female, but not male, neuropathic rats and mice. Overexpression of the spinal α 6 subunit reduces tactile allodynia and restores α 6 subunit expression in neuropathic rats. Positive allosteric modulators of the α 6 -containing GABA A receptor induces a greater antiallodynic effect in female rats and mice compared with male rats and mice. Finally, α 6 subunit is expressed in humans. This receptor is found in CGRP + and P2X3 + primary afferent fibers but not astrocytes in the human spinal dorsal horn. Our results suggest that the spinal α 6 -containing GABA A receptor has a sex-specific antinociceptive role in neuropathic pain, suggesting that this receptor may represent an interesting target to develop a novel treatment for neuropathic pain.
Collapse
Affiliation(s)
- Erick J. Rodríguez-Palma
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Yarim E. De la Luz-Cuellar
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Ana M. Islas-Espinoza
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Adalberto E. Félix-Leyva
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
- Facultad de Biología, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Stephanie I. Shiers
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Guadalupe García
- Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Jorge E. Torres-Lopez
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Rodolfo Delgado-Lezama
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, Zacatenco, Mexico City, Mexico
| | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Theodore J. Price
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| |
Collapse
|
57
|
Shen BQ, Sankaranarayanan I, Price TJ, Tavares-Ferreira D. Sex-differences in prostaglandin signaling: a semi-systematic review and characterization of PTGDS expression in human sensory neurons. Sci Rep 2023; 13:4670. [PMID: 36949072 PMCID: PMC10033690 DOI: 10.1038/s41598-023-31603-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
There is increasing evidence of sex differences in underlying mechanisms causing pain in preclinical models, and in clinical populations. There are also important disconnects between clinical pain populations and the way preclinical pain studies are conducted. For instance, osteoarthritis pain more frequently affects women, but most preclinical studies have been conducted using males in animal models. The most widely used painkillers, nonsteroidal anti-inflammatory drugs (NSAIDs), act on the prostaglandin pathway by inhibiting cyclooxygenase (COX) enzymes. The purpose of this study was to analyze the preclinical and clinical literature on the role of prostaglandins and COX in inflammation and pain. We aimed to specifically identify studies that used both sexes and investigate whether any sex-differences in the action of prostaglandins and COX inhibition had been reported, either in clinical or preclinical studies. We conducted a PubMed search and identified 369 preclinical studies and 100 clinical studies that matched our inclusion/exclusion criteria. Our analysis shows that only 17% of preclinical studies on prostaglandins used both sexes and, out of those, only 19% analyzed or reported data separated by sex. In contrast, 79% of the clinical studies analyzed used both sexes. However, only 6% of those reported data separated by sex. Interestingly, 14 out of 15 preclinical studies and 5 out of 6 clinical studies that analyzed data separated by sex have identified sex-differences. This builds on the increasing evidence of sex-differences in prostaglandin signaling and the importance of sex as a biological variable in data analysis. The preclinical literature identifies a sex difference in prostaglandin D2 synthase (PTGDS) expression where it is higher in female than in male rodents in the nervous system. We experimentally validated that PTGDS expression is higher in female human dorsal root ganglia (DRG) neurons recovered from organ donors. Our semi-systematic literature review reveals a need for continued inclusivity of both male and female animals in prostaglandins studies and data analysis separated by sex in preclinical and clinical studies. Our finding of sex-differences in neuronal PTGDS expression in humans exemplifies the need for a more comprehensive understanding of how the prostaglandin system functions in the DRG in rodents and humans.
Collapse
Affiliation(s)
- Breanna Q Shen
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA.
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA.
| |
Collapse
|
58
|
Sex Differences in the Expression of Neuroimmune Molecules in the Spinal Cord of a Mouse Model of Antiretroviral-Induced Neuropathic Pain. Biomedicines 2023; 11:biomedicines11030875. [PMID: 36979854 PMCID: PMC10045154 DOI: 10.3390/biomedicines11030875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs), drugs used to treat HIV infection, can cause neuropathic pain (NP) and neuroinflammation. An NRTI, 2′-3′-dideoxycytidine (ddC), was reported to induce mechanical allodynia and increase proinflammatory cytokines in the brains of female mice. In some models of NP, microglia activation is important for NP pathophysiology in male mice, while T cells are important in female mice. Age-matched female and male mice (BALB/c strain) treated intraperitoneally once daily with ddC for 5 days developed mechanical allodynia. Treatment with ddC increased Cd11b, H2-Aa, Cd3e, Mapk1, Il1b, Tnf, and Il10 mRNA levels in the spinal cords of female, but not male, mice, whereas there was no alteration found in Gfap and Mapk14 transcripts in both sexes on day 7 after ddC administration. The protein expression of CD11b and phospho-p38 MAPK was significantly increased in the spinal cords of ddC-treated female, but not male, mice, whereas Iba1 protein was elevated in ddC-treated male mice. There was no change in GFAP, CD3e, and phospho-p44/42 MAPK protein levels in both sexes. Thus, changes in neuroimmune cells and molecules in the spinal cords during ddC-induced neuroinflammation were sex-dependent, with female mice being more prone to neuroimmune changes than male mice.
Collapse
|
59
|
Inflammatory Blood Signature Related to Common Psychological Comorbidity in Chronic Pain. Biomedicines 2023; 11:biomedicines11030713. [PMID: 36979692 PMCID: PMC10045222 DOI: 10.3390/biomedicines11030713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Chronic pain is characterized by high psychological comorbidity, and diagnoses are symptom-based due to a lack of clear pathophysiological factors and valid biomarkers. We investigate if inflammatory blood biomarker signatures are associated with pain intensity and psychological comorbidity in a mixed chronic pain population. Eighty-one patients (72% women) with chronic pain (>6 months) were included. Patient reported outcomes were collected, and blood was analyzed with the Proseek Multiplex Olink Inflammation Panel (Bioscience Uppsala, Uppsala, Sweden), resulting in 77 inflammatory markers included for multivariate data analysis. Three subgroups of chronic pain patients were identified using an unsupervised principal component analysis. No difference between the subgroups was seen in pain intensity, but differences were seen in mental health and inflammatory profiles. Ten inflammatory proteins were significantly associated with anxiety and depression (using the Generalized Anxiety Disorder 7-item scale (GAD-7) and the Patient Health Questionnaire (PHQ-9): STAMBP, SIRT2, AXIN1, CASP-8, ADA, IL-7, CD40, CXCL1, CXCL5, and CD244. No markers were related to pain intensity. Fifteen proteins could differentiate between patients with moderate/high (GAD-7/PHQ-9 > 10) or mild/no (GAD-7/PHQ-9 < 10) psychological comorbidity. This study further contributes to the increasing knowledge of the importance of inflammation in chronic pain conditions and indicates that specific inflammatory proteins may be related to psychological comorbidity.
Collapse
|
60
|
Li YK, Zhang YY, Lin J, Liu YJ, Li YL, Feng YH, Zhao JS, Zhou C, Liu F, Shen JF. Metabotropic glutamate receptor 5-mediated inhibition of inward-rectifying K + channel 4.1 contributes to orofacial ectopic mechanical allodynia following inferior alveolar nerve transection in male mice. J Neurosci Res 2023; 101:1170-1187. [PMID: 36807930 DOI: 10.1002/jnr.25181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/20/2023]
Abstract
Inward-rectifying K+ channel 4.1 (Kir4.1), which regulates the electrophysiological properties of neurons and glia by affecting K+ homeostasis, plays a critical role in neuropathic pain. Metabotropic glutamate receptor 5 (mGluR5) regulates the expression of Kir4.1 in retinal Müller cells. However, the role of Kir4.1 and its expressional regulatory mechanisms underlying orofacial ectopic allodynia remain unclear. This study aimed to investigate the biological roles of Kir4.1 and mGluR5 in the trigeminal ganglion (TG) in orofacial ectopic mechanical allodynia and the role of mGluR5 in Kir4.1 regulation. An animal model of nerve injury was established via inferior alveolar nerve transection (IANX) in male C57BL/6J mice. Behavioral tests indicated that mechanical allodynia in the ipsilateral whisker pad lasted at least 14 days after IANX surgery and was alleviated by the overexpression of Kir4.1 in the TG, as well as intraganglionic injection of an mGluR5 antagonist (MPEP hydrochloride) or a protein kinase C (PKC) inhibitor (chelerythrine chloride); Conditional knockdown of the Kir4.1 gene downregulated mechanical thresholds in the whisker pad. Double immunostaining revealed that Kir4.1 and mGluR5 were co-expressed in satellite glial cells in the TG. IANX downregulated Kir4.1 and upregulated mGluR5 and phosphorylated PKC (p-PKC) in the TG; Inhibition of mGluR5 reversed the changes in Kir4.1 and p-PKC that were induced by IANX; Inhibition of PKC activation reversed the downregulation of Kir4.1 expression caused by IANX (p < .05). In conclusion, activation of mGluR5 in the TG after IANX contributed to orofacial ectopic mechanical allodynia by suppressing Kir4.1 via the PKC signaling pathway.
Collapse
Affiliation(s)
- Yi-Ke Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu-Heng Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia-Shuo Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
61
|
Ray PR, Shiers S, Caruso JP, Tavares-Ferreira D, Sankaranarayanan I, Uhelski ML, Li Y, North RY, Tatsui C, Dussor G, Burton MD, Dougherty PM, Price TJ. RNA profiling of human dorsal root ganglia reveals sex differences in mechanisms promoting neuropathic pain. Brain 2023; 146:749-766. [PMID: 35867896 PMCID: PMC10169414 DOI: 10.1093/brain/awac266] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/16/2022] [Accepted: 06/22/2022] [Indexed: 11/12/2022] Open
Abstract
Neuropathic pain is a leading cause of high-impact pain, is often disabling and is poorly managed by current therapeutics. Here we focused on a unique group of neuropathic pain patients undergoing thoracic vertebrectomy where the dorsal root ganglia is removed as part of the surgery allowing for molecular characterization and identification of mechanistic drivers of neuropathic pain independently of preclinical models. Our goal was to quantify whole transcriptome RNA abundances using RNA-seq in pain-associated human dorsal root ganglia from these patients, allowing comprehensive identification of molecular changes in these samples by contrasting them with non-pain-associated dorsal root ganglia. We sequenced 70 human dorsal root ganglia, and among these 50 met inclusion criteria for sufficient neuronal mRNA signal for downstream analysis. Our expression analysis revealed profound sex differences in differentially expressed genes including increase of IL1B, TNF, CXCL14 and OSM in male and CCL1, CCL21, PENK and TLR3 in female dorsal root ganglia associated with neuropathic pain. Coexpression modules revealed enrichment in members of JUN-FOS signalling in males and centromere protein coding genes in females. Neuro-immune signalling pathways revealed distinct cytokine signalling pathways associated with neuropathic pain in males (OSM, LIF, SOCS1) and females (CCL1, CCL19, CCL21). We validated cellular expression profiles of a subset of these findings using RNAscope in situ hybridization. Our findings give direct support for sex differences in underlying mechanisms of neuropathic pain in patient populations.
Collapse
Affiliation(s)
- Pradipta R Ray
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - James P Caruso
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA.,Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Megan L Uhelski
- Department of Pain Medicine, Division of Anesthesiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Li
- Department of Pain Medicine, Division of Anesthesiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Y North
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Claudio Tatsui
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Gregory Dussor
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Michael D Burton
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Patrick M Dougherty
- Department of Pain Medicine, Division of Anesthesiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
62
|
Salberg S, Yamakawa GR, Beveridge JK, Noel M, Mychasiuk R. A high-fat high-sugar diet and adversity early in life modulate pain outcomes at the behavioural and molecular level in adolescent rats: The role of sex. Brain Behav Immun 2023; 108:57-79. [PMID: 36403882 DOI: 10.1016/j.bbi.2022.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Given that adolescence is a significant period of brain plasticity and development, early life factors have the potential to alter long term outcomes. For instance, adversities such as consumption of a high-fat high-sugar (HFHS) diet and adverse childhood experiences (ACEs; e.g., neglect), and their resulting inflammation and microglial activation can influence pain outcomes by priming the neuroimmune system to overrespond to stressors. Chronic pain is highly prevalent amongst the adolescent population, with the prevalence and manifestation being sexually dimorphic. Although clinical studies show that females are twice as likely to report pain problems compared to males, the majority of pre-clinical work uses male rodents. Therefore, our aim was to examine the effects of sex, a HFHS diet, and an ACE on chronic pain outcomes following a stressor in adolescence. Rat dams were randomly assigned to a Standard or HFHS diet, with pups maintained on their respective diets then randomly allocated to a No Stress or ACE paradigm, and a Sham or Injury condition as a stressor. Results showed that early life adversities increased nociceptive sensitivity, inflammation, and microglial activation systemically and within the brain. Behaviourally, pain outcomes were more prominent in females, however the neuroimmune response was exacerbated in males. These results demonstrate the sexual dimorphism of chronic pain outcomes following early life adversities and provide insight into the mechanisms driving these changes, which will inform more targeted and effective treatment strategies for youth living with chronic pain.
Collapse
Affiliation(s)
- Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Jaimie K Beveridge
- Department of Psychology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, Canada
| | - Melanie Noel
- Department of Psychology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, Canada
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Psychology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
63
|
Tsujikawa S, DeMeulenaere KE, Centeno MV, Ghazisaeidi S, Martin ME, Tapies MR, Maneshi MM, Yamashita M, Stauderman KA, Apkarian AV, Salter MW, Prakriya M. Regulation of neuropathic pain by microglial Orai1 channels. SCIENCE ADVANCES 2023; 9:eade7002. [PMID: 36706180 PMCID: PMC9883051 DOI: 10.1126/sciadv.ade7002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/23/2022] [Indexed: 06/01/2023]
Abstract
Microglia are important mediators of neuroinflammation, which underlies neuropathic pain. However, the molecular checkpoints controlling microglial reactivity are not well-understood. Here, we investigated the role of Orai1 channels for microglia-mediated neuroinflammation following nerve injury and find that deletion of Orai1 in microglia attenuates Ca2+ signaling and the production of inflammatory cytokines by proalgesic agonists. Conditional deletion of Orai1 attenuated microglial proliferation in the dorsal horn, spinal cytokine levels, and potentiation of excitatory neurotransmission following peripheral nerve injury. These cellular effects were accompanied by mitigation of pain hyperalgesia in microglial Orai1 knockout mice. A small-molecule Orai1 inhibitor, CM4620, similarly mitigated allodynia in male mice. Unexpectedly, these protective effects were not seen in female mice, revealing sexual dimorphism in Orai1 regulation of microglial reactivity and hyperalgesia. Together, these findings indicate that Orai1 channels are key regulators of the sexually dimorphic role of microglia for the neuroinflammation that underlies neuropathic pain.
Collapse
Affiliation(s)
- Shogo Tsujikawa
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kaitlyn E. DeMeulenaere
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Maria V. Centeno
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Megan E. Martin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Martinna R. Tapies
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mohammad M. Maneshi
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Apkar V. Apkarian
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
64
|
Ghazisaeidi S, Muley MM, Salter MW. Neuropathic Pain: Mechanisms, Sex Differences, and Potential Therapies for a Global Problem. Annu Rev Pharmacol Toxicol 2023; 63:565-583. [PMID: 36662582 DOI: 10.1146/annurev-pharmtox-051421-112259] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The study of chronic pain continues to generate ever-increasing numbers of publications, but safe and efficacious treatments for chronic pain remain elusive. Recognition of sex-specific mechanisms underlying chronic pain has resulted in a surge of studies that include both sexes. A predominant focus has been on identifying sex differences, yet many newly identified cellular mechanisms and alterations in gene expression are conserved between the sexes. Here we review sex differences and similarities in cellular and molecular signals that drive the generation and resolution of neuropathic pain. The mix of differences and similarities reflects degeneracy in peripheral and central signaling processes by which neurons, immune cells, and glia codependently drive pain hypersensitivity. Recent findings identifying critical signaling nodes foreshadow the development of rationally designed, broadly applicable analgesic strategies. However, the paucity of effective, safe pain treatments compels targeted therapies as well to increase therapeutic options that help reduce the global burden of suffering.
Collapse
Affiliation(s)
- Shahrzad Ghazisaeidi
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada;
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada
| | - Milind M Muley
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada;
- University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada
| | - Michael W Salter
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada;
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada
| |
Collapse
|
65
|
Harding EK, Souza IA, Gandini MA, Gadotti VM, Ali MY, Huang S, Antunes FTT, Trang T, Zamponi GW. Differential regulation of Ca v 3.2 and Ca v 2.2 calcium channels by CB 1 receptors and cannabidiol. Br J Pharmacol 2023; 180:1616-1633. [PMID: 36647671 DOI: 10.1111/bph.16035] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/02/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabinoids are a promising therapeutic avenue for chronic pain. However, clinical trials often fail to report analgesic efficacy of cannabinoids. Inhibition of voltage gate calcium (Cav ) channels is one mechanism through which cannabinoids may produce analgesia. We hypothesized that cannabinoids and cannabinoid receptor agonists target different types of Cav channels through distinct mechanisms. EXPERIMENTAL APPROACH Electrophysiological recordings from tsA-201 cells expressing either Cav 3.2 or Cav 2.2 were used to assess inhibition by HU-210 or cannabidiol (CBD) in the absence and presence of the CB1 receptor. Homology modelling assessed potential interaction sites for CBD in both Cav 2.2 and Cav 3.2. Analgesic effects of CBD were assessed in mouse models of inflammatory and neuropathic pain. KEY RESULTS HU-210 (1 μM) inhibited Cav 2.2 function in the presence of CB1 receptor but had no effect on Cav 3.2 regardless of co-expression of CB1 receptor. By contrast, CBD (3 μM) produced no inhibition of Cav 2.2 and instead inhibited Cav 3.2 independently of CB1 receptors. Homology modelling supported these findings, indicating that CBD binds to and occludes the pore of Cav 3.2, but not Cav 2.2. Intrathecal CBD alleviated thermal and mechanical hypersensitivity in both male and female mice, and this effect was absent in Cav 3.2 null mice. CONCLUSION AND IMPLICATIONS Our findings reveal differential modulation of Cav 2.2 and Cav 3.2 channels by CB1 receptors and CBD. This advances our understanding of how different cannabinoids produce analgesia through action at different voltage-gated calcium channels and could influence the development of novel cannabinoid-based therapeutics for treatment of chronic pain.
Collapse
Affiliation(s)
- Erika K Harding
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Ivana A Souza
- Department of Clinical Neurosciences, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Maria A Gandini
- Department of Clinical Neurosciences, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Vinícius M Gadotti
- Department of Clinical Neurosciences, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Zymedyne Therapeutics, Calgary, AB, Canada
| | - Md Yousof Ali
- Department of Clinical Neurosciences, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Zymedyne Therapeutics, Calgary, AB, Canada
| | - Sun Huang
- Department of Clinical Neurosciences, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Flavia T T Antunes
- Department of Clinical Neurosciences, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tuan Trang
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
66
|
Sanmugananthan VV, Cheng JC, Hemington KS, Rogachov A, Osborne NR, Bosma RL, Kim JA, Inman RD, Davis KD. Can we characterize A-P/IAP behavioural phenotypes in people with chronic pain? FRONTIERS IN PAIN RESEARCH 2023; 4:1057659. [PMID: 36874441 PMCID: PMC9975728 DOI: 10.3389/fpain.2023.1057659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/17/2023] [Indexed: 02/17/2023] Open
Abstract
Two behavioural phenotypes in healthy people have been delineated based on their intrinsic attention to pain (IAP) and whether their reaction times (RT) during a cognitively-demanding task are slower (P-type) or faster (A-type) during experimental pain. These behavioural phenotypes were not previously studied in chronic pain populations to avoid using experimental pain in a chronic pain context. Since pain rumination (PR) may serve as a supplement to IAP without needing noxious stimuli, we attempted to delineate A-P/IAP behavioural phenotypes in people with chronic pain and determined if PR can supplement IAP. Behavioural data acquired in 43 healthy controls (HCs) and 43 age-/sex-matched people with chronic pain associated with ankylosing spondylitis (AS) was retrospectively analyzed. A-P behavioural phenotypes were based on RT differences between pain and no-pain trials of a numeric interference task. IAP was quantified based on scores representing reported attention towards or mind-wandering away from experimental pain. PR was quantified using the pain catastrophizing scale, rumination subscale. The variability in RT was higher during no-pain trials in the AS group than HCs but was not significantly different in pain trials. There were no group differences in task RTs in no-pain and pain trials, IAP or PR scores. IAP and PR scores were marginally significantly positively correlated in the AS group. RT differences and variability were not significantly correlated with IAP or PR scores. Thus, we propose that experimental pain in the A-P/IAP protocols can confound testing in chronic pain populations, but that PR could be a supplement to IAP to quantify attention to pain.
Collapse
Affiliation(s)
- Vaidhehi Veena Sanmugananthan
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Joshua C Cheng
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Kasey S Hemington
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Anton Rogachov
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Natalie Rae Osborne
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rachael L Bosma
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Junseok Andrew Kim
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Robert D Inman
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karen Deborah Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
67
|
Koca TT, Aykan D, Berk E, Koçyiğit BF, Güçmen B. EFFECT OF HYPERTENSION ON PAIN THRESHOLD IN PATIENTS WITH CHRONIC PAIN. CENTRAL ASIAN JOURNAL OF MEDICAL HYPOTHESES AND ETHICS 2022. [DOI: 10.47316/cajmhe.2022.3.4.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Introduction: Little is known about the relationship between pain and hypertension (HT). This study aimed to analyze the effect of HT on pain sensitivity in patients with chronic musculoskeletal pain complaints.
Methods: This analytical, cross-sectional study included 45 patients aged 29–75 years with HT. The control group comprised 44 normo/hypotensive patients aged 19–66 (P = 0.107). Education status, age, gender, height, weight, smoking, presence of diabetes mellitus, physical activity level, blood pressure measurement, anti-HT drug use, vital parameters, including heart rate, respiratory rate, and body temperature, were recorded for all participants.
Results: The pain score was significantly higher in the HT group, with a mean of 72.1 ± 30.2 points (P = 0.008). Also, the HT group’s systolic blood pressure and pain score were significantly positively correlated (rho = 0.245, P = 0.02). The pulse rate was found to be significantly related to the pain score and pain threshold (P < 0.001); it was negatively correlated with algometer values (rho = –0.286, P = 0.015). Systolic pressure (P = 0.033) and BMI ( P < 0.001) were significantly different among the groups according to physical activity level. The Spearman correlation analysis showed a positive correlation of diastolic blood pressure with the body mass index (rho = 0.224, P = 0.036) and pain score (rho = 0.456, P < 0.001).
Conclusion: The present study showed that the pain complaint increases as the blood pressure and weight increase. Also, the pain threshold decreases as the heart rate increases. The pain threshold was lower in women than in men, independent of tension.
Collapse
|
68
|
Peterson A, Schaller AS. How Hospital Patients Experience Pain the Previous 24 Hours-A Prevalence Assessment of Pain in Five Hospitals in Sweden. Pain Manag Nurs 2022; 23:878-884. [PMID: 36075787 DOI: 10.1016/j.pmn.2022.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/23/2022] [Accepted: 07/17/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Previous studies show that pain is common among hospital inpatients. AIM This study measures the prevalence of pain and the impact of pain on sleep in patients admitted to five hospitals in Sweden. METHODS The patients were admitted to a surgical or a medical ward. They answered on a self-reported questionnaire about their average pain intensity and how much their pain interfered with their sleep the previous 24 hours, on a 010 numerical rating scale (NRS). RESULTS Of the 500 patients, 308 experienced pain (62%), (NRS ≥ 3) and 111 (22%) rated their pain as NRS ≥ 7. We found no difference between surgical and medical specialty regarding pain prevalence. The results suggest that roughly the same proportion of patients with pain also experienced poor sleep due to pain265 patients (53%) reported pain interference on sleep, NRS ≥ 3. CONCLUSIONS AND CLINICAL IMPLICATIONS This study shows that there is still an unacceptable high pain prevalence in inpatients and that patients experience pain as negatively impacting their sleep. Future pain care is likely to include a more comprehensive implementation strategy for the dissemination of knowledge, especially related to the complex context of today's healthcare system. That is, the possibility that anchoring new knowledge also benefits the patient is probably associated with optimization of the structural context. Future research should take this question further by examining how the organizational structure should be optimized for the dissemination of knowledge in healthcare professionals about pain and pain interference with sleep.
Collapse
Affiliation(s)
- Anna Peterson
- ain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
| | - Anne Söderlund Schaller
- ain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
69
|
Sex-related differences in experimental pain sensitivity in subjects with painful or painless neuropathy after surgical repair of traumatic nerve injuries. Pain Rep 2022; 7:e1033. [PMID: 36284797 PMCID: PMC9586924 DOI: 10.1097/pr9.0000000000001033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/10/2022] [Accepted: 07/17/2022] [Indexed: 12/01/2022] Open
Abstract
Higher pain intensities at all experimental stimuli but a tendency to faster recovery after cold conditioning stimuli were seen in women with neuropathy in comparison with men. Introduction: Sex-related influences represent a contributor to greater pain sensitivity and have a higher prevalence of many chronic pain conditions, including neuropathic pain (NP), among women. Objectives: The aim was to analyze how differences in ongoing pain, experimental pain intensity, and conditioned pain modulation (CPM) relate to sex in subjects with neuropathy after traumatic nerve injuries. Methods: Endogenous pain modulation was compared between male (n = 77) and female (n = 55) subjects and between subjects with NP (female = 31, male = 39) and pain-free subjects with posttraumatic neuropathy (female = 24, male = 38). Conditioned pain modulation was assessed by pain ratings to pressure stimuli before and after a noxious conditioning stimulus (CS) conducted with one arm submerged in cold water (4°C) for 1 minute. Time of recovery (Time off) of pain intensity from peak VASmaxc after CS was recorded and compared between male and female patients. Results: Greater ongoing pain intensity was found among female patients compared with male patients and more experimental pain after pressure and cold induced pain. Summing all groups together, women had 0.8 times higher odds (20%) of recovering sooner than men after CS (95% CI = 0.65–2.9). No differences in CPM, time off, and psychosocial variables were seen between female and male patients (P < 0.05). Conclusion: Our hypothesis for sex differences in endogenous pain modulation was only supported by a shorter after-sensation time after cold CS in female patients. No sex differences in the magnitude of CPM effect were identified. Increased pain intensity for experimental pain, in both neuropathic pain and neuropathy without pain, was found in female patients.
Collapse
|
70
|
Temmermand R, Barrett JE, Fontana ACK. Glutamatergic systems in neuropathic pain and emerging non-opioid therapies. Pharmacol Res 2022; 185:106492. [PMID: 36228868 PMCID: PMC10413816 DOI: 10.1016/j.phrs.2022.106492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/14/2023]
Abstract
Neuropathic pain, a disease of the somatosensory nervous system, afflicts many individuals and adequate management with current pharmacotherapies remains elusive. The glutamatergic system of neurons, receptors and transporters are intimately involved in pain but, to date, there have been few drugs developed that therapeutically modulate this system. Glutamate transporters, or excitatory amino acid transporters (EAATs), remove excess glutamate around pain transmitting neurons to decrease nociception suggesting that the modulation of glutamate transporters may represent a novel approach to the treatment of pain. This review highlights and summarizes (1) the physiology of the glutamatergic system in neuropathic pain, (2) the preclinical evidence for dysregulation of glutamate transport in animal pain models, and (3) emerging novel therapies that modulate glutamate transporters. Successful drug discovery requires continuous focus on basic and translational methods to fully elucidate the etiologies of this disease to enable the development of targeted therapies. Increasing the efficacy of astrocytic EAATs may serve as a new way to successfully treat those suffering from this devastating disease.
Collapse
Affiliation(s)
- Rhea Temmermand
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
71
|
Matesanz-García L, Schmid AB, Cáceres-Pajuelo JE, Cuenca-Martínez F, Arribas-Romano A, González-Zamorano Y, Goicoechea-García C, Fernández-Carnero J. Effect of Physiotherapeutic Interventions on Biomarkers of Neuropathic Pain: A Systematic Review of Preclinical Literature. THE JOURNAL OF PAIN 2022; 23:1833-1855. [PMID: 35768044 PMCID: PMC7613788 DOI: 10.1016/j.jpain.2022.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/02/2023]
Abstract
The purpose of this systematic review was to evaluate the effects of physiotherapeutic interventions on biomarkers of neuropathic pain in preclinical models of peripheral neuropathic pain (PNP). The search was performed in Pubmed, Web of Science, EMBASE, Cochrane, Cinhal, Psycinfo, Scopus, Medline, and Science Direct. Studies evaluating any type of physiotherapy intervention for PNP (systemic or traumatic) were included. Eighty-one articles were included in this review. The most common PNP model was chronic constriction injury, and the most frequently studied biomarkers were related to neuro-immune processes. Exercise therapy and Electro-acupuncture were the 2 most frequently studied physiotherapy interventions while acupuncture and joint mobilization were less frequently examined. Most physiotherapeutic interventions modulated the expression of biomarkers related to neuropathic pain. Whereas the results seem promising; they have to be considered with caution due to the high risk of bias of included studies and high heterogeneity of the type and anatomical localization of biomarkers reported. The review protocol is registered on PROSPERO (CRD42019142878). PERSPECTIVE: This article presents the current evidence about physiotherapeutic interventions on biomarkers of neuropathic pain in preclinical models of peripheral neuropathic pain. Existing findings are reviewed, and relevant data are provided on the effectiveness of each physiotherapeutic modality, as well as its certainty of evidence and clinical applicability.
Collapse
Affiliation(s)
- Luis Matesanz-García
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain; Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Annina B Schmid
- Nuffield Department for Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Ferran Cuenca-Martínez
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain.
| | - Alberto Arribas-Romano
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain; Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain
| | - Yeray González-Zamorano
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain; Grupo de Investigación de Neurorrehabilitación del Daño Cerebral y los Trastornos del Movimiento (GINDAT), Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | | | - Josué Fernández-Carnero
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain; Grupo de Investigación de Neurorrehabilitación del Daño Cerebral y los Trastornos del Movimiento (GINDAT), Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain; Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain; Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Grupo de Excelencia Investigadora URJC-Banco de Santander, Madrid, Spain; La Paz Hospital Institute for Health Research, IdiPAZ, Madrid, Spain
| |
Collapse
|
72
|
Polli A, Hendrix J, Ickmans K, Bakusic J, Ghosh M, Monteyne D, Velkeniers B, Bekaert B, Nijs J, Godderis L. Genetic and epigenetic regulation of Catechol-O-methyltransferase in relation to inflammation in chronic fatigue syndrome and Fibromyalgia. J Transl Med 2022; 20:487. [PMID: 36284330 PMCID: PMC9598022 DOI: 10.1186/s12967-022-03662-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Catechol-O-methyltransferase (COMT) has been shown to influence clinical pain, descending modulation, and exercise-induced symptom worsening. COMT regulates nociceptive processing and inflammation, key pathophysiological features of Chronic Fatigue Syndrome and Fibromyalgia (CFS/FM). We aimed to determine the interactions between genetic and epigenetic mechanisms regulating COMT and its influence on inflammatory markers and symptoms in patients with CFS/FM. METHODS A case-control study with repeated-measures design was used to reduce the chance of false positive and increase the power of our findings. Fifty-four participants (28 patients with CFS/FM and 26 controls) were assessed twice within 4 days. The assessment included clinical questionnaires, neurophysiological assessment (pain thresholds, temporal summation, and conditioned pain modulation), and blood withdrawal in order to assess rs4818, rs4633, and rs4680 COMT polymorphisms and perform haplotype estimation, DNA methylation in the COMT gene (both MB-COMT and S-COMT promoters), and cytokine expression (TNF-α, IFN-γ, IL-6, and TGF-β). RESULTS COMT haplotypes were associated with DNA methylation in the S-COMT promoter, TGF-β expression, and symptoms. However, this was not specific for one condition. Significant between-group differences were found for increased DNA methylation in the MB-COMT promoter and decreased IFN-γ expression in patients. DISCUSSION Our results are consistent with basic and clinical research, providing interesting insights into genetic-epigenetic regulatory mechanisms. MB-COMT DNA methylation might be an independent factor contributing to the pathophysiology of CFS/FM. Further research on DNA methylation in complex conditions such as CFS/FM is warranted. We recommend future research to employ a repeated-measure design to control for biomarkers variability and within-subject changes.
Collapse
Affiliation(s)
- Andrea Polli
- grid.8767.e0000 0001 2290 8069Pain in Motion (PiM) international research group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Rehabilitation Sciences & Physiotherapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette Brussels, Belgium ,grid.5596.f0000 0001 0668 7884Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, Kapucijnenvoer 35, 3000, Leuven, Belgium ,grid.434261.60000 0000 8597 7208Flanders Research Foundation–FWO, Brussels, Belgium
| | - Jolien Hendrix
- grid.8767.e0000 0001 2290 8069Pain in Motion (PiM) international research group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Rehabilitation Sciences & Physiotherapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette Brussels, Belgium ,grid.5596.f0000 0001 0668 7884Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, Kapucijnenvoer 35, 3000, Leuven, Belgium
| | - Kelly Ickmans
- grid.8767.e0000 0001 2290 8069Pain in Motion (PiM) international research group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Rehabilitation Sciences & Physiotherapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette Brussels, Belgium ,grid.434261.60000 0000 8597 7208Flanders Research Foundation–FWO, Brussels, Belgium ,grid.411326.30000 0004 0626 3362Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| | - Jelena Bakusic
- grid.5596.f0000 0001 0668 7884Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, Kapucijnenvoer 35, 3000, Leuven, Belgium
| | - Manosij Ghosh
- grid.5596.f0000 0001 0668 7884Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, Kapucijnenvoer 35, 3000, Leuven, Belgium ,grid.434261.60000 0000 8597 7208Flanders Research Foundation–FWO, Brussels, Belgium
| | - Dora Monteyne
- grid.411326.30000 0004 0626 3362Department of Internal Medicine and Endocrinology, University Hospital Brussels, Brussels, Belgium
| | - Brigitte Velkeniers
- grid.411326.30000 0004 0626 3362Department of Internal Medicine and Endocrinology, University Hospital Brussels, Brussels, Belgium
| | - Bram Bekaert
- grid.410569.f0000 0004 0626 3338Department of Forensic Medicine, Laboratory of Forensic Genetics and Molecular Archaeology, University Hospitals Leuven, B-3000 Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Department of Imaging & Pathology, KU Leuven, B-3000 Leuven, Belgium
| | - Jo Nijs
- grid.8767.e0000 0001 2290 8069Pain in Motion (PiM) international research group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Rehabilitation Sciences & Physiotherapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette Brussels, Belgium ,grid.411326.30000 0004 0626 3362Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium ,grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Lode Godderis
- grid.5596.f0000 0001 0668 7884Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, Kapucijnenvoer 35, 3000, Leuven, Belgium ,External Service for Prevention and Protection at Work, IDEWE, Heverlee, Belgium
| |
Collapse
|
73
|
Alarcón-Alarcón D, Cabañero D, de Andrés-López J, Nikolaeva-Koleva M, Giorgi S, Fernández-Ballester G, Fernández-Carvajal A, Ferrer-Montiel A. TRPM8 contributes to sex dimorphism by promoting recovery of normal sensitivity in a mouse model of chronic migraine. Nat Commun 2022; 13:6304. [PMID: 36272975 PMCID: PMC9588003 DOI: 10.1038/s41467-022-33835-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 09/30/2022] [Indexed: 12/25/2022] Open
Abstract
TRPA1 and TRPM8 are transient receptor potential channels expressed in trigeminal neurons that are related to pathophysiology in migraine models. Here we use a mouse model of nitroglycerine-induced chronic migraine that displays a sexually dimorphic phenotype, characterized by mechanical hypersensitivity that develops in males and females, and is persistent up to day 20 in female mice, but disappears by day 18 in male mice. TRPA1 is required for development of hypersensitivity in males and females, whereas TRPM8 contributes to the faster recovery from hypersensitivity in males. TRPM8-mediated antinociception effects required the presence of endogenous testosterone in males. Administration of exogenous testosterone to females and orchidectomized males led to recovery from hypersensitivity. Calcium imaging and electrophysiological recordings in in vitro systems confirmed testosterone activity on murine and human TRPM8, independent of androgen receptor expression. Our findings suggest a protective function of TRPM8 in shortening the time frame of hypersensitivity in a mouse model of migraine.
Collapse
Affiliation(s)
- David Alarcón-Alarcón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - David Cabañero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain.
| | - Jorge de Andrés-López
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Magdalena Nikolaeva-Koleva
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Simona Giorgi
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Asia Fernández-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain.
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain.
| |
Collapse
|
74
|
Silva Santos Ribeiro P, Willemen HLDM, Eijkelkamp N. Mitochondria and sensory processing in inflammatory and neuropathic pain. FRONTIERS IN PAIN RESEARCH 2022; 3:1013577. [PMID: 36324872 PMCID: PMC9619239 DOI: 10.3389/fpain.2022.1013577] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Rheumatic diseases, such as osteoarthritis and rheumatoid arthritis, affect over 750 million people worldwide and contribute to approximately 40% of chronic pain cases. Inflammation and tissue damage contribute to pain in rheumatic diseases, but pain often persists even when inflammation/damage is resolved. Mechanisms that cause this persistent pain are still unclear. Mitochondria are essential for a myriad of cellular processes and regulate neuronal functions. Mitochondrial dysfunction has been implicated in multiple neurological disorders, but its role in sensory processing and pain in rheumatic diseases is relatively unexplored. This review provides a comprehensive understanding of how mitochondrial dysfunction connects inflammation and damage-associated pathways to neuronal sensitization and persistent pain. To provide an overall framework on how mitochondria control pain, we explored recent evidence in inflammatory and neuropathic pain conditions. Mitochondria have intrinsic quality control mechanisms to prevent functional deficits and cellular damage. We will discuss the link between neuronal activity, mitochondrial dysfunction and chronic pain. Lastly, pharmacological strategies aimed at reestablishing mitochondrial functions or boosting mitochondrial dynamics as therapeutic interventions for chronic pain are discussed. The evidence presented in this review shows that mitochondria dysfunction may play a role in rheumatic pain. The dysfunction is not restricted to neuronal cells in the peripheral and central nervous system, but also includes blood cells and cells at the joint level that may affect pain pathways indirectly. Pre-clinical and clinical data suggest that modulation of mitochondrial functions can be used to attenuate or eliminate pain, which could be beneficial for multiple rheumatic diseases.
Collapse
Affiliation(s)
| | | | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
75
|
Lend K, van Vollenhoven RF, Lampa J, Lund Hetland M, Haavardsholm EA, Nordström D, Nurmohamed M, Gudbjornsson B, Rudin A, Østergaard M, Uhlig T, Grondal G, Hørslev-Petersen K, Heiberg MS, Sokka-Isler T, Koopman FA, Twisk JWR, van der Horst-Bruinsma I. Sex differences in remission rates over 24 weeks among three different biological treatments compared to conventional therapy in patients with early rheumatoid arthritis (NORD-STAR): a post-hoc analysis of a randomised controlled trial. THE LANCET. RHEUMATOLOGY 2022; 4:e688-e698. [PMID: 38265967 DOI: 10.1016/s2665-9913(22)00186-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 01/26/2024]
Abstract
BACKGROUND Rheumatoid arthritis is a chronic inflammatory disease with a well-recognised female preponderance. In this post-hoc analysis of the NORD-STAR trial, we aimed to examine sex differences in remission rates with three different biological treatments combined with methotrexate versus active conventional treatment over 24 weeks, in patients with early rheumatoid arthritis. METHODS NORD-STAR was a multicentre, investigator-initiated, assessor-blinded, phase 4, randomised, controlled trial of early rheumatoid arthritis, done in Denmark, Finland, Iceland, Norway, Sweden, and the Netherlands. Newly diagnosed patients, naive to disease-modifying antirheumatic drugs, aged 18 years or older with early rheumatoid arthritis and with a symptom duration less than 24 months were randomly assigned (1:1:1:1) to receive active conventional treatment, certolizumab-pegol, abatacept, or tocilizumab. Sex was reported in case report forms by study physicians or by study nurses. Data on gender were not collected. Remission outcomes were analysed with logistic generalised estimating equations (GEE), using a logit link and exchangeable correlation matrix. The model included treatment, time, sex, and the relevant interactions. For this post-hoc analysis, the co-primary outcomes were differences in Clinical Disease Activity Index (CDAI) remission (CDAI score ≤2·8) between sexes over time and at week 24, assessed with interaction terms (men vs women within each treatment comparison) and using active conventional treatment as the reference. We present adjusted average marginal differences in remission rates (risk differences) with 95% CIs. FINDINGS Between Dec 14, 2012, and Dec 11, 2018, 812 patients were enrolled and randomly assigned; 217 received active conventional treatment, 203 received certolizumab-pegol, 204 received abatacept, and 188 received tocilizumab. All 812 patients were included in this analysis; 561 (69%) were women and 251 (31%) were men. Observed CDAI remission rates at 24 weeks were numerically higher among men than among women despite comparable disease activity at baseline (55% vs 50% with active conventional treatment, 57% vs 52% with certolizumab-pegol, 65% vs 51% with abatacept, and 61% vs 40% with tocilizumab). In the adjusted analysis, with active conventional treatment as the reference, the only significant difference between men and women was in the tocilizumab group (pinteraction=0·015); men in the tocilizumab group had a higher probability of CDAI remission, on average over time, than did men in the active conventional treatment group (0·12; 95% CI 0·00 to 0·23), whereas women in the tocilizumab group had a lower probability of remission than did women in the active conventional treatment group (-0·05, 95% CI -0·13 to 0·02). INTERPRETATION Numerically higher remission rates were observed in men than in women in all four treatment groups at week 24, suggesting that this generalised sex difference is not related to the treatment. The difference between men and women was significantly greater with tocilizumab, an interleukin (IL)-6 inhibitor, than with active conventional treatment, suggesting a possible additional sex-based effect specific for IL-6 blockade. FUNDING None.
Collapse
Affiliation(s)
- Kristina Lend
- Department of Rheumatology and Amsterdam Rheumatology Center, Amsterdam University Medical Centers, Amsterdam, Netherlands; Department of Medicine, Rheumatology Unit, Center for Molecular Medicine (CMM), Karolinska Institute, Stockholm, Sweden.
| | - Ronald F van Vollenhoven
- Department of Rheumatology and Amsterdam Rheumatology Center, Amsterdam University Medical Centers, Amsterdam, Netherlands; Department of Medicine, Rheumatology Unit, Center for Molecular Medicine (CMM), Karolinska Institute, Stockholm, Sweden
| | - Jon Lampa
- Department of Medicine, Rheumatology Unit, Center for Molecular Medicine (CMM), Karolinska Institute, Stockholm, Sweden; Department of Medicine, Rheumatology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Merete Lund Hetland
- Copenhagen Center for Arthritis Research (COPECARE) and DANBIO, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Dan Nordström
- Department of Medicine and Rheumatology, Helsinki University Hospital, Helsinki, Finland; University of Helsinki, Helsinki, Finland
| | - Michael Nurmohamed
- Department of Rheumatology and Amsterdam Rheumatology Center, Amsterdam University Medical Centers, Amsterdam, Netherlands; Amsterdam Rheumatology and Immunology Center, Reade, Netherlands
| | - Bjorn Gudbjornsson
- Department of Rheumatology, Landspitali University Hospital, Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Anna Rudin
- Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Mikkel Østergaard
- Copenhagen Center for Arthritis Research (COPECARE) and DANBIO, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Till Uhlig
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gerdur Grondal
- Department of Rheumatology, Landspitali University Hospital, Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Kim Hørslev-Petersen
- Danish Hospital for Rheumatic Diseases, University Hospital of Southern Denmark, Sønderborg, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Marte S Heiberg
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Tuulikki Sokka-Isler
- Department of Medicine and University of Eastern Finland, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Frieda A Koopman
- Department of Rheumatology and Amsterdam Rheumatology Center, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Data Science, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | | |
Collapse
|
76
|
Chang JR, Fu SN, Li X, Li SX, Wang X, Zhou Z, Pinto SM, Samartzis D, Karppinen J, Wong AYL. The differential effects of sleep deprivation on pain perception in individuals with or without chronic pain: A systematic review and meta-analysis. Sleep Med Rev 2022; 66:101695. [DOI: 10.1016/j.smrv.2022.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
|
77
|
Lund CI, Engdahl B, Rosseland LA, Stubhaug A, Grimnes G, Furberg AS, Steingrímsdóttir ÓA, Nielsen CS. The association between age at menarche and chronic pain outcomes in women: the Tromsø Study, 2007 to 2016. Pain 2022; 163:1790-1799. [PMID: 35239542 PMCID: PMC9393800 DOI: 10.1097/j.pain.0000000000002579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/24/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Sex differences in chronic pain are well established with documented predominance in women. This study assessed relationships between age at menarche and chronic pain, site-specific chronic pain, pain characteristics, and chronic widespread pain (CWP). We used data from the Tromsø Study conducted in 2007 to 2008 and 2015 to 2016 (Tromsø 6 and Tromsø 7 waves) including participants aged 30 to 99 years. The associations between age at menarche and chronic pain were examined in Tromsø 6 (n = 6449), Tromsø 7 (n = 5681), and the combination of Tromsø 6 and Tromsø 7 (n = 12,130). Tromsø 7 data were used further to examine the associations between age at menarche and site-specific chronic pain, 4 pain characteristics (pain duration, pain intensity, episode duration, and episode frequency), and CWP. All analyses were adjusted for body mass index, age, and economic status of the household in childhood. Lower age at menarche was associated with an increased risk of chronic pain in all 3 samples (risk ratio for each year delay in menarche 0.98, 95% CI [0.97 to 0.99] across samples). Risk differences were -0.014, CI 95% (-0.02 to -0.005) in Tromsø 6, -0.011, CI 95% (-0.02 to -0.02) in Tromsø 7, and -0.012, CI 95% (-0.02 to -0.01) in the combined sample. Age at menarche was significantly associated with chronic pain in the neck, abdomen, and both arms, and CWP. Of the 4 pain characteristics, pain duration was statistically significant. We conclude that early menarche is an independent risk factor for pain across a broad spectrum of pain outcomes.
Collapse
Affiliation(s)
- Charlotte I. Lund
- Division of Emergencies and Critical Care, Department of Research and Development, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bo Engdahl
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Leiv A. Rosseland
- Division of Emergencies and Critical Care, Department of Research and Development, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Audun Stubhaug
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Emergencies and Critical Care, Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway
| | - Guri Grimnes
- Division of Clinical Medicine, University Hospital of North Norway, Tromsø, Norway
- Institute of Clinical Medicine, UiT—the Arctic University of Norway, Tromsø, Norway
| | - Anne-Sofie Furberg
- Faculty of Health Sciences and Social Care, Molde University College, Molde, Norway
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Ólöf A. Steingrímsdóttir
- Division of Emergencies and Critical Care, Department of Research and Development, Oslo University Hospital, Oslo, Norway
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Christopher S. Nielsen
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
- Division of Emergencies and Critical Care, Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
78
|
Bhadouria N, Berman AG, Wallace JM, Holguin N. Raloxifene Stimulates Estrogen Signaling to Protect Against Age- and Sex-Related Intervertebral Disc Degeneration in Mice. Front Bioeng Biotechnol 2022; 10:924918. [PMID: 36032728 PMCID: PMC9404526 DOI: 10.3389/fbioe.2022.924918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Estrogen agonist raloxifene is an FDA-approved treatment of osteoporosis in postmenopausal women, which may also be a promising prophylactic for painful intervertebral disc (IVD) degeneration. Here, we hypothesized that 1) aging and biological sex contribute to IVD degeneration by reducing estrogen signaling and that 2) raloxifene stimulates estrogen signaling to protect against age- and sex-related IVD degeneration in mice. 2.5-month-old (male and female) and 22.5-month-old (female) C57Bl/6J mice were subcutaneously injected with raloxifene hydrochloride 5x/week for 6 weeks (n = 7-9/grp). Next, female mice were ovariectomized (OVX) or sham operated at 4 months of age and tissues harvested at 6 months (n = 5-6/grp). Advanced aging and OVX increased IVD degeneration score, weakened IVD strength, reduced estrogen receptor-α (ER-α) protein expression, and increased neurotransmitter substance P (SP) expression. Similar to aging and compared with male IVDs, female IVDs were more degenerated, mechanically less viscoelastic, and expressed less ER-α protein, but unlike the effect induced by aging or OVX, IVD mechanical force was greater in females than in males. Therapeutically, systemic injection of raloxifene promoted ER-α protein to quell these dysregulations by enlarging IVD height, alleviating IVD degeneration score, increasing the strength and viscoelastic properties of the IVD, and reducing IVD cell expression of SP in young-adult and old female mice. Transcriptionally, injection of raloxifene upregulated the gene expression of ER-α and extracellular matrix-related anabolism in young-adult and old IVD. In vertebra, advanced aging and OVX reduced trabecular BV/TV, whereas injection of raloxifene increased trabecular BV/TV in young-adult and old female mice, but not in young-adult male mice. In vertebra, advanced aging, OVX, and biological sex (females > males) increased the number of SP-expressing osteocytes, whereas injection of raloxifene reduced the number of SP-expressing osteocytes in young-adult female and male mice and old female mice. Overall, injection of estrogen agonist raloxifene in mice normalized dysregulation of IVD structure, IVD mechanics, and pain-related SP expression in IVD cells and osteocytes induced by aging and biological sex. These data suggest that, in addition to bone loss, raloxifene may relieve painful IVD degeneration in postmenopausal women induced by advanced age, biological sex, and estrogen depletion.
Collapse
Affiliation(s)
- Neharika Bhadouria
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States,Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Alycia G. Berman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States,Indiana Center of Musculoskeletal Health, Indianapolis, IN, United States
| | - Nilsson Holguin
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States,Indiana Center of Musculoskeletal Health, Indianapolis, IN, United States,Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States,*Correspondence: Nilsson Holguin,
| |
Collapse
|
79
|
Abstract
Chronic pain affects 20% of adults and is one of the leading causes of disability worldwide. Women and girls are disproportionally affected by chronic pain. About half of chronic pain conditions are more common in women, with only 20% having a higher prevalence in men. There are also sex and gender differences in acute pain sensitivity. Pain is a subjective experience made up of sensory, cognitive, and emotional components. Consequently, there are multiple dimensions through which sex and gender can influence the pain experience. Historically, most preclinical pain research was conducted exclusively in male animals. However, recent studies that included females have revealed significant sex differences in the physiological mechanisms underlying pain, including sex specific involvement of different genes and proteins as well as distinct interactions between hormones and the immune system that influence the transmission of pain signals. Human neuroimaging has revealed sex and gender differences in the neural circuitry associated with pain, including sex specific brain alterations in chronic pain conditions. Clinical pain research suggests that gender can affect how an individual contextualizes and copes with pain. Gender may also influence the susceptibility to develop chronic pain. Sex and gender biases can impact how pain is perceived and treated clinically. Furthermore, the efficacy and side effects associated with different pain treatments can vary according to sex and gender. Therefore, preclinical and clinical research must include sex and gender analyses to understand basic mechanisms of pain and its relief, and to develop personalized pain treatment.
Collapse
Affiliation(s)
- Natalie R Osborne
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Karen D Davis
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
80
|
Biological sex, by-products, and other continuous variables. Behav Brain Sci 2022; 45:e144. [PMID: 35875948 DOI: 10.1017/s0140525x22000425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sex/gender is a continuous variable that researchers frequently treat as dichotomous. This practice can mask continuous underlying adaptive traits and yield spurious dichotomous "sex differences." As such, many sex differences in self-protection may be evolutionary by-products of underlying adaptations rather than adaptations themselves. Binary analysis of continuous sex/gender is ill-considered science that can contribute to inequality and counterproductive public policy.
Collapse
|
81
|
Chmielewski NN, Limoli CL. Sex Differences in Taxane Toxicities. Cancers (Basel) 2022; 14:3325. [PMID: 35884386 PMCID: PMC9317669 DOI: 10.3390/cancers14143325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
The taxane family of microtubule poisons and chemotherapeutics have been studied for over 50 years and are among the most frequently used antineoplastic agents today. Still, limited research exists characterizing taxane-induced sex-specific mechanisms of action and toxicities in cancer and non-cancerous tissue. Such research is important to advance cancer treatment outcomes as well as to address clinically observed sex-differences in short- and long-term taxane-induced toxicities that have disproportionate effects on female and male cancer patients. To gain more insight into these underlying differences between the sexes, the following review draws from pre-clinical and clinical paclitaxel and taxane oncology literature, examines sex-discrepancies, and highlights uncharacterized sex-dependent mechanisms of action and clinical outcomes. To our knowledge, this is the first literature review to provide a current overview of the basic and clinical sex dimorphisms of taxane-induced effects. Most importantly, we hope to provide a starting point for improving and advancing sex-specific personalized chemotherapy and cancer treatment strategies as well as to present a novel approach to review sex as a biological variable in basic and clinical biology.
Collapse
|
82
|
Liss A, Hellman A, Patel VJ, Maietta T, Byraju K, Trowbridge R, Acheta J, Panse D, Srikanthan A, Neubauer P, Burdette C, Ghoshal G, Williams E, Qian J, Pilitsis JG. Low Intensity Focused Ultrasound Increases Duration of Anti-Nociceptive Responses in Female Common Peroneal Nerve Injury Rats. Neuromodulation 2022; 25:504-510. [PMID: 35667768 DOI: 10.1111/ner.13531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Chronic pain affects 7%-10% of Americans, occurs more frequently and severely in females, and available treatments have been shown to have less efficacy in female patients. Preclinical models addressing sex-specific treatment differences in the treatment of chronic pain have been limited. Here we examine the sex-specific effects of low intensity focused ultrasound (liFUS) in a modified sciatic nerve injury (SNI) model. MATERIALS AND METHODS A modified SNI performed by ligating the common peroneal nerve (CPN) was used to measure sensory, behavioral pain responses, and nerve conduction studies in female and male rats, following liFUS of the L5 dorsal root ganglion. RESULTS Using the same dose of liFUS in females and males of the same weight, CPN latency immediately after treatment was increased for 50 min in females compared to 25 min in males (p < 0.001). Improvements in mechanical pain thresholds after liFUS lasted significantly longer in females (seven days; p < 0.05) compared to males (three days; p < 0.05). In females, there was a significant improvement in depression-like behavior as a result of liFUS (N = 5; p < 0.01); however, because males never developed depression-like behavior there was no change after liFUS treatment. CONCLUSIONS Neuromodulation with liFUS has a greater effect in female rats on CPN latency, mechanical allodynia duration, and depression-like behavior. In order to customize neuromodulatory techniques for different patient phenotypes, it is essential to understand how they may alter sex-specific pathophysiologies.
Collapse
Affiliation(s)
- Andrea Liss
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Abigail Hellman
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Vraj J Patel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Teresa Maietta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Kanakaharini Byraju
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Rachel Trowbridge
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Jenica Acheta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Drishti Panse
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Adithya Srikanthan
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | | | | | | | | | - Jiang Qian
- Department of Pathology, Albany Medical Center, Albany, NY, USA
| | - Julie G Pilitsis
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA; Department of Neurosurgery, Albany Medical Center, Albany, NY, USA.
| |
Collapse
|
83
|
Deal B, Reynolds LM, Patterson C, Janjic JM, Pollock JA. Behavioral and inflammatory sex differences revealed by celecoxib nanotherapeutic treatment of peripheral neuroinflammation. Sci Rep 2022; 12:8472. [PMID: 35637203 PMCID: PMC9151909 DOI: 10.1038/s41598-022-12248-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
Neuropathic pain affects millions of people worldwide, yet the molecular mechanisms of how it develops and persists are poorly understood. Given that males have historically been utilized as the primary sex in preclinical studies, less is known about the female neuroinflammatory response to injury, formation of pain, or response to pain-relieving therapies. Macrophages contribute to the development of neuroinflammatory pain via the activation of their cyclooxygenase-2 (COX-2) enzyme, which leads to the production of prostaglandin E2 (PGE2). PGE2 activates nociception and influences additional leukocyte infiltration. Attenuation of COX-2 activity decreases inflammatory pain, most commonly achieved by nonsteroidal anti-inflammatory drugs (NSAIDs), yet NSAIDs are considered ineffective for neuropathic pain due to off target toxicity. Using chronic constriction injury of the rat sciatic nerve, we show that males and females exhibit quantitatively the same degree of mechanical allodynia post injury. Furthermore, a low-dose nanotherapeutic containing the NSAID celecoxib is phagocytosed by circulating monocytes that then naturally accumulate at sites of injury as macrophages. Using this nanotherapeutic, we show that treated males exhibit complete reversal of hypersensitivity, while the same dose of nanotherapeutic in females provides an attenuated relief. The difference in behavioral response to the nanotherapy is reflected in the reduction of infiltrating macrophages at the site of injury. The observations contained in this study reinforce the notion that female neuroinflammation is different than males.
Collapse
|
84
|
Valdrighi N, Vago JP, Blom AB, van de Loo FA, Blaney Davidson EN. Innate Immunity at the Core of Sex Differences in Osteoarthritic Pain? Front Pharmacol 2022; 13:881500. [PMID: 35662714 PMCID: PMC9160873 DOI: 10.3389/fphar.2022.881500] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Osteoarthritis (OA) is a progressive whole-joint disease; no disease-modifying drugs are currently available to stop or slow its process. Symptoms alleviation is the only treatment option. OA is the major cause of chronic pain in adults, with pain being the main symptom driving patients to seek medical help. OA pathophysiology is closely associated with the innate immune system, which is also closely linked to pain mediators leading to joint pain. Pain research has shown sex differences in the biology of pain, including sexually dimorphic responses from key cell types in the innate immune system. Not only is OA more prevalent in women than in men, but women patients also show worse OA outcomes, partially due to experiencing more pain symptoms despite having similar levels of structural damage. The cause of sex differences in OA and OA pain is poorly understood. This review provides an overview of the involvement of innate immunity in OA pain in joints and in the dorsal root ganglion. We summarize the emerging evidence of sex differences regarding innate immunity in OA pain. Our main goal with this review was to provide a scientific foundation for future research leading to alternative pain relief therapies targeting innate immunity that consider sex differences. This will ultimately lead to a more effective treatment of pain in both women and men.
Collapse
|
85
|
Su J, Krock E, Barde S, Delaney A, Ribeiro J, Kato J, Agalave N, Wigerblad G, Matteo R, Sabbadini R, Josephson A, Chun J, Kultima K, Peyruchaud O, Hökfelt T, Svensson CI. Pain-like behavior in the collagen antibody-induced arthritis model is regulated by lysophosphatidic acid and activation of satellite glia cells. Brain Behav Immun 2022; 101:214-230. [PMID: 35026421 DOI: 10.1016/j.bbi.2022.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 12/30/2022] Open
Abstract
Inflammatory and neuropathic-like components underlie rheumatoid arthritis (RA)-associated pain, and lysophosphatidic acid (LPA) is linked to both joint inflammation in RA patients and to neuropathic pain. Thus, we investigated a role for LPA signalling using the collagen antibody-induced arthritis (CAIA) model. Pain-like behavior during the inflammatory phase and the late, neuropathic-like phase of CAIA was reversed by a neutralizing antibody generated against LPA and by an LPA1/3 receptor inhibitor, but joint inflammation was not affected. Autotaxin, an LPA synthesizing enzyme was upregulated in dorsal root ganglia (DRG) neurons during both CAIA phases, but not in joints or spinal cord. Late-phase pronociceptive neurochemical changes in the DRG were blocked in Lpar1 receptor deficient mice and reversed by LPA neutralization. In vitro and in vivo studies indicated that LPA regulates pain-like behavior via the LPA1 receptor on satellite glia cells (SGCs), which is expressed by both human and mouse SGCs in the DRG. Furthermore, CAIA-induced SGC activity is reversed by phospholipid neutralization and blocked in Lpar1 deficient mice. Our findings suggest that the regulation of CAIA-induced pain-like behavior by LPA signalling is a peripheral event, associated with the DRGs and involving increased pronociceptive activity of SGCs, which in turn act on sensory neurons.
Collapse
Affiliation(s)
- Jie Su
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Emerson Krock
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ada Delaney
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Jungo Kato
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Nilesh Agalave
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Gustaf Wigerblad
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Roger Sabbadini
- LPath Inc, San Diego, United States; Department of Biology, San Diego State University, 92182, United States
| | - Anna Josephson
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States
| | - Kim Kultima
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Medical Sciences, Uppsala University, 75185 Uppsala, Sweden
| | | | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
86
|
Presto P, Mazzitelli M, Junell R, Griffin Z, Neugebauer V. Sex differences in pain along the neuraxis. Neuropharmacology 2022; 210:109030. [DOI: 10.1016/j.neuropharm.2022.109030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 12/30/2022]
|
87
|
Hickman DL. Evaluation of Carbon Dioxide Euthanasia of Female Sprague Dawley Rats Alone or With Unfamiliar Conspecifics. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:195-200. [PMID: 35101159 PMCID: PMC8956221 DOI: 10.30802/aalas-jaalas-21-000051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/07/2021] [Accepted: 10/09/2021] [Indexed: 06/14/2023]
Abstract
Most studies evaluating methods of euthanasia to date have focused on the euthanasia of individual animals. However, larger chambers are commonly used to euthanize multiple cages of animals at once. This study evaluated the use of a commercially available system for euthanasia of 1, 2, or 4 cages containing an individual female Sprague-Dawley rat using volume per minute displacement rates (VDR/min) of either 25% or 50% of 100% carbon dioxide. Animal wellbeing was assessed based on physiologic changes (serum noradrenaline and corticosterone) and behavioral assessments (relative frequency of rearing, line crossing, and grooming). The 25% VDR/min was associated with a significantly longer time to loss of consciousness, but this was not associated with significant physiologic or behavioral changes. The 50% VDR/min treatment group was associated with significant increases in the relative frequency of movement from 1 side of the cage to the other. Increases in the relative frequency of rears were detected in the 25% VDR/min treatment group when 2 or 4 rats were in the chamber as compared with a single rat in the chamber. The absence of significant physiologic changes suggest that the behavioral changes may have been associated with the novelty of the euthanasia experience rather than with distress. The location of the cage within the chamber did not significantly affect any of the measured parameters at either 25% or 50% VDR/min. These data suggest that groups of rats euthanized in these chambers are not experiencing decreases in their welfare.
Collapse
Affiliation(s)
- Debra L Hickman
- School of Medicine, Indiana University, Indianapolis, Indiana
| |
Collapse
|
88
|
Townsend K, Imbert I, Eaton V, Stevenson GW, King T. Voluntary exercise blocks ongoing pain and diminishes bone remodeling while sparing protective mechanical pain in a rat model of advanced osteoarthritis pain. Pain 2022; 163:e476-e487. [PMID: 34224496 PMCID: PMC8712625 DOI: 10.1097/j.pain.0000000000002392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/18/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Exercise is the most common treatment recommended by healthcare providers for the treatment of musculoskeletal pain. We examined whether voluntary running wheel exercise improves pain and bone remodeling in rats with monosodium iodoacetate-induced unilateral knee joint pain. During acquisition of wheel running before osteoarthritis (OA) treatment, rats separated into 2 groups characterized by either high or low levels of voluntary wheel running as indicated by distance and peak speed. After the induction of knee joint OA, all rats showed diminished voluntary wheel running throughout the study. Voluntary wheel running failed to alter evoked nociceptive responses evaluated as weight asymmetry or hind paw tactile thresholds at any timepoint of the study. By contrast, relief of ongoing pain was demonstrated by conditioned place preference produced by lidocaine injection into the monosodium iodoacetate-treated knee in high but not low-running rats. Both high and low voluntary runners showed diminished trabecular bone loss compared with sedentary controls. These observations indicate that both high-intensity and low-intensity exercise is beneficial in protecting against bone remodeling in advanced OA. The data suggest that similar to clinical observation, bone remodeling does not correlate with pain. In addition, these results suggest that higher intensity exercise may relieve persistent ongoing OA pain while maintaining movement-evoked nociception. The relief of ongoing pain can potentially offer significant improvement in quality of life, whereas preservation of responses to movement-evoked pain may be especially important in protecting the joint from damage because of overuse.
Collapse
Affiliation(s)
- Kaylee Townsend
- Department of Biomedical Sciences, Center for Excellence in the Neurosciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
- Department of Psychology, College of Arts and Sciences, University of New England, Biddeford, ME, United States
| | - Ian Imbert
- Department of Biomedical Sciences, Center for Excellence in the Neurosciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
- Department of Psychology, College of Arts and Sciences, University of New England, Biddeford, ME, United States
| | - Victoria Eaton
- Department of Biomedical Sciences, Center for Excellence in the Neurosciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
- Department of Psychology, College of Arts and Sciences, University of New England, Biddeford, ME, United States
| | - Glenn W Stevenson
- Department of Biomedical Sciences, Center for Excellence in the Neurosciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
- Department of Psychology, College of Arts and Sciences, University of New England, Biddeford, ME, United States
| | - Tamara King
- Department of Biomedical Sciences, Center for Excellence in the Neurosciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
- Department of Psychology, College of Arts and Sciences, University of New England, Biddeford, ME, United States
| |
Collapse
|
89
|
Basu P, Averitt DL, Maier C, Basu A. The Effects of Nuclear Factor Erythroid 2 (NFE2)-Related Factor 2 (Nrf2) Activation in Preclinical Models of Peripheral Neuropathic Pain. Antioxidants (Basel) 2022; 11:430. [PMID: 35204312 PMCID: PMC8869199 DOI: 10.3390/antiox11020430] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress, resulting from an imbalance between the formation of damaging free radicals and availability of protective antioxidants, can contribute to peripheral neuropathic pain conditions. Reactive oxygen and nitrogen species, as well as products of the mitochondrial metabolism such as superoxide anions, hydrogen peroxide, and hydroxyl radicals, are common free radicals. Nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) is a transcription factor encoded by the NFE2L2 gene and is a member of the cap 'n' collar subfamily of basic region leucine zipper transcription factors. Under normal physiological conditions, Nrf2 remains bound to Kelch-like ECH-associated protein 1 in the cytoplasm that ultimately leads to proteasomal degradation. During peripheral neuropathy, Nrf2 can translocate to the nucleus, where it heterodimerizes with muscle aponeurosis fibromatosis proteins and binds to antioxidant response elements (AREs). It is becoming increasingly clear that the Nrf2 interaction with ARE leads to the transcription of several antioxidative enzymes that can ameliorate neuropathy and neuropathic pain in rodent models. Current evidence indicates that the antinociceptive effects of Nrf2 occur via reducing oxidative stress, neuroinflammation, and mitochondrial dysfunction. Here, we will summarize the preclinical evidence supporting the role of Nrf2 signaling pathways and Nrf2 inducers in alleviating peripheral neuropathic pain.
Collapse
Affiliation(s)
- Paramita Basu
- Pittsburgh Center for Pain Research and The Pittsburgh Project to End Opioid Misuse, Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dayna L. Averitt
- Division of Biology, School of the Sciences, Texas Woman’s University, Denton, TX 76204, USA; (D.L.A.); (C.M.)
| | - Camelia Maier
- Division of Biology, School of the Sciences, Texas Woman’s University, Denton, TX 76204, USA; (D.L.A.); (C.M.)
| | - Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA;
| |
Collapse
|
90
|
Tavares-Ferreira D, Shiers S, Ray PR, Wangzhou A, Jeevakumar V, Sankaranarayanan I, Cervantes AM, Reese JC, Chamessian A, Copits BA, Dougherty PM, Gereau RW, Burton MD, Dussor G, Price TJ. Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors. Sci Transl Med 2022; 14:eabj8186. [PMID: 35171654 PMCID: PMC9272153 DOI: 10.1126/scitranslmed.abj8186] [Citation(s) in RCA: 225] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nociceptors are specialized sensory neurons that detect damaging or potentially damaging stimuli and are found in the dorsal root ganglia (DRG) and trigeminal ganglia. These neurons are critical for the generation of neuronal signals that ultimately create the perception of pain. Nociceptors are also primary targets for treating acute and chronic pain. Single-cell transcriptomics on mouse nociceptors has transformed our understanding of pain mechanisms. We sought to generate equivalent information for human nociceptors with the goal of identifying transcriptomic signatures of nociceptors, identifying species differences and potential drug targets. We used spatial transcriptomics to molecularly characterize transcriptomes of single DRG neurons from eight organ donors. We identified 12 clusters of human sensory neurons, 5 of which are C nociceptors, as well as 1 C low-threshold mechanoreceptors (LTMRs), 1 Aβ nociceptor, 2 Aδ, 2 Aβ, and 1 proprioceptor subtypes. By focusing on expression profiles for ion channels, G protein-coupled receptors (GPCRs), and other pharmacological targets, we provided a rich map of potential drug targets in the human DRG with direct comparison to mouse sensory neuron transcriptomes. We also compared human DRG neuronal subtypes to nonhuman primates showing conserved patterns of gene expression among many cell types but divergence among specific nociceptor subsets. Last, we identified sex differences in human DRG subpopulation transcriptomes, including a marked increase in calcitonin-related polypeptide alpha (CALCA) expression in female pruritogen receptor-enriched nociceptors. This comprehensive spatial characterization of human nociceptors might open the door to development of better treatments for acute and chronic pain disorders.
Collapse
Affiliation(s)
- Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA.,Corresponding author: (T.J.P.); (D.T.-F.)
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Pradipta R. Ray
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Andi Wangzhou
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Vivekanand Jeevakumar
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | | | | | - Alexander Chamessian
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO 63110, USA
| | - Bryan A. Copits
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO 63110, USA
| | - Patrick M. Dougherty
- Department of Pain Medicine, Division of Anesthesiology and Critical Care, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert W. Gereau
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO 63110, USA
| | - Michael D. Burton
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Gregory Dussor
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA.,Corresponding author: (T.J.P.); (D.T.-F.)
| |
Collapse
|
91
|
Tavares-Ferreira D, Shiers S, Ray PR, Wangzhou A, Jeevakumar V, Sankaranarayanan I, Cervantes AM, Reese JC, Chamessian A, Copits BA, Dougherty PM, Gereau RW, Burton MD, Dussor G, Price TJ. Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors. Sci Transl Med 2022. [DOI: 10.1126/scitranslmed.abj8186\] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nociceptors are specialized sensory neurons that detect damaging or potentially damaging stimuli and are found in the dorsal root ganglia (DRG) and trigeminal ganglia. These neurons are critical for the generation of neuronal signals that ultimately create the perception of pain. Nociceptors are also primary targets for treating acute and chronic pain. Single-cell transcriptomics on mouse nociceptors has transformed our understanding of pain mechanisms. We sought to generate equivalent information for human nociceptors with the goal of identifying transcriptomic signatures of nociceptors, identifying species differences and potential drug targets. We used spatial transcriptomics to molecularly characterize transcriptomes of single DRG neurons from eight organ donors. We identified 12 clusters of human sensory neurons, 5 of which are C nociceptors, as well as 1 C low-threshold mechanoreceptors (LTMRs), 1 Aβ nociceptor, 2 Aδ, 2 Aβ, and 1 proprioceptor subtypes. By focusing on expression profiles for ion channels, G protein–coupled receptors (GPCRs), and other pharmacological targets, we provided a rich map of potential drug targets in the human DRG with direct comparison to mouse sensory neuron transcriptomes. We also compared human DRG neuronal subtypes to nonhuman primates showing conserved patterns of gene expression among many cell types but divergence among specific nociceptor subsets. Last, we identified sex differences in human DRG subpopulation transcriptomes, including a marked increase in calcitonin-related polypeptide alpha (
CALCA
) expression in female pruritogen receptor–enriched nociceptors. This comprehensive spatial characterization of human nociceptors might open the door to development of better treatments for acute and chronic pain disorders.
Collapse
Affiliation(s)
- Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Pradipta R. Ray
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Andi Wangzhou
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Vivekanand Jeevakumar
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | | | | | - Alexander Chamessian
- Department of Anesthesiology , Washington University Pain Center, St. Louis, MO 63110, USA
| | - Bryan A. Copits
- Department of Anesthesiology , Washington University Pain Center, St. Louis, MO 63110, USA
| | - Patrick M. Dougherty
- Department of Pain Medicine, Division of Anesthesiology and Critical Care, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert W. Gereau
- Department of Anesthesiology , Washington University Pain Center, St. Louis, MO 63110, USA
| | - Michael D. Burton
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Gregory Dussor
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| |
Collapse
|
92
|
Skin-resident dendritic cells mediate postoperative pain via CCR4 on sensory neurons. Proc Natl Acad Sci U S A 2022; 119:2118238119. [PMID: 35046040 PMCID: PMC8794894 DOI: 10.1073/pnas.2118238119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 01/08/2023] Open
Abstract
Interactions between the nervous and immune systems control the generation and maintenance of inflammatory pain. However, the immune cells and mediators controlling this response remain poorly characterized. We identified the cytokines CCL22 and CCL17 as secreted mediators that act directly on sensory neurons to mediate postoperative pain via their shared receptor, CCR4. We also show that skin-resident dendritic cells are key contributors to the inflammatory pain response. Blocking the interaction between these dendritic cell–derived ligands and their receptor can abrogate the pain response, highlighting CCR4 antagonists as potentially effective therapies for postoperative pain. Our findings identify functions for these tissue-resident myeloid cells and uncover mechanisms underlying pain pathophysiology. Inflammatory pain, such as hypersensitivity resulting from surgical tissue injury, occurs as a result of interactions between the immune and nervous systems with the orchestrated recruitment and activation of tissue-resident and circulating immune cells to the site of injury. Our previous studies identified a central role for Ly6Clow myeloid cells in the pathogenesis of postoperative pain. We now show that the chemokines CCL17 and CCL22, with their cognate receptor CCR4, are key mediators of this response. Both chemokines are up-regulated early after tissue injury by skin-resident dendritic and Langerhans cells to act on peripheral sensory neurons that express CCR4. CCL22, and to a lesser extent CCL17, elicit acute mechanical and thermal hypersensitivity when administered subcutaneously; this response abrogated by pharmacological blockade or genetic silencing of CCR4. Electrophysiological assessment of dissociated sensory neurons from naïve and postoperative mice showed that CCL22 was able to directly activate neurons and enhance their excitability after injury. These responses were blocked using C 021 and small interfering RNA (siRNA)-targeting CCR4. Finally, our data show that acute postoperative pain is significantly reduced in mice lacking CCR4, wild-type animals treated with CCR4 antagonist/siRNA, as well as transgenic mice depleted of dendritic cells. Together, these results suggest an essential role for the peripheral CCL17/22:CCR4 axis in the genesis of inflammatory pain via direct communication between skin-resident dendritic cells and sensory neurons, opening therapeutic avenues for its control.
Collapse
|
93
|
Bosia M, Spangaro M, Sapienza J, Martini F, Civardi S, Buonocore M, Bechi M, Lorenzi C, Cocchi F, Bianchi L, Guglielmino C, Cavallaro R. Cognition in Schizophrenia: Modeling the Interplay between Interleukin-1β C-511T Polymorphism, Metabolic Syndrome, and Sex. Neuropsychobiology 2022; 80:321-332. [PMID: 33395686 DOI: 10.1159/000512082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Cognitive deficits and metabolic disturbances are among the main determinants of functional impairment and reduced life expectancy in patients with schizophrenia, and they may share underlying biological mechanisms. Among these, interleukin-1β (IL-1β), a key mediator of inflammatory response, is of particular interest. IL-1β C-511T polymorphism has been associated with neuropsychiatric conditions and, in the general population, with cognitive and metabolic alterations. This study aims to evaluate the effects of the IL-1β C-511T polymorphism on both cognition and metabolic syndrome in a sample of patients affected by schizophrenia, with a focus on sex differences. METHODS 138 patients with schizophrenia were assessed for metabolic parameters and neurocognitive measures by means of the Brief Assessment of Cognition Scale. The effects of IL-1β C-511T polymorphism on cognition and metabolic syndrome were evaluated in the context of general linear models. RESULTS The analysis showed a significant interaction between IL-1β genotype and sex on 2 core cognitive domains. In detail, among CC homozygous, females outperformed males on processing speed, while among T carriers, males outperformed females on executive functions. A significant interaction also emerged between metabolic syndrome, sex, and IL-1β genotype for executive functions, with worse performance for T carrier females with metabolic syndrome. No significant direct effect was observed for metabolic syndrome on cognition. CONCLUSION These findings support the hypothesis that IL-1β polymorphism could play a key role in mediating the complex and refined relationship between metabolic syndrome and cognitive performance.
Collapse
Affiliation(s)
- Marta Bosia
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy, .,School of Medicine, Vita-Salute San Raffaele University, Milan, Italy,
| | - Marco Spangaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jacopo Sapienza
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Martini
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Civardi
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Mariachiara Buonocore
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Bechi
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Lorenzi
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Cocchi
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Bianchi
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmelo Guglielmino
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Cavallaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy.,School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
94
|
Salinas-Abarca AB, Vázquez-Cuevas FG, González-Gallardo A, Martínez-Lorenzana G, González-Hernández A, Condés-Lara M. The glial cell's role in antinociceptive differential effects of oxytocin upon female and male rats. Eur J Pain 2022; 26:796-810. [PMID: 34978727 DOI: 10.1002/ejp.1907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/17/2021] [Accepted: 12/31/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sex plays a crucial role in pain processing and response to analgesic drugs. Indeed, spinal glia seems to be significant in the sexual dimorphism observed in the above effects. Recently, studies have associated oxytocin with antinociceptive effects, but these have been mainly performed in male animals; consequently, the influence of sex has been poorly explored. METHODS Using a model of spinal nociception that produces pain through activation of the spinal glia, that is, intrathecal (i.t.) lipopolysaccharide (LPS) injection, we analysed the changes in the analgesic response to i.t. oxytocin in female and male rats by behavioural (punctate mechanical hypersensitivity), electrophysiological (unitary extracellular recordings of wide dynamic range [WDR] cells) and molecular biology (real-time PCR of proinflammatory genes) experiments. RESULTS We found that LPS-induced hypersensitivity was longer in female (>96 h) than in male (≈4 h) rats. Besides, spinal oxytocin preferentially prevents the LPS-induced hypersensitivity in male rather than female rats. Indeed, LPS increases the spinal neuronal-evoked activity associated with the activation of peripheral Aδ- and C-fibres and post-discharge in males, whereas only C-fibre discharge was enhanced in females. The electrophysiological data correlate with the fact that spinal oxytocin only prevented TNF-α and IL-1β synthesis in male rats. CONCLUSIONS Therefore, these data suggest that oxytocin-mediated analgesia depends on a sexual dimorphism involving activation of the spinal glia. These results reinforced the idea that different strategies are required to treat pain in men and women, and that oxytocin could be used preferentially to treat pain with a significant inflammatory component in men. SIGNIFICANCE STATEMENT Oxytocin is a molecule that emerges as a potent analgesic in preclinical and clinical studies. We investigated the contribution of glia to the response of oxytocin-induced analgesia and how sex influences in this response show that different strategies are required to treat pain in men and women, and that oxytocin could be used preferentially to treat pain with a significant inflammatory component in men.
Collapse
Affiliation(s)
- Ana B Salinas-Abarca
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Francisco G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Adriana González-Gallardo
- Unidad de Proteogenómica del Instituto de Neurobiología, Unidad de Protogenómica, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Guadalupe Martínez-Lorenzana
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Abimael González-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Miguel Condés-Lara
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
95
|
Troisi F, Pace S, Jordan PM, Meyer KPL, Bilancia R, Ialenti A, Borrelli F, Rossi A, Sautebin L, Serhan CN, Werz O. Sex Hormone-Dependent Lipid Mediator Formation in Male and Female Mice During Peritonitis. Front Pharmacol 2022; 12:818544. [PMID: 35046831 PMCID: PMC8762308 DOI: 10.3389/fphar.2021.818544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023] Open
Abstract
Introduction: Sex differences in inflammation are obvious and contribute to divergences in the incidence and severity of inflammation-related diseases that frequently preponderate in women. Lipid mediators (LMs), mainly produced by lipoxygenase (LOX) and cyclooxygenase (COX) pathways from polyunsaturated fatty acids (PUFAs), regulate all stages of inflammation. Experimental and clinical studies revealed sex divergences for selected LM pathways without covering the entire LM spectrum, and only few studies have addressed the respective role of sex hormones. Here, we performed the comprehensive LM profile analysis with inflammatory peritoneal exudates and plasma from male and female mice in zymosan-induced peritonitis to identify the potential sex differences in LM biosynthesis during the inflammatory response. We also addressed the impact of sex hormones by employing gonadectomy. Methods: Adult male and female CD1 mice received intraperitoneal injection of zymosan to induce peritonitis, a well-established experimental model of acute, self-resolving inflammation. Mice were gonadectomized 5 weeks prior to peritonitis induction. Peritoneal exudates and plasma were taken at 4 (peak of inflammation) and 24 h (onset of resolution) post zymosan and subjected to UPLC-MS-MS-based LM signature profiling; exudates were analyzed for LM biosynthetic proteins by Western blot; and plasma was analyzed for cytokines by ELISA. Results: Pro-inflammatory COX and 5-LOX products predominated in the peritoneum of males at 4 and 24 h post-zymosan, respectively, with slightly higher 12/15-LOX products in males after 24 h. Amounts of COX-2, 5-LOX/FLAP, and 15-LOX-1 were similar in exudates of males and females. In plasma of males, only moderate elevation of these LMs was apparent. At 4 h post-zymosan, gonadectomy strongly elevated 12/15-LOX products in the exudates of males, while in females, free PUFA and LOX products were rather impaired. In plasma, gonadectomy impaired most LMs in both sexes at 4 h with rather up-regulatory effects at 24 h. Finally, elevated 15-LOX-1 protein was evident in exudates of males at 24 h which was impaired by orchiectomy without the striking impact of gonadectomy on other enzymes in both sexes. Conclusions: Our results reveal obvious sex differences and roles of sex hormones in LM biosynthetic networks in acute self-resolving inflammation in mice, with several preponderances in males that appear under the control of androgens.
Collapse
Affiliation(s)
- Fabiana Troisi
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Katharina P. L. Meyer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Rossella Bilancia
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Armando Ialenti
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Lidia Sautebin
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany,*Correspondence: Oliver Werz,
| |
Collapse
|
96
|
Tmem160 contributes to the establishment of discrete nerve injury-induced pain behaviors in male mice. Cell Rep 2021; 37:110152. [PMID: 34936870 DOI: 10.1016/j.celrep.2021.110152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/01/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022] Open
Abstract
Chronic pain is a prevalent medical problem, and its molecular basis remains poorly understood. Here, we demonstrate the significance of the transmembrane protein (Tmem) 160 for nerve injury-induced neuropathic pain. An extensive behavioral assessment suggests a pain modality- and entity-specific phenotype in male Tmem160 global knockout (KO) mice: delayed establishment of tactile hypersensitivity and alterations in self-grooming after nerve injury. In contrast, Tmem160 seems to be dispensable for other nerve injury-induced pain modalities, such as non-evoked and movement-evoked pain, and for other pain entities. Mechanistically, we show that global KO males exhibit dampened neuroimmune signaling and diminished TRPA1-mediated activity in cultured dorsal root ganglia. Neither these changes nor altered pain-related behaviors are observed in global KO female and male peripheral sensory neuron-specific KO mice. Our findings reveal Tmem160 as a sexually dimorphic factor contributing to the establishment, but not maintenance, of discrete nerve injury-induced pain behaviors in male mice.
Collapse
|
97
|
Chidiac C, Xue Y, Muniz Moreno MDM, Bakr Rasheed AA, Lorentz R, Birling MC, Gaveriaux-Ruff C, Herault Y. The Human SCN10A G1662S Point Mutation Established in Mice Impacts on Mechanical, Heat, and Cool Sensitivity. Front Pharmacol 2021; 12:780132. [PMID: 34925037 PMCID: PMC8671994 DOI: 10.3389/fphar.2021.780132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
The voltage-gated sodium channel NAV1.8 is expressed in primary nociceptive neurons and is involved in pain transmission. Mutations in the SCN10A gene (encoding NAV1.8 channel) have been identified in patients with idiopathic painful small fiber neuropathy (SFN) including the SCN10AG1662S gain-of-function mutation. However, the role of this mutation in pain sensation remains unknown. We have generated the first mouse model for the G1662S mutation by using homologous recombination in embryonic stem cells. The corresponding Scn10aG1663S mouse line has been analyzed for Scn10a expression, intraepidermal nerve fiber density (IENFD), and nociception using behavioral tests for thermal and mechanical sensitivity. The Scn10aG1663S mutants had a similar Scn10a expression level in dorsal root ganglia (DRG) to their wild-type littermates and showed normal IENFD in hindpaw skin. Mutant mice were more sensitive to touch than wild types in the von Frey test. In addition, sexual dimorphism was observed for several pain tests, pointing to the relevance of performing the phenotypical assessment in both sexes. Female homozygous mutants tended to be more sensitive to cooling stimuli in the acetone test. For heat sensitivity, male homozygous mutants showed shorter latencies to radiant heat in the Hargreaves test while homozygous females had longer latencies in the tail flick test. In addition, mutant males displayed a shorter reaction latency on the 54°C hot plate. Collectively, Scn10aG1663S mutant mice show a moderate but consistent increased sensitivity in behavioral tests of nociception. This altered nociception found in Scn10aG1663S mice demonstrates that the corresponding G1662 mutation of SCN10A found in SFN patients with pain contributes to their pain symptoms.
Collapse
Affiliation(s)
- Celeste Chidiac
- CNRS, INSERM Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Yaping Xue
- CNRS, INSERM Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Maria Del Mar Muniz Moreno
- CNRS, INSERM Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Ameer Abu Bakr Rasheed
- CNRS, INSERM Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Romain Lorentz
- CNRS, INSERM, PHENOMIN-Institut Clinique de la Souris, Université de Strasbourg, Illkirch, France
| | - Marie-Christine Birling
- CNRS, INSERM, PHENOMIN-Institut Clinique de la Souris, Université de Strasbourg, Illkirch, France
| | - Claire Gaveriaux-Ruff
- CNRS, INSERM Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Yann Herault
- CNRS, INSERM Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France.,CNRS, INSERM, PHENOMIN-Institut Clinique de la Souris, Université de Strasbourg, Illkirch, France
| |
Collapse
|
98
|
Tsyglakova M, Huskey AM, Hurst EH, Telep NM, Wilding MC, Babington ME, Rainville JR, Hodes GE. Sex and region-specific effects of variable stress on microglia morphology. Brain Behav Immun Health 2021; 18:100378. [PMID: 34820640 PMCID: PMC8600001 DOI: 10.1016/j.bbih.2021.100378] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/25/2022] Open
Abstract
Major Depressive Disorder (MDD) is a common and debilitating mood disorder that is more prevalent in women than men. In humans, PET imaging of microglia activation is currently being explored as a potential biomarker of MDD and suicidal ideation. Stress is a trigger for many mood disorders, including MDD. Microglial changes in morphology and activation state in response to stress has been reported in various brain regions, but most studies only examined male subjects. Here we report changes in microglia morphology in the nucleus accumbens (NAc) and subregions of the hippocampus (HPC) in both male and female mice following variable stress of 6 or 28 days in duration. Our data demonstrate that after 6 days of stress, microglia in the female NAc and dentate gyrus have a reduction in homeostatic associated morphology and an increase in primed microglia. After 28 days some of these sex specific stress effects were still present in microglia within the NAc but not the dentate gyrus. There were no effects of stress in either sex at either timepoint in CA1. In female mice, anti-inflammatory activation of microglia using rosiglitazone promoted sociability behavior after 6 days of stress. Furthermore, both drug and stress have impact on microglia morphology and activation state in the NAc. These data suggest that microglia morphology and activation state are altered by 6 days of variable stress in a region-specific manner and may contribute to, or potentially compensate for, the onset of stress susceptibility rather than impacting long term exposure to stress.
Collapse
Affiliation(s)
- Mariya Tsyglakova
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alisa M. Huskey
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Emily H. Hurst
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Natalie M. Telep
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mary C. Wilding
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Meghan E. Babington
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jennifer R. Rainville
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Georgia E. Hodes
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
99
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
100
|
Bosi A, Xu Y, Gasparini A, Wettermark B, Barany P, Bellocco R, Inker LA, Chang AR, McAdams-DeMarco M, Grams ME, Shin JI, Carrero JJ. Use of nephrotoxic medications in adults with chronic kidney disease in Swedish and US routine care. Clin Kidney J 2021; 15:442-451. [PMID: 35296039 PMCID: PMC8922703 DOI: 10.1093/ckj/sfab210] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Background To characterize the use of nephrotoxic medications in patients with chronic kidney
disease (CKD) Stages G3–5 in routine care. Methods We studied cohorts of adults with confirmed CKD G3–5 undergoing routine care
from 1 January 2016 through 31 December 2018 in two health systems [Stockholm
CREAtinine Measurements (SCREAM), Stockholm, Sweden
(N = 57 880) and Geisinger, PA, USA
(N = 16 255)]. We evaluated the
proportion of patients receiving nephrotoxic medications within 1 year overall and by
baseline kidney function, ranked main contributors and examined the association between
receipt of nephrotoxic medication and age, sex, CKD G-stages comorbidities and provider
awareness of the patient's CKD using multivariable logistic regression. Results During a 1-year period, 20% (SCREAM) and 17% (Geisinger) of patients with
CKD received at least one nephrotoxic medication. Among the top nephrotoxic medications
identified in both cohorts were non-steroidal anti-inflammatory drugs (given to
11% and 9% of patients in SCREAM and Geisinger, respectively), antivirals
(2.5% and 2.0%) and immunosuppressants (2.7% and 1.5%).
Bisphosphonate use was common in SCREAM (3.3%) and fenofibrates in Geisinger
(3.6%). Patients <65 years of age, women and those with CKD G3 were
at higher risk of receiving nephrotoxic medications in both cohorts. Notably, provider
awareness of a patient's CKD was associated with lower odds of nephrotoxic
medication use {odds ratios [OR] 0.85[95% confidence
interval (CI) 0.80–0.90] in SCREAM and OR 0.80 [95% CI
0.72–0.89] in Geisinger}. Conclusions One in five patients with CKD received nephrotoxic medications in two distinct health
systems. Strategies to increase physician's awareness of patients’ CKD and
knowledge of drug nephrotoxicity may reduce prescribing nephrotoxic medications and
prevent iatrogenic kidney injury.
Collapse
Affiliation(s)
- Alessandro Bosi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Yunwen Xu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alessandro Gasparini
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Björn Wettermark
- Department of Pharmacy, Disciplinary Domain of Medicine and Pharmacy, Uppsala University, Uppsala, Sweden
| | - Peter Barany
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Rino Bellocco
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Lesley A Inker
- Division of Nephrology, Department of Internal Medicine, Tufts Medical Center, Boston, MA, USA
| | - Alex R Chang
- Division of Nephrology, Geisinger Health System, Danville, PA, USA
| | - Mara McAdams-DeMarco
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Morgan E Grams
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jung-Im Shin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Juan J Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|