51
|
Yang PH, Hacker CD, Patel B, Daniel AGS, Leuthardt EC. Resting-State Functional Magnetic Resonance Imaging Networks as a Quantitative Metric for Impact of Neurosurgical Interventions. Front Neurosci 2021; 15:665016. [PMID: 34776836 PMCID: PMC8585791 DOI: 10.3389/fnins.2021.665016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 10/05/2021] [Indexed: 12/02/2022] Open
Abstract
Objective: Resting-state functional MRI (rs-fMRI) has been used to evaluate brain network connectivity as a result of intracranial surgery but has not been used to compare different neurosurgical procedures. Laser interstitial thermal therapy (LITT) is an alternative to conventional craniotomy for the treatment of brain lesions such as tumors and epileptogenic foci. While LITT is thought of as minimally invasive, its effect on the functional organization of the brain is still under active investigation and its impact on network changes compared to conventional craniotomy has not yet been explored. We describe a novel computational method for quantifying and comparing the impact of two neurosurgical procedures on brain functional connectivity. Methods: We used a previously described seed-based correlation analysis to generate resting-state network (RSN) correlation matrices, and compared changes in correlation patterns within and across RSNs between LITT and conventional craniotomy for treatment of 24 patients with singular intracranial tumors at our institution between 2014 and 2017. Specifically, we analyzed the differences in patient-specific changes in the within-hemisphere correlation patterns of the contralesional hemisphere. Results: In a post-operative follow-up period up to 2 years within-hemisphere connectivity of the contralesional hemisphere after surgery was more highly correlated to the pre-operative state in LITT patients when compared to craniotomy patients (P = 0.0287). Moreover, 4 out of 11 individual RSNs demonstrated significantly higher degrees of correlation between pre-operative and post-operative network connectivity in patients who underwent LITT (all P < 0.05). Conclusion: Rs-fMRI may be used as a quantitative metric to determine the impact of different neurosurgical procedures on brain functional connectivity. Global and individual network connectivity in the contralesional hemisphere may be more highly preserved after LITT when compared to craniotomy for the treatment of brain tumors.
Collapse
Affiliation(s)
- Peter H Yang
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Carl D Hacker
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Bhuvic Patel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Andy G S Daniel
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States.,Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States.,Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO, United States.,Brain Laser Center, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
52
|
Qiu W, Bouakaz A, Konofagou EE, Zheng H. Ultrasound for the Brain: A Review of Physical and Engineering Principles, and Clinical Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:6-20. [PMID: 32866096 DOI: 10.1109/tuffc.2020.3019932] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The emergence of new ultrasound technologies has improved our understanding of the brain functions and offered new opportunities for the treatment of brain diseases. Ultrasound has become a valuable tool in preclinical animal and clinical studies as it not only provides information about the structure and function of brain tissues but can also be used as a therapy alternative for brain diseases. High-resolution cerebral flow images with high sensitivity can be acquired using novel functional ultrasound and super-resolution ultrasound imaging techniques. The noninvasive treatment of essential tremors has been clinically approved and it has been demonstrated that the ultrasound technology can revolutionize the currently existing treatment methods. Microbubble-mediated ultrasound can remotely open the blood-brain barrier enabling targeted drug delivery in the brain. More recently, ultrasound neuromodulation received a great amount of attention due to its noninvasive and deep penetration features and potential therapeutic benefits. This review provides a thorough introduction to the current state-of-the-art research on brain ultrasound and also introduces basic knowledge of brain ultrasound including the acoustic properties of the brain/skull and engineering techniques for ultrasound. Ultrasound is expected to play an increasingly important role in the diagnosis and therapy of brain diseases.
Collapse
|
53
|
Fagan AJ, Jacobs PS, Hulshizer TC, Rossman PJ, Frick MA, Amrami KK, Felmlee JP. 7T MR Thermometry technique for validation of system-predicted SAR with a home-built radiofrequency wrist coil. Med Phys 2020; 48:781-790. [PMID: 33294999 DOI: 10.1002/mp.14641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/03/2020] [Accepted: 11/30/2020] [Indexed: 11/12/2022] Open
Abstract
PURPOSE A 7T magnetic resonance thermometry (MRT) technique was developed to validate the conversion factor between the system-measured transmitted radiofrequency (RF) power into a home-built RF wrist coil with the system-predicted SAR value. The conversion factor for a new RF coil developed for ultra high magnetic field MRI systems is used to ensure that regulatory limits on RF energy deposition in tissue, specifically the local 10g-averaged specific absorption rate (SAR10g ), are not exceeded. MRT can be used to validate this factor by ensuring that MRT-measured SAR values do not exceed those predicted by the system. METHODS A 14-cm diameter high-pass birdcage RF coil was built to image the wrist at 7T. A high spatial and temporal resolution dual-echo gradient echo MRT technique, incorporating quasi-simultaneous RF-induced heating and temperature change measurements using the proton resonance frequency method, was developed. The technique allowed for high-temperature resolution measurements (~±0.1°C) to be performed every 20 s over a 4-min heating period, with high spatial resolution (2.56 mm3 voxel size) and avoiding phase discontinuities arising from severe magnetic susceptibility-induced B0 inhomogeneities. Magnetic resonance thermometry was performed on a phantom made from polyvinylpyrrolidone to mimic the dielectric properties of muscle tissue at 297.2 MHz. Temperature changes measured with MRT and four fiber optic temperature sensors embedded in the phantom were compared. Electromagnetic simulations of the coil and phantom were developed and validated via comparison of simulated and measured B1 + maps in the phantom. The position of maximum SAR within the coil was determined from simulations, and MRT was performed within a wrist-sized piece of meat positioned at that SAR hotspot location. MRT-measured and system-predicted SAR values for the phantom and meat were compared. RESULTS Temperature change measurements from MRT matched closely to those from the fiber optic temperature sensors. The simulations were validated via close correlation between the simulated and MRT-measured B1 + and SAR maps. Using a coil conversion factor of 2 kg-1 , MRT-measured point-SAR values did not exceed the system-predicted SAR10g in either the uniform phantom or in the piece of meat mimicking the wrist located at the SAR hotspot location. CONCLUSIONS A highly accurate MRT technique with high spatial and temporal resolution was developed. This technique can be used to ensure that system-predicted SAR values are not exceeded in practice, thereby providing independent validation of SAR levels delivered by a newly built RF wrist coil. The MRT technique is readily generalizable to perform safety evaluations for other RF coils at 7T.
Collapse
Affiliation(s)
- Andrew J Fagan
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Paul S Jacobs
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Thomas C Hulshizer
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Phillip J Rossman
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Matthew A Frick
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kimberly K Amrami
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Joel P Felmlee
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
54
|
Jeong H, Restivo MC, Jezzard P, Hess AT. Assessment of radio-frequency heating of a parallel transmit coil in a phantom using multi-echo proton resonance frequency shift thermometry. Magn Reson Imaging 2020; 77:57-68. [PMID: 33359425 PMCID: PMC7889491 DOI: 10.1016/j.mri.2020.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/27/2020] [Accepted: 12/20/2020] [Indexed: 10/25/2022]
Abstract
We propose a workflow for validating parallel transmission (pTx) radio-frequency (RF) magnetic field heating patterns using Proton-Resonance Frequency shift (PRF)-based MR thermometry. Electromagnetic (EM) and thermal simulations of a 7 T 8-channel dipole coil were done using commercially available software (Sim4Life) to assess RF heating. The fabrication method for a phantom with electrical properties matched to human tissue is also described, along with methods for its electrical and thermal characterisation. Energy was deposited to specific transmit channels, whilst acquiring 3D PRF data using a pair of interleaved RF shim transmit modes. A multi-echo readout and pre-scan stabilisation protocol were used for increased sensitivity and to correct for measurement-to-measurement instabilities. The electrical properties of the phantom were found to be within 10% of the intended values. Adoption of a 14-min stabilisation scan gave sufficient suppression of any evolving background spatial variation in the B0 field to achieve <0.001 °C/mm thermometry drift over 10 min of subsequent scanning. Using two RF shim transmit modes enabled full phantom coverage and combining multiple echo times enabled a 13-54% improvement in the RMSE sensitivity to temperature changes. Combining multiple echoes reduced the peak RMSE by 45% and visually reduced measurement-to-measurement instabilities. A reference fibre optic probe showed temperature deviations from the PRF-estimated temperature to be smaller than 0.5 °C. Given the importance of RF safety in pTx applications, this workflow enables accurate validation of RF heating simulations with minimal additional hardware requirements.
Collapse
Affiliation(s)
- Hongbae Jeong
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew C Restivo
- Laboratory of Imaging Technology, Biochemistry and Biophysics Centre, NHLBI, NIH, Bethesda, MD, United States
| | - Peter Jezzard
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Aaron T Hess
- Centre for Clinical Magnetic Resonance Research, Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom; British Heart Foundation Centre for Research Excellence, Oxford, United Kingdom.
| |
Collapse
|
55
|
Clinical Performance and Future Potential of Magnetic Resonance Thermometry in Hyperthermia. Cancers (Basel) 2020; 13:cancers13010031. [PMID: 33374176 PMCID: PMC7794787 DOI: 10.3390/cancers13010031] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hyperthermia is a treatment for cancer patients, which consists of heating the body to 43 °C. The temperature during treatment is usually measured by placing temperature probes intraluminal or invasively. The only clinically used option to measure temperature distributions non-invasively and in 3D is by MR thermometry (MRT). However, in order to be able to replace conventional temperature probes, MRT needs to become more reliable. In this review paper, we propose standardized performance thresholds for MRT, based on our experience of treating nearly 4000 patients. We then review the literature to assess to what extent these requirements are already being met in the clinic today and identify common problems. Lastly, using pre-clinical results in the literature, we assess where the biggest potential is to solve the problems identified. We hope that by standardizing MRT parameters as well as highlighting current and promising developments, progress in the field will be accelerated. Abstract Hyperthermia treatments in the clinic rely on accurate temperature measurements to guide treatments and evaluate clinical outcome. Currently, magnetic resonance thermometry (MRT) is the only clinical option to non-invasively measure 3D temperature distributions. In this review, we evaluate the status quo and emerging approaches in this evolving technology for replacing conventional dosimetry based on intraluminal or invasively placed probes. First, we define standardized MRT performance thresholds, aiming at facilitating transparency in this field when comparing MR temperature mapping performance for the various scenarios that hyperthermia is currently applied in the clinic. This is based upon our clinical experience of treating nearly 4000 patients with superficial and deep hyperthermia. Second, we perform a systematic literature review, assessing MRT performance in (I) clinical and (II) pre-clinical papers. From (I) we identify the current clinical status of MRT, including the problems faced and from (II) we extract promising new techniques with the potential to accelerate progress. From (I) we found that the basic requirements for MRT during hyperthermia in the clinic are largely met for regions without motion, for example extremities. In more challenging regions (abdomen and thorax), progress has been stagnating after the clinical introduction of MRT-guided hyperthermia over 20 years ago. One clear difficulty for advancement is that performance is not or not uniformly reported, but also that studies often omit important details regarding their approach. Motion was found to be the common main issue hindering accurate MRT. Based on (II), we reported and highlighted promising developments to tackle the issues resulting from motion (directly or indirectly), including new developments as well as optimization of already existing strategies. Combined, these may have the potential to facilitate improvement in MRT in the form of more stable and reliable measurements via better stability and accuracy.
Collapse
|
56
|
McDannold N, Jason White P, Rees Cosgrove G. Using Phase Data From MR Temperature Imaging to Visualize Anatomy During MRI-Guided Focused Ultrasound Neurosurgery. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3821-3830. [PMID: 32746127 PMCID: PMC7749411 DOI: 10.1109/tmi.2020.3005631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Neurosurgery targets in the thalamus can be challenging to identify during transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation due to poor image quality. They also neighbor structures that can result in side effects if damaged. Here we demonstrate that the phase data obtained during MRgFUS for MR temperature imaging (MRTI) contains anatomic information that could be useful in guiding this procedure. This approach was evaluated in 68 thalamotomies for essential tremor (ET). We found that we could readily visualize the red nucleus and subthalamic nucleus, and those nuclei were consistently aligned with the sonication target coordinates. We also could consistently visualize the internal capsule, which needs to be protected from thermal damage to prevent side effects. Preliminary results from four pallidotomies in Parkinson's disease patients suggest that this approach might also be useful in visualizing the optic tract in addition to the internal capsule. Overall, this approach can visualize anatomic landmarks that may be useful to refine atlas-based targeting for MRgFUS. Since the same data is used for MRTI and anatomic visualization, there are no errors induced by registration to previously obtained planning images or image distortion, and no additional time is needed.
Collapse
|
57
|
Sadeghi-Tarakameh A, Adriany G, Metzger GJ, Lagore RL, Jungst S, DelaBarre L, Van de Moortele PF, Ugurbil K, Atalar E, Eryaman Y. Improving radiofrequency power and specific absorption rate management with bumped transmit elements in ultra-high field MRI. Magn Reson Med 2020; 84:3485-3493. [PMID: 32767392 PMCID: PMC7722062 DOI: 10.1002/mrm.28382] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE In this study, we investigate a strategy to reduce the local specific absorption rate (SAR) while keeping B 1 + constant inside the region of interest (ROI) at the ultra-high field (B0 ≥ 7T) MRI. METHODS Locally raising the resonance structure under the discontinuity (i.e., creating a bump) increases the distance between the accumulated charges and the tissue. As a result, it reduces the electric field and local SAR generated by these charges inside the tissue. The B 1 + at a point that is sufficiently far from the coil, however, is not affected by this modification. In this study, three different resonant elements (i.e., loop coil, snake antenna, and fractionated dipole [FD]) are investigated. For experimental validation, a bumped FD is further investigated at 10.5T. After the validation, the transmit performances of eight-channel arrays of each element are compared through electromagnetic (EM) simulations. RESULTS Introducing a bump reduced the peak 10g-averaged SAR by 21, 26, 23% for the loop and snake antenna at 7T, and FD at 10.5T, respectively. In addition, eight-channel bumped FD array at 10.5T had a 27% lower peak 10g-averaged SAR in a realistic human body simulation (i.e., prostate imaging) compared to an eight-channel FD array. CONCLUSION In this study, we investigated a simple design strategy based on adding bumps to a resonant element to reduce the local SAR while maintaining B 1 + inside an ROI. As an example, we modified an FD and performed EM simulations and phantom experiments with a 10.5T scanner. Results show that the peak 10g-averaged SAR can be reduced more than 25%.
Collapse
Affiliation(s)
- Alireza Sadeghi-Tarakameh
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Ankara, Turkey
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory J. Metzger
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Russell L. Lagore
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Steve Jungst
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Lance DelaBarre
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Kamil Ugurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Ankara, Turkey
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
58
|
Li Y, Lee J, Long X, Qiao Y, Ma T, He Q, Cao P, Zhang X, Zheng H. A Magnetic Resonance-Guided Focused Ultrasound Neuromodulation System With a Whole Brain Coil Array for Nonhuman Primates at 3 T. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4401-4412. [PMID: 32833632 DOI: 10.1109/tmi.2020.3019087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The phased-array radio frequency (RF) coil plays a vital role in magnetic resonance-guided focused ultrasound (MRgFUS) neuromodulation studies, where accurate brain functional stimulations and neural circuit observations are required. Although various designs of phased-array coils have been reported, few are suitable for ultrasound stimulations. In this study, an MRgFUS neuromodulation system comprised of a whole brain coverage non-human primate (NHP) RF coil and an MRI-compatible ultrasound device was developed. When compared to a single loop coil, the NHP coil provided up to a 50% increase in the signal-to-noise ratio (SNR) in the brain and acquired better anatomical image-quality. The NHP coil also demonstrated the ability to achieve higher spatial resolution and reduce distortion in echo-planer imaging (EPI). Ultrasound beam characteristics and transcranial magnetic resonance acoustic radiation force (MR-ARF) were measured for simulated positions, and calculated B0 maps were employed to establish MRI-compatibility. The differences between focused off and on ultrasound techniques were measured using SNR, g-factors, and temporal SNR (tSNR) analyses and all deviations were under 2.3%. The EPI images quality and stable tSNR demonstrated the suitability of the MRgFUS neuromodulation system to conduct functional MRI studies. Last, the time course of the blood oxygen level dependent (BOLD) signal of posterior cingulate cortex in a focused ultrasound neuromodulation study was detected and repeated with MR thermometry.
Collapse
|
59
|
Blackwell J, Kraśny MJ, O'Brien A, Ashkan K, Galligan J, Destrade M, Colgan N. Proton Resonance Frequency Shift Thermometry: A Review of Modern Clinical Practices. J Magn Reson Imaging 2020; 55:389-403. [PMID: 33217099 DOI: 10.1002/jmri.27446] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Magnetic resonance imaging (MRI) has become a popular modality in guiding minimally invasive thermal therapies, due to its advanced, nonionizing, imaging capabilities and its ability to record changes in temperature. A variety of MR thermometry techniques have been developed over the years, and proton resonance frequency (PRF) shift thermometry is the current clinical gold standard to treat a variety of cancers. It is used extensively to guide hyperthermic thermal ablation techniques such as high-intensity focused ultrasound (HIFU) and laser-induced thermal therapy (LITT). Essential attributes of PRF shift thermometry include excellent linearity with temperature, good sensitivity, and independence from tissue type. This noninvasive temperature mapping method gives accurate quantitative measures of the temperature evolution inside biological tissues. In this review, the current status and new developments in the fields of MR-guided HIFU and LITT are presented with an emphasis on breast, prostate, bone, uterine, and brain treatments. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- James Blackwell
- Advanced Biological Imaging Laboratory, School of Physics, National University of Ireland Galway, Galway, Ireland.,School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Marcin J Kraśny
- Advanced Biological Imaging Laboratory, School of Physics, National University of Ireland Galway, Galway, Ireland
| | - Aoife O'Brien
- School of Psychology, National University of Ireland Galway, Galway, Ireland
| | - Keyoumars Ashkan
- Neurosurgical Department, King's College Hospital Foundation Trust, London, UK.,Harley Street Clinic, London Neurosurgery Partnership, London, UK
| | - Josette Galligan
- Department of Medical Physics and Bioengineering, St. James' Hospital, Dublin, Ireland
| | - Michel Destrade
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Niall Colgan
- Advanced Biological Imaging Laboratory, School of Physics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
60
|
A Modified Phase Cycling Method for Complex-Valued MRI Reconstruction. Int J Biomed Imaging 2020; 2020:8846220. [PMID: 33281895 PMCID: PMC7688360 DOI: 10.1155/2020/8846220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022] Open
Abstract
The phase cycling method is a state-of-the-art method to reconstruct complex-valued MR image. However, when it follows practical two-dimensional (2D) subsampling Cartesian acquisition which is only enforcing random sampling in the phase-encoding direction, a number of artifacts in magnitude appear. A modified approach is proposed to remove these artifacts under practical MRI subsampling, by adding one-dimensional total variation (TV) regularization into the phase cycling method to "pre-process" the magnitude component before its update. Furthermore, an operation used in SFISTA is employed to update the magnitude and phase images for better solutions. The results of the experiments show the ability of the proposed method to eliminate the ring artifacts and improve the magnitude reconstruction.
Collapse
|
61
|
Curto S, Mulder HT, Aklan B, Mils O, Schmidt M, Lamprecht U, Peller M, Wessalowski R, Lindner LH, Fietkau R, Zips D, van Holthe N, Franckena M, Paulides MM, van Rhoon GC. A multi-institution study: comparison of the heating patterns of five different MR-guided deep hyperthermia systems using an anthropomorphic phantom. Int J Hyperthermia 2020; 37:1103-1115. [DOI: 10.1080/02656736.2020.1810331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Sergio Curto
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Hendrik Thijmen Mulder
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Bassim Aklan
- Department of Internal Medicine III, Ludwig-Maximilians University Hospital, Munich, Germany
| | - Oliver Mils
- Department of Pediatric Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Manfred Schmidt
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Ulf Lamprecht
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Michael Peller
- Department of Radiology, Ludwig-Maximilians University Hospital, Munich, Germany
| | - Ruediger Wessalowski
- Department of Pediatric Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Lars H. Lindner
- Department of Internal Medicine III, Ludwig-Maximilians University Hospital, Munich, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Netteke van Holthe
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Martine Franckena
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Margarethus M. Paulides
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Faculty of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gerard C. van Rhoon
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
62
|
Qiao Y, Zou C, Cheng C, Tie C, Wan Q, Peng H, Liang D, Liu X, Zheng H. Simultaneous acoustic radiation force imaging and MR thermometry based on a coherent echo-shifted sequence. Quant Imaging Med Surg 2020; 10:1823-1836. [PMID: 32879860 DOI: 10.21037/qims-20-274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Simultaneous magnetic resonance (MR) acoustic radiation force imaging (ARFI) and MR thermometry (MRT) (STARFI) based on coherent echo-shifted (cES) sequence was proposed and comprehensively compared to radiofrequency (RF)-spoiled gradient echo (spGRE) STARFI. Methods Through use of delicately designed gradients, a collection of echoes was delayed by one repetition time (TR) cycle. The crusher gradient after readout (RO) was used as the displacement encoding gradient (DEG). The sequence was intrinsically sensitive to temperature. High-intensity focused ultrasound (HIFU) pulses were interleaved ON/OFF in successive TRs to separate the phase changes induced by displacement due to acoustic radiation force (ARF) impulses and temperature. Bloch simulation was performed to study the phase sensitivity to displacement of the proposed cES STARFI and spGRE STARFI. The proposed cES sequence was evaluated and compared to spGRE STARFI in ex vivo porcine muscle and ex vivo porcine brain. Results The minimally achievable TR of cES STARFI was shorter than that of spGRE STARFI, indicating that the cES sequence was more time efficient. It was verified through Bloch simulation and ex vivo experiments that the phase sensitivity to displacement of cES STARFI was higher than that of spGRE STARFI. The optimal trigger delays of cES STARFI and spGRE STARFI in ex vivo porcine muscle were toffset =-2 and -1 ms, respectively. The displacement-induced phase change to acoustic pressure slopes of cES STARFI were 0.079, 0.079, and 0.047 rad/Mpa across the three muscle samples, while the slopes of spGRE STARFI were only 0.047, 0.052, and 0.027 rad/Mpa. The maximum temperature difference between cES STARFI and spGRE STARFI was 1.1 °C. In ex vivo porcine brain, both the displacement-induced phase-to-noise ratio (PNRd) and the temperature uncertainty of cES STARFI were better than those of spGRE STARFI (P<0.05). The temperature and displacement-induced phase change maps of cES STARFI and spGRE STARFI during HIFU treatment were in good accordance in time and spatial location. Conclusions The cES STARFI sequence can provide simultaneous MR-ARFI and temperature measurements during pulsed HIFU applications. Though the exact displacement cannot be quantified directly, the sequence showed increased phase sensitivity compared with the spGRE sequence and provided efficient visualization of the focal spot. cES STARFI could therefore be a desirable alternative to spGRE STARFI in practical applications.
Collapse
Affiliation(s)
- Yangzi Qiao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen, China.,These authors contributed equally to this work
| | - Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen, China.,These authors contributed equally to this work
| | - Chuanli Cheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Changjun Tie
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qian Wan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Institute of Biomedical and Health Engineering, Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Hao Peng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Key Laboratory of Imaging Processing and Intelligence Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen, China
| |
Collapse
|
63
|
Sharma M, Ugiliweneza B, Wang D, Boakye M, Andaluz N, Neimat J, Mohammadi A, Barnett GH, Williams BJ. National Trends and Factors Predicting Outcomes Following Laser Interstitial Thermal Therapy for Brain Lesions: Nationwide Inpatient Sample Analysis. World Neurosurg 2020; 139:e88-e97. [PMID: 32251808 DOI: 10.1016/j.wneu.2020.03.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Laser interstitial thermal therapy (LITT) is a stereotactic-guided technique, which is increasingly being performed for brain lesions. The aim of our study was to report the national trends and factors predicting the clinical outcomes following LITT using the Nationwide Inpatient Sample. METHODS We extracted data from 2011-2016 using ICD-9/10 codes. Patients with a primary procedure of LITT were included. Patient demographics, complications, length of hospital stay, discharge disposition, and index-hospitalization charges were analyzed. RESULTS A cohort of 1768 patients was identified from the database. Mean length of hospital stay was 3.2 days, 82% of patients were discharged to home, and in-hospitalization cost was $124,225. Complications and mortality were noted in 12.9% and 2.5% of patients following LITT, respectively. Non-Caucasian patients (estimate ratio [ER] 4.26), those with other insurance (compared with commercial, ER: 5.35), 3 and 4+ comorbidity indexes, patients with higher quartile median household income (second, third, and fourth quartile compared with first quartile), and those who underwent nonelective procedures were likely to have higher complications and less likely to be discharged home. Patients with 4+ comorbidity indexes were likely to have longer length of hospital stay (ER 1.39) and higher complications (ER: 7.95) and were less likely to be discharged home (ER: 0.17) and have higher in-hospitalization cost (ER: 1.21). CONCLUSIONS LITT is increasingly being performed with low complication rates. Non-Caucasian race, higher comorbidity index, noncommercial insurance, and nonelective procedures were predictors of higher complications and being less likely to be discharged home. In-hospitalization charges were higher in patients with higher comorbidity index and those with noncommercial insurance.
Collapse
Affiliation(s)
- Mayur Sharma
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | | | - Dengzhi Wang
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Maxwell Boakye
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Norberto Andaluz
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Joseph Neimat
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Alireza Mohammadi
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Gene H Barnett
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Brian J Williams
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA.
| |
Collapse
|
64
|
Ferrer CJ, Bartels LW, van der Velden TA, Grüll H, Heijman E, Moonen CTW, Bos C. Field drift correction of proton resonance frequency shift temperature mapping with multichannel fast alternating nonselective free induction decay readouts. Magn Reson Med 2020; 83:962-973. [PMID: 31544289 PMCID: PMC6899537 DOI: 10.1002/mrm.27985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/07/2023]
Abstract
PURPOSE To demonstrate that proton resonance frequency shift MR thermometry (PRFS-MRT) acquisition with nonselective free induction decay (FID), combined with coil sensitivity profiles, allows spatially resolved B0 drift-corrected thermometry. METHODS Phantom experiments were performed at 1.5T and 3T. Acquisition of PRFS-MRT and FID were performed during MR-guided high-intensity focused ultrasound heating. The phase of the FIDs was used to estimate the change in angular frequency δωdrift per coil element. Two correction methods were investigated: (1) using the average δωdrift over all coil elements (0th-order) and (2) using coil sensitivity profiles for spatially resolved correction. Optical probes were used for independent temperature verification. In-vivo feasibility of the methods was evaluated in the leg of 1 healthy volunteer at 1.5T. RESULTS In 30 minutes, B0 drift led to an apparent temperature change of up to -18°C and -98°C at 1.5T and 3T, respectively. In the sonicated area, both corrections had a median error of 0.19°C at 1.5T and -0.54°C at 3T. At 1.5T, the measured median error with respect to the optical probe was -1.28°C with the 0th-order correction and improved to 0.43°C with the spatially resolved correction. In vivo, without correction the spatiotemporal median of the apparent temperature was at -4.3°C and interquartile range (IQR) of 9.31°C. The 0th-order correction had a median of 0.75°C and IQR of 0.96°C. The spatially resolved method had the lowest median at 0.33°C and IQR of 0.80°C. CONCLUSION FID phase information from individual receive coil elements allows spatially resolved B0 drift correction in PRFS-based MRT.
Collapse
Affiliation(s)
- Cyril J. Ferrer
- Imaging DivisionUniversity Medical Center UtrechtUtrechtNetherlands
| | | | | | - Holger Grüll
- Faculty of Medicine and University Hospital of CologneDepartment of Diagnostic and Interventional RadiologyUniversity of CologneCologneGermany
| | - Edwin Heijman
- Faculty of Medicine and University Hospital of CologneDepartment of Diagnostic and Interventional RadiologyUniversity of CologneCologneGermany
- Oncology SolutionsPhilips ResearchAachenGermany
| | | | - Clemens Bos
- Imaging DivisionUniversity Medical Center UtrechtUtrechtNetherlands
| |
Collapse
|
65
|
Ruytenberg T, Webb A, Zivkovic I. Shielded-coaxial-cable coils as receive and transceive array elements for 7T human MRI. Magn Reson Med 2020; 83:1135-1146. [PMID: 31483530 PMCID: PMC6899981 DOI: 10.1002/mrm.27964] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE To investigate the use of shielded-coaxial-cable (SCC) coils as elements for multi-channel receive-only and transceive arrays for 7T human MRI and to compare their performance with equivalently sized conventional loop coils. METHODS The SCC coil element consists of a coaxial loop with interrupted central conductor at the feed-point side and an interrupted shield at the opposite point. Inter-element decoupling, transmit efficiency, and sample heating were compared with results from conventional capacitively segmented loop coils. Three multichannel arrays (a 4-channel receive-only array and 8- and 5-channel transceive arrays) were constructed. Their inter-element decoupling was characterized via measured noise correlation matrices and additionally under different flexing conditions of the coils. Thermal measurements were performed and in vivo images were acquired. RESULTS The measured and simulated B 1 + maps of both SCC and conventional loops were very similar. For all the arrays constructed, the inter-element decoupling was much greater for the SCC elements than the conventional ones. Even under high degrees of flexion, the coupling coefficients were lower than -10 dB, with a much smaller frequency shift than for the conventional coils. CONCLUSION Arrays constructed from SCC elements are mechanically flexible and much less sensitive to changes of the coil shape from circular to elongated than arrays constructed from conventional loop coils, which makes them suitable for construction of size adjustable arrays.
Collapse
Affiliation(s)
- Thomas Ruytenberg
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Irena Zivkovic
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
66
|
Ford JB, Ganguly M, Poorman ME, Grissom WA, Jenkins MW, Chiel HJ, Jansen ED. Identifying the Role of Block Length in Neural Heat Block to Reduce Temperatures During Infrared Neural Inhibition. Lasers Surg Med 2020; 52:259-275. [PMID: 31347188 PMCID: PMC6981060 DOI: 10.1002/lsm.23139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND OBJECTIVES The objective of this study is to assess the hypothesis that the length of axon heated, defined here as block length (BL), affects the temperature required for thermal inhibition of action potential propagation applied using laser heating. The presence of such a phenomenon has implications for how this technique, called infrared neural inhibition (INI), may be applied in a clinically safe manner since it suggests that temperatures required for therapy may be reduced through the proper spatial application of light. Here, we validate the presence of this phenomenon by assessing how the peak temperatures during INI are reduced when two different BLs are applied using irradiation from either one or two adjacent optical fibers. STUDY DESIGN/MATERIALS AND METHODS Assessment of the role of BL was carried out over two phases. First, a computational proof of concept was performed in the neural conduction simulation environment, NEURON, simulating the response of action potentials to increased temperatures applied at different full-width at half-maxima (FWHM) along axons. Second, ex vivo validation of these predictions was performed by measuring the radiant exposure, peak temperature rise, and FWHM of heat distributions associated with INI from one or two adjacent optical fibers. Electrophysiological assessment of radiant exposures at inhibition threshold were carried out in ex vivo Aplysia californica (sea slug) pleural abdominal nerves ( n = 6), an invertebrate with unmyelinated axons. Measurement of the maximum temperature rise required for induced heat block was performed in a water bath using a fine wire thermocouple. Finally, magnetic resonance thermometry (MRT) was performed on a nerve immersed in saline to assess the elevated temperature distribution at these radiant exposures. RESULTS Computational modeling in NEURON provided a theoretical proof of concept that the BL is an important factor contributing to the peak temperature required during neural heat block, predicting a 11.7% reduction in temperature rise when the FWHM along an axon is increased by 42.9%. Experimental validation showed that, when using two adjacent fibers instead of one, a 38.5 ± 2.2% (mean ± standard error of the mean) reduction in radiant exposure per pulse per fiber threshold at the fiber output (P = 7.3E-6) is measured, resulting in a reduction in peak temperature rise under each fiber of 23.5 ± 2.1% ( P = 9.3E-5) and 15.0 ± 2.4% ( P = 1.4E-3) and an increase in the FWHM of heating by 37.7 ± 6.4% ( P = 1E-3), 68.4 ± 5.2% ( P = 2.4E-5), and 51.9 ± 9.9% ( P = 1.7E-3) in three MRT slices. CONCLUSIONS This study provides the first experimental evidence for a phenomenon during the heat block in which the temperature for inhibition is dependent on the BL. While more work is needed to further reduce the temperature during INI, the results highlight that spatial application of the temperature rise during INI must be considered. Optimized implementation of INI may leverage this cellular response to provide optical modulation of neural signals with lower temperatures over greater time periods, which may increase the utility of the technique for laboratory and clinical use. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jeremy B. Ford
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, Tennessee 37232
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, Tennessee 37232
| | - Mohit Ganguly
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, Tennessee 37232
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, Tennessee 37232
| | - Megan E. Poorman
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, Tennessee 37232
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, 1161 21st Ave S, Nashville, Tennessee 37232
| | - William A. Grissom
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, Tennessee 37232
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, 1161 21st Ave S, Nashville, Tennessee 37232
| | - Michael W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106
- Department of Pediatrics, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, Ohio 44106
| | - Hillel J. Chiel
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106
- Department of Biology, Case Western Reserve University, 2080 Adelbert Rd, Cleveland, Ohio 44106
- Department of Neurosciences, Case Western Reserve University, 2210 Circle Drive, Cleveland, Ohio 44106
| | - E. Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, Tennessee 37232
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, Tennessee 37232
- Department of Neurological Surgery, Vanderbilt University, 1161 21st Ave S, Nashville, Tennessee 37232
| |
Collapse
|
67
|
Selyutina OY, Kononova PA, Babailov SP. Complex of praseodymium with lipid as a NMR temperature sensor and probe of liposome states. NEW J CHEM 2020. [DOI: 10.1039/d0nj03707a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The goal of the research was to show the limits within which Pr3+ can be used as a linear response probe.
Collapse
Affiliation(s)
| | - P. A. Kononova
- Institute of Chemical Kinetics and Combustion
- Novosibirsk
- Russia
| | - S. P. Babailov
- A. V. Nikolaev Institute of Inorganic Chemistry
- The Siberian Branch of the Russian Academy of Sciences
- Novosibirsk
- Russian Federation
| |
Collapse
|
68
|
Kokuryo D, Kumamoto E, Kuroda K. Recent technological advancements in thermometry. Adv Drug Deliv Rev 2020; 163-164:19-39. [PMID: 33217482 DOI: 10.1016/j.addr.2020.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/25/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Thermometry is the key factor for achieving successful thermal therapy. Although invasive thermometry with a probe has been used for more than four decades, this method can only detect the local temperature within the probing volume. Noninvasive temperature imaging using a tomographic technique is ideal for monitoring hot-spot formation in the human body. Among various techniques, such as X-ray computed tomography, microwave tomography, echo sonography, and magnetic resonance (MR) imaging, the proton resonance frequency shift method of MR thermometry is the only method currently available for clinical practice because its temperature sensitivity is consistent in most aqueous tissues and can be easily observed using common clinical scanners. New techniques are being proposed to improve the robustness of this method against tissue motion. MR techniques for fat thermometry were also developed based on relaxation times. One of the latest non-MR techniques to attract attention is photoacoustic imaging.
Collapse
Affiliation(s)
- Daisuke Kokuryo
- Graduate School of System Informatics, Kobe University, Japan
| | - Etsuko Kumamoto
- Information Science and Technology Center, Kobe University, Japan
| | - Kagayaki Kuroda
- School of Information Science and Technology, Tokai University, Japan; Center for Frontier Medical Engineering, Chiba University, Japan.
| |
Collapse
|
69
|
Silletta EV, Jerschow A, Madelin G, Alon L. Multinuclear absolute magnetic resonance thermometry. COMMUNICATIONS PHYSICS 2019; 2:152. [PMID: 33072888 PMCID: PMC7561043 DOI: 10.1038/s42005-019-0252-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/29/2019] [Indexed: 06/11/2023]
Abstract
Non-invasive measurement of absolute temperature is important for proper characterization of various pathologies and for evaluation of thermal dose during interventional procedures. The proton (hydrogen nucleus) magnetic resonance (MR) frequency shift method can be used to map relative temperature changes. However, spatiotemporal variations in the main magnetic field and the lack of local internal frequency reference challenge the determination of absolute temperature. Here, we introduce a multinuclear method for absolute MR thermometry, based on the fact that the hydrogen and sodium nuclei exhibit a unique and distinct characteristic frequency dependence with temperature and with electrolyte concentration. A one-to-one mapping between the precession frequency difference of the two nuclei and absolute temperature is demonstrated. Proof-of-concept experiments were conducted in aqueous solutions with different NaCl concentrations, in agarose gel samples, and in freshly excised ex vivo mouse tissues. One-dimensional chemical shift imaging experiments also demonstrated excellent agreement with infrared measurements.
Collapse
Affiliation(s)
- Emilia V. Silletta
- New York University, Department of Chemistry, 100 Washington Square E, New York, NY 10003, USA
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Medina Allende s/n, X5000HUA Córdoba, Argentina
- Instituto de Física Enrique Gaviola, CONICET, Medina Allende s/n, X5000HUA Córdoba, Argentina
| | - Alexej Jerschow
- New York University, Department of Chemistry, 100 Washington Square E, New York, NY 10003, USA
| | - Guillaume Madelin
- New York University School of Medicine, Department of Radiology, Center for Biomedical Imaging, 660 First Avenue, New York, NY 10016, USA
| | - Leeor Alon
- New York University School of Medicine, Department of Radiology, Center for Biomedical Imaging, 660 First Avenue, New York, NY 10016, USA
| |
Collapse
|
70
|
Practical implementation of robust MR-thermometry during clinical MR-guided microwave ablations in the liver at 1.5 T. Phys Med 2019; 67:91-99. [PMID: 31704392 DOI: 10.1016/j.ejmp.2019.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
Practical non-invasive equipment modifications and effective acquisition methods to achieve robust and reliable real-time MR thermometry for monitoring of clinical hepatic microwave ablations were implemented. These included selection of the microwave generator location (inside versus outside the MR scan room), the number of radiofrequency chokes added to the microwave generator's coaxial lines, and the use of copper wool to maximize their electrical grounding. Signal-to-noise ratio (SNR) of MR thermometry images of a small fluid-filled phantom acquired during activation of microwave antenna were used to evaluate image quality as a function of each modification. SNR measurements corresponding to both locations of the microwave generator were comparable and so it was located outside the MR scan room. For this location, addition of one RF choke on the power and four chokes on the sensor coaxial lines was found to be optimal, corresponding to a 68% increase in SNR. Furthermore, image quality strongly depended on the proper electrical grounding of the power and sensor lines. SNR ratio (relative to SNR of baseline images) during activation of microwave generator was found to be 0.49 ± 0.28 without adequate grounding, and 0.88 ± 0.08 with adequate grounding (p = 0.002, Student's t-test). These SNR measurements were sufficiently sensitive to detect issues related to equipment performance and hence formed part of the quality assurance testing performed prior to each clinical treatment. Incorporating these non-invasive approaches resulted in significant improvements to image quality and, importantly while maintaining the clinical integrity of the microwave system which is of paramount importance in a highly regulated healthcare environment.
Collapse
|
71
|
Quantitative, Multi-institutional Evaluation of MR Thermometry Accuracy for Deep-Pelvic MR-Hyperthermia Systems Operating in Multi-vendor MR-systems Using a New Anthropomorphic Phantom. Cancers (Basel) 2019; 11:cancers11111709. [PMID: 31684057 PMCID: PMC6896203 DOI: 10.3390/cancers11111709] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 01/10/2023] Open
Abstract
Clinical outcome of hyperthermia depends on the achieved target temperature, therefore target conformal heating is essential. Currently, invasive temperature probe measurements are the gold standard for temperature monitoring, however, they only provide limited sparse data. In contrast, magnetic resonance thermometry (MRT) provides unique capabilities to non-invasively measure the 3D-temperature. This study investigates MRT accuracy for MR-hyperthermia hybrid systems located at five European institutions while heating a centric or eccentric target in anthropomorphic phantoms with pelvic and spine structures. Scatter plots, root mean square error (RMSE) and Bland-Altman analysis were used to quantify accuracy of MRT compared to high resistance thermistor probe measurements. For all institutions, a linear relation between MRT and thermistor probes measurements was found with R2 (mean ± standard deviation) of 0.97 ± 0.03 and 0.97 ± 0.02, respectively for centric and eccentric heating targets. The RMSE was found to be 0.52 ± 0.31 °C and 0.30 ± 0.20 °C, respectively. The Bland-Altman evaluation showed a mean difference of 0.46 ± 0.20 °C and 0.13 ± 0.08 °C, respectively. This first multi-institutional evaluation of MR-hyperthermia hybrid systems indicates comparable device performance and good agreement between MRT and thermistor probes measurements. This forms the basis to standardize treatments in multi-institution studies of MR-guided hyperthermia and to elucidate thermal dose-effect relations.
Collapse
|
72
|
Liu X, Ellens N, Williams E, Burdette EC, Karmarkar P, Weiss CR, Kraitchman D, Bottomley PA. High-resolution intravascular MRI-guided perivascular ultrasound ablation. Magn Reson Med 2019; 83:240-253. [PMID: 31402512 DOI: 10.1002/mrm.27932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/24/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE To develop and test in animal studies ex vivo and in vivo, an intravascular (IV) MRI-guided high-intensity focused ultrasound (HIFU) ablation method for targeting perivascular pathology with minimal injury to the vessel wall. METHODS IV-MRI antennas were combined with 2- to 4-mm diameter water-cooled IV-ultrasound ablation catheters for IV-MRI on a 3T clinical MRI scanner. A software interface was developed for monitoring thermal dose with real-time MRI thermometry, and an MRI-guided ablation protocol developed by repeat testing on muscle and liver tissue ex vivo. MRI thermal dose was measured as cumulative equivalent minutes at 43°C (CEM43 ). The IV-MRI IV-HIFU protocol was then tested by targeting perivascular ablations from the inferior vena cava of 2 pigs in vivo. Thermal dose and lesions were compared by gross and histological examination. RESULTS Ex vivo experiments yielded a 6-min ablation protocol with the IV-ultrasound catheter coolant at 3-4°C, a 30 mL/min flow rate, and 7 W ablation power. In 8 experiments, 5- to 10-mm thick thermal lesions of area 0.5-2 cm2 were produced that spared 1- to 2-mm margins of tissue abutting the catheters. The radial depths, areas, and preserved margins of ablation lesions measured from gross histology were highly correlated (r ≥ 0.79) with those measured from the CEM43 = 340 necrosis threshold determined by MRI thermometry. The psoas muscle was successfully targeted in the 2 live pigs, with the resulting ablations controlled under IV-MRI guidance. CONCLUSION IV-MRI-guided, IV-HIFU has potential as a precision treatment option that could preserve critical blood vessel wall during ablation of nonresectable perivascular tumors or other pathologies.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland.,Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Nicholas Ellens
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland.,Acertara Acoustic Laboratories, Longmont, Colorado
| | | | | | - Parag Karmarkar
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Clifford R Weiss
- Division of Interventional Radiology, Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Dara Kraitchman
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Paul A Bottomley
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland.,Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
73
|
Zivkovic I, de Castro CA, Webb A. Design and characterization of an eight-element passively fed meander-dipole array with improved specific absorption rate efficiency for 7 T body imaging. NMR IN BIOMEDICINE 2019; 32:e4106. [PMID: 31131944 PMCID: PMC6771742 DOI: 10.1002/nbm.4106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/14/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To evaluate the transmit efficiency and specific absorption rate (SAR) efficiency of a new eight-element passively fed meander-dipole antenna array designed for body MRI at 7 T, and to compare these values with a conventional directly fed meander-dipole array. METHODS The main radiating element of the passively fed dipole is printed on one side of a dielectric substrate and is capacitively coupled to a shorter feeding element (connected to the coaxial cable) printed on the opposite side of the substrate. The transmit (B1+ ) field and SAR were simulated on a phantom and on a human voxel model for both a passively fed and a directly fed single element. Two eight-channel arrays containing, respectively, directly and passively fed meander dipoles were then simulated, and experimental B1+ maps and T2 -weighted spin echo images of the prostate were obtained in vivo for four healthy volunteers. RESULTS In simulations, the mean transmit efficiency (B1+ per square root input power) value in the prostate was ~ 12.5% lower, and the maximum 10 g average SAR was 44% lower for the array containing passively fed dipoles, resulting in ~ 15% higher SAR efficiency for the passively fed array. In vivo RF-shimmed turbo spin echo images were acquired from both arrays, and showed image SNRs within 5% of one another. CONCLUSION A passive-feeding network for meander-dipole antennas has been shown to be a simple method to increase the SAR efficiency of a multi-element array used for body imaging at high fields. We hypothesize that the main reason for the increase in SAR efficiency is the storage of the strong conservative electric field in the dielectric between the feeding element and the radiating element of the dipole. The passive-feeding approach can be generalized to other dipole geometries and configurations.
Collapse
Affiliation(s)
- Irena Zivkovic
- C.J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | | | - Andrew Webb
- C.J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
74
|
Ozvat TM, Peña ME, Zadrozny JM. Influence of ligand encapsulation on cobalt-59 chemical-shift thermometry. Chem Sci 2019; 10:6727-6734. [PMID: 31367328 PMCID: PMC6625495 DOI: 10.1039/c9sc01689a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/04/2019] [Indexed: 11/21/2022] Open
Abstract
This manuscript details the first investigation of ligand encapsulation on thermometry by cobalt-59 nuclear spins.
Thermometry via magnetic resonance imaging (MRI) would provide a powerful noninvasive window into physiological temperature management. Cobalt-59 nuclear spins demonstrate exceptional temperature dependence of their NMR chemical shifts, yet the insight to control this dependence via molecular design is lacking. We present the first systematic evidence that encapsulation of this spin system amplifies the temperature sensitivity. We tested the temperature dependence of the 59Co chemical shift (Δδ/ΔT) in a series of five low-spin cobalt(iii) complexes as a function of increasing encapsulation within the 1st coordination sphere. This study spans from [Co(NH3)6]Cl3, with no interligand connectivity, to a fully encapsulated dinitrosarcophagine (diNOsar) complex, [Co(diNOsar)]Cl3. We discovered Δδ/ΔT values that span from 1.44(2) ppm °C–1 in [Co(NH3)6]Cl3 to 2.04(2) ppm °C–1 in [Co(diNOsar)]Cl3, the latter among the highest for a molecular complex. The data herein suggest that designing 59Co NMR thermometers toward high chemical stability can be coincident with high Δδ/ΔT. To better understand this phenomenon, variable-temperature UV-Vis, 59Co NMR relaxation, Raman spectroscopic, and variable-solvent investigations were performed. Data from these measurements highlight an unexpected impact of encapsulation – an increasingly dynamic and flexible inner coordination sphere. These results comprise the first systematic studies to reveal insight into the molecular factors that govern Δδ/ΔT and provide the first evidence of 59Co nuclear-spin control via vibrational means.
Collapse
Affiliation(s)
- Tyler M Ozvat
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , USA .
| | - Manuel E Peña
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , USA .
| | - Joseph M Zadrozny
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , USA .
| |
Collapse
|
75
|
Wu SK, Santos MA, Marcus SL, Hynynen K. MR-guided Focused Ultrasound Facilitates Sonodynamic Therapy with 5-Aminolevulinic Acid in a Rat Glioma Model. Sci Rep 2019; 9:10465. [PMID: 31320671 PMCID: PMC6639400 DOI: 10.1038/s41598-019-46832-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/03/2019] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) continues to have a dismal prognosis and significant efforts are being made to develop more effective treatment methods. Sonodynamic therapy (SDT) is an emerging modality for cancer treatment which combines ultrasound with sonosensitizers to produce a localized cytotoxic effect. It has long been known that ultrasound exposure can cause both thermal and non-thermal bioeffects and it remains an open question to what degree does temperature impact the efficacy of SDT. In order to optimize the ultrasound parameters of SDT, transcranial MRI-guided focused ultrasound (MRgFUS) and real-time MRI thermometry were used to monitor the therapy in a rat brain tumor model. Experiments were performed using a C6 intracranial glioma tumor model in 37 male Sprague Dawley rats. Treatments were performed about 7 days following tumor implantation when the tumor reached 1-3 mm in diameter as determined by MRI. 5-aminolevulinic acid (5-ALA) was injected at a dose of 60 mg/kg six hours before sonication. MRgFUS at 1.06 MHz was delivered continuously at an in situ spatial-peak temporal-average intensity of 5.5 W/cm2 for 20 min. MR thermometry was acquired to monitor the temperature change in the brain during sonication. The tumor growth response for animals receiving 5-ALA alone, FUS alone, 5-ALA + FUS and a sham control group were evaluated with MRI every week following treatment. During 20 min of MRgFUS at 5.5 W/cm2, the temperature within the targeted brain tumor was elevated from 32.3 ± 0.5 °C and 37.2 ± 0.7 °C to 33.2 ± 0.9 °C and 38.4 ± 1.1 °C, respectively. Both the tumor growth inhibition and survival were significantly improved in the 5-ALA + FUS group with 32 °C or 37 °C as the starting core body (rectal) temperature. 5-ALA alone and FUS alone did not improve survival. These promising results indicate that relatively low power continuous wave transcranial MRgFUS in conjunction with 5-ALA can produce an inhibitory effect on rat brain tumor growth in the absence of thermal dose. Further investigation of the ultrasound parameters is needed to improve the therapeutic efficacy of MRgFUS and 5-ALA.
Collapse
Affiliation(s)
- Sheng-Kai Wu
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Marc A Santos
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Stuart L Marcus
- Sun Pharmaceutical Industries Inc., Princeton, New Jersey, United States
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
76
|
Hofstetter LW, Odéen H, Bolster BD, Mueller A, Christensen DA, Payne A, Parker DL. Efficient shear wave elastography using transient acoustic radiation force excitations and MR displacement encoding. Magn Reson Med 2019; 81:3153-3167. [PMID: 30663806 PMCID: PMC6414262 DOI: 10.1002/mrm.27647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/21/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE To present a novel MR shear wave elastography (MR-SWE) method that efficiently measures the speed of propagating wave packets generated using acoustic radiation force (ARF) impulses. METHODS ARF impulses from a focused ultrasound (FUS) transducer were applied sequentially to a preselected set of positions and motion encoded MRI was used to acquire volumetric images of the propagating shear wavefront emanating from each point. The wavefront position at multiple propagation times was encoded in the MR phase image using a train of motion encoding gradient lobes. Generating a transient propagating wavefront at multiple spatial positions and sampling each at multiple time-points allowed for shear wave speed maps to be efficiently created. MR-SWE was evaluated in tissue mimicking phantoms and ex vivo bovine liver tissue before and after ablation. RESULTS MR-SWE maps, covering an in-plane area of ~5 × 5 cm, were acquired in 12 s for a single slice and 144 s for a volumetric scan. MR-SWE detected inclusions of differing stiffness in a phantom experiment. In bovine liver, mean shear wave speed significantly increased from 1.65 ± 0.18 m/s in normal to 2.52 ± 0.18 m/s in ablated region (n = 581 pixels; P-value < 0.001). CONCLUSION MR-SWE is an elastography technique that enables precise targeting and excitation of the desired tissue of interest. MR-SWE may be particularly well suited for treatment planning and endpoint assessment of MR-guided FUS procedures because the same device used for therapy can be used as an excitation source for tissue stiffness quantification.
Collapse
Affiliation(s)
- Lorne W Hofstetter
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | | | - Alexander Mueller
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Douglas A Christensen
- Department of Bioengineering, University of Utah, Salt Lake City, Utah
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
77
|
Odéen H, Parker DL. Magnetic resonance thermometry and its biological applications - Physical principles and practical considerations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:34-61. [PMID: 30803693 PMCID: PMC6662927 DOI: 10.1016/j.pnmrs.2019.01.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/23/2019] [Indexed: 05/25/2023]
Abstract
Most parameters that influence the magnetic resonance imaging (MRI) signal experience a temperature dependence. The fact that MRI can be used for non-invasive measurements of temperature and temperature change deep inside the human body has been known for over 30 years. Today, MR temperature imaging is widely used to monitor and evaluate thermal therapies such as radio frequency, microwave, laser, and focused ultrasound therapy. In this paper we cover the physical principles underlying the biological applications of MR temperature imaging and discuss practical considerations and remaining challenges. For biological tissue, the MR signal of interest comes mostly from hydrogen protons of water molecules but also from protons in, e.g., adipose tissue and various metabolites. Most of the discussed methods, such as those using the proton resonance frequency (PRF) shift, T1, T2, and diffusion only measure temperature change, but measurements of absolute temperatures are also possible using spectroscopic imaging methods (taking advantage of various metabolite signals as internal references) or various types of contrast agents. Currently, the PRF method is the most used clinically due to good sensitivity, excellent linearity with temperature, and because it is largely independent of tissue type. Because the PRF method does not work in adipose tissues, T1- and T2-based methods have recently gained interest for monitoring temperature change in areas with high fat content such as the breast and abdomen. Absolute temperature measurement methods using spectroscopic imaging and contrast agents often offer too low spatial and temporal resolution for accurate monitoring of ablative thermal procedures, but have shown great promise in monitoring the slower and usually less spatially localized temperature change observed during hyperthermia procedures. Much of the current research effort for ablative procedures is aimed at providing faster measurements, larger field-of-view coverage, simultaneous monitoring in aqueous and adipose tissues, and more motion-insensitive acquisitions for better precision measurements in organs such as the heart, liver, and kidneys. For hyperthermia applications, larger coverage, motion insensitivity, and simultaneous aqueous and adipose monitoring are also important, but great effort is also aimed at solving the problem of long-term field drift which gets interpreted as temperature change when using the PRF method.
Collapse
Affiliation(s)
- Henrik Odéen
- University of Utah, Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, 729 Arapeen Drive, Salt Lake City, UT 84108-1217, USA.
| | - Dennis L Parker
- University of Utah, Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, 729 Arapeen Drive, Salt Lake City, UT 84108-1217, USA.
| |
Collapse
|
78
|
Odéen H, Parker DL. Improved MR thermometry for laser interstitial thermotherapy. Lasers Surg Med 2019; 51:286-300. [PMID: 30645017 DOI: 10.1002/lsm.23049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To develop, test and evaluate improved 2D and 3D protocols for proton resonance frequency shift magnetic resonance temperature imaging (MRTI) of laser interstitial thermal therapy (LITT). The objective was to develop improved MRTI protocols in terms of temperature measurement precision and volume coverage compared to the 2D MRTI protocol currently used with a commercially available LITT system. METHODS Four different 2D protocols and four different 3D protocols were investigated. The 2D protocols used multi-echo readouts to prolong the total MR sampling time and hence the MRTI precision, without prolonging the total acquisition time. The 3D protocols provided volumetric thermometry by acquiring a slab of 12 contiguous slices in the same acquisition time as the 2D protocols. The study only considered readily available pulse sequences (Cartesian 2D and 3D gradient recalled echo and echo planar imaging [EPI]) and methods (partial Fourier and parallel imaging) to ensure wide availability and rapid clinical implementation across vendors and field strengths. In vivo volunteer studies were performed to investigate and compare MRTI precision and image quality. Phantom experiments with LITT heating were performed to investigate and compare MRTI precision and accuracy. Different coil setups were used in the in vivo studies to assess precision differences between using local (such as flex and head coils) and non-local (i.e., body coil) receive coils. Studies were performed at both 1.5 T and 3 T. RESULTS The improved 2D protocols provide up to a factor of two improvement in the MRTI precision in the same acquisition time, compared to the currently used clinical protocol. The 3D echo planar imaging protocols provide comparable precision as the currently used 2D clinical protocol, but over a substantially larger field of view, without increasing the acquisition time. As expected, local receive coils perform substantially better than the body coil, and 3 T provides better MRTI accuracy and precision than 1.5 T. 3D data can be zero-filled interpolated in all three dimensions (as opposed to just two dimensions for 2D data), reducing partial volume effects and measuring higher maximum temperature rises. CONCLUSIONS With the presented protocols substantially improved MRTI precision (for 2D imaging) or greatly improved field of view coverage (for 3D imaging) can be achieved in the same acquisition time as the currently used protocol. Only widely available pulse sequences and acquisition methods were investigated, which should ensure quick translation to the clinic. Lasers Surg. Med. 51:286-300, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Henrik Odéen
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Dennis L Parker
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
79
|
Santos MA, Wu SK, Li Z, Goertz DE, Hynynen K. Microbubble-assisted MRI-guided focused ultrasound for hyperthermia at reduced power levels. Int J Hyperthermia 2018; 35:599-611. [PMID: 30295119 DOI: 10.1080/02656736.2018.1514468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Ultrasound contrast agent microbubbles were combined with magnetic resonance imaging (MRI)-guided focused ultrasound (MRgFUS) as a means to achieve mild hyperthermia at reduced power levels. METHODS MRgFUS hyperthermia (42°C for 20 min) was evaluated in rabbit thigh muscle or Vx2 tumors using infusions of microbubbles (Definity, 20 µL/kg) or saline (sham) administered over 5 min. The impact of treatments on drug uptake was assessed with liposomal doxorubicin (Caelyx, 2.5 mg/kg). Applied power levels before and after the injection of microbubbles or saline were compared, and drug uptake was evaluated with fluorometry of tissues harvested 24 hr post-treatment. RESULTS MRgFUS hyperthermia in muscle and tumors resulted in accurate temperature control (mean =42.0°C, root mean square error (RMSE) = 0.3°C). The power dropped significantly following the injection of microbubbles in muscle and tumors compared to exposures without microbubbles (-21.9% ± 12.5% vs -5.9% ± 7.8%, p = .009 in muscle; -33.8% ± 9.9% vs -3.0% ± 7.2%, p < .001 in tumors). Cavitation monitoring indicated emission of subharmonic, ultraharmonic, and elevated levels of fourth to sixth harmonic frequencies following microbubble injection. The drug delivery was elevated significantly in muscle with the use of microbubble-assisted relative to conventional heating (0.5 ± 0.5 ng/mg vs 0.20 ± 0.04 ng/mg, p = .05), whereas in tumors similar levels were found (11 ± 3 ng/mg vs 16 ± 4 ng/mg, p = .13). CONCLUSIONS The finding that microbubbles reduce the applied power requirements for hyperthermia has considerable clinical implications. The elevated levels of drug found in muscle but not tumor tissue suggest a complex interplay between the heating effects of microbubbles with those of enhanced permeabilization and possible vascular damage.
Collapse
Affiliation(s)
- Marc A Santos
- a Physical Sciences Platform , Sunnybrook Research Institute , Toronto , Canada.,b Department of Medical Biophysics , University of Toronto , Toronto , Canada
| | - Sheng-Kai Wu
- a Physical Sciences Platform , Sunnybrook Research Institute , Toronto , Canada.,b Department of Medical Biophysics , University of Toronto , Toronto , Canada
| | - Zhe Li
- a Physical Sciences Platform , Sunnybrook Research Institute , Toronto , Canada
| | - David E Goertz
- a Physical Sciences Platform , Sunnybrook Research Institute , Toronto , Canada.,b Department of Medical Biophysics , University of Toronto , Toronto , Canada
| | - Kullervo Hynynen
- a Physical Sciences Platform , Sunnybrook Research Institute , Toronto , Canada.,b Department of Medical Biophysics , University of Toronto , Toronto , Canada.,c Institute of Biomaterials and Biomedical Engineering , University of Toronto , Toronto , Canada
| |
Collapse
|
80
|
McCallister D, Zhang L, Burant A, Katz L, Branca RT. Effect of microscopic susceptibility gradients on chemical-shift-based fat fraction quantification in supraclavicular fat. J Magn Reson Imaging 2018; 49:141-151. [PMID: 30284347 DOI: 10.1002/jmri.26219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/23/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Susceptibility differences between fat and water can cause changes in the water-fat frequency separation that can negatively affect the accuracy of fat fraction techniques. This may be especially relevant for brown adipose tissue, as MRI fat fraction techniques have been proposed for its detection. PURPOSE To assess the effect of microscopic magnetic susceptibility gradients on the water-fat frequency separation and its impact on chemical-shift-based fat fraction quantification techniques in the supraclavicular fat, where brown adipose tissue is commonly found in humans. STUDY TYPE Prospective. POPULATION/SUBJECTS/PHANTOM/SPECIMEN/ANIMAL MODEL Subjects: 11 healthy volunteers, mean age of 26 and mean BMI of 23, three overweight volunteers, mean age of 38 and mean BMI of 33. Phantoms: bovine phantom and intralipid fat emulsion. Simulations: various water-fat distributions. FIELD STRENGTH/SEQUENCE Six-echo gradient echo chemical-shift-encoded sequence at 3T. ASSESSMENT Fat fraction values as obtained from a water-fat spectral model accounting for susceptibility-induced water-fat frequency variations were directly compared to traditional spectral models that assume constant water-fat frequency separation. STATISTICAL TESTS Two-tail t-tests were used for significance testing (p < 0.05.) A Bayesian Information Criterion difference of 6 between fits was taken as strong evidence of an improved model. RESULTS Phantom experiments and simulation results showed variations of the water-fat frequency separation up to 0.4 ppm and 0.6 ppm, respectively. In the supraclavicular area, the water-fat frequency separation produced by magnetic susceptibility gradients varied by as much as ±0.4 ppm, with a mean of 0.08 ± 0.14 ppm, producing a mean difference in fat fraction of -1.26 ± 5.26%. DATA CONCLUSION In the supraclavicular fat depot, microscopic susceptibility gradients that exist within a voxel between water and fat compartments can produce variations in the water-fat frequency separation. These variations may produce fat fraction quantification errors of 5% when a spectral model with a fixed water-fat frequency separation is applied, which could impact MR brown fat techniques. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:141-151.
Collapse
Affiliation(s)
- Drew McCallister
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Le Zhang
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alex Burant
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Laurence Katz
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rosa Tamara Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
81
|
Mulder HT, Curto S, Paulides MM, Franckena M, van Rhoon GC. Systematic quality assurance of the BSD2000-3D MR-compatible hyperthermia applicator performance using MR temperature imaging. Int J Hyperthermia 2018; 35:305-313. [PMID: 30204006 DOI: 10.1080/02656736.2018.1497209] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Radiofrequency (RF) mild hyperthermia (40 °C-44 °C for 60 minutes) is an effective adjuvant treatment for several types of cancer. To ensure treatment efficacy, quality assurance (QA) is necessary. This study presents the first systematic 3D characterisation of the heating performance of the commonly used Pyrexar BSD2000-3D MR-compatible hyperthermia applicator using magnetic resonance temperature imaging (MRTI). METHODS A reproducibly positioned phantom was heated with a power of 1000 watts during the 12.4 min needed to measure eight temperature distributions using MRTI. The target heating location was systematically varied between experiments. We analysed focus shape characteristics, steering accuracy, focus deformation due to steering, presence of off-target heating and reproducibility. RESULTS The mean maximum temperature increase was 5.9 ± 0.4 °C. The mean full width half maximum (FWHM) was 14.4 ± 0.5 cm in the XY plane and 24.5 ± 0.8 cm in Z-direction. The mean steering error was 0.4 ± 0.2 cm. The focus shape slightly varied between experiments, depending on steering distance in Y-direction. Off-target heating was not detected. Reproducibility of the focus amplitude and shape was determined by comparing the mean deviation from the mean temperature in the central slice was 0.3 ± 0.2 °C. CONCLUSION The Pyrexar BSD2000-3D MR-compatible applicator provides robust and reproducible heating. The upper boundary of the 95% confidence interval of the spatial steering accuracy is 0.9 cm, i.e. sufficient to fulfil the criterion of ≤0.2 °C temperature variation due to positioning errors as defined by Canters et al.
Collapse
Affiliation(s)
- Hendrik Thijmen Mulder
- a Radiation Oncology, Erasmus Medical Centre Cancer Institute , Rotterdam , The Netherlands
| | - Sergio Curto
- a Radiation Oncology, Erasmus Medical Centre Cancer Institute , Rotterdam , The Netherlands
| | | | - Martine Franckena
- a Radiation Oncology, Erasmus Medical Centre Cancer Institute , Rotterdam , The Netherlands
| | - Gerard C van Rhoon
- a Radiation Oncology, Erasmus Medical Centre Cancer Institute , Rotterdam , The Netherlands
| |
Collapse
|
82
|
Ma M, Zhang Y, Gu N. Estimation the tumor temperature in magnetic nanoparticle hyperthermia by infrared thermography: Phantom and numerical studies. J Therm Biol 2018; 76:89-94. [DOI: 10.1016/j.jtherbio.2018.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
|
83
|
Abstract
The unique ability of magnetic resonance imaging to measure temperature noninvasively, in vivo, makes it an attractive tool for monitoring interventional procedures, such as radiofrequency or microwave ablation in real-time. The most frequently used approach for magnetic resonance-based temperature measurement is proton resonance frequency (PRF) thermometry. Although it has many advantages, including tissue-independence and real-time capability, the main drawback is its motion sensitivity. This is likely the reason PRF thermometry in moving organs, such as the liver, is not commonly used in the clinical arena. In recent years, however, several developments suggest that motion-corrected thermometry in the liver is achievable. The present article summarizes the diverse attempts to correct thermometry in the liver. Therefore, the physical principle of PRF is introduced, with additional references for necrosis zone estimation and how to deal with fat phase modulation, and main magnetic field drifts. The primary categories of motion correction are presented, including general methods for motion compensation and library-based approaches, and referenceless thermometry and hybrid methods. Practical validation of the described methods in larger patient groups will be necessary to establish accurate motion-corrected thermometry in the clinical arena, with the goal of complete liver tumor ablation.
Collapse
|
84
|
Peng Y, Zou C, Qiao Y, Tie C, Wan Q, Jiang R, Cheng C, Liang D, Zheng H, Li F, Liu X. Fast MR thermometry using an echo-shifted sequence with simultaneous multi-slice imaging. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 31:771-779. [PMID: 29948236 DOI: 10.1007/s10334-018-0692-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/15/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE Real-time monitoring is important for the safety and effectiveness of high-intensity focused ultrasound (HIFU) therapy. Magnetic resonance imaging is the preferred imaging modality for HIFU monitoring, with its unique capability of temperature imaging. For real-time temperature imaging, higher temporal resolution and larger spatial coverage are needed. In this study, a sequence based on the echo-shifted RF-spoiled gradient echo (GRE) with simultaneous multi-slice (SMS) imaging was designed for fast temperature imaging. METHODS A phantom experiment was conducted to evaluate the accuracy of the echo-shifted sequence using a fluorescent fiber thermometer as reference. The temperature uncertainty of the echo-shifted sequence was compared with the traditional GRE sequence at room temperature through the ex vivo porcine muscle. Finally, the ex vivo porcine liver tissue experiment using HIFU heating was performed to demonstrate that the spatial coverage was increased without decreasing temporal resolution. RESULTS The echo-shifted sequence had a better temperature uncertainty performance compared with the traditional GRE sequence with the same temporal resolution. The ex vivo heating experiment confirmed that by combining the SMS technique and echo-shifted sequence, the spatial coverage was increased without decreasing the temporal resolution while maintaining high temperature measurement precision. CONCLUSION The proposed technique was validated as an effective real-time method for monitoring HIFU therapy.
Collapse
Affiliation(s)
- Yuhong Peng
- State Key Laboratory of Ultrasound Engineering in Medicine, Chongqing Key Laboratory of Biomedical Engineering, Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, 153 Box, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, China.,Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016, China
| | - Chao Zou
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Yangzi Qiao
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Changjun Tie
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Qian Wan
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Rui Jiang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Chuanli Cheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Dong Liang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Hairong Zheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Faqi Li
- State Key Laboratory of Ultrasound Engineering in Medicine, Chongqing Key Laboratory of Biomedical Engineering, Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, 153 Box, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China. .,Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016, China.
| | - Xin Liu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, China. .,Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016, China.
| |
Collapse
|
85
|
Laser Interstitial Thermal Therapy for Posterior Fossa Lesions: An Initial Experience. World Neurosurg 2018; 117:e146-e153. [PMID: 29883824 DOI: 10.1016/j.wneu.2018.05.217] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND The application of laser interstitial thermal therapy (LITT) for intracranial lesions in the posterior fossa tumors remains challenging due to the smaller size of this compartment as well as the thickness and angle of the occipital bone. In this study, we reviewed our experience with this treatment modality for posterior fossa lesions. METHODS We retrospectively reviewed our series of 8 patients with posterior fossa tumors treated with LITT from an Institutional Review Board-approved brain tumor database (2012-2017) of more than 200 cases at our institution. RESULTS The 8 patients underwent LITT targeting 3 metastases, 2 pilocytic astrocytomas, 2 zones of radiation necrosis after radiosurgery, and 1 glioblastoma (GBM). The mean preoperative lesion volume was 4.35 cm3. A 6 months postsurgery, the mean lesion volume had decreased from 9.64 cm3 to 5.72 cm3. Two of the tumors (the GBM and a metastatic adenocarcinoma) progressed after 8.5 and 7.5 months, respectively, with mortality after 1.1 and 1.6 years, respectively. Surgical resection was performed in a patient with metastatic adenocarcinoma tumor at 7.7 months after LITT. All other lesions remained stable or were diminished at a median follow-up of 14.8 months (range, 0.4-37.5 months). Magnetic resonance imaging (MRI) on the first postoperative day, showed an increase in mean tumor-related edema volume from 9.45 cm3 to 14.10 cm3. After a postoperative follow-up of at least 1 month, this mean decreased to 8.70 cm3. One case each of transient partial unilateral sixth cranial nerve palsy, superficial wound infection, and a late obstructive hydrocephalus were noted postoperatively. No mortality was associated with the procedure. CONCLUSIONS LITT is a safe and feasible treatment modality even in challenging locations like the posterior fossa. However, surgical indications should be tailored for each individual patient based on the size and location of tumor.
Collapse
|
86
|
Freeman NJ, Odéen H, Parker DL. 3D-specific absorption rate estimation from high-intensity focused ultrasound sonications using the Green's function heat kernel. Med Phys 2018; 45:3109-3119. [PMID: 29772066 DOI: 10.1002/mp.12978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/12/2018] [Accepted: 04/19/2018] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To evaluate a numerical inverse Green's function method for deriving specific absorption rates (SARs) from high-intensity focused ultrasound (HIFU) sonications using tissue parameters (thermal conductivity, specific heat capacity, and mass density) and three-dimensional (3D) magnetic resonance imaging (MRI) temperature measurements. METHODS SAR estimates were evaluated using simulations and MR temperature measurements from HIFU sonications. For simulations, a "true" SAR was calculated using the hybrid angular spectrum method for ultrasound simulations. This "true" SAR was plugged into a Pennes bioheat transfer equation (PBTE) solver to provide simulated temperature maps, which were then used to calculate the SAR estimate using the presented method. Zero mean Gaussian noise, corresponding to temperature precisions between 0.1 and 2.0°C, was added to the temperature maps to simulate a variety of in vivo situations. Experimental MR temperature maps from HIFU sonications in a gelatin phantom monitored with a 3D segmented echo planar imaging MRI pulse sequence were also used. To determine the accuracy of the simulated and phantom data, we reconstructed temperature maps by plugging in the estimated SAR to the PBTE solver. In both simulations and phantom experiments, the presented method was compared to two previously published methods of determining SAR, a linear and an analytical method. The presented numerical method utilized the full 3D data simultaneously, while the two previously published methods work on a slice-by-slice basis. RESULTS In the absence of noise, SAR distribution estimates obtained from the simulated heating profiles match closely (within 10%) to the initial true SAR distribution. The resulting temperature distributions also match closely to the corresponding initial temperature distributions (<0.2°C RMSE). In the presence of temperature measurement noise, the SAR distributions have noise amplified by the inverse convolution process, while the resulting temperature distributions still match closely to the initial "true" temperature distributions. In general, temperature RMSE was observed to be approximately 20-30% higher than the level of the added noise. By contrast, the previously published linear method is less sensitive to noise, but significantly underpredicts the SAR. The analytic method is also less sensitive to noise and matches SAR in the central plane, but greatly underpredicts in the longitudinal direction. Similar observations are made from the phantom studies. The described numerical inverse Green's function method is very fast - at least two orders of magnitude faster than the compared methods. CONCLUSION The presented numerical inverse Green's function method is computationally fast and generates temperature maps with high accuracy. This is true despite generally overestimating the true SAR and amplifying the input noise.
Collapse
Affiliation(s)
- Nicholas J Freeman
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84108, USA
| | - Henrik Odéen
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84108, USA
| | - Dennis L Parker
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84108, USA
| |
Collapse
|
87
|
Tokuda J, Chauvin L, Ninni B, Kato T, King F, Tuncali K, Hata N. Motion compensation for MRI-compatible patient-mounted needle guide device: estimation of targeting accuracy in MRI-guided kidney cryoablations. Phys Med Biol 2018; 63:085010. [PMID: 29546845 DOI: 10.1088/1361-6560/aab736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Patient-mounted needle guide devices for percutaneous ablation are vulnerable to patient motion. The objective of this study is to develop and evaluate a software system for an MRI-compatible patient-mounted needle guide device that can adaptively compensate for displacement of the device due to patient motion using a novel image-based automatic device-to-image registration technique. We have developed a software system for an MRI-compatible patient-mounted needle guide device for percutaneous ablation. It features fully-automated image-based device-to-image registration to track the device position, and a device controller to adjust the needle trajectory to compensate for the displacement of the device. We performed: (a) a phantom study using a clinical MR scanner to evaluate registration performance; (b) simulations using intraoperative time-series MR data acquired in 20 clinical cases of MRI-guided renal cryoablations to assess its impact on motion compensation; and (c) a pilot clinical study in three patients to test its feasibility during the clinical procedure. FRE, TRE, and success rate of device-to-image registration were 2.71 ± 2.29 mm, 1.74 ± 1.13 mm, and 98.3% for the phantom images. The simulation study showed that the motion compensation reduced the targeting error for needle placement from 8.2 mm to 5.4 mm (p < 0.0005) in patients under general anesthesia (GA), and from 14.4 mm to 10.0 mm (p < 1.0 × 10(−5)) in patients under monitored anesthesia care (MAC). The pilot study showed that the software registered the device successfully in a clinical setting. Our simulation study demonstrated that the software system could significantly improve targeting accuracy in patients treated under both MAC and GA. Intraprocedural image-based device-to-image registration was feasible.
Collapse
Affiliation(s)
- Junichi Tokuda
- Department of Radiology, Brigham and Womens Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | | | | | | | | | | | | |
Collapse
|
88
|
Chen Y, Ge M, Ali R, Jiang H, Huang X, Qiu B. Quantitative MR thermometry based on phase-drift correction PRF shift method at 0.35 T. Biomed Eng Online 2018; 17:39. [PMID: 29631576 PMCID: PMC5892038 DOI: 10.1186/s12938-018-0472-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/30/2018] [Indexed: 11/30/2022] Open
Abstract
Background Noninvasive magnetic resonance thermometry (MRT) at low-field using proton resonance frequency shift (PRFS) is a promising technique for monitoring ablation temperature, since low-field MR scanners with open-configuration are more suitable for interventional procedures than closed systems. In this study, phase-drift correction PRFS with first-order polynomial fitting method was proposed to investigate the feasibility and accuracy of quantitative MR thermography during hyperthermia procedures in a 0.35 T open MR scanner. Methods Unheated phantom and ex vivo porcine liver experiments were performed to evaluate the optimal polynomial order for phase-drift correction PRFS. The temperature estimation approach was tested in brain temperature experiments of three healthy volunteers at room temperature, and in ex vivo porcine liver microwave ablation experiments. The output power of the microwave generator was set at 40 W for 330 s. In the unheated experiments, the temperature root mean square error (RMSE) in the inner region of interest was calculated to assess the best-fitting order for polynomial fit. For ablation experiments, relative temperature difference profile measured by the phase-drift correction PRFS was compared with the temperature changes recorded by fiber optic temperature probe around the microwave ablation antenna within the target thermal region. Results The phase-drift correction PRFS using first-order polynomial fitting could achieve the smallest temperature RMSE in unheated phantom, ex vivo porcine liver and in vivo human brain experiments. In the ex vivo porcine liver microwave ablation procedure, the temperature error between MRT and fiber optic probe of all but six temperature points were less than 2 °C. Overall, the RMSE of all temperature points was 1.49 °C. Conclusions Both in vivo and ex vivo experiments showed that MR thermometry based on the phase-drift correction PRFS with first-order polynomial fitting could be applied to monitor temperature changes during microwave ablation in a low-field open-configuration whole-body MR scanner.
Collapse
Affiliation(s)
- Yuping Chen
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Mengke Ge
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Rizwan Ali
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Hejun Jiang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xiaoyan Huang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Bensheng Qiu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| |
Collapse
|
89
|
Awojoyogbe BO, Dada MO. Computational Design of an RF Controlled Theranostic Model for Evaluation of Tissue Biothermal Response. J Med Biol Eng 2018. [DOI: 10.1007/s40846-018-0386-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
90
|
Brink WM, Wu Z, Webb AG. A simple head-sized phantom for realistic static and radiofrequency characterization at high fields. Magn Reson Med 2018; 80:1738-1745. [PMID: 29498102 DOI: 10.1002/mrm.27153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/12/2018] [Accepted: 02/05/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE To demonstrate a simple head-sized phantom for realistic static and RF field characterization in high field systems. METHODS The head-sized phantom was composed of an ellipsoidal compartment and a spherical cavity to mimic the nasal cavity. The phantom was filled with an aqueous solution of polyvinylpyrrolidone (PVP), to mimic the average dielectric properties of brain tissue. The static and RF field distributions were characterized on a 7T MRI system and compared to in vivo measurements and simulations. MR thermometry was performed, and the results were compared to thermal simulations for RF validation purposes. RESULTS Accurate reproduction of both static and RF fields patterns observed in vivo was confirmed experimentally and was shown to be strongly affected by the inclusion of the spherical cavity. MR thermometry and transmit efficiency ( B1+) measurements were obtained in close agreement with simulations (peak values agreeing within 0.3 °C and 0.02 μT/√W) as well as fiber optic thermal probes (RMSE < 0.18 °C). CONCLUSIONS A simple head-sized phantom has been presented that produces B0 and B1+ nonuniformities similar to those encountered in the human head and allows for accurate MR thermometry measurements, making this a suitable reference phantom for RF validation and methodological development in high field MRI.
Collapse
Affiliation(s)
- Wyger M Brink
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Zhiyi Wu
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
91
|
Hofstetter LW, Yeo DTB, Dixon WT, Marinelli L, Foo TK. Referenced MR thermometry using three-echo phase-based fat water separation method. Magn Reson Imaging 2018; 49:86-93. [PMID: 29409819 DOI: 10.1016/j.mri.2018.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 12/24/2022]
Abstract
A three-point image reconstruction method for internally referenced MR thermometry was developed. The technique exploits the fact that temperature-induced changes in the water resonance frequency are small relative to the chemical shift difference between water and fat signals. This property enabled the use of small angle approximations to derive an analytic phase-based fat-water separation method for MR thermometry. Ethylene glycol and cream cool-down experiments were performed to validate measurement technique. Over a cool-down temperature range of 20 °C, maximum deviation between probe and MR measurement (averaged over 1.3 cm3 region surrounding probe) was 0.6 °C and 1.1 °C for ethylene glycol and cream samples, respectively.
Collapse
Affiliation(s)
| | | | - W Thomas Dixon
- Department of Radiology, Emory University, Atlanta, GA, USA.
| | | | | |
Collapse
|
92
|
Hue YK, Guimaraes AR, Cohen O, Nevo E, Roth A, Ackerman JL. Magnetic Resonance Mediated Radiofrequency Ablation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:417-427. [PMID: 28922117 PMCID: PMC5813696 DOI: 10.1109/tmi.2017.2753739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To introduce magnetic resonance mediated radiofrequency ablation (MR-RFA), in which the MRI scanner uniquely serves both diagnostic and therapeutic roles. In MR-RFA scanner-induced RF heating is channeled to the ablation site via a Larmor frequency RF pickup device and needle system, and controlled via the pulse sequence. MR-RFA was evaluated with simulation of electric and magnetic fields to predict the increase in local specific-absorption-rate (SAR). Temperature-time profiles were measured for different configurations of the device in agar phantoms and ex vivo bovine liver in a 1.5 T scanner. Temperature rise in MR-RFA was imaged using the proton resonance frequency method validated with fiber-optic thermometry. MR-RFA was performed on the livers of two healthy live pigs. Simulations indicated a near tenfold increase in SAR at the RFA needle tip. Temperature-time profiles depended significantly on the physical parameters of the device although both configurations tested yielded temperature increases sufficient for ablation. Resected livers from live ablations exhibited clear thermal lesions. MR-RFA holds potential for integrating RF ablation tumor therapy with MRI scanning. MR-RFA may add value to MRI with the addition of a potentially disposable ablation device, while retaining MRI's ability to provide real time procedure guidance and measurement of tissue temperature, perfusion, and coagulation.
Collapse
|
93
|
Kim Y, Audigier C, Anas EMA, Ziegle J, Friebe M, Boctor EM. CUST: CNN for Ultrasound Thermal Image Reconstruction Using Sparse Time-of-Flight Information. SIMULATION, IMAGE PROCESSING, AND ULTRASOUND SYSTEMS FOR ASSISTED DIAGNOSIS AND NAVIGATION 2018:29-37. [DOI: 10.1007/978-3-030-01045-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
94
|
Alghamdi NA, Hankiewicz JH, Anderson NR, Stupic KF, Camley RE, Przybylski M, Zukrowski J, Celinski Z. Development of Ferrite-Based Temperature Sensors for Magnetic Resonance Imaging: A Study of Cu 1-xZn xFe 2O 4. PHYSICAL REVIEW APPLIED 2018; 9:10.1103/PhysRevApplied.9.054030. [PMID: 31093520 PMCID: PMC6512831 DOI: 10.1103/physrevapplied.9.054030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We investigate the use of Cu1-x Zn x Fe2O4 ferrites (0.60 < x < 0.76) as potential sensors for magnetic- resonance-imaging thermometry. Samples are prepared by a standard ceramic technique. Their structural and magnetic properties are determined using x-ray diffraction, scanning electron microscopy, super-conducting quantum-interference device magnetometry, and Mossbauer and 3-T nuclear-magnetic-resonance spectroscopies. We use the mass magnetization of powdered ferrites and transverse relaxivity r*2 of water protons in Ringer's-solution-based agar gels with embedded micron-sized particles to determine the best composition for magnetic-resonance-imaging (MRI) temperature sensors in the (280-323)-K range. A preclinical 3-T MRI scanner is employed to acquire T*2 weighted temperature-dependent images. The brightness of the MRI images is cross-correlated with the temperature of the phantoms, which allows for a temperature determination with approximately 1°C accuracy. We determine that the composition of 0.65 < x < 0.70 is the most suitable for MRI thermometry near human body temperature.
Collapse
Affiliation(s)
- N. A. Alghamdi
- UCCS BioFrontiers Center, University of Colorado, Colorado Springs 1420 Austin Bluffs Parkway, Colorado 80918, USA
- Corresponding author.
| | - J. H. Hankiewicz
- UCCS BioFrontiers Center, University of Colorado, Colorado Springs 1420 Austin Bluffs Parkway, Colorado 80918, USA
| | - N. R. Anderson
- UCCS BioFrontiers Center, University of Colorado, Colorado Springs 1420 Austin Bluffs Parkway, Colorado 80918, USA
| | - K. F. Stupic
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - R. E. Camley
- UCCS BioFrontiers Center, University of Colorado, Colorado Springs 1420 Austin Bluffs Parkway, Colorado 80918, USA
| | - M. Przybylski
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, 30-059 Krakow, Poland
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - J. Zukrowski
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Z. Celinski
- UCCS BioFrontiers Center, University of Colorado, Colorado Springs 1420 Austin Bluffs Parkway, Colorado 80918, USA
| |
Collapse
|
95
|
Perioperative and Anesthetic Considerations for Neurosurgical Laser Interstitial Thermal Therapy Ablations. J Neurosurg Anesthesiol 2018; 30:10-17. [DOI: 10.1097/ana.0000000000000376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
96
|
Dillon CR, Farrer A, McLean H, Almquist S, Christensen D, Payne A. Experimental assessment of phase aberration correction for breast MRgFUS therapy. Int J Hyperthermia 2017; 34:731-743. [PMID: 29278946 DOI: 10.1080/02656736.2017.1422029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
PURPOSE This study validates that phase aberrations in breast magnetic resonance-guided focussed ultrasound (MRgFUS) therapies can be corrected in a clinically relevant time frame to generate more intense, smaller and more spatially accurate foci. MATERIALS AND METHODS Hybrid angular spectrum (HAS) ultrasound calculations in an magnetic resonance imaging (MRI)-based tissue model, were used to compute phase aberration corrections for improved experimental MRgFUS heating in four heterogeneous breast-mimicking phantoms (n = 18 total locations). Magnetic resonance(MR) temperature imaging was used to evaluate the maximum temperature rise, focus volume and focus accuracy for uncorrected and phase aberration-corrected sonications. Thermal simulations assessed the effectiveness of the phase aberration correction implementation. RESULTS In 13 of 18 locations, the maximum temperature rise increased by an average of 30%, focus volume was reduced by 40% and focus accuracy improved from 4.6 to 3.6 mm. Mixed results were observed in five of the 18 locations, with focus accuracy improving from 6.1 to 2.5 mm and the maximum temperature rise decreasing by 8% and focus volume increasing by 10%. Overall, the study demonstrated significant improvements (p < 0.005) in maximum temperature rise, focus volume and focus accuracy. Simulations predicted greater improvements than observed experimentally, suggesting potential for improvement in implementing the technique. The complete phase aberration correction procedure, including model generation, segmentation and phase aberration computations, required less than 45 min per sonication location. CONCLUSION The significant improvements demonstrated in this study i.e., focus intensity, size and accuracy from phase aberration correction have the potential to improve the efficacy, time-efficiency and safety of breast MRgFUS therapies.
Collapse
Affiliation(s)
- Christopher R Dillon
- a Department of Radiology and Imaging Sciences , University of Utah , Salt Lake City , UT , USA
| | - Alexis Farrer
- b Department of Bioengineering , University of Utah , Salt Lake City , UT , USA
| | - Hailey McLean
- a Department of Radiology and Imaging Sciences , University of Utah , Salt Lake City , UT , USA
| | - Scott Almquist
- c School of Computing , University of Utah , Salt Lake City , UT , USA
| | - Douglas Christensen
- b Department of Bioengineering , University of Utah , Salt Lake City , UT , USA.,d Department of Electrical and Computer Engineering , University of Utah , Salt Lake City , UT , USA
| | - Allison Payne
- a Department of Radiology and Imaging Sciences , University of Utah , Salt Lake City , UT , USA
| |
Collapse
|
97
|
O'Callaghan J, Holmes H, Powell N, Wells JA, Ismail O, Harrison IF, Siow B, Johnson R, Ahmed Z, Fisher A, Meftah S, O'Neill MJ, Murray TK, Collins EC, Shmueli K, Lythgoe MF. Tissue magnetic susceptibility mapping as a marker of tau pathology in Alzheimer's disease. Neuroimage 2017; 159:334-345. [PMID: 28797738 PMCID: PMC5678288 DOI: 10.1016/j.neuroimage.2017.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 01/15/2023] Open
Abstract
Alzheimer's disease is connected to a number of other neurodegenerative conditions, known collectively as 'tauopathies', by the presence of aggregated tau protein in the brain. Neuroinflammation and oxidative stress in AD are associated with tau pathology and both the breakdown of axonal sheaths in white matter tracts and excess iron accumulation grey matter brain regions. Despite the identification of myelin and iron concentration as major sources of contrast in quantitative susceptibility maps of the brain, the sensitivity of this technique to tau pathology has yet to be explored. In this study, we perform Quantitative Susceptibility Mapping (QSM) and T2* mapping in the rTg4510, a mouse model of tauopathy, both in vivo and ex vivo. Significant correlations were observed between histological measures of myelin content and both mean regional magnetic susceptibility and T2* values. These results suggest that magnetic susceptibility is sensitive to tissue myelin concentrations across different regions of the brain. Differences in magnetic susceptibility were detected in the corpus callosum, striatum, hippocampus and thalamus of the rTg4510 mice relative to wild type controls. The concentration of neurofibrillary tangles was found to be low to intermediate in these brain regions indicating that QSM may be a useful biomarker for early stage detection of tau pathology in neurodegenerative diseases.
Collapse
Affiliation(s)
- J O'Callaghan
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK.
| | - H Holmes
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - N Powell
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - J A Wells
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - O Ismail
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - I F Harrison
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - B Siow
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - R Johnson
- Eli Lilly and Company, 355 E Merrill Street, Dock 48, Indianapolis, IN, 46225, USA
| | - Z Ahmed
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - A Fisher
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - S Meftah
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - M J O'Neill
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - T K Murray
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - E C Collins
- Eli Lilly and Company, 355 E Merrill Street, Dock 48, Indianapolis, IN, 46225, USA
| | - K Shmueli
- Department of Medical Physics and Biomedical Engineering, UCL, UK
| | - M F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| |
Collapse
|
98
|
de Bever JT, Odéen H, Hofstetter LW, Parker DL. Simultaneous MR thermometry and acoustic radiation force imaging using interleaved acquisition. Magn Reson Med 2017; 79:1515-1524. [PMID: 28795419 DOI: 10.1002/mrm.26827] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/15/2017] [Accepted: 06/15/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE A novel and practical method for simultaneously performing MR acoustic radiation force imaging (ARFI) and proton resonance frequency (PRF)-shift thermometry has been developed and tested. This could be an important tool for evaluating the success of MR-guided focused ultrasound procedures for which MR-thermometry measures temperature and thermal dose and MR-ARFI detects changes in tissue mechanical properties. METHODS MR imaging was performed using a gradient recalled echo segmented echo-planar imaging pulse sequence with bipolar motion encoding gradients (MEG). Images with ultrasound pulses (ON) and without ultrasound pulses (OFF) during the MEG were interleaved at the repetition time (TR) level. ARFI displacements were calculated by complex subtraction of ON-OFF images, and PRF temperature maps were calculated by baseline subtraction. Evaluations in tissue-mimicking phantoms and ex vivo porcine brain tissue were performed. Constrained reconstruction improved the temporal resolution of dynamic measurements. RESULTS Simultaneous maps of displacement and temperature were acquired in 2D and 3D while keeping tissue heating < 1°C. Accuracy of the temperature maps was comparable to the standard PRF sequence. Using constrained reconstruction and subsampled k-space (R = 4.33), 3D simultaneous temperature and displacement maps can be acquired every 4.7 s. CONCLUSION This new sequence acquires simultaneous temperature and displacement maps with minimal tissue heating, and can be applied dynamically for monitoring tissue mechanical properties during ablation procedures. Magn Reson Med 79:1515-1524, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Joshua T de Bever
- School of Computing, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA.,Department of Radiology, Stanford University, Stanford, California, USA
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | - Lorne W Hofstetter
- Department of Radiology and Imaging Sciences, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
99
|
MR Coagulation: A Novel Minimally Invasive Approach to Aneurysm Repair. J Vasc Interv Radiol 2017; 28:1592-1598. [PMID: 28802550 DOI: 10.1016/j.jvir.2017.06.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/21/2017] [Accepted: 06/27/2017] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To demonstrate a proof of concept of magnetic resonance (MR) coagulation, in which MR imaging scanner-induced radiofrequency (RF) heating at the end of an intracatheter long wire heats and coagulates a protein solution to effect a vascular repair by embolization. MATERIALS AND METHODS MR coagulation was simulated by finite-element modeling of electromagnetic fields and specific absorption rate (SAR) in a phantom. A glass phantom consisting of a spherical cavity joined to the side of a tube was incorporated into a flow system to simulate an aneurysm and flowing blood with velocities of 0-1.7 mL/s. A double-lumen catheter containing the wire and fiberoptic temperature sensor in 1 lumen was passed through the flow system into the aneurysm, and 9 cm3 of protein solution was injected into the aneurysm through the second lumen. The distal end of the wire was laid on the patient table as an antenna to couple RF from the body coil or was connected to a separate tuned RF pickup coil. A high RF duty-cycle turbo spin-echo pulse sequence excited the wire such that RF energy deposited at the tip of the wire coagulated the protein solution, embolizing the aneurysm. RESULTS The protein coagulation temperature of 60°C was reached in the aneurysm in ∼12 seconds, yielding a coagulated mass that largely filled the aneurysm. The heating rate was controlled by adjusting pulse-sequence parameters. CONCLUSIONS MR coagulation has the potential to embolize vascular defects by coagulating a protein solution delivered by catheter using MR imaging scanner-induced RF heating of an intracatheter wire.
Collapse
|
100
|
Lefebvre PM, Van Reeth E, Ratiney H, Beuf O, Brusseau E, Lambert SA, Glaser SJ, Sugny D, Grenier D, Tse Ve Koon K. Active control of the spatial MRI phase distribution with optimal control theory. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 281:82-93. [PMID: 28558274 DOI: 10.1016/j.jmr.2017.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
This paper investigates the use of Optimal Control (OC) theory to design Radio-Frequency (RF) pulses that actively control the spatial distribution of the MRI magnetization phase. The RF pulses are generated through the application of the Pontryagin Maximum Principle and optimized so that the resulting transverse magnetization reproduces various non-trivial and spatial phase patterns. Two different phase patterns are defined and the resulting optimal pulses are tested both numerically with the ODIN MRI simulator and experimentally with an agar gel phantom on a 4.7T small-animal MR scanner. Phase images obtained in simulations and experiments are both consistent with the defined phase patterns. A practical application of phase control with OC-designed pulses is also presented, with the generation of RF pulses adapted for a Magnetic Resonance Elastography experiment. This study demonstrates the possibility to use OC-designed RF pulses to encode information in the magnetization phase and could have applications in MRI sequences using phase images.
Collapse
Affiliation(s)
- Pauline M Lefebvre
- Univ.Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 3 rue Victor Grignard, F-69616 Lyon, France.
| | - Eric Van Reeth
- Univ.Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 3 rue Victor Grignard, F-69616 Lyon, France.
| | - Hélène Ratiney
- Univ.Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 3 rue Victor Grignard, F-69616 Lyon, France.
| | - Olivier Beuf
- Univ.Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 3 rue Victor Grignard, F-69616 Lyon, France.
| | - Elisabeth Brusseau
- Univ.Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 3 rue Victor Grignard, F-69616 Lyon, France.
| | - Simon A Lambert
- Univ.Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 3 rue Victor Grignard, F-69616 Lyon, France.
| | - Steffen J Glaser
- Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching, Germany.
| | - Dominique Sugny
- ICB, UMR 6303 CNRS-Université de Bourgogne, 9 avenue Alain Savary, F-21078 Dijon, France; Institute for Advanced Study, Technische Universität München, Lichtenbergstraße 2a, D-85748 Garching, Germany.
| | - Denis Grenier
- Univ.Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 3 rue Victor Grignard, F-69616 Lyon, France.
| | - Kevin Tse Ve Koon
- Univ.Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 3 rue Victor Grignard, F-69616 Lyon, France.
| |
Collapse
|